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Abstract

That the flow of information from gene sequence to protein sequence depends on the

translation of a code that could literally be described as digital is a truly incredible

feat of nature. However, the process of translation is a noisy, stochastic, kinetic

process that depends on many factors. The redundancy in the genetic code allows

the transmission of additional, analogue information by varying some of these fac-

tors. How organisms use the redundancy is termed codon usage, and rare codons are

those that are typically shunned in favour of other synonymous options. Synony-

mous variations to the codon usage pattern of a gene have been linked to disease,

and can have huge effects on the functionality and quantity of protein produced

from a gene, but the nature of these variations is complex and poorly understood.

In some cases, rare codons appear to have a beneficial influence on expression. This

thesis investigates the phenomenon of rare codons and attempts to elucidate their

evolutionary role in optimal gene expression. It begins with the design of a novel

statistical algorithm, which is used to generate a dataset of interesting genetic lo-

cations. The dataset is the subject of a hypothesis-driven investigation to discover

meaningful biological correlates, and this is complemented by experimental work, to

attempt to provide conclusive validation of the approach.
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1 Introduction

To obtain a fully functional, correctly structured protein, a cell must pass infor-

mation through three physical states (DNA, mRNA, protein) via two transitions

(transcription and translation) – this is the “central dogma” of molecular biology

(Crick, 1970). The nucleotide sequence of a gene uniquely determines the sequence

of amino acids that make up the protein it produces. However, the process is more

complex and less deterministic than this description allows.

The folding of a protein from a one dimensional peptide sequence into one or

more functional domains arguably represents a third transition into a fourth state.

Proteins do not infallibly attain their native structure upon translation, sometimes

misfolding or forming aggregates. The mapping from protein sequence to structure

is not injective either; while single amino acid changes can destroy the structure or

function of a protein, most locations of most proteins are quite tolerant to substi-

tutions, especially when the two residues have similar physicochemical properties

(Ohta, 1973).

Because of this flexibility in amino acid sequence and the high level of redundancy

in the genetic code, the constraints placed on the DNA sequence of a gene by the

target protein structure are loose (Itzkovitz and Alon, 2007). This flexibility allows
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neutral variations that do not influence the propagation of information to take hold.

There are also “non-canonical” characteristics of each stage that fall outside the

realm of the genetic code as defined in the central dogma, but do affect the efficiency

of information transfer and are therefore acted on by natural selection.

1.1 An Introduction to Codon Usage

An early finding in the field of genetic analysis established that although there

are a great many synonymous coding options available to organisms, they are not

used equally (Ikemura, 1981a). Even within synonymous sets of codons that are

translated to the same amino acid residue, codons are selected with bias, and the

bias varies between species (Gustafsson et al., 2004; Hershberg and Petrov, 2008;

Plotkin and Kudla, 2011). Codon usage describes this bias and its variations, and

there are numerous interesting findings that imply a selective role.

Within synonymous sets, organisms display strong preferences for some codons

over others. These preferences can be observed in the frequency of usage, either

across the whole genome or in a limited sample of genes. Preferred codons are used

more frequently and are therefore described as common, as opposed to rare.

In endogenous genes, the degree of codon usage bias is positively correlated with

expression level. Genes containing a higher proportion of common codons are tran-

scribed more (Goetz and Fuglsang, 2005), and their protein products are more abun-

dant (Tuller et al., 2007; Le Roch et al., 2004). These relationships have been shown

to hold for heterologous genes that have been artificially added to a cell’s genomic

portfolio. Designing a gene so that its codon usage matches the preferences of
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the host organism, within the extensive space of synonymous coding options, often

increases its expression level (Gustafsson et al., 2004). The translation rate of indi-

vidual codons is variable and, broadly speaking, this appears to correlate with the

usage frequencies of the codons, so that more commonly used codons are translated

faster (Pedersen, 1984). Finally, codon usage frequencies are correlated with tRNA

abundances, so that tRNAs that decode more common codons are present in greater

abundances (Ikemura, 1981a, 1982).

This amounts to the most common explanation for codon usage bias: common

codons are translated faster because they are decoded by more abundant tRNAs.

Faster translation is generally preferable, because it allows the cell to respond more

rapidly to environmental cues and ultimately to grow and multiply more quickly.

However, this description does not capture the complexity of the selective landscape.

The gene design strategy described above, where each amino acid is encoded by

the most commonly used codon in the host organism, is far from infallible and

recombinant expression is very often problematic (Purvis et al., 1987; Lavner and

Kotlar, 2005; Angov et al., 2008; Welch et al., 2009; Agashe et al., 2013).

Section 1.2 describes the flow of genetic information from gene sequence to func-

tional protein in more detail, introducing some of the factors that influence the

specific sequence of a gene along the way. We then return to codon usage and the

main subject of this thesis in more detail.
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1.2 The Flow of Genetic Information

This section describes how information is transferred from DNA to functional pro-

teins, and introduces indirect and biased influences on the process. Some of these

influences are non-selective, and others are the result of the ability of genes to trans-

fer additional, analogue information alongside the digital content that describes the

amino acid sequence.

1.2.1 DNA

Although organism fitness depends on many phenotypic characteristics, the signal

upon which evolution acts is genomic DNA. Random forces also constantly perturb

DNA composition. Physiochemical modification of nucleotides, and occasional er-

roneous or biased synthesis or replication of DNA, alter genomic nucleotide content

and thus codon usage. Meanwhile, the cell has manifold mechanisms in place to cor-

rect errors arising from these effects, but these are themselves occasionally biased

(Marais, 2003; Nakken et al., 2010). This section discusses biases in occurrences of

mutations and the cellular mechanisms that repair them, and the codependencies

between these processes and the DNA sequence.

Mutations and Stability

Mutations are an unavoidable consequence of noise in the metabolic processes of

a cell and the aggressive environmental influences to which it is exposed. They

can take the form of changes to single nucleotides, called point substitutions, or
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insertions or deletions of one or more bases in one or both strands – generically

termed replication slippage (Hartl and Jones, 1998).

Point substitutions occur with different frequencies between particular pairs of

bases, depending on the molecular structure of the nucleotides. Some combinations

of chemical modifications to bases can transform them into other bases entirely. For

example, cytosine can transition to thymine by two chemical modifications, methy-

lation and deamination. Deamination can be induced by UV radiation, enzymatic

action or simply contact with water (Duncan and Miller, 1980; Lindahl, 1993). In

isolation this modification produces uracil, and RNA base which is readily identified

and excised by DNA repair systems. However, if this happens concurrently with

methylation, the nucleotide produced is a thymine, creating a mismatch between

the two strands in which the correct base is less readily distinguished. Methylation

is widely used in gene regulation (Wolffe and Matzke, 1999) and methylated cytosine

is particularly susceptible to deamination (Nakken et al., 2010), making this kind

of mutation relatively likely. Additionally, each of the bases has alternative isomers

that are capable of binding to bases other than their proper complement while still

allowing the DNA to form a stable structure. For example, thymine in its regular

“keto” form binds to adenine, but in its (rarer)“enol” form, with one hydrogen atom

bound to the aromatic ring in a different position, it is capable of forming three

hydrogen bonds and complementing guanine. Chemical modifications, for exam-

ple, bromination, can create base analogues which shift between alternative isomers

more easily (Anthony JF Griffiths et al., 2000). These modified bases can become

fixed as mutations in some of the offspring after replication (Francino and Ochman,

2001).
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G-C content, the proportion of complementary guanine-cytosine base pairings, is

a useful summary statistic for comparing the genomes of different organisms. Muta-

tion rates across all species of bacteria are biased towards increasing the proportion

of complementary A-T pairings (Hershberg and Petrov, 2010). Despite this univer-

sal bias genomic G-C content varies extremely widely across bacteria, in the range

20-80% (Chen and Texada, 2006), and deviates from the equilibrium levels predicted

from lab-measured mutation rates (Hildebrand et al., 2010). Cells must invest con-

siderable metabolic resources in maintaining this discrepancy, but the reasons for

this are unclear.

The code appears to be structured in such a way that the impact of point mu-

tations is minimised. Synonymous codons are grouped so that most substitutions

at the third codon position do not affect the polypeptide sequence. When point

mutations do result in an amino acid change it is usually a like-for-like swap in

terms of the properties of the two amino acids (Gilis et al., 2001). The identity

of the stop codons also appears to reduce the probability of mutations that give

rise to non-sense errors – the premature termination of translation, resulting in an

incomplete and usually useless polypeptide at high cost to the organism (Goodarzi

et al., 2004; Gilchrist and Wagner, 2006). Since the three stop codons include just

two G-C nucleotides between them, this has been suggested as one reason for the

preference for high G-C codons in many bacteria (Schmid and Flegel, 2011).

Mutations are non-uniform with respect to context as well as base composition,

and can target specific motifs with prejudice. A well-known example is the under-

representation of CpG tandems (Bird, 1980; McVean and Hurst, 2000; Nakken et al.,

2010). DNA methyltransferases target the cytosine in the CpG dinucleotide, which
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is readily deaminated to form thymine, leading to a four-fold scarcity of CpG motifs

compared with expectation (Greenbaum et al., 2014). The mutability of DNA also

depends on the local stability of its molecular structure, because this determines its

accessibility to mutagens (Nakken et al., 2010). This is influenced partly by G-C

content, which determines the number of hydrogren bonds between complementary

strands, but more strongly by the stacking interactions between adjacent bases in

the helical structure (Yakovchuk et al., 2006).

Repair Mechanisms

Cells employ numerous systems to detect and correct mutations. These repair sys-

tems can be more complex than the replication systems themselves (Anthony JF

Griffiths et al., 2000). Cohorts of enzymes detect mismatches between complemen-

tary strands, accidental breaks in one or both strands, and unpaired loops. Offending

regions are excised by ligases, and breaks are repaired by polymerases. Methylation

of the two strands is used to determine which strand has the correct sequence; since

a lot of errors occur during synthesis, and methylation is a post-synthetic modifica-

tion, the strand which is less methylated is modified to match the other (Modrich

and Lahue, 1996; Kunkel and Erie, 2005). The systems are extremely active, catch-

ing upwards of 99.9% of mutations before they become fixed through replication

(Harr et al., 2002; Alberts et al., 2008). Even a small bias in such an active pro-

cess would influence genomic nucleotide content over evolutionary time scales (Harr

et al., 2002).

Some systems that have been studied in detail do indeed reveal biases. Lu and

Chang (1988) studied the mismatch repair system of Escherichia coli by transfecting
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cells with viral DNA containing restriction sites with deliberate mismatch errors. By

exposing the DNA to restriction enzymes and assaying the products, they were able

to deduce whether or not the mismatch had been correctly repaired. They found

that some mismatch combinations were repaired more efficiently than others. They

also varied the methylation states of the two strands, and measured the dominant

nucleotide in an A-G mismatch by combining two restriction sites so that the di-

rection of repair could be deduced from the fragments obtained. They discovered

that the A-G mismatch was repaired with bias towards replacing the adenine with

a cytosine, regardless of the methylation states of the two strands, although the

degree of bias did vary with methylation. Jones et al. (1987) found that the effi-

ciency of the mismatch repair mechanisms in E. coli is positively correlated with

the G-C content of the surrounding 4-10 base pairs. This is another possible source

of genomic G-C increase, because fixed mutations can lead to gene silencing which

relaxes other pressures on nucleotide content, allowing that portion of DNA to di-

verge. Although mismatch repair systems vary slightly in mechanism, the same bias

towards increasing G-C content applies in all studied organisms (Marais, 2003)

Another example of bias in DNA repair is in mismatches in series of short tan-

dem repeats (STRs) in Drosophila melanogaster. Harr et al. (2002) compared the

efficiencies of repair of slippage errors of STRs in wild-type D. melanogaster with

that of a spel1−/− mutant strain lacking a functional repair system. They deduced

that the repair system that corrects errors in repeat regions has a bias that tends

to reduce the number of repeats. Moreover, the repair system is significantly more

efficient at correcting slippages in (AT)n regions than in (GC)n regions. The au-

thors postulated that both of these factors have had an influence on the Drosophila
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genome.

DNA replication can also alter nucleotide composition, through biased gene con-

version. This is a genetic recombination event associated with sexual reproduction,

where two homologous sections of DNA are combined, but it has also been reported

in E. coli (Yamamoto et al., 1992). The underlying cause is again the mismatch re-

pair system. When homologous genes are crossed over and recombined, exchanging

a single strand, mismatches are often generated, and these are repaired asymmetri-

cally. The effect on genome evolution has not been properly quantified, but biased

gene conversion is thought to have played a significant role particularly in the de-

velopment of certain eukaryotic genomes (Galtier and Duret, 2007; Duret, 2002;

Harrison and Charlesworth, 2011).

1.2.2 Transcription

The process of transcription impacts neutrally on genomic coding regions. Mutation

and repair have been shown to act differently on the coding and non-coding strands

through several mechanisms. During transcription the non-coding strand is exposed,

whereas the coding strand is shielded by RNA polymerases and the nascent RNA

strand. This means the non-coding strand is more vulnerable to mutagens, such as

UV radiation (Hendriks et al., 2010), that can cause lesions, deamination and other

spontaneous mutations as described in Section 1.2.1. These mutational signals are

strand-specific and proportional to expression levels (Beletskii et al., 2000), but are

probably not dominant forces in shaping codon usage for two reasons. First, both

these mechanisms produce a mutational bias that acts to increase the level of C→T
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transitions in the coding strand (Francino and Ochman, 2001), whereas codon usage

patterns in highly expressed genes vary greatly between organisms and do not nec-

essarily display this bias (Ikemura, 1985). Second, a study of the comparative codon

bias in eukaryotic intronic sequences and the associated exons reveals distinct dif-

ferences, despite the transcription of these regions being completely coupled (Duret

and Mouchiroud, 1999). However, the contribution of this effect to overall patterns

in all kingdoms of life has not been properly quantified and remains a confounding

influence on analysis of selective forces (Duret, 2002).

Gene coding also imposes DNA sequence constraints not directly pertaining to the

encoded polypeptide, both in and around the coding region. Specific promoter and

repressor sequences upstream of initiation sites play a critical role in gene expression

regulation, either by recruiting or preventing the binding of RNA polymerase. Slight

variations in these sequences affect the affinity with which they bind the appropriate

regulatory elements (Gustafsson et al., 2004; Jana and Deb, 2005).

The coding sequence of the gene itself is linked to transcriptional efficiency, act-

ing as a further regulatory control via transcript level (Le Roch et al., 2004; Trotta,

2011). At the same time, location-specific transcriptional pauses can be programmed

into the mRNA sequence. These pauses are thought to be very common, occurring

approximately once every hundred nucleotides, and are implicated in numerous reg-

ulatory processes (Larson et al., 2014). These include recruitment of transcriptional

and translational co-factors (Artsimovitch and Landick, 2002), correct folding of

functional RNA (Pan et al., 1999), and proper termination (Weixlbaumer et al.,

2013). Some repair mechanisms are triggered by the stalling of RNA polymerases

during transcription, so spontaneous mutations that occur on the transcribed strand
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are corrected with greater efficiency (Francino and Ochman, 2001).

1.2.3 mRNA

An mRNA strand must possess certain features to facilitate the initiation of transla-

tion. In eukaryotes, the 5’ end of the mRNA is capped with a sequence of modified

nucleotides, and the ribosome detects this and looks for a nearby AUG start codon.

In prokaryotes, initiation relies upon a sequence motif called the Shine-Dalgarno

(SD) sequence. This is a series of five to eight nucleotides that must be present

about eight bases upstream of the start codon, which binds part of the 16S RNA in

the small ribosomal subunit. The lack of a cap in prokaryotic translation allows for

polycistronic genes – multiple proteins encoded in a single mRNA strand (Alberts

et al., 2008). In eukaryotes, the same term is used to describe sets of genes under

a single promoter, but the transcribed mRNA is spliced and the new strands are

capped before initiation (Blumenthal, 1998), so no constraint is placed on the coding

segment of the mRNA.

The SD sequence is not entirely discriminate, and variations to it affect the

strength of complementary binding to the ribosome and thus the efficiency of ini-

tiation (Gygi et al., 1999; Tuller et al., 2007). Ribosome resources are limited and

initiation is the rate-limiting step in protein expression, so these variations can have

a significant impact on protein production (Chu et al., 2011). At internal locations

in the coding sequence SD-like motifs are generally under-represented, and have

been implicated in frame-shifting (Berg and Silva, 1997) and ribosome stalling (Li

et al., 2012).
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Strands of mRNA are capable of forming complex structures that are stabilised

through hybridisation between different parts of the strand. The ribosome has

at least two mechanisms of helicase activity that help to unwind RNA secondary

structure and ensure a basal rate of elongation, but translation can be hampered by

excessive secondary structure occurring mid-way through a gene (Qu et al., 2011).

If the secondary structure obscures the Shine-Dalgarno sequence or the start codon

it can prevent initiation altogether (Plotkin and Kudla, 2011). Secondary structure

in mRNA strands, especially near the 5’ end, has been shown to be a powerful

determinant in gene expression levels and there is strong selection against it (Kudla

et al., 2009; Tuller et al., 2010b; Allert et al., 2010; Goodman et al., 2013). Genes

also appear to be more conserved at sites where a synonymous mutation would

disrupt mRNA secondary structure (Gu et al., 2014).

Finally, prokaryotic genomes are extremely dense, containing about 87% protein

coding DNA on average (Rogozin et al., 2002). Genes are located in close proximity

or even overlapping on the genome, and this can lead to conflicting evolutionary

pressures on segments of neighbouring genes (Eyre-Walker, 1996). For example, the

need to avoid mRNA secondary structure around the initiation region of one gene

may shape the coding sequence of the 3’ end of the upstream gene.

1.2.4 Translation

Translation accounts for over 60% of cellular ATP consumption in bacteria (Russell

and Cook, 1995) and is the most complex stage of the gene expression process,

involving a host of molecular components. The ribosomal complex is among the
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largest macromolecules in cells, comprising 52 proteins and 4.5 kilobases of RNA

in prokaryotes, and 79 proteins and 6.8 kb of RNA in eukaryotes. Translation also

requires initiation, elongation, and termination factors, tRNAs and their associated

aminoacyl-tRNA synthetase (aaRS) enzymes, as well as the mRNA and amino acids

themselves.

tRNA Abundance

In general, it is advantageous to produce proteins as quickly as possible - so much so

that in single-celled organisms, protein production rate is almost synonymous with

fitness (Sharp et al., 2010). Since initiation of translation is the rate-limiting step

in gene expression, ribosome time is at a premium. Completing translation more

rapidly helps to ease this bottleneck, making regulation more dynamic, which allows

the cell to develop faster and respond to environmental cues with greater agility.

It also reduces the amount of mRNA needed, and thus the metabolic cost of up-

regulating genes (Liljenström and von Heijne, 1987). Modulating the elongation rate

of specific genes could also provide the cell with another mechanism to manipulate

the relative quantities of proteins produced, giving it finer control (Parmley and

Huynen, 2009).

As mentioned previously, cytosolic abundances of tRNA vary between tRNA

species, and their abundances correlate broadly with the frequency of use of the

corresponding codons, especially in highly expressed genes (Ikemura, 1981b; Per-

cudani et al., 1997; Lavner and Kotlar, 2005). Elongation is a kinetic chemical

process so its rate depends on the concentrations of the components. Location of

a cognate aa-tRNA ternary complex is the rate-limiting step in elongation, much
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slower than GTP hydrolysis and translocation, peptidation, or aminoacylation of the

discharged tRNA (Johansson et al., 2008). There is evolutionary pressure for the

cell to upregulate the most commonly used tRNA species, and to improve the effi-

ciency of elongation by altering the gene sequence to match the tRNA pool (Akashi,

2003; Shah and Gilchrist, 2011). The selective forces driving this co-adaptation are

stronger for more highly expressed genes (Bulmer, 1991).

The abundance of the cognate tRNA is not the only determinant of translation

rate. Near-cognate tRNAs carrying the wrong amino acid can also associate with the

A-site. The ribosome undergoes a conformational change upon tRNA binding that

closes the decoding centre tightly around the codon-anticodon pair, attempting to

force it into a hybridised conformation (Khade et al., 2013), and if the tRNA does not

match the codon it is rejected (although there is some flexibility in this; see below).

Prior to the conformational shift a non-cognate tRNA with low-affinity binding

may spontaneously dissociate; this is known as kinetic proofreading (Blanchard

et al., 2004). The proofreading mechanisms help to ensure fidelity but incur a time

penalty, as a cognate tRNA cannot locate in the A-site while it is occupied. The

elongation rate is therefore a function not only of the abundance of the cognate

tRNA, but of the whole tRNA pool, because near-cognate and non-cognate tRNAs

compete and interfere with location of the correct tRNA (Fluitt et al., 2007; Zouridis

and Hatzimanikatis, 2008). The abundances of near-cognate tRNAs are correlated,

which somewhat mitigates the advantage of translation by an abundant tRNA (Shah

and Gilchrist, 2011).
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Wobble Pairing

The aforementioned redundancy in the genetic code adds to the complexity and

energetic cost of translation. The ability to translate the full complement of codons

necessitates a large number of tRNA genes and species which need to be transcribed

and charged by specific aaRSs. The presence of extra tRNAs in the cellular milieu

also complicates selection of the cognate tRNA during elongation. Cells mitigate

these difficulties by utilising non-canonical nucleotide pairings in codon-anticodon

interactions. This is known as wobble pairing. It allows tRNAs to decode multi-

ple codons, and single codons to be decoded by multiple tRNAs (Yokoyama and

Nishimura, 1995; Grosjean et al., 2010). The conformational shift at the ribosome

that accompanies tRNA binding closes the decoding centre tightly around the first

two complementary nucleotide pairs but allows more flexibility around the third

base pair, thus limiting the scope of wobble and maintaining accuracy (Demeshkina

et al., 2012).

Wobble pairing enables the cell to fully utilise the genetic code with a reduced

complement of tRNA species. Organisms across the kingdoms use various strate-

gies, many of them involving post-transcriptional modification of the anticodons of

selected tRNA species, to translate all 61 sense codons with as few as 28 different

tRNA genes (Grosjean et al., 2010). The energy saving appears come at a price as

bacteria with fewer unique tRNA genes have lower growth rates (Rocha, 2004). The

affinity of the codon-anticodon pairing affects the time it takes to locate a cognate

tRNA, and also the rate of dissociation, so wobble paired codons are translated

slower on average (Spencer et al., 2012; Sabi and Tuller, 2014). What proportion

of a tRNA species is modified, how the tRNA pool is shared between its cognate
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codons, and how the altered binding affinities affect the kinetics of elongation remain

open questions.

Steric tRNA Compatibility

Another physical effect that has been postulated to interfere physically with the

action of translation is the steric compatibility of tRNA species at the A- and P-sites

of the ribosome. Certain consecutive pairs of codons are dramatically under- or over-

represented in the E. coli genome, even after correcting for amino acid associations

and nucleotide level patterns (Irwin et al., 1995; Boycheva et al., 2003). This has

been attributed to selection against physically incompatible permutations of tRNAs

that hamper translational efficiency (Gutman and Hatfield, 1989). The way in which

selection acts on these pairs is unclear and there is conflicting evidence about their

effect. One study found that the discrepancy between actual and expected pair use

was inversely correlated with local elongation rate, so that over-represented pairs are

translated slower than under-represented ones (Irwin et al., 1995), but an attempt to

reproduce this finding failed (Cheng and Goldman, 2001). Yet another study found

that eukaryotic genes show autocorrelation in the tRNAs required to decode a gene,

so that once a codon corresponding to a specific tRNA species has been used in a

gene it is likely to be used again for subsequent occurrences of the same amino acid.

Increasing the degree of tRNA autocorrelation in recombinant genes also increased

the translation rate (Cannarrozzi et al., 2010). It was proposed that the mechanism

behind this was tRNA recycling, or slow diffusion of tRNAs relative to recharging,

but this is unconfirmed and the findings have not been corroborated in prokaryotes.
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Accuracy

Occasionally the proofreading mechanisms of the translational machinery fail or a

tRNA is charged with an incorrect amino acid resulting in a missense error, which

can render the protein non-functional by altering the functional site or eventual

structure. Misfolded proteins place a significant burden on the cell; they are a waste

of resources, consume further metabolic energy as they have to be degraded (Arslan

et al., 2011), and often cause toxicity directly by forming aggregates (Bucciantini

et al., 2002). Missense error rates have been estimated as low as 3 × 10−7 in a

cell free system analogous to E. coli (Johansson et al., 2008), and as high as 10−2

in Bacillus subtilis (Meyerovich et al., 2010). Generally error rates are stated as

between 10−3 and 10−4 (Drummond and Wilke, 2008), amounting to at least one

error in approximately one in seven proteins of average length (300 residues) in E.

coli.

Error rates very likely vary between residues and the way they are encoded, so that

translational accuracy shapes genetics. It is postulated that if a tRNA is present in

higher concentration it is more likely to be correctly located by the corresponding

codon before a near-cognate codon matches, although again this is mitigated by

the correlation between the abundances of near-cognate tRNAs. Genes that code

for more divergent proteins tend to use fewer common codons, and positions that

are highly conserved on the amino acid level are often encoded by common codons

(Akashi, 1994; Stoletzki and Eyre-Walker, 2007). Amino acid divergence across

homologues suggests a greater tolerance to variation. Stoletzki and Eyre-Walker

(2007) also discovered that codon bias is positively correlated with gene length and

generally increases along the length of a gene, suggesting that as more resources are
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invested in the production of a protein, the pressure to finish it correctly becomes

greater.

Local Variations in Elongation Rate

High translation rate as a bulk property is a selective advantage, but elongation

rate is subject to local variations and there are cases where a transient reduction in

elongation rate appears to improve the functional yield of protein. Many of these

cases involve co-translational folding, which is discussed in detail in the next section,

but there are other explanations. The prevalence of rare codons in the 5’ region of

many genes is fairly well-documented. As rare codons are generally thought to be

translated slowly, one explanation for this is that the elongation rate is gradually

ramped up as the gene is processed, in order to reduce ribosome density downstream

and thus reduce the possibility of ribosomes disrupting each other mid-translation

and potentially jamming (Tuller et al., 2010a; Navon and Pilpel, 2011). Where the

phenomenon has been noted in proteins that are exported via the sec-pathway, the

opposite interpretation has been advanced; that, in combination with high initiation

rates, slow translation of the N-terminal region results in dense polysome structure,

which increases the efficiency of recycling of the chaperone involved in the export

process (Power et al., 2004; Zalucki et al., 2009). The idea of a translational ramp

has been refuted (Charneski and Hurst, 2014), and it is perhaps more likely that N-

terminal rare codons are the result of selection against mRNA secondary structure

around the initiation region (see Section 1.2.3).
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1.2.5 Protein

A polypeptide sequence is not guaranteed to attain the functional, native structure

of a properly folded protein. Properties of both the sequence and target struc-

ture create a dependence on the translational machinery and the particulars of the

translational process. The protein sequence can affect the rate of translation inde-

pendently of the tRNA pool by altering the way the nascent chain emerges from the

ribosome. A series of positively charged amino acids in the nascent chain is capable

of slowing translation through electrostatic interactions with the negatively charged

interior of the ribosomal exit tunnel (Lu and Deutsch, 2008). It has even been sug-

gested that the normally untranslated poly(A) tail found in eukaryotic mRNA may

act as protection against accidental frameshifts. If the stop codon is missed then

the poly(A) region would translate into a string of positively charged lysines, which

could stall translation and signal the ribosome complex for degradation (Charneski

and Hurst, 2013). Ribosomal proteins that line the exit tunnel also relay signals to

the surface upon interaction with nascent chains, aiding the recruitment of co-factors

(Kramer et al., 2009).

Some proteins are capable of adopting the correct functional conformation upon

re-folding from a denatured state (Anfinsen, 1973). This suggests that the native

state is the globally stable thermodynamic minimum; mathematical models have

indicated that protein sequences are expected to evolve towards more globally stable

functional states (Govindarajan and Goldstein, 1998). However, refolding frequently

does not yield a high proportion of functional protein (Fedorov and Baldwin, 1997;

Huang et al., 2012). This is partly because the cell contains chaperones and other

cofactors that aid protein folding, but can also be partly attributed to fact that
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protein structure develops concomitantly with and not independently of, translation.

Co-translational Folding

Proteins begin to fold long before they have been detached from the ribosome.

Portions of the nascent chain can adopt helical secondary structure even before

emerging from the exit tunnel (Wilson and Beckmann, 2011). Selection of each

cognate tRNA takes in the order of tens to hundreds of milliseconds, whereas folding

and unfolding can occur in less than ten milliseconds for simple proteins (O’Brien

et al., 2012). This allows plenty of time for the nascent protein to explore the

structural space before translation has completed. Once exposed to the cytosol

the movement of the nascent chain is partially constrained by chaperone proteins

and the surface of the ribosome itself, but it is still free to fold independently of

the as-yet-untranslated portion – so much so that N-terminal domains can be fully

functional before translation is completed (Nicola et al., 1999). This is key for

protein maturation, because it allows proteins to fold in a more directed way, limiting

the expanse of conformational space to be explored by the nascent chain. The full

conformational space is prohibitively vast, so that proteins cannot feasibly visit even

a large fraction of possible conformations in any reasonable timescale (Levinthal,

1968). The size of the conformational space increases with nascent chain length,

so an immature protein has fewer possible structures to explore and can select the

correct intermediate more easily.

Limited exploration of possible conformations carries the interesting corollary that

the native structure of a protein is not necessarily the global free energy minimum

for the sequence. Rather, it may simply be locally stable, with neighbouring con-
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formations that impose a large energetic barrier to unfolding, so that the activation

energy required to attain the global minimum is prohibitively high (Sohl et al., 1998;

Baker, 1998; Baskakov et al., 2001). Such protein structures are said to fold under

kinetic rather than thermodynamic control; the population of states is determined

by the energy barriers between them, rather than the energies of the states them-

selves. Given sufficient time, the globally stable, non-native structure may become

more heavily populated, but in shorter timescales the local minimum dominates

(Baker, 1998; Huard et al., 2006; Fleishman and Baker, 2012).

If the nascent chain can adopt intermediate conformations that direct the folding

pathway, and the relative populations of alternative conformations depends on their

energetics and on the time available, then elongation rate can have an influence on

the final conformation of the protein. A stable folding intermediate with a relatively

high activation energy may become more populated by pausing translation at a key

stage, driving the protein down the correct folding pathway (Purvis et al., 1987;

O’Brien et al., 2012, 2014; Gloge et al., 2014). This is a critical point, because it

means that myriad properties of a gene and protein can influence the final structure

by modulating the elongation rate and thus the amount of time available for the

emerging portion of the nascent chain to adopt an intermediate conformation.

1.3 Focus on Codon Usage

The process of producing fully functional proteins from genes is extremely complex

with many contributing and confounding factors. Codon usage is a tractable, trans-

parent, readily available and universal signal arising from this process, and it has
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garnered a lot of interest because of its apparent biological relevance. The most

highly expressed endogenous genes in many organisms have the highest degree of

codon bias (Ikemura, 1981a, 1982; dos Reis et al., 2004), and selecting the most

frequently used codons in the genome of the host species when designing recombi-

nant genes can produce dramatic increases in the amount of protein produced in

a given time (Gustafsson et al., 2004; Kudla et al., 2009). Fast translation is the

major determinant of selection in prokaryotes (Sørensen and Pedersen, 1991; Sharp

et al., 2010), and so the cell evolves to translate common codons quickly and to use

fast-translated codons more often (Plotkin and Kudla, 2011).

However, there is compelling evidence that the actual fitness landscape for protein

translation is a good deal more subtle. Despite the weak selective advantage that

can be conferred by a change to the rate of elongation at a single codon (Liljenström

and von Heijne, 1987; Bulmer, 1991; Sharp et al., 2010), several experiments have

identified synonymous changes to only a handful of codons that have a dramatic

impact on the functionality of the protein product. Moreover, many of these cases

show that swapping rare codons for more “optimal" ones actually hampers functional

expression. This seemingly disproportionate effect is likely due to the need for the

elongation rate of some proteins to be modulated at specific stages of their synthesis

to aid co-translational folding (see Section 1.2.5), and this modulation comes from

the coding sequence (Varenne et al., 1984).

Sander et al. (2014) demonstrated that translation rate variations arising from dif-

ferences in synonymous codon usage can have a direct influence on co-translational

folding. They designed a protein consisting of three “half-domains”. The N- and C-

terminal half-domains are each capable of hybridising with the central half-domain

38



to form different fluorescent proteins. This interaction is competitive, and the re-

sult can be determined from the fluorescent properties of the folded peptide. The

investigators found that re-folding the protein from a denatured state produced a

50-50 mix of the two fluorophores, whereas folding co-translational production of the

protein results in 2-fold enriched N-terminal protein. Substitution of rare codons in

the C-terminal region enhances the imbalance. This shows that the protein forms

co-translationally, and that the folding outcome can be influenced by altering the

codon usage of the transcript. Kimchi-Sarfaty et al. (2007) found that removing a

patch of rare codons actually changed the substrate specificity of a drug transporter;

a structural mechanism was implicated by the altered sensitivity of the protein prod-

uct to a specific protease. Komar et al. (1999) performed a similar modification on

a gene sequence and achieved an increase in expression levels, but a 20% reduction

in enzyme activity per mg of E.coli chloramphenicol acetyltransferase, a single do-

main enzyme. Zhang et al. (2009) went further and showed that the same effect

is obtained when a multidomain E. coli model protein, SufI, is translated in the

presence of an excess of the rare tRNA species corresponding to the patch of rare

codons, strongly suggesting a link with elongation kinetics. Another experiment

used mutant ribosomes whose elongation rates could be modulated, and found that

slowing the elongation rate improved the functional yield of a complex eukaryotic

protein expressed in E. coli (Siller et al., 2010). One recent study used homology to

look for regions of conserved rare codons and concluded that they were present in

most genes (Widmann et al., 2008).

Direct measurements of translation rates of individual codons are extremely chal-

lenging. In vitro methods have been developed, using advanced fluorescence mi-
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croscopy techniques (Uemura et al., 2010; Chen et al., 2013) or direct measurement

of force fluctuations during translation on an mRNA hairpin attached to an optically-

trapped bead (Wen et al., 2008). These experiments are impressive and revealing,

but they must be conducted in carefully constructed environments that bear little re-

lation to the cytosol, rendering the rate measurements biologically irrelevant. Early

in vivo methods were based on specially designed inserts attached to a reporter gene

(Bonekamp et al., 1989; Sørensen and Pedersen, 1991). These findings suggest no

correspondence between tRNA levels and translation rates, and only a broad corre-

spondence between codon frequencies and translation rates. The constructs involve

long strings containing a large number of repeats of the same codon and as such are

rather artificial, and moreover the experiments have only been performed for a small

number of codons. More recently a promising technique based on RNA sequencing

has been used to give high-throughput readouts of the positions of ribosomes on

translating mRNA strands (Oh et al., 2011). This approach is known as “ribosome

profiling” or “ribosome footprinting”. One major study using the technique found

that codon usage and tRNA abundance bore no relation to ribosome occupancy, and

that translational pausing was driven by Shine-Dalgarno-like sequences (Li et al.,

2012). However, the technique is still in development and has a few outstanding

questions. Particularly, the data analysis does not appear to account for initiation

rates, which are the major determinant of overall translation rates (Bulmer, 1991;

Gilchrist and Wagner, 2006; Chu et al., 2011) and depend non-linearly on mRNA

levels and the precise sequence of the initiator region (Michel and Baranov, 2013).

Data on cytosolic tRNA abundances would support the development and wider ap-

plication of more sophisticated models of translation, but such data is difficult to

obtain and only exists for a handful of species (Ikemura, 1981a, 1982; Dong et al.,

40



1996; Kanaya et al., 1999; Zaborske et al., 2009). Further, current assay methods

do not show all modifications or the proportion of a tRNA species that is charged,

and cannot reflect dynamic regulation of the tRNA pool. The number of copies

of tRNA genes is often used as a proxy for experimental data, but this is a blunt

and imprecise measurement given the many sources of variation between this and

active cytosolic abundances. Furthermore, when measurements of the translation

rates of individual codons have been attempted, they do not appear to correspond

to the relative abundances of their tRNA species (Bonekamp et al., 1989). One

study found a more than three-fold variation in the translation rates of two codons

predicted to be translated by the same tRNA (Sørensen and Pedersen, 1991).

The evolutionary pressures facing an organism are engraved in its codon usage

preferences. Without accurate direct measurements of translation rates that can be

compared across related proteins, codon usage is the best signal available for assess-

ing non-canonical signatures of selection on translation. When a gene is encoded in

a way that defies the typical preferences, it is difficult to determine whether this is a

deliberate response to an unusual selective landscape or simply the result of the ran-

dom fluctuations arising in genetic drift. This requires a specially designed approach

to assessing codon usage at specific genetic locations. A great many computational

methods have been developed in the past to try to assess the degree of codon usage

bias in genes and organisms, with widely varying approaches and assumptions. The

next section describes some of these methods.
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1.4 Measures of Codon Usage Bias

Numerous attempts have been made to quantify the phenomenon of codon usage

bias. Approaches vary widely in their scope, reliance on background information,

and whether and how they correct for gene length and amino acid composition.

This section describes some of the most prevalent metrics. [Note: notation has been

adjusted from the original references for consistency where necessary]

1.4.1 Frequency of Optimal Codons

In one of the studies of codon usage bias, Ikemura (1981b) developed the notion of

optimal and non-optimal codons based on their measurements of tRNA levels in E.

coli. This binary classification could be considered crude in the light of more recent

developments. The metric predicted an optimal codon for each amino acid according

to rules based on their usage frequencies, the identity of the codon-anticodon pairing,

and the measured abundances of tRNAs. The frequency of optimal codons Fop is

simply the proportion of codons in a gene classified as optimal:

Fop = noptimal

ntotal

This ranges between 0 and 1 and is completely independent of gene length or

amino acid content.
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1.4.2 Effective Number of Codons

The effective number of codons (Wright, 1990) is a measure of how fully a gene

uses the genetic code, based on an older method of assessing genetic variation in

an organism with a number of copies of a certain gene. Its theoretical range is

from 20, representing selective use of just one codon for every amino acid, to 61, for

even use of every codon available for each amino acid, which is supposed to give an

intuitive idea of the range of coding options taken. It is calculated from individual

gene sequences based only on the universal genetic code, and corrects for amino acid

content and gene length.

Each amino acid A has a synonymous set of k codons, and the number of instances

of each codon in the gene is given by ni=1:k. The total number of instances of A in

the corresponding protein is N =
k∑

i=1
ni. The proportional occurrence of each codon

is then pi = ni/N . The evenness of the selection between codons can be calculated

as

F̂A = N
∑k

i=1(p2
i )− 1

N − 1

[see Nei and Tajima (1981) for an analogous derivation of this relating to popu-

lation genetics]

This has the range [1/k, 1]. The F̂A values are split into five groups according to

the value of k, as dictated by the genetic code. The number of members in each of

these groups is divided by the group average, and summed to give
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N̂c = 2 + 9
¯̂
Fk=2

+ 1
¯̂
Fk=3

+ 5
¯̂
Fk=4

+ 3
¯̂
Fk=6

In the case that an amino acid is not present in the sequence, the averages are

adjusted to compensate. This measure is an intuitive way of measuring the skew

of a single gene, but the failure to utilise the context of a gene or any information

about the organism it comes from is a significant limitation to its usefulness.

1.4.3 Relative Synonymous Codon Usage

Relative synonymous codon usage (RSCU) was first used as an independent measure

by Sharp et al. (1986). It generates a value for each codon representing, in Sharp

and Li’s own words, “the observed number of occurrences divided by that expected

if usage of synonymous codons was uniform". Mathematically this can be expressed

as

RSCUji = nji

1
kj

∑kj

i=1 nji

where j ∈ [1, 20] represents the amino acid, kj ∈ {1, 2, 3, 4, 6} is the number of

synonymous codons for that amino acid, i ∈ [1, kj] indicates the codon within the

synonymous set. A gene is then represented by a set of 59 values (one for each codon

that has a synonymous alternative), which have a hypothetical range of 0 to between

2 and 6, depending on the number of codons in the synonymous group. This is of

limited use in isolation, but is of significant relevance because the equation forms
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the basis of the Codon Adaptation Index, an important codon bias measure – see

below.

1.4.4 %MinMax

The %MinMax algorithm Clarke and Clark (2008) is location-specific method that

uses a moving window to give local measures of codon usage that vary through-

out a gene, rather than generating an aggregate figure for the entire gene. It is

based on comparison of the usage frequency of codons in a window of a gene with

the minimum, maximum and average usage frequency values given the amino acid

composition.

For a window of size n, the Max, Min, and Actual terms are calculated by aver-

aging the per-thousand usage frequencies of the most frequent and rarest codons for

the amino acids in the window, and the codons used in the actual gene, respectively.

The Avg term is calculated by averaging the average of the synonymous sets of the

amino acids across the window. The Actual term is then compared to the average,

and %MinMax is calculated as

%MinMax =


Actual− Avg
Max− Avg × 100 if Actual > Avg

−Avg− Actual
Avg−Min × 100 if Actual < Avg

This yields a figure in the range [−100, 100], where negative figures indicate rarer-

than-average codon usage. The idea of comparison with some measure of expectation

is given the amino acid sequence is good, but the average used is not weighted by

45



expectation – it is a simple geometric average that does not account for the fact that

codons with high usage frequencies by definition occur more often than those with

lower usage frequencies, skewing the averages of observed windows. This results in

there being many more high-usage regions than low, and the overall average is high.

1.4.5 Codon Adaptation Index

Also developed by Sharp and Li (1987), the Codon Adaptation Index (CAI) was for

a long time the gold standard metric. It retains interest, although it has to some

extent been taken over by the related tRNA Adaptation Index (tAI – see below).

It uses statistics on codon usage from a highly expressed set of genes as the basis

for its measure of bias. It corrects for gene length and, to an extent, amino acid

composition, although the possible range of values is constrained by the number of

synonymous coding options.

First, a set of genes that are highly expressed in the organism of interest must

be selected. RSCU values (see above) are calculated for each codon within synony-

mous groups. Relative adaptiveness values wi are then calculated for each codon by

dividing by the maximum value in the synonymous set:

wji = RSCUji

maxi[RSCUji]

The CAI of a gene is then calculated as the geometric mean of the wji values for

each codon in the gene of interest,
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CAI = (
L∏

p=1
wp)1/L

where L is the length of the gene and wp is the relative adaptiveness value for

the codon at position p. The value given is effectively a measure of how well a gene

matches the set of highly expressed genes in the cell. One major drawback is that

it relies upon the availability of expression data for an organism, which precludes

large-scale evolutionary analysis. Also, like the other measures discussed so far, it

produces a single summary measure of codon bias across the gene and so does not

account for local variations.

1.4.6 tRNA Adaptation Index

Inspired by the Codon Adaptation Index, the tRNA Adaptation Index (tAI) was

described by dos Reis et al. (2004). Like CAI it uses relative adaptiveness values for

each codon, but these are based not on codon usage but on a prediction of the tRNA

pool. First, the absolute adaptiveness values for each codon (ignoring synonymous

sets) is calculated as

Wi =
ri∑

q=1
(1− siq)tiq

where i ∈ [1, 61] represents the codon; ri is the number of tRNA species that can

decode codon i; tiq is the gene copy number for the qth tRNA species that decodes

codon i; and siq is a value representing any reduction in binding affinity between

codon i and tRNA q resulting from a wobble pairing (see Section 1.2.4). These are
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normalised to give relative adaptiveness values for each codon,

wi =
 Wi/maxi[Wi] if Wi 6= 0

Wmean if Wi = 0

where Wmean is the geometric mean of the non-zero Wi values. These values

give an estimate of the adaptation of each codon to the cognate tRNA pool. The

geometric mean of the individual codon values can be taken as a gene-wide summary

statistic.

This is a sophisticated heuristic that attempts to measure the adaptiveness of

a gene to the cellular environment, but there are problems with its formulation.

Firstly, the tRNA binding affinities are based on a set of wobble rules that are not

universal or necessarily complete (Yokoyama and Nishimura, 1995). The selection

of tRNA isoacceptors from the cognate pool can also depend on local nucleotide

context, not just the codon itself (Irwin et al., 1995). Second, the estimates for

tRNA abundances rely on a presumed correlation with gene copy count, which may

broadly hold but is crude at best, because of the highly discrete nature of copy count

data and the fact that tRNA abundances are not fixed but are dynamically regu-

lated in response to variations in conditions (Andersson and Kurland, 1990). Third,

estimates of individual tRNA abundances do not account for tRNA competition or

other selective forces influencing the adaptiveness of individual codons.
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1.4.7 Normalised Translation Efficiency

Building on tAI, Pechmann and Frydman (2012) developed the normalised trans-

lation efficiency measure (nTEi) that takes into account the relative abundance of

transcripts in the cytosol as well as the abundances of the tRNAs themselves.

The usage Ui of codon i is calculated as the summed occurrences of codon i in

the genome, weighted by transcript abundance aj

Ui =
G∑

j=1
ajcij

where G is the number of transcripts in the genome. This is normalised by the

maximum value to give the relative codon codon usage

cui = Ui

maxk(Uk)

which takes a value between 0 and 1. The normalised translation efficiency is then

calculated as the ratio of the wi values, defined in tAI, to these cui terms, again

normalised by the maximum.

nTE ′i = wi

cui

nTEi = nTE ′i
maxk(nTE ′k)

This is intended to give a measure of how often each codon is translated in com-

parison to the supply of cognate tRNAs, approximating the load on the translating

pool of tRNAs. This is a clever measure that considers another aspect of codon us-
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age, but it suffers from the same drawbacks as tAI, compounded by the requirement

for noisy measurements if transcript abundances, which are even more dynamic than

tRNA species.

1.4.8 Rare Codon Rich Regions

Introduced by Widmann et al. (2008), this is one of a small number of methods

that uses an approach based on alignments of homologous sequences to amplify the

signal. Codon frequencies are counted as the number of occurrences per thousand

codons in the whole genome of a species (these frequencies are obtained from an

external database, presented in Nakamura et al., 2000). Starting with alignments

based on homologous proteins, frequencies of codons in every column are multiplied

together to calculate the column frequency

Fi =
n∏

j=1
fj

This column frequency is compared to the products of all possible synonymous

combinations of codons for the column and given a score according to the propor-

tion of synonymous combinations with lower products. Columns are then grouped

according to the score in brackets with a width of 0.2 (e.g. columns in group 1 have

scores <0.2). Alignments are assessed with windows of nine columns according to a

sum of the number of columns in the window with scores in group 1 or 2, weighted

so that group 2 columns are worth 0.6 times as much as group 1 columns. Windows

with a score above 1.8 (i.e. with three or more group 2 columns, two or more group

1 columns, or some equivalent combination) are classified as rare codon rich regions
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(RCRRs).

Widmann et al. (2008) applied their method to alignments built for 16 homolo-

gous protein families containing 7-10 sequences with low overall sequence identities.

The very high computational cost of their implementation, requiring explicit com-

putation of all possible codon frequency combinations, places constraints on the

alignment size and the number of families to which it can be applied, and the au-

thors state an expected false positive rate of 4 %.

1.4.9 Sherlocc

Sherlocc (Chartier et al., 2012) is another in the class of methods that uses protein

sequence alignments. The authors looked at pre-built alignments of protein families

in the Pfam database (Punta et al., 2012), and obtained codon usage frequencies

for the corresponding species from the Kazusa database (Nakamura et al., 2000).

They calculated average codon usage frequencies over windows of seven positions in

the alignment. At this point the implementation of their method becomes unclear;

the text suggests that a p-value is obtained by fitting the average window scores to

an extreme value distribution, but it appears to be more akin to a ranking statistic

rather than a p-value.

1.5 Scope of the Thesis

Codon usage is an important aspect of recombinant gene design and modulation

of endogenous gene expression, and an “optimal” codon usage pattern does not
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simply consist of the most common codons (Gustafsson et al., 2004; Plotkin and

Kudla, 2011). There are cases where rare codons appear to aid gene expression

and enhance the functional efficacy of the protein product, sometimes at a cost

to production levels per mRNA. Identifying important rare codons would allow

more effective optimisation of genes for heterologous expression, could shed light

on disease-associated synonymous mutations, and would be of use in the design of

fusion proteins and de novo protein design.

The body of experimental evidence supporting the existence of beneficial rare

codons is limited and disparate, which poses a challenge to the development of

accurate predictive methods. An expansive library of synonymous genes with well-

quantified fitness profiles would greatly aid computational studies, but such data

would be arduous and expensive to produce and is unlikely to become available

in the near future. Despite the wealth of metrics for codon usage that have been

proposed and implemented, there is no single preferred method. This is partly be-

cause different methods suit different applications, depending on how much data is

available for the organism of interest and whether a local or gene-wide measure is ap-

propriate. Another major reason is that no existing method has been demonstrated

to work predictively. Making an ab initio assessment of codon usage and following it

up with supporting experimental work that demonstrates that the regions identified

are functionally relevant should be the gold standard for which codon usage metrics

aim.

Through the many direct and indirect effects previously described (see Section

1.2), codon usage has an influence on the rate of translation. Though it is undoubt-

edly a simplification, the broad trend appears to be that rarely used codons are
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translated slower than common ones. Rare codons may instigate a translational

pause, which could aid protein folding or some other aspect of expression. The

noisy nature of evolution results in rare codons, and possibly translational pauses,

that do not aid – and possibly even hamper – expression. A more specific sample

of rare codons that offer a selective advantage could be obtained through the use

of evolutionary conservation to filter out examples arising from noisy, non-selective

mutations. What role, if any, these such rare codons might play in the expression of

functional proteins would then need to be tested with a combination of experimental

and computational work.

The goal of this thesis is to develop and verify a method for detecting selec-

tively advantageous rare codons. The first target was to develop a sound statistical

method capable of yielding a location-specific measure of codon usage in bacterial

genes. This was subsequently verified with a combination of statistical analysis of

other biologically relevant signals, and experimental work based on varying the iden-

tified locations. The investigation is described in the coming chapters. Chapter 2

describes the algorithm developed and the reasoning behind it. Chapter 3 details

the analysis of the data generated. Chapter 4 describes the experimental work that

was conducted in an attempt to verify the algorithmic findings. Finally, Chapter 5

presents conclusions and looks to future opportunities in the field.
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2 Algorithm Development

There are numerous published methods designed to assess codon usage. These vary

widely in their precise intentions, and no single one is universally accepted either for

statistical merits or biological relevance. The record of publications developing new

methods (see Section 1.4), and the lack of experimental evidence supporting any

method, demonstrates this lack of consensus. The intention of this investigation

is to measure the statistical signal of codon usage, and subsequently to measure

the importance of the effect with experimental work conducted in Escherichia coli

(see Chapter 4). The focus is on prokaryotic organisms, for a number of reasons.

Translation in prokaryotes is faster overall, so there is more potential for beneficial

translational pausing and more scope for elongation rate modulation (Angov et al.,

2008; Siller et al., 2010); it involves fewer cofactors, such as chaperones, that may

modulate folding in alternative ways; and there are fewer RNA regulatory elements,

such as miRNAs binding and splice sites, that place unrelated constraints on gene

sequence (Plotkin and Kudla, 2011).

This chapter presents the reasoning involved in, and the results of, the process of

designing a codon usage assessment algorithm, and discusses the application of the

algorithm.
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2.1 Requirements

Four fundamental requirements for an algorithm were laid out:

1. Use homology to enhance the evolutionary signal

The aim was to develop an algorithm to identify regions of genes that appear

to have rare codons by virtue of some selective pressure, rather than due to

the random fluctuations of codon usage effected by mutational drift. The most

effective way to do this is to use homology to highlight regions of evolutionarily-

related proteins that are consistently encoded with rare codons. Hence the

method should be based on alignments of homologous proteins, rather than

single sequences.

2. Assess the codon usage in a local region

Rare codons have been shown to occur preferentially in clusters (Clarke and

Clark, 2008; Parmley and Huynen, 2009; Zhang et al., 2009). Because of the

stochastic nature of translation, a functionally relevant translational pause

is likely to consist of multiple consecutive rare codons in order to reliably

take effect. The algorithm should avoid overfitting to the noisy underlying

signal, and be capable of detecting significant non-consecutive rare codons, by

smoothing codon usage frequencies over a local region. This suggests a sliding

window approach.

3. Correct for amino acid composition

Amino acids appear in proteomes with greatly varying frequencies. Amino

acid composition is a dominant constraint on protein evolution; it has a direct

effect on the structure and function, and is correlated with the abundance

56



and solubility of the protein product (Price et al., 2011). The metabolic load

of synthesising a protein is influenced by the complexity of its constituent

amino acids, placing an additional non-linear evolutionary pressure on the

precise residue content (Akashi and Gojobori, 2002). The intention of the

measure being developed here is to isolate codon usage from this complex set

of pressures, which necessitates eliminating the influence of the underlying fre-

quencies of the amino acids. Further, amino acids have structural preferences

which may cause misleading correlations in later analysis if the effect of amino

acid selection is not properly removed. Therefore some degree of normalisation

based on the amino acid sequence is required to measure the frequencies of

the codons independently from the frequencies of the amino acids.

4. Yield a measure of statistical significance

To facilitate informed study of the results, the algorithm should yield a valid p-

value, based on the comparison of observations with expectations under some

null or background distribution.

These four requirements determine a basic approach: for a protein of interest,

identify a set of homologous proteins. Build an alignment of the homologous set,

and use the alignment as the framework for analysis of codon usage frequencies

in genes. A measure of codon usage is applied to the alignment using a sliding

window heuristic. The window smoothes the codon usage signal, the need for which

is explained in requirement 2 above. The degree of smoothing can be varied by

varying the size of the window. The window approach also allows the algorithm to

be robust to gaps, as explained in Section 2.1.1.
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It should be noted that alignments of homologous proteins have been used as

the basis for codon usage analysis previously in methods named RCRR (Widmann

et al., 2008) and Sherlocc (Chartier et al., 2012). The methods employed in these

papers have their own shortcomings, which are discussed in Section 2.5.5.

The measure developed here is designed to represent the relative codon usage

frequencies within synonymous groups, removing as far as possible the bias arising

from the amino acid sequence. The central principle is a comparison of the codon

usage frequencies observed in a window against an expected distribution, derived

from the usage frequencies of codons in the synonymous set. This approach addresses

requirements 3 and 4: correcting for amino acid composition, and yielding a measure

of statistical significance.

2.1.1 Handling Gaps

To analyse codon usage across multiple sequence alignments, it is necessary to es-

tablish a heuristic for dealing with gaps in the alignments. Under a naive approach,

regions of low alignment quality are more susceptible to noise and so more likely

to be erroneously identified as containing a significant proportion of rare codons.

To correct for this effect, the sliding window approach was modified to include a

fixed number of contiguous residues from each sequence (see Figure 2.1). Under this

heuristic the number of residues on which a column depends is precisely determined

by the number of sequences aligned at that position.

It could be said that this heuristic results in comparisons between unaligned po-

sitions. This is acceptable, because the aim is to compare the process of translation
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between versions of the protein. A contiguous set of residues and the codons that

encode them represents series of translational events. We are aiming to compare

these translational events, rather than conserved regions. The alignment provides

an anchor point based on the broad correspondence of structural and functional

features between proteins, around which we can base our translational comparison.

This anchoring is desirable for future analyses.

Central position

Window element
Not included in window

M S A V L K P - - - - - - - Q A D L
M N A A V R P V - - - - - - S A D T
M S A V L K P T - P V S - - T A D Q
M N A A V K A L - H - - - - E N D Y
M S A V L K P - - V S A - - A A D H
M P A V L K P T S P V S E Q T A D Q

Column

Figure 2.1: Windows are composed of contiguous sets of residues from each sequence,
but not necessarily from the same set of alignment positions. The prop-
erties of the whole window are assigned to the central position. Con-
tiguous regions of a protein can be thought of as a series of translational
events – the addition of an amino acid onto the nascent chain, and every-
thing that entails. Each window represents a set of series of translational
events, anchored around the biochemical framework of the alignment.

2.2 Assumptions and the Null Hypothesis

The process of hypothesis testing can be described as estimating the probability

that the observed strength of a phenomenon has arisen by chance from a system
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whose behaviour is in fact neutral on average, with random fluctuations over some

distribution. To estimate the probability, it is necessary to construct a model for

the distribution of the assumed random behaviour.

The phenomenon that we observe here is the codon usage frequency. Specifically,

we chose to measure against a background of the usage frequencies across all coding

sequences in a genome. In contrast, some previous measures have attempted to

define optimal codons in a more prescriptive way. One approach that is widely used

in the literature is the selection a set of highly-expressed set of genes – often riboso-

mal constituents – as being exemplary of optimal codon usage, and measure codon

usage in other genes against this reference (Sharp and Li, 1987; Sharp et al., 2005;

Hildebrand et al., 2010; Wang et al., 2011). Other methods have used predictions

about tRNA levels and their cognate codons (dos Reis et al., 2004; Fluitt et al.,

2007).

These methods are problematic for several reasons. In the case of expression-level

based methods, the need for detailed data drastically reduces the availability of or-

ganisms, which limits the use of homology to add statistical power. Even when the

data are available, defining high-expression genes is subjective, since specific mRNA

levels can vary by at least two orders of magnitude depending on environmental

conditions (Ishii et al., 2007). Some genes that are undetectable in ordinary log-

phase growth are present in thousands of copies per cell under stress conditions.

In the NCBI Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/

geoprofiles/), about 98% of E. coli genes are in the top percentile of expression

levels in at least one experiment. Further, the rationale is that a highly-expressed

gene is under stronger selection and is therefore more likely to be effectively op-
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timised. Pathogen-response and antibiotic resistance genes may be expressed or

at low levels but when called upon are critical to survival. Intracellular growth

inhibitors and other toxicity factors can offer a strong selective advantage in cer-

tain conditions. The tRNA-based methods make questionable assumptions about

the stability of tRNA levels (Gingold et al., 2012) and their correspondence with

translation rate (Bonekamp et al. 1989; Stadler and Fire 2011; see Section 1.2.4).

They also make simplifications with regards to complementary codon-anticodon be-

haviour (Yokoyama and Nishimura, 1995; Ran and Higgs, 2010). Finally, both sets

of methods assume that the differences in codon usage arise only from differences

in the magnitude of the selective pressures. There is no accounting for qualitative

differences in the nature of the pressures on the selected set versus the rest of the

genome. Differences in the nucleotide composition of genes relative to intergenic

regions provides evidence of selection on codon usage even in genes that show little

apparent codon bias (Hershberg and Petrov, 2009, 2012). The goal of this work is

to identify areas in genes that consistently defy genome-wide patterns, suggesting

that the universal pressures that dictate these overall patterns are overridden by

a more localised factor. The appropriate background is, therefore, species-specific,

genome-wide codon usage frequencies.

As explained above, we are seeking an aggregate measure of codon usage over

a window of an alignment. The null hypothesis is that codon usage frequency is

independent of any property of the gene itself, or the protein it encodes. In testing

this hypothesis, we make three main simplifying assumptions about how codons

are selected. The first assumption is explained in 2.1, requirement 2: that amino

acid selection is a dominant constraint, such that codon selection is dependent on
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the occurrence of a particular amino acid. The second assumption is that codon

selections within a gene are independent. The selection of a codon is assumed to

be independent of those selected in neighbouring positions. Although there is some

evidence that sequential codons do influence one another (Skewes and Welch, 2013;

Cannarrozzi et al., 2010), the strength of the effect on different species’ genomes, and

whether or not it plays a role in translation (Yakovchuk et al., 2006), are unknown.

The third assumption is that codon selections between organisms are indepen-

dent. Like all assumptions, this is invalid in the strictest sense. Building alignments

requires the identification of homologous proteins that are by definition not fully

independent in their amino acid composition. In a sense, what we seek is biological

independence between genes – that is, within the confines of the amino acid sequence

of the proteins they encode, that genes are fully adapted to their cytosolic environ-

ments. It has been shown that horizontally-transferred genes adapt to conform

to the codon usage pattern of the host species relatively quickly (Lawrence, 1999;

Skewes and Welch, 2013). This implies that similarities in codon usage patterns

between species can be attributed to similarities in the cellular environment rather

than a lack of divergence from a mutually inherited gene sequence. If a single gene is

transferred to two closely-related species and fully adapts to each environment, the

two copies may be similar in nucleotide composition and codon usage. In this case

the assumption of independence of codon selection is not violated. The question

then becomes one of evolutionary independence between organisms; specifically, at

what phylogenetic distance are two species sufficiently diverged to be considered in-

dependent? This is difficult to quantify, since measures of phylogenetic distance are

generally based on the nucleotide-level similarity between sets of genes, so clearly
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codon usage patterns will be similar in species that are determined to be evolutionar-

ily close. Again, strictly speaking, no two organisms are truly independent, because

all species are likely derived from a common ancestor (Theobald, 2010) and so have

traversed some portion of a shared evolutionary path. The cytosolic environments

of all species, and thus the evolutionary forces imposed on genes, are on some level

co-dependent.

To resolve this impasse, we construct a database that is non-redundant at the

species level (see Section 2.5.1 for details of the construction of the database used).

Taking all the arguments above, we consider that the assumption of inter-species in-

dependence is largely reasonable and hugely simplifying. Although we concede that

it may undermine the statistical precision of the calculated p-values, constituting a

relaxation of requirement 4 above, it should not affect the indicative power of the

results. We are conservative in selecting thresholds and limits in the application of

the method (see Section 2.5). Further, if homology at the gene level was the cause of

a considerable portion of the detectable signal, this should be readily distinguishable

through examination of the degree of codon conservation across the alignments at

positions classified as rare and non-rare. This analysis is presented in Section 2.5.4.

2.3 Codon Frequencies as Random Variables

Having established the null hypothesis, we can begin to interrogate the model and

estimate the probability that the genes we observe in nature were generated by a

model that behaves according to the null hypothesis. The notation introduced in

the following text is tabulated for reference in Table 2.1.
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Single residue Sequence Alignment window
Amino

ai Aj = {ai}i∈1:z A = {Aj}acids
Coding

fi Fj = {fi}i∈1:z F = {Fj}frequency
instances
Coding

Frj(ai) = fi Frj(Aj) = ∑
fi

Fr(A) =
∑

Aj∈A

∑
ai∈Aj

fifrequency
functions
Satisfactory rc = {f |f ≤ c} Rc =

{
Fj|

∑
fi∈Fj

fi ≤ c
}

Rz =
{
F|
∑

Fj∈F

∑
fi∈Fj

fi ≤ z
}

sets

Subscripts
Codon k ∈ 1 : n(ai)
Residue i ∈ 1 : z
Species/sequence j

Constants
Synonymous set size n(ai)
Window size z

Number of sequences N

Table 2.1: Notation reference
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To attach a metric to codon selection we use the codon usage frequency f , which

is simply the rate of occurrence of a given codon per thousand codons in the whole

genome. For an amino acid ai, there is a corresponding set of synonymous codons.

Codons appear in different genomes with different frequencies. For the purposes of

the metric, we can think of codons purely in terms of their frequencies. We can then

define species-specific functions Frj(ai) = f (where the subscript j indicates the

species) that map amino acids onto random variables whose values represent codon

frequencies. Under the null model, the mapping is random, with a probability mass

function that can be derived from the underlying frequencies by normalising by the

sum of the frequencies in the synonymous set.

Pr(Frj(ai) = f) = f∑
k=1:n(ai)

fk

where n(ai) is the size of the synonymous set for ai, so that k iterates over the

possible frequency values.

For example, the amino acid alanine (Ala) can be encoded by codons GCA, GCC,

GCG and GCU. Let us denote E. coli K-12 MG1655 as species S1. In the genome

of S1, the codons for Ala occur with frequencies 20.22, 25.83, 34.21 and 15.25 per

thousand. These frequencies are the support values of the function FrS1(Ala), giving

us the probability mass function (PMF)
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Pr(FrS1(Ala) = f) =



0.21, f = 20.22 (GCA)

0.27, f = 25.83 (GCC)

0.36, f = 34.21 (GCG)

0.16, f = 15.25 (GCU)

In Bacillus subtilis, which we will denote species S2, the same codons occur with

different frequencies, and we can evaluate the PMF as

Pr(FrS2(Ala) = f) =



0.28, f = 21.1 (GCA)

0.22, f = 16.5 (GCC)

0.26, f = 19.8 (GCG)

0.24, f = 18.6 (GCU)

The probability of obtaining a frequency that is less than or equal to some defined

limit c can be found by summing the probabilities of the events that meet that

condition. We can express this as

Pr (Frj(ai) ≤ c) =
∑
f∈rc

Pr (Frj(ai) = f)

where rc = {f ∈ supp(Frj(ai)) | f ≤ c} is the satisfactory set.
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2.3.1 Convolution

The first part of this section introduces the principle of convolution in a general

form using generic notation, before moving back to the specific problem of codon

usage.

The sum of two or more random variables is known as their convolution, and

its probability mass function (PMF) can be defined from the mass functions of the

individual variables. For two independent discrete random variables X1 and X2 with

distinct probability distributions Pr(X1) and Pr(X2), define m(Xi) as the smallest

support value of Xi. The convolution Z = X1 +X2 is also a discrete random variable

whose probability mass function can be calculated from

Pr(Z = z) = Pr(X1 +X2 = z)

=
z−k∑
s=k

Pr(X1 = s,X2 = z − s)

=
z−k∑
s=k

Pr(X1 = s) Pr(X2 = z − s)

where k is the smallest possible increment to Z, i.e. min
(

m(X1),m(X2)
)
(Evans

and Leemis, 2004). The cumulative distribution function (CDF) is given by

Pr(Z ≤ z) = Pr(X1 +X2 ≤ z)

=
z∑

t=0
Pr(X1 +X2 = t)

=
z∑

t=0

(
t−k∑
s=k

Pr(X1 = s) Pr(X2 = t− s)
)
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This principle can be further extended to multiple independent variables, and

although the notation can get a little unwieldy the principle is readily intuited

from the fundamentals of probability theory governing the behaviour of independent

events.

Moving away from the general form and back to our problem domain, we can

define an aggregate measure of the codon usage frequency over a region of a single

gene as the sum of the frequencies of the individual codons. If Aj = {ai} represents

a sequence of amino acids in species j, we can define Fj = {fi} as a sequence of

frequencies corresponding to a possible coding sequences for Aj (see Table 2.1 for

a summary of the notation). We can extend the definition of our species-specific

frequency function so that Frj(Aj) = ∑
ai∈Aj

Frj(ai). Rarer coding of Aj indicates

a lower Frj(Aj). If we also set out an extended definition of a satisfactory set as

the set of satisfactory coding sequences, Rc = {Fj|
∑

fi∈Fj
fi ≤ c}, we can write the

cumulative probability function succinctly as

Pr (Frj(Aj) ≤ c) =
∑

Fj∈Rc

∏
fi∈F

Pr (Frj(ai) = fi)

To examine an alignment requires further extensions to the notation. For a region

of an alignment consisting of a set of sequences from different species A = {Aj},

we can construct a set of sequences of coding frequencies F = {Fj}. There are

many possible different F sets, each corresponding to a different combination of

codons across the whole region of the alignment. By extending the frequency func-

tion Fr so that Fr(A) = ∑
Aj∈A

∑
ai∈Aj

Frj(ai) (i.e. the sum of all species-specific

frequencies across the alignment region); and the satisfactory set concept, so that
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Rz = {F|∑Fj∈F
∑

fi∈Fj
fi ≤ z}, we can finally write the cumulative probability func-

tion for the coding frequency of an alignment region as

Pr (Fr(A) ≤ z) =
∑
F∈Rz

∏
Fj∈F

∏
fi∈Fj

Pr (Frj(ai) = fi)

We can use this result to achieve our stated aim: calculate the probability that

the rareness of the coding observed for a region of an alignment was generated by a

system behaving according to the null model. Positions of an alignment that display

rarer than expected coding (this is discussed further in Section 2.5) will be referred

to henceforth as CRPs – conserved rare positions.

Repeat

Pick a sequence of interest

Identify a set of homologues 
and build a multiple 
sequence alignment 

Map on the usage 
frequencies of the codons

Sum over windows in the 
alignment

Examine the codons in the 
corresponding genes

Record observed 
scores for each 
window

Generate random 
synonymous 
coding sequences 

Compare with the 
observed scores

Aggregate the results to estimate 
the probability of the observed 
degree of rareness

Figure 2.2: An outline of the algorithm in flowchart form.

Figure 2.2 outlines the algorithm. The algorithm has several desirable properties.
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Raw frequencies are taken into account, so codons that are very common or very

rare in the context of the genome have more influence than average values, but the

probabilities of occurrence are adjusted to correct for the amino acid composition.

For example, the two codons encoding cysteine, the rarest multiply-encoded amino

acid in the E. coli genome, occur with frequencies 5.11 and 6.46 per thousand. If a

cysteine is present in a protein one of these two codons must be used to encode it,

with probabilities of approximately 0.44 and 0.56 respectively, so the background

reflects the certainty of obtaining a low score from that residue. Just 3.6% of leucine

residues are encoded by the rarest cognate codon, CUA, which is nearly fourteen

times rarer than the most common leucine codon, CUG. Organisms with low levels

of bias contribute to the statistic by reducing the significance of a pattern in accor-

dance with their own biases. This is desirable, because the presence of that gene is

evolutionary evidence against a universal requirement for rare codons. Finally, we

make very few assumptions about the mechanism of codon usage selection and how

it might affect translation. We are looking only for a conserved pattern that defies

the prevailing genomic preferences. We wish to remain agnostic to the nature of any

selective force we might detect, because that allows reasonable testing of numerous

hypotheses further down the line.

2.4 Implementation

This section discusses some technical aspects of implementing the algorithm outlined

in the previous section.
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2.4.1 Window Size Selection

Selecting the appropriate window size poses a challenge, as we seek to assume as

little as possible about the mechanisms at work. Although some previous meth-

ods have used windows of 7 or more codons (Power et al., 2004; Widmann et al.,

2008; Parmley and Huynen, 2009; Chartier et al., 2012), kinetic studies of folding

and translation rates suggest that even single codon changes could influence folding

pathways (O’Brien et al., 2012) and there is some experimental evidence to support

this claim (Kimchi-Sarfaty et al., 2007; Tsai et al., 2008). Other studies have used

a wide range of window sizes to try to gain insight into the mechanisms (Clarke

and Clark, 2008; Saunders and Deane, 2010), but the computational expense of the

method designed here prohibits this approach on large samples. Selecting too large

a window could miss small, precise events as well as cases where rareness is not lo-

calised but is accumulated across the length of a gene. The use of alignments should

reduce noise, making smaller window sizes more workable, and a smaller window

makes the measure more sensitive. A smaller window also gives greater specificity

to the identified regions, which would be an advantage when designing variants for

experimental investigation. As a compromise between smoothing, sensitivity and

computational expense, a window size of 3 was selected for this study. Section 2.5.3

discusses the effect of varying this parameter on a sample of alignments.

2.4.2 Explicit Computation and Expense

Explicitly computing the convolution using a brute-force approach requires evalu-

ation of the probabilities and sums of all possible coding sequences. This depends
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exponentially on the number of amino acids in the window; formally, it has order

O(n̄zN
j ), where z is the window size as above, N is the number of sequences, and

n̄j is the expected number of synonymous codons per amino acid, which can be

calculated for each organism as

∑
a∈A (n(a)×Genj(a))

Gj

where A is the set of all twenty amino acids, and Genj(a) and Gj are respectively

the number of occurrences of amino acid a and the total number of residues in the

proteome of organism j. This figure is 3.8 in E. coli. Consider a perfect (gap-

free) alignment of ten sequences, each of length l = 100 residues, from species

with the same levels of codon usage bias; using a window size of z = 3, there are

l−(z+1)/2 = 98 windows. Computing the probability convolution for every possible

window composition would require the calculation of 98 × 3.8(3×10) ≈ 2.4 × 1019

distinct sums and probabilities, a prohibitively large number.

Evans and Leemis (2004) describe an algorithm for explicitly computing the PMFs

and CDFs of the convolution of two discrete random variables with arbitrary sup-

ports, which exploits the order in the support sets and uses a technique similar to

dynamic programming to traverse combinations in increasing order. It is conceptu-

ally possible to scale this to multiple variables, effectively adding extra dimensions

to the dynamic programming-style array to be traversed. Additional computational

savings could be made by updating the computed combinations with each iteration of

the window position. However, this algorithm would be very memory intensive and

its implementation complex, and for large numbers of variables with small support
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sets the savings would probably not be sufficient to render it viable. We therefore

seek an approximation to the distribution rather than an explicit evaluation.

2.4.3 Monte-Carlo Simulation

The overall distribution of the coding frequency convolution for each window is a

complex combination of simple components. This makes it well suited to Monte-

Carlo analysis, where the probability mass function is repeatedly simulated instead

of explicitly computed.

This was implemented as follows: for every protein sequence in an alignment,

random synonymous coding sequences were generated according to the standard

genetic code, with codons picked according to their probabilities in the relevant

species under the null model (see Section 2.2). The random coding sequences were

mapped back onto the alignment, and the summed codon frequencies Fr(A) (see

Table 2.1) were computed for each window. Comparing these random scores to the

observed frequencies Fo gives an estimate of the cumulative probability Fr(A) ≤ Fo.

The random sampling was done 10,000,000 times. To avoid wasting computation

on windows of no interest, two intermediate steps were added – at 1000 and 100,000

samples – after which any window with one or more random scores less than or equal

to the native observed score was not sampled any further. This allows estimation of

the p-values of the rarest windows to a resolution of 1× 10−7.
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2.4.4 Algorithm Runtime

For a given window size, the runtime of the algorithm is initially dependent on

the product of the number of sequences in the alignment with the alignment length.

However, because of the filtering strategy that ignores positions with poor alignment

quality or common overall codon usage, the dependency on alignment length is lost

after a few iterations. Runtime is then a function of the number of sequences in the

alignment and the number of CRPs. Figure 2.3 shows that runtime is well explained

by the product of these two parameters.

Figure 2.3: Scatter plot of the runtime of the algorithm for alignments in the dataset
with a window size of 3. The runtime for a given alignment correlates
closely with the product of the number of CRPS and the number of
sequences in the alignment. Runtimes ranged from 2 seconds, for small
alignments with no CRPs, to almost a week for the largest, most CRP-
rich alignments.
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2.5 Application

As mentioned previously, the intention is to complement the statistical data with

experimental evidence. The molecular mechanisms of translation are extremely

complex and although many particulars are universally conserved, there is signif-

icant variation between the phylogenetic kingdoms (Voigts-Hoffmann et al., 2012;

Novoa et al., 2012) and it is simplest and probably best-understood in prokaryotes.

Escherichia coli is by far the most studied prokaryotic model organism. Practi-

cal reasons, such as ease of growth and transformation, added to the availability

of structural and metabolic data, make it a logical choice for investigation. This

dictates that the algorithm be applied to a dataset centred around E. coli. For the

purposes of investigating factors related to the mechanism of translation, it also

makes sense to limit the search for homologous proteins to the prokaryotic realm.

This section discusses the application of the method, including the development

of a database, the assignment of significance thresholds, and some examination of

conservation as a potential null explanation of the calculated results.

2.5.1 Database Construction

The algorithm described in the previous section was designed to identify evolution-

arily conserved patterns of rare codon usage using alignments of homologous protein

sequences. The advantage of an alignment-based method is that the additional se-

quence information can be leveraged to reduce noise and enhance signal, but this

comes at a price: such methods are inherently susceptible to latent biases in the

database. Thus careful database selection is a key element of the process.
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The database used was derived from a set of 1005 full prokaryotic genomes de-

rived from the NCBI GenBank (Benson et al., 2008). Species containing genes not

translated by the standard bacterial coding table (NCBI Table 11; http://www.

ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi), and those with fewer than

500 genes across all chromosomes and plasmids, were discarded.

The set of species was then pruned to be completely non-redundant at the species

level. Codon frequency tables were built for every organism in the database. Where

multiple strains from a single species were present, the average codon usage fre-

quency table was calculated, and the strain with the minimum squared Euclidean

distance from the average was selected. All other strains from that species were re-

moved from the database. A single exception was made for Escherichia coli, where

the strain preserved was K-12 MG1655, because it was considered of the most bio-

logical interest and it, or a close derivative of it, would likely be used for subsequent

laboratory work. Plasmids marked with taxon IDs other than those of the species

they occur in were removed. This left a final database of 678 species, with about

2.3 million genes between them. Figure 2.4 illustrates the effect of removing redun-

dancy at the species level. The two heatmaps represent the 64-dimensional codon

usage space; an organism can be represented as a point in this space according to

its genomic codon usage. The space can be projected onto two dimensions for visu-

alisation using multidimensional scaling. The axes in the heatmaps are orthogonal

linear combinations of the usage frequencies of each codon. The colour indicates

the density of organisms in a particular region of the codon usage space. Removing

redundant strains eliminates the dark red areas of high density and results in a much

more uniform coverage of the space.
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Figure 2.4: Two-dimensional representations of codon usage space. The figures show
heat maps indicating the distributions of organisms in codon usage
space (a) with and (b) without redundancy at the species level. Non-
metric multidimensional scaling was performed on matrices representing
prokaryotic genomes in the 64-dimensional codon usage space; one ma-
trix contained about 1000 strains including strains from the same species,
the other contained only the strains selected for the species-level nonre-
dundant database (Kruskal’s normalised stress: (a) 0.0611, (b) 0.0628).
The plots show the result of density estimation on the resulting two-
dimensional projections. The axes are orthogonal linear combinations
of of the usage frequencies of the 64 codons. The colour indicates the
density of strains on a linear scale. It is clear that a good deal of redun-
dancy is removed and the overall codon usage space is populated almost
uniformly after removing redundant strains.

This allowed for the construction of homologous sets of proteins for sequences of

interest. A set of homologues for every gene in the E. coli K-12 MG1655 genome

was drawn from the database. Homologue identification was done with the blastp

utility from the BLAST+ software package (Camacho et al., 2009), using an E-value

threshold of < 10−5. To preserve alignment quality, homologues whose lengths dif-

fered from the seed by more than ±10% were discarded from the search results. To

prevent the inclusion of paralogues (multiple genes from the same species), the first

hit from each unique species was included and any subsequent hits were discarded.
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Families of less than five homologues were excluded altogether from subsequent anal-

ysis. Protein sequence alignments were then constructed using MUSCLE (Edgar,

2004). This yielded a set of 3890 alignments. The process was repeated using E. coli

chloramphenicol acetyltransferase 3 (CAT-3) as the seed gene as it is of interest in

the literature (Komar et al., 1999), adding a further alignment (see Section 2.6.2).

Five of these alignments were subsequently removed upon mapping to Uniprot iden-

tifiers as they had become obsolete, leaving a final total of 3886 alignments.

Codon frequencies for each species were derived manually from the database of

sequences, rather than taken from another codon frequency database (e.g. Kazusa

– Nakamura et al. (2000)), by counting the occurrences of all codons in the set of

coding sequences for that species and dividing by the total number of codons in the

set.

2.5.2 Defining Rareness

The method described above generated p-values for the rareness of the codon usage

observed in three-codon windows across 3886 alignments of homologous proteins.

Alignment positions with more than 20% gaps, and positions where the E. coli

seed sequence was not aligned, were ignored. Positions containing the initiator

methionine were also ignored because of the disproportionate reduction in coding

options. This left 1,162,109 positions. Because the method used a Monte-Carlo sam-

pling technique with ten million random samples, p-values were resolved to 1× 107

(see Section 2.4.3). Each p-value is generated from a distinct cumulative distribu-

tion, which depends on the precise amino acid composition of the alignment window.
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Interestingly, the overall distribution of p-values was heavily skewed to the extremes

of 1 and 0 (see Figure 2.5). This suggests that at the majority of positions there is

an evolutionary pressure in one of two directions – either towards “optimal”, high-

frequency codons, or in the opposite direction, towards rare codons. It should be

noted that we cannot be as confident of specific p-values at the high-end, because

of the way the test was implemented to save computation, but the trend is clear.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

convolution method
null uniform
Gaussian

Figure 2.5: The distribution of p-values is heavily skewed towards the extremes,
suggesting that at all positions codons are “optimised" in one of two
directions. The blue line represents the proportion of p-values that are
less than or equal to the corresponding x value. The dotted green ver-
tical line, overlapping the y axis in this visualisation, indicates the null
uniform distribution that was used to assign a significance threshold –
only p-values to the left of this line were considered significant. This
is plotted to give an indication of the stringency of the selected thresh-
old. The dotted red line shows the behaviour of p-values in a Gaussian
distribution, which are often produced by random processes.

To assign a significance threshold for rareness we adopted a false discovery rate

approach, conservatively setting the number of expected false discoveries to 1 against

a uniform null distribution. The p-value threshold for significance is therefore 1/n,

where n is the number of positions for which p-values were calculated, giving a sig-
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nificance threshold of approximately 8.6×10−7. Under this scheme 13,615 positions

(1.17%) across 2336 alignments (60.1%) were classified as conserved rare positions

(CRPs). The alignment positions were mapped back onto the E. coli seed sequences

for the purposes of examining the correspondence of CRPs with protein features.

The E. coli entry almost always carries the most detailed and highest-quality an-

notations, and more auxiliary information about the species and the cytosolic envi-

ronment is available to support the analysis.

2.5.3 Effect of Window Size

To measure the effect of the window size parameter on the output of the algorithm,

an experiment was run on a sample of proteins. Ten proteins were selected, each

containing ten CRPs at a window size of 3, and the algorithm was reapplied with

window sizes of 5, 7, 9, 11, 15, and 19. The results are displayed in Figure 2.6.

In the sample, the number of significant positions follows one of two patterns over

the range of window sizes tested: it either stays fairly constant, or increases as the

window size is increased. The proteins in which the number of significant regions

increases all have regions interspersed with CRPs separated by 3-10 amino acids. In

larger windows that overlap a number of CRPs the rareness is aggregated, making it

quite likely that the whole window will be significantly rare. The larger the window

size, the greater the number of positions that are affected by this. Furthermore, the

subsequent analysis of the positions of CRPs would be made less precise by using a

larger window size.
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Figure 2.6: The number of CRPs as a function of window size. A sample of ten
proteins was selected, each containing ten CRPs at a window size of
three. In the majority of proteins, the number of CRPs stays reasonably
constant. Where the number of CRPs increases with increasing window
size, it appears to be a consequence of closely interspersed CRPs having
an aggregate effect on a large number of overlapping windows.

2.5.4 Conservation

Amino acid and codon conservation at CRPs was examined largely as a potential

null effect. Sets of closely related species with similar cytosolic environments will

produce similar optimally-adapted genes, even when the codon usage in the genes

is independent. Alternatively, genes that had been recently transferred to a number

of members of a clade and not had time to adapt to the new cytosolic environments

might give rise to CRPs when the effect was not due to a selective advantage. In both

cases, the effect should be distinguishable by high levels of sequence conservation.

Conservation of codons and amino acids was measured by normalised Shannon’s

entropy, so that the range is between 0 and 1 with lower values indicating higher

conservation. Although positions with zero codon entropy were found to be slightly
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enriched in the set of CRPs versus other positions (odds ratio = 1.485; p = 0.005 un-

der Fisher’s exact two-tailed test), the average entropy is higher in CRPs than other

positions (0.389 versus 0.369, p << 10−10 under Mann-Whitney U test). We also

checked the numbers of sequences and unique organisms represented in alignments

containing CRPs, and found that alignments with CRPs are more diverse than those

without. Given this surprisingly strong evidence against homology being the source

of the CRP signal, it was considered safe to proceed with the interpretation of the

results.

2.5.5 Comparison with Other Alignment-Based Methods

We know of two previously published metrics that take a similar approach to identi-

fying conserved rare codons: the RCRRmethod (Widmann et al., 2008) and Sherlocc

(Chartier et al., 2012). Both methods are described in Section 1.4.

RCRR

RCRR shares another conceptual similarity with our method in the comparison with

the distribution of possible scores. Their implementation requires explicit computa-

tion of synonymous codon usage combinations, which scales very poorly (see Section

2.4.2). Presumably for this reason, the comparison score is calculated for specific

columns only, placing a heavy burden of conservation on the exact position of rare

codons. Taking the product of codon usage frequencies in the column as the test

statistic, instead of their sum, counterbalances this by lowering the requirement for

conservation in the column, because a mix of small and large values is scored lower
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than a set of intermediate values under this scheme. However, the measure considers

alignment columns separately, so unconserved regions of rare codon usage in a small

proportion of sequences can generate positive RCRRs erroneously. This compromise

contributes to the high false positive rate of 4 %. The method presented here uses

the summed codon frequencies as the test statistic, which is more conservative, and

is implemented with a smaller window size (see Section 2.4.1).

A direct comparison of the results generated by the RCRR and CRP algorithms

is difficult because the results are presented for just 16 homologous families built by

the Lipase Engineering Database. Only two of these contain E. coli proteins that

could be taken as representative, and neither of these contains any RCRRs. Table

2.2 is included for completeness, and shows the comparison where possible.

Sherlocc

In Sherlocc a p-value is obtained by fitting the average window scores to an extreme

value distribution. It is difficult to see how this distribution could be constructed

from the available data. It appears the process is actually more akin to selecting

the bottom X % of scores. This distinction is key, because in the latter case there

is no null hypothesis and the number of positives is pre-determined by the sample

size alone. Also, the problem of gaps in the alignment is not addressed. Although

the alignments in Pfam are carefully built and generally of a high quality, they

still contain regions with a significant proportion of gaps, which could lead to a

discrepancy between the level of conservation assumed by the method and that

which is actually observed. Finally, although Pfam alignments are typically made

non-redundant at the sequence level using a maximum sequence identity threshold
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LED ID RCRRs E. coli ID CRPs Homologous family name
abH01.02 10 x - Mammalian carboxylesterases
abH08.14 2 x - Ccg1/TafII250-interacting factor B like
abH09.02 0 AAC76437 2 BioH protein like
abH12.01 3 x - Hydroxynitrile lyases
abH14.02 0 x - Gastric lipases
abH15.02 6 x - Burkholderia cepacia lipase like
abH17.01 3 x - Chloroflexus aurantiacus lipase like
abH19.01 4 x - Palmitoyl-protein thioesterase 1 like
abH23.01 0 x - Rhizomucor mihei lipase like
abH24.01 2 x - Pseudomonas lipases
abH26.01 0 x - Deacetylases
abH28 0 AAC74915 0 Prolyl endopeptidases
abH30.01 0 x - Cocaine esterases
abH31.02 0 x - Carboxymethylenebutenolidases
abH33.01 0 x - Antigen 85-C
abH34.02 7 x - Serine carboxypeptidase II like

Table 2.2: Unfortunately a comparison of the locations of RCRRs and CRPs is im-
possible because there is almost no overlap between the two datasets.
The columns, from left to right, show the Lipase Engineering Database
ID for the homologous family, the number of RCRRs in the alignment, the
NCBI ID of a representative Escherichia coli K-12 protein if available, the
number of CRPs in the alignment, and the name of the homlogous family.
Only two families contain a protein that could be used for comparison,
and neither of these contains any RCRRs.
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of 80 %, multiple sequences from the same species are tolerated (Finn et al., 2010).

Such paralogous sequences evolve in identical cytosolic environments and so cannot

be considered independent examples of coding sequence evolution even when the

protein sequences are divergent. The alignments used in this investigation were

purpose-built and care was taken not to include paralogues.

The method presented here possesses a lower predicted false positive rate, higher

sensitivity, and improved runtime compared with Sherlocc and RCRR, and as such

can be considered at least a viable alternative.

2.6 Algorithm Behaviour

A striking pattern in the results of the algorithm is the very distinct peaks at the

extrema of the p-value range (see Figure 2.7). Only 64 % of computed p-values

lie between 0.001 and 0.99. This is an interesting result in itself, as it suggests the

presence of strong opposing evolutionary pressures that exert their influence, or gain

dominance, in a binary, mutually exclusive fashion. This goes against the traditional

interpretation of variations in codon usage, which posits a single optimal coding

pattern and uniform evolutionary pressures that are felt more keenly in highly-

expressed genes. It has been noted previously that genes encoding aminoacyl tRNA

synthetases (aaRSs) tend to use rare codons more frequently than the background.

This is thought to improve the chances of the cell recovering from a state of amino

acid starvation by ensuring that aaRSs can still be synthesised even when amino

acid levels are low (Elf et al., 2003). The aaRS proteins also tend to avoid their own

cognate tRNA for the same reason (Seligmann, 2012). The same pattern has been
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Figure 2.7: There are clear frequency peaks at the extremes of the p-value range.
This suggests that in a large proportion of positions codon usage is either
conserved high-frequency or conserved rare.

noted in genes that are up-regulated in response to stress (Gingold et al., 2012).

There is evidence that the cellular pool of tRNA is highly dynamic, adapting in

response to growth rates and environmental conditions (Dong et al., 1996; Putzer

and Laalami, 2003). The effect we are seeing could be the result of the same selec-

tive force, encouraging use of the codon corresponding to the most abundant tRNA,

but adapted to two distinct sets of cellular conditions. Alternatively, it could be

related to elongation rate. Since protein synthesis rates are the main determinant

of prokaryotic fitness (Johansson et al., 2008), it makes sense that the majority of

positions experience selection for codons that putatively enhance the rate of trans-

lation. It is plausible that the small number of key locations that require lower rates

of translation, mediated by codon frequency, are under equally strong selection.
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2.6.1 Amino Acid Composition

Even after correcting for amino acid composition by normalising the codon probabil-

ities in our sampling technique, we find that some amino acids are enriched in CRPs

and others are depleted with respect to the background occurrences of amino acids

(see Figure 2.8). As discussed in Section 2.3.1, amino acids with greater degrees

of bias in their synonymous sets contribute more strongly to the underlying distri-

bution, so this is not unexpected. The most over-represented amino acid is lysine

with an observed:expected ratio of 1.5. The most under-represented amino acids

are methionine – many of which are excluded because of their N-terminal position

– and aspartic acid, with ratios of 0.59 and 0.62 respectively.

The fact that CRP occurrence is not independent of amino acid composition is

not a weakness – rather, it is a property of the measured signal – but it has the

potential to confound the analysis, as amino acids have their own preferences that

are determined by their physico-chemical properties. This is addressed in Section

3.4.1 in the next Chapter, which presents the results of the analysis of the data

generated by the algorithm.

2.6.2 Experimental Evidence

There are two experimentally verified examples of beneficial rare codons in native

E. coli genes. This section discusses those two examples and the findings of our

algorithm in relation to them.
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Figure 2.8: Frequency of amino acids in positions classified as CRPs against their
frequency in the whole E. coli genome. The dashed line represents ex-
pected occurrences, if CRPs were completely independent of amino acids.
Residues occurring above the line are over-represented in CRPs, and vice
versa.

SufI

SufI is a 470 residue, three domain protein that is secreted via the Tat pathway. It is

thought to play a structural role in cell division, but its precise function is unknown

(Tarry et al., 2009).

Zhang et al. (2009) used an algorithm based on tRNA abundances in E. coli

to predict regions of slow translation. They identified twenty codons encoded by

rare tRNAs, in four different regions of the gene spanning all three domains. They

mutated combinations of these locations, and found that just two common-for-rare

codon substitutions in the latter-central region, at positions 244 and 252, were dis-

ruptive to proper folding of the protein. Similar results were achieved by over-

expressing the rare tRNAs. They probed the mechanism of the disruption by ex-
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amining the size and protease lability of fragments derived from cell-free systems,

concluding that translational pauses were occurring near the sites they identified and

that the change in the translation rate profile was altering the structure of folding

intermediates. They also implemented a temperature-mediated global deceleration

of translation, and were able to mitigate the deleterious effect of the mutations.

The results of our algorithm do not agree with any of the twenty the positions

identified by Zhang et al. (2009), although several of them correspond to regions of

low conservation where the alignment is poor. The requirement for high conservation

could be considered a weakness of the method, but comes with improved accuracy

in a trade-off that was considered worthwhile. Two positions in the earliest region,

at residues 34 and 42, have p-values of order 10−5.

CAT-3

Chloramphenicol acetyltransferase 3 (CAT-3) is a 213 residue, single domain protein

that forms a functional trimer. CAT-3 confers resistance to the chloramphenicol

antibiotic by covalently attaching an acetyl group that prevents it from binding to

the ribosome. Komar et al. (1999) identified sixteen rare codons in a twenty-codon

region near the midpoint of the protein. They found that substituting these rare

codons for more common ones increased protein synthesis but reduced enzymatic

functionality by 20% in cell free systems, implying that a portion of the protein had

folded incorrectly.

Again, none of the positions mutated by Komar et al. (1999) met the threshold

for identification as CRPs in our algorithm. We identify two positions with p-values
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in the order of 10−5 in the region specified in the paper, although not coinciding

with the mutated positions. It is also worth noting that the modifications disrupt

an internal Shine-Dalgarno-like sequence in the region, which has been suggested as

an alternative explanation for the findings (Li et al., 2012).

2.6.3 Conclusions

It is disappointing that we do not find direct agreement between our method and the

only two pieces of experimental evidence available. However, the lack of agreement

does not invalidate our findings. Our method identifies position-specific conservation

of rare coding. In some cases there may be flexibility in the precise location of rare

codons within the gene. If rare codons are present in all homologues but are spread

across a region rather than in a specific, conserved position, they may not produce

CRPs.

Equally, because our method relies on homology to increase its statistical power it

is not capable of identifying CRPs in regions of poorly conserved amino acid usage.

It is feasible that a pause that is required for structural reasons may be instigated by

different mechanisms in different homologue versions. For example, where one gene

may use a sequence of rare codons to slow translation, another may have undergone

an insertion mutation that introduces extra translational steps. This would still

effect a relative translational delay between two structural positions either side of

the region, but without slowing translation or using rare codons.

In both experimental investigations, a large number of residues are identified and

mutated but only a small proportion of these are found to be relevant to translational
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mechanisms – the precision is very low. In CAT-III a very large window is mutated,

without a great deal of explanation as to how it was selected. In SufI only two of the

codons identified are reported to make a difference to the folding. We considered this

trade-off worth making, because single-sequence methods are not reliable enough

to be extended to general cases. The related computational methods, where the

information is available, have similar levels of agreement with these experimental

data (Widmann et al., 2008; Chartier et al., 2012).

Importantly, both studies used in vitro systems for the bulk of their experimental

work. While such cell-free systems contain the essential machinery of translation,

they are missing myriad components that are present in a living organism, such

as chaperones and binding partners, and many regulatory mechanisms that control

metabolism in response to environmental cues (Parry et al., 2014). This could well

result in erroneous pausing due to the absence of co-factors that help to maintain

and regulate translation in in vivo. Further, the cytosolic environment is so replete

with constituents sized over several orders of magnitude that it inherently constrains

the folding of the nascent chain in ways that remain poorly understood (Kim et al.,

2013).

Although we do not see direct correspondence with experimental results, there are

numerous possible explanations for the lack of agreement that do not invalidate our

findings. The approach on the conservative side in terms of establishing statistical

significance, and we can be confident that the rationale behind the algorithm is

reasonable. Thus we can proceed to the analysis of results.
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3 Analysis of Conserved Rare

Positions in Escherichia coli

This chapter documents the large-scale analysis of codon usage data in Escherichia

coli K-12 MG1655. Alignments of homologous proteins were built for 3886 coding

regions in the E. coli K-12 genome, drawing from a database of about 2.3 million

genes from 678 prokaryotic genomes. After the application of thresholds on align-

ment quality and window size, p-values were computed for 1,162,109 valid positions.

13,615 positions across 2336 alignments were identified as displaying conserved rare

codon usage. The algorithm is described in detail in Chapter 2.

The aim of this part of the work was to identify a biological explanation for the

presence and location of the conserved rare codon positions (CRPs). The stringent

significance threshold that was applied, and the high degree of conservation required

by the algorithm, make a strong argument for a location-specific selective pressure

that defies the prevalent genomic tendencies. To elucidate this selective pressure, we

are interested in finding data to support a translational mechanism by which CRPs

might aid correct protein expression.

The investigation is predicated on the assumption that CRPs are genetic loca-
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tions where a translational pause is necessary for proper protein expression, and

hypotheses are constructed on this basis. Experimental evidence for this premise is

admittedly sparse, and in reality a strong direct correlation between codon usage and

translation rate probably cannot be relied upon. However, the same is true of any

other currently known signal, including tRNA abundances (Bonekamp et al., 1989;

Stadler and Fire, 2011). There is strong evidence, presented here and elsewhere,

that rare codons provide some selective advantage, and the only known mechanism

by which they could influence translation is through elongation rate. Codon usage

is selected as a relatively convenient and accessible signal providing an abundance

of data available for analysis. Although codon usage frequency may be a more ab-

stract proxy for translation rate than tRNA abundances, it offers vastly more usable

data and thus can add considerable statistical power to predictions. The measure

designed herein is more sensitive and more specific than previous codon usage fre-

quency measures, by virtue of the combination of the choice of window size and the

use of homology, and more wide-reaching in its application to prokaryotic sequence

data.

The investigation begins by mining for associations between CRPs and gene-level

feature annotations such as functional groups, and also position-specific features,

such as secondary structural elements and disordered regions. We then examine

structural class and structural motifs. Finally, we examine in detail a small num-

ber of genes in which we find strong evidence of selectively adaptive rare codon

enrichment.
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A Note on Paralogues

Domain families often contain numerous closely-related proteins. Steps were taken

to remove paralogues from alignments, so that the identification of CRPs is based

only on correspondences between sequences from separate organisms. However,

alignments based on paralogous genes are likely to contain overlapping samples

of sequences from the database because the homology searches will return similar

results, so treating them as independent could conflate some parts of the analysis.

Paralogous redundancy was removed from the database for the latter part of the

investigation in this chapter concerning structural motifs and domain families, but

not the earlier part that examines functional annotations. This decision was made

because functional conservation is lost relatively quickly in the evolutionary process,

and gene duplication encourages diversification of sequence and function (Martínez-

Núñez et al., 2010). Also, previous studies have shown that paralogues are not

enriched in any particular functional group (Nembaware et al., 2002). Section 3.1.1

details how paralogues were identified and removed.

3.1 Materials and Methods

3.1.1 Removing Paralogues

Strong paralogues were identified as mutual hit pairs in the original BLAST searches

– i.e. pairs of sequences where both sequences returned the other as a hit with an

E-value of < 10−5 in our database (see Section 2.5.1). These mutual hit pairs

can be used to define edges in homology graphs of a set of interest, for example a
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structural family. Families were pruned by removing sequences until the homology

graphs were completely disconnected – i.e. until there were no edges remaining.

Sequences were pruned in a greedy fashion, removing sequences in descending order

of their number of incident edges in the homology graph (i.e. the number of mutual

hits remaining in the family). Pruning was repeated until the family contained

no pairs of mutual hits. Multiple domains from the same protein were allowed,

because although the domains probably arose from an historic duplication event the

thresholds on alignment quality mean that the same multidomain pattern is present

in the other sequences in the alignment. This means that the duplication event

would very likely have occurred before speciation, so the same arguments about

sequence divergence apply.

3.1.2 Assigning Structure to Sequence

Secondary Structure

Disorder annotations were taken from MobiDB (Di Domenico et al., 2012). The

MobiDB database combines manually curated annotations, data mined from X-

ray and NMR structures in the PDB, and the results of multiple disorder prediction

algorithms. Steps are taken to resolve annotation conflicts, and a distinction is made

between known and predicted disordered regions. MobiDB provides a webservice

that returns serialised data on known and predicted disordered regions for UniProt

entries, making residue assignment relatively easy.

Mapping sequence and structural data on a large scale is far from trivial. Proteins

are often heavily modified from the wildtype for structural analysis, and many struc-
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tures are missing coordinates for particular residues and/or contain multiple, some-

times homologous chains, so pairwise alignments between genomic and structural

sequences can be very messy. For this study, simplified position-specific secondary

structural features were extracted from the UniProt entries for the alignment seed se-

quences. UniProt maps the eight secondary structure classifications from DSSP onto

three separate features: HELIX (G, H and I), STRAND (E and B) and TURN (T).

The mapping process is complicated by multiple, sometimes conflicting annotations

from various sources structures, and details of UniProt’s process are unpublished

(UniProt Consortium, personal communication). The mapping can be particularly

problematic for helices, where the numerous different classes of helix result in some

feature tables containing separately-listed helix features that are directly adjacent

in the sequence. Such features were merged into single helical regions for the anal-

ysis. UniProt only takes annotations from known structures, so the population was

limited to the approx. 1300 E. coli proteins that are represented in PDB. This

was considered preferable to resorting to predicted secondary structure, which is

inevitably imprecise (Deane and Saunders, 2011). Regions that did not belong to

any of the other secondary structure classes and were not predicted (or known) as

disordered were classified as coils.

The testing for enrichment in these regions was done as follows. The null hy-

pothesis is that the presence of CRPs is independent with respect to the residue

classification – in other words, that the structural classification is an unbiased sam-

ple of residues with respect to CRPs. The expected number of CRPs in a secondary

structure class is equal to the number of CRPs per residue in the whole set of proteins

with structure multiplied by the number of residues in the class. The probability
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of obtaining the observed number of CRPs in each secondary structural region was

then calculated under this model using Fisher’s exact test, which is equivalent to

summing over the tail of a hypergeometric distribution. Regional sets of CRPs were

tested separately against the structural classes. In these cases the sample and the

population were limited to the span of the region – for example, in the case testing

N-terminal CRPs in helices, the population of residues is the size of the region (38),

multiplied by the number of proteins in the dataset with known structure (1298),

and the sample is the number of helical residues in the first 38 residues of each pro-

tein. Although this constitutes a not-insignificant number of tests, it was not seen

fit to adjust the p-values because the tests are not independent – since the classes

are mutually exclusive, enrichment in one class comes at the expense of another.

Domains and Domain Linkers

Domain region annotations were taken from the Gene3D database of known and

predicted domains and domain families (Lees et al., 2012). Gene3D uses hidden

Markov model profiles generated from the domain families in the CATH database to

assign domain predictions to sequences with unknown structure. These predictions

are mapped to regions of UniProt sequences and conflicting regions are resolved.

These mappings were used to define domains in proteins with good coverage of our

dataset (3861 out of 3886 proteins contained at least one predicted domain), to

classify proteins as multidomain, and to assign them to fold classes and domain

families.

Gene3D predictions were also used to derive domain linker regions. Linker re-

gions were identified as non-terminal regions in proteins with two or more predicted
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Gene3D domains that were not within the extent of the predicted domains. Domain

linker regions are therefore imprecise and do not necessarily correspond to regions

of predicted disorder.

Structural Motifs

Structural motifs were identified using PROMOTIF (Hutchinson and Thornton,

1996), which analyses PDB structure files and outputs information on the tertiary

configuration of structural elements. PROMOTIF identifies secondary structural

elements (beta strands and helices) and their interactions in tertiary configurations

(beta sheets and barrels, beta-alpha-beta units, beta hairpins), distinguishes be-

tween different classes of turn (beta and gamma), and gives the locations of point

irregularities and modifications (beta bulges, disulphide bridges). Its precomputed

output can be accessed via PDBSum (de Beer et al., 2014). The residue numbers

given in PROMOTIF have to be mapped back to UniProt residue numbers, which

can be done via the SIFTS database (Velankar et al., 2013). Motifs were assigned

here by selecting a single representative structure and chain for each protein in the

dataset with any known structure. 1187 structures were successfully parsed for mo-

tifs. Helix-turn-helix motifs are not explicitly analysed by PROMOTIF but can be

inferred from the helix context.

3.1.3 Annotation Enrichment

The Database for Annotation, Visualization and Integrated Discovery (DAVID;

Huang et al. 2009a,b) was used for assessing enrichment of functional and ontological
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annotations. DAVID traverses hierarchical annotation trees and adjusted p-value-

like EASE scores (Hosack et al., 2003) for the enrichment of annotation classes in

a given gene list against a specified background. The EASE scores are the upper

bound of the Fisher’s exact p-values under jackknifing – that is, the maximum value

that can be obtained by removing any single gene. This accounts for the sensitivity

of the p-value to sampling precision, giving a more robust measure in cases where

sample sizes are small or particular classes are lightly populated. DAVID offers the

ability to cluster sets of annotations from numerous databases according to their

overlap, and uses a filtered version of the Gene Ontology hierarchy that attempts to

remove the broader, redundant terms in favour of more specific annotations, based

on the number of children belonging to a node.

3.1.4 Expression Levels

Highly expressed genes were identified using the Gene Expression Omnibus (GEO;

Edgar et al. 2002). GEO Profiles can provide information on the ranking of genes

by their expression levels across curated data sets. This can be used to identify

genes that are consistently highly expressed regardless of experimental conditions,

or genes that are highly expressed under at least some sets of conditions. GEO

profile queries can be downloaded as text files and parsed for Gene ID information,

which can be mapped to numerous other resource identifiers contained in UniProt

entries. For this study, highly expressed genes were defined as those expressed in

the top percentile of all experiments in at least one dataset.
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3.1.5 Essential Genes

The Keio database (Baba et al., 2006) was used to identify essential genes in our

dataset. The Keio project involved the construction of an exhaustive set of single-

gene knockout mutants of Escherchia coli K-12. Some 303 genes that resisted all

attempts to grow deletion mutant colonies were classified as essential. 267 of these

were mapped back to our database via their unique gene name.

3.2 Strengthening the Argument for the Value of

CRPs

Two possible arguments against the claims made here about the selective advantage

of CRPs were identified. First, as is acknowledged earlier the lack of true inde-

pendence between homologous sequences could be seen to undermine the statistical

significance of the p-values used to identify CRPs. Because of this, the false dis-

covery rate may be higher than was accounted for when setting the threshold for

defining rareness. Second, a well-known result in the study of codon usage is that

more highly-expressed genes use a higher proportion of common codons. This is

taken as evidence that it is only in these genes that selection on synonymous codon

usage is sufficiently potent to have a lasting effect on gene sequence. These two

arguments are examined in this section: the first by looking at the effect of codon

and amino conservation at CRPs, and the second by examining expression levels of

genes with and without CRPs.
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3.2.1 Conservation

As stated previously, the assumption of statistical independence between corre-

sponding codons from homologous genes does not necessarily hold in all cases. The

conservation of codon usage was examined and found not to be significantly influenc-

ing the identification of CRPs (see Section 2.5.4). It was also noted that positions

with unusually high codon entropy are enriched in CRPs. This high variability in

combination with conservation of rareness suggests a strong selective force at work.

High-entropy positions are over-represented in the set of CRPs compared with

the underlying distribution of position entropies. In particular a cluster with high

amino acid and relative codon entropy (i.e. codon entropy − amino acid entropy)

was determined by eye as the region defined by amino acid entropy in the range

(0.44, 0.525) and relative codon entropy in the range (0.1, 0.225). The cluster con-

tained 344 CRPs from sixteen different proteins, an unusually high average number

of CRPs per protein. It should be noted that this includes four homologous Rhs (re-

arrangement hotspot; Hill et al. 1994) proteins with large numbers of rares, whose

alignments therefore contain similar sets of sequences. Even when all but one of

these are removed the cluster is still apparent. Figure 3.1 shows the codon and

amino acid entropy distributions of rare and non-rare positions. The density plot

includes only one of the rhs genes.

The proteins represented in the cluster are listed in Table 3.1, along with de-

tails of their functions. They include proteins with known co-translational export

mechanisms; and toxin-antitoxin systems that inhibit intracellular growth or confer

antibiotic resistance, carrying a strong selective advantage.
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Figure 3.1: Shannon’s entropy of codon and amino acid selection across alignments
at CRPs and non-CRPs. (a) Scatter plot of codon vs. amino acid entropy
at CRPs (red) and non-CRPs (blue). CRPs in essential genes are plotted
separately in green (see Section 3.2.2). Note that the vertical axis shows
the difference between codon and amino acid entropy, because there must
be at least as many unique codons as there are unique amino acids. (b)
The relative density of CRPs in entropy space. The normalised densities
of CRPs and non-CRPs were estimated separately using Gaussian kernel
density estimation. The differential density is shown in a heat map. The
relative enrichment of high codon-entropy positions in the set of CRPs
is clearly visible as a series of dark red patches towards the top of the
shaded area. The dark red patch to the right of the figure contains the
proteins described in Table 3.1. Note that zero-entropy positions were
removed from the density estimation calculations. Also note that the
plot shown includes only one of the rhs genes described in Table 3.1, to
demonstrate that this cluster still exists if the others are discounted.
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Table 3.1: Details of proteins containing CRPs found in the high-entropy cluster
CDS Acc Gene Name and Description # CRPs Comments

AAC75027 dcm; DNA cytosine methyltrans-
ferase

1

AAC74990 fliC; flagellar filament structural
protein (flagellin)

1 Sole constituent of flagellar filament, which comprises up to 20,000 FliC
subunits. Must be exported through the central channel of the flagella
filament and therefore must be considerably unfolded. The narrow chan-
nel is thought to aid in preventing premature folding (Apel and Surette,
2008), and the presence of rare codons could also assist in this process
by delaying translation.

AAC74580 hipA; inactivating GltX kinase
facilitating persister formation;
toxin of HipAB TA pair; autoki-
nase

1 Toxic element of HipAB chromosomal toxin-antitoxin operon. The hipA
gene is downstream of hipB. The HipA protein deactivates glutamate-
tRNA ligase, preventing the charging of AA-tRNA(Glu). The toxicity
of HipA is neutralised upon binding to an already-formed HipB dimer.
Therefore slow translation of hipA may be critical for suppressing its
toxic effects by allowing HipB dimers time to form. The HipAB TA
module is associated with high persistance (Feng et al., 2013).

AAC77304 hsdS; specificity determinant for
hsdM and hsdR

65 Part of the EcoKI DNA methyltransferase restriction/modification en-
zyme. HsdS forms a trimer with two copies of HsdM, which is encoded
immediately upstream (overlapping by 1 nt). The hsdS gene has 203
CRPs out of 464 positions, a very high proportion of CRPs. In contrast
the upstream hdsM gene has 17 out of 529.
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CDS Acc Gene Name and Description # CRPs Comments

AAC76617 rhsA 59 The rhs (rearrangement hotspot) genes are characterised by variable
toxic C-terminal domains, which is the region where all of the CRPs
in this group are found. Rhs proteins are excreted when environmental
conditions are crowded and are toxic to neighbouring cells, inhibiting
growth and thus offering a selective advantage to cells possessing the
downstream immunity gene (Jackson et al., 2009; Zhang et al., 2012).
Note that the CRPs in rhs genes make up a considerable portion of the
cluster, and since the genes are homologous their alignments contain
many of the same proteins. However, the cluster is still apparent when
only one rhs gene is included in the analysis – see Figure 3.1.

AAT48186 rhsB 56
AAC73794 rhsC 36
AAC73599 rhsD 61

AAC77307 mrr; methylated adenine and cy-
tosine restriction protein

1 Laterally acquired type IV restriction endonuclease involved in stress
response (Ghosh et al., 2014)

AAC75098 wzxB; predicted polisoprenol-
linked O-antigen translocating
flippase; lethality reduction pro-
tein

20 Membrane-embedded transporter protein that reduces the lethal effects
of stress (Han et al., 2010).

AAC73999 ycaI; ComEC family inner mem-
brane protein

2 Transmembrane pore involved in the uptake of exogenous single stranded
DNA (Sun et al., 2009).

AAC75803 ygcB; cascade complex anti-viral
R-loop helicase-annealase Cas3

27 Cas3 has two opposing functions: it either acts to anneal or unwind
RNA-DNA R-loops (nucleic acid secondary where RNA hybridises with
one strand of a separated stretch of DNA), depending on the levels of
ATP.
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CDS Acc Gene Name and Description # CRPs Comments

AAC74229 cohE; e14 prophage; cI-like re-
pressor protein phage e14

1 Numerous components of probable prophage elements, including repres-
sors – which prevent the cell phage from entering the lytic phase – and
the RecE homologous combination system.AAC73638 intD; DLP12 prophage; putative

phage integrase
7

AAC74427 intR; Rac prophage; integrase 4
AAC75673 yfjI; CP4-57 prophage; uncharac-

terized protein
2
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3.2.2 CRPs in Critical Genes

The argument has been made that only the most highly expressed genes are under

sufficient evolutionary pressure to optimise their codon usage patterns (Ikemura,

1981a; Sharp et al., 1986, 2010; Klumpp et al., 2012). These models for codon se-

quence evolution posit that codon selection is a relatively marginal selective adapta-

tion, and that weakly expressed genes are more weakly selected, so that mutational

drift is sufficient to override selective codon adaptation. As discussed in Section

2.2, there is evidence to the contrary. Even weakly expressed genes display an ob-

servable difference in nucleotide composition compared with untranslated regions

(Hershberg and Petrov, 2009, 2012), and many weakly expressed proteins can con-

fer a significant evolutionary advantage in circumstances where they are expressed.

It has been shown recently that synonymous mutations can be as strongly selected

as non-synonymous mutations (Bailey et al., 2014), so the adaptive advantage to

be gained from codon selection is clearly not marginal. Additionally, mutational

drift does not account for the conserved patterns that our method highlights, where

species consistently defy their genome-wide preferences at specific locations. How-

ever, there is evidence that nucleotide-specific biases are stronger and proportional

use of high-frequency codons is higher in more highly expressed genes. Therefore,

highly expressed genes that contained CRPs were sought.

Using the Gene Expression Omnibus (Edgar et al., 2002), 116 highly expressed

genes (see Section 3.1.4) were identified. This set of genes was significantly enriched

in CRPs in all regions, with the largest fold change (2.33) occurring in the internal

(non-terminal) region where 45 genes had CRPs. There was a single pair of mu-

tual hit paralogues in this set (see Section 3.1.1), and the significance was robust
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to its removal. This included numerous ribosomal constituents and translational

components, proteins involved in stress- and misfolding response systems, transcrip-

tion factors, and essential primary metabolic proteins involved in ATP and glucose

metabolism.

There is also a heavy enrichment of CRPs in essential genes (see Section 3.1.5

for details of how essential genes were identified), with the highest fold change

(2.11) again in the internal region. Essential genes are generally more evolutionarily

constrained at the amino acid level on account of the often lethal effects of deleterious

mutations, but CRPs can be found in them across the range of the entropy landscape,

and especially in locations with high amino acid conservation (low entropy) and high

codon divergence (see Figure 3.1a). This again suggests that CRPs in these genes

can confer a selective advantage.

3.3 General Investigation

3.3.1 Overview

Distribution Between Sequences

Just under 1.2% of positions tested were classified as CRPs, and these were dis-

tributed between 60% of the genes examined. The number of CRPs per sequence

appears to follow a geometric distribution (see Figure 3.2a). This is suggestive of

random independent events. However, if CRPs occurred randomly at the nucleotide

level there would be a strong correlation between the number of CRPs in a gene and
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the length of the sequence. In fact, there is virtually no correlation at all, indicating

a gene-level effect that suggests a link with translation (see Figure 3.2b). Looking

at single genes in isolation, one could conclude that the effect arises from a nega-

tive adaptive force against rare codons, where each successive rare window somehow

damages the efficacy of a gene in an additive manner so that subsequent mutations

producing rare windows prevail with diminishing probabilities. This aligns with the

observation that longer genes use a higher proportion of common codons, perhaps

to protect the metabolic investment of producing a large protein (see Section 1.2.4).

However, the conservation of the pattern across an alignment is evidence for a posi-

tively adaptive, position-specific mechanism. A specific position may be critical with

respect to another feature, or it may be that a number of rare windows are required

anywhere in the gene but must be incorporated without disrupting other features,

leaving a limited number of viable positions. The position must be important, but

whether it is critical with respect to another feature, or must be incorporated into

the gene without disrupting other sequence features, remains unclear.

Despite the lack of correlation between the number of CRPs and the length of a

sequence, genes containing CRPs are on average about 30 residues longer than those

not containing CRPs (p < 10−5, Mann-Whitney U-test; see Figure 3.3). Sequence

length is often taken as a measure of folding rate (De Sancho et al., 2009). The

extended length of proteins with CRPs could therefore be taken as suggestive of

some threshold in protein complexity, above which CRPs are more likely to be

required to modulate translation. In search of further evidence for this hypothesis,

the contact order of single-domain proteins with known structures was examined.

Contact order is defined as the mean sequence separation between residues that are

109



0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

400

450

500

C
ou

nt
s

Number of CRPs per sequence
0 5 10 15 20 25 30

0

0.05

0.1

0.15

0.2

0.25

Estim
ated probabilities

(a)

0 

50 

100 

150 

200 

250 

300 

0 200 400 600 800 1000 1200 1400 1600 1800 

N
um

be
r o

f C
R

P
s 

Sequence length 

!!

(b)

Figure 3.2: (a) Histogram of the number of CRPs per sequence. This is well approx-
imated by a geometric distribution with estimated probability p̂ = 0.23
(goodness of fit R2 = 0.9843) [Note: the figure shows the data up to 30
CRPs per sequence only] (b) Number of CRPs plotted versus sequence
length. Points are plotted with a transparency of 0.75 to give an indica-
tion of density. If CRPs occurred randomly on the nucleotide level there
would be strong correlation between sequence length and the number of
CRPs per sequence. In fact the two variables are almost completely un-
correlated (Spearman’s ρ = 0.0842). This indicates a gene-level process
and is strong evidence for a link with translation.

less than 5Å apart in the structure. It is a measure of the complexity of a protein

structure and a better proxy for folding rate (Plaxco et al., 1998). There is no

statistically-significant difference between proteins with and without CRPs, and no

correlation between contact order and the number of CRPs in sequences that have

them, indicating that folding rate alone cannot explain the role of CRPs.

Distribution Within Sequences

Examining the locations of conserved rare positions (CRPs) shows strong peaks

towards the ends of proteins, especially the N-terminus (see Figure 3.4). The N-
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Figure 3.3: There is a statistically significant difference in the sequence lengths of
proteins containing CRPs vs. those not containing CRPs.

terminal pattern is in agreement with numerous previous studies that attribute

the effect to selection against strong mRNA secondary structure near the initiation

region (Kudla et al., 2009; Goodman et al., 2013; Tsukuda and Miyazaki, 2013) or

to the need to avoid ribosomal collisions during translation (Tuller et al., 2010a,b;

Navon and Pilpel, 2011). The C-terminal peak is more novel but has been discussed

in at least one previous study (Clarke and Clark, 2010), where it was suggested

that a C-terminal pause may allow the nascent chain to take further advantage

of the ribosomal environment for folding or promote interaction with cofactors or

chaperones. Another possible explanation is that a substantial number of E. coli

genes are in very close proximity to, or actually overlapping with, the Shine-Dalgarno

sequence or even the coding sequence of the subsequent chromosomal gene (Eyre-

Walker, 1996). This would lead to conflicting pressures related to the other gene

rather than any feature of the gene in question; codons that bear a resemblance

to parts of the Shine-Dalgarno sequence are often rare (Li et al., 2012), and the

N-terminal mRNA secondary structure of the second gene would also become a
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constraint. This could be contributing to the C-terminal peak we observe if the

operon or chromosome structure was broadly preserved between a number of species.

This is difficult to check due to the limited availability of genomic structural data.

The N-terminal peak in particular is associated with full protein sequences but not

individual domains, supporting the explanations related to translation initiation or

termination, or chromosomal gene position, rather than co-translational folding.

Goodman et al. (2013) also found that the GC content of a species’ genome

influenced the likelihood of finding rare codons in the N-terminal region. A-T hy-

bridisation has lower free energy than G-C, and if the rest of the gene contains more

GC-rich codons then hybridisation is also less likely if AT-rich codons are used in

the N-terminal region. The alignment-averaged GC content is significantly higher in

alignments containing N-terminal CRPs, suggesting that this is indeed a factor, but

as Goodman et al. (2013) also pointed out, it does not explain the full distribution.

The difference in GC content almost disappears when alignments containing CRPs

in any position are considered against those without (see Figure 3.5).

The effects mentioned here do not fully account for previously documented links

between expression and codon usage (Goodman et al., 2013), or for the conservation

of rareness observed. Nonetheless, location was used to split the data into multiple

sets to isolate known explanations from potential new discoveries. Goodman et al.

(2013) identified codon usage in the region centred on the tenth residue as contribut-

ing most strongly to adaptation, whereas Kudla et al. (2009) suggested that the first

38 residues were responsible. Both of these regions are visibly separated from what

appears to be the baseline CRP frequency in our data (see Figure 3.6). In this study

the first and last 38 residues of proteins were treated as distinct regions and were
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examined separately and in combination with internal CRPs – those occurring at

other locations.
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Figure 3.4: CRPs are heavily clustered at the termini, especially the N-terminus.
(a) shows the distribution of CRPs normalised by sequence length in
full protein sequences, (b) shows the distribution in individual, non-
terminal domains (see Section 3.1.2). The N-terminal peak disappears
when N-terminal domains are discounted, strongly suggesting a link with
translational initiation. The C-terminal peak is also less pronounced but
still present.

3.3.2 Gene Level Features

This section discusses gene level annotations that were found to be enriched in

proteins with CRPs.

Annotation Enrichment

A striking feature of the set of proteins containing CRPs is the enrichment (1.6

fold, with a corrected p-value of 1.4 × 10−6) of ribosomal constituents. Ribosomal

components are likely under heavy selective pressure, due to their high expression
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(a) (b)

Figure 3.5: Distributions of alignment-averaged GC content in alignments with and
without CRPs (a) in the 38 residue N-terminal region and (b) anywhere
in the sequence. The distributions of genes with and without CRPs are
plotted on differently-scaled vertical axes, as indicated by the colour.
GC content was calculated for alignments as the percentage of G or C
nucleotides in all represented mRNA sequences after removal of gaps.
The histogram bars are slightly transparent to show the shapes of both
distributions. The coloured vertical lines indicate the means of the cor-
responding sample. In (a) the means are 0.543 in the group with CRPs
versus 0.504 in those without; in (b) the means are 0.510 versus 0.501.
The difference in means in the full set is entirely attributable to the
difference in the means of the N-terminal samples.

levels and their vital role in the cell. Because of this, ribosomal genes have frequently

been assumed to be translationally optimised and therefore exemplary in terms of

codon usage (Sharp et al., 2005; Puigbò et al., 2007; Higgs and Ran, 2008; Suzuki

et al., 2008; Wang et al., 2011). This finding is therefore of special significance and

interest to the study of codon usage patterns.

There is no clear explanation relating the enrichment of CRPs in ribosomal genes

to the elongation rate-related hypothesis. However, it does fit with the “two channel”

hypothesis explained in Section 2.6 – that some tRNAs are reserved for urgent

production of high-priority proteins. Since ribosomal genes are clearly of critical
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Figure 3.6: The peak in the occurrence of CRPs in the N-terminal region is strongest
between the positions 5 and 10, plateauing around position 20. There is
then a further drop towards the baseline frequency until position 38.

importance to the cell it would make sense for their production to be prioritised.

Interestingly, CRPs are also enriched in other components of the translational sys-

tem and many processes involving DNA interaction. Several aminoacyl-tRNA syn-

thetase, helicase, ligase and polymerase enzymes and nucleotide and ribonucleotide

binding proteins are over-represented in the set of proteins with CRPs. DNA bind-

ing activity is strongly associated with the Helix-Turn-Helix (HTH) structural motif,

which is also over-represented in the set. HTH motifs are very common in regula-

tory elements that bind specific nucleotide sequences, and are also involved in DNA

and RNA metabolism (Aravind et al., 2005; Chakravartty and Cronan, 2013). HTH

motifs are generally quite small (Pellegrini-Calace and Thornton, 2005) and can

form fast-folding, stable, independent domains (Religa et al., 2007), so it would be

surprising if they required translation rate modulation to fold under kinetic control.

The effect could be due to an enrichment in disordered regions, which are also asso-

ciated with DNA binding, or in domain boundaries, since the HTH motif is present

in a large number of domain families (see Section 3.4.1).
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Figure 3.7: Probablity of finding a CRP with distance from the N-terminus, in pro-
teins whose initiator methionine (iMet) is cleaved and those whose iMet
is not cleaved. CRPs are enriched across the whole N-terminal region in
proteins whose iMet is cleaved. This could suggest a role for CRPs in
the co-translational cleavage mechanism.

CRPs are also heavily enriched in the N-terminal region of proteins whose N-

terminal methionine is cleaved. N-terminal methionine (iMet) cleavage is a common

modification that occurs co-translationally in a large percentage of proteins. It is

a two stage process, requiring deformylation of the iMet and subsequent breakage

of the peptide bond, and is often critical for function and structural stability (Liao

et al., 2004). In E. coli there is a single enzyme, methionine aminopeptidase (MAP),

that is responsible for all iMet cleavage. Cleavage of iMet by MAP is sensitive to

the properties of the subsequent amino acid P1’. Bulky side-chains are thought to

prevent cleavage from occurring at all, and among the smaller amino acids threonine

and valine can hamper cleavage (Frottin et al., 2006). In particular a Glycine in

position P1’ is thought to readily enable cleavage.

If cleavage is hampered by a bulkier amino acid, the kinetics of cleavage could be

aided by a translational pause, which could be mediated by the presence of CRPs.
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Taking experimentally confirmed annotations from UniProt entries, the probabilities

of finding CRPs in the N-terminal region of proteins that have their iMet cleaved

were compared with those that have some experimental or structural annotation

but not the iMet cleavage tag. Enrichment of CRPs was found across the whole N-

terminal region, especially in the first 45 residues and extending less dramatically to

approximately 100 residues (see Figure 3.7). Proteins were then classified according

to their second amino acid, and the probabilities of finding N-terminal CRPs were

calculated for each set. All of the proteins with valine in the P1’ position, and

nearly three quarters of those with threonine, were found to have N-terminal CRPs

(p = 8.78×10−6, Fisher’s exact test). There is also significant enrichment in proteins

with serine and alanine P1’, but not glycine, the P1’ residue reported to be most

amenable to iMet cleavage. This could well suggest a co-translational role for CRPs,

where a translational pause kinetically aids iMet cleavage when the identity of the

adjacent amino acid is inhibitory.

3.4 Correspondence With Structure

Numerous studies have failed to reach a consensus on the correspondence of the

nucleotide composition and codon usage patterns in mRNA sequences with the

secondary and tertiary structure of the proteins they encode, producing instead

a bewildering set of overlapping and conflicting conclusions.

Specific codons have been determined to have varying preferences for secondary

structural classes, and the N- and C-termini of structural elements. Some studies

have found universal patterns relating to the third codon position (Adzhubei et al.,
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1996), while others have claimed that preferences exist only in higher organisms and

not in prokaryotes or that only one or two codons per genome have varying prefer-

ences, and these differ between species (Tao and Dafu, 1998; Oresic and Shalloway,

1998; Gupta et al., 2000). Still other studies have suggested that the preferences of

individual codons for or against secondary structural elements vary depending on

the fold class of the protein as well as the species in which it is found (Gu et al.,

2003).

Studies examining codon frequency in secondary structure are also divergent in

their findings. Early evidence suggested an enrichment of rare codons in strands

and a deficit in helices (Thanaraj and Argos, 1996a), while a more recent study

drew almost the opposite conclusions – focussing on the transitions between heli-

cal and strand regions and coils, Saunders and Deane (2010) found an enrichment

of rare codons at the transitions into helices and a deficit at the transitions into

strands. Similar discrepancies exist in attempts to quantify codon usage in domain

boundaries. Thanaraj and Argos (1996b) and more recently Makhoul and Trifonov

(2002) and Zhang and Ignatova (2009) found a general enrichment of rare codons in,

around, and downstream of domain boundaries, while Saunders and Deane (2010)

found the opposite. Brunak and Engelbrecht (1996) are in the minority with their

conclusion that, although nucleotide-level biases that correspond to structural re-

gions do exist, they can be explained entirely by the preferences of the amino acids

and there are no specific or frequency-related correlations between codons and sec-

ondary structure. The majority of experimental evidence supporting the existence of

positively adaptive rare codons concerns domain boundary regions (Cortazzo et al.,

2002; Angov et al., 2008; Zhang et al., 2009), but computational studies suggest
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that these advantages are not conserved at the fold level (Widmann et al., 2008;

Saunders and Deane, 2010; Chartier et al., 2012).

As part of this study, the correspondence between CRPs and secondary structural

elements, domain boundaries and fold classes was investigated. The results of this

investigation are presented in this section.

3.4.1 Regional Enrichment

The investigation began by examining the presence of CRPs in classified structural

regions. Residues in proteins with known structure were classified as helix, sheet,

turn, coil, or disordered (the annotation and testing process is described in Section

3.1.2). The results are summarised in Table 3.2.

In accordance with Thanaraj and Argos (1996a), CRPs were found to be sig-

nificantly depleted in helices in all regions of proteins, most significantly in the

N-terminal region. The rates in strand residues are location-dependent; CRPs are

enriched in strands appearing in the N-terminal region of proteins, but this prefer-

ence reverses in the internal region and towards the C-terminus, where CRPs occur

less than expected. CRPs are depleted in structural turns in the N-terminal and in-

ternal regions, but show no strong preference towards the C-terminus. In coil regions

they are enriched at the N- and C-terminus, and show slight but not statistically

significant enrichment in the internal region.

This aligns simplistically with what is known about how readily secondary struc-

tural units are acquired – helices are thought to fold quickly and stably, since most

of their interactions are between sequential residues and propagation is thermody-
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Overall N-term Internal C-term

Helix fold change 0.5860 0.5921 0.5978 0.8601
p-value 1.05e-123 5.41e-59 8.56e-31 7.96e-4

Strand 0.9317 1.1303 0.6304 0.8432
4.33e-3 7.30e-5 4.96e-14 0.01027

Turn 0.6744 0.6511 0.4799 1.4163
7.11e-6 2.74e-4 1.82e-4 0.0327

Coil 1.1662 1.2101 1.0545 1.1440
1.72e-21 3.05e-22 0.0628 1.27e-3

Disorder (known) 1.9725 1.0604 2.3801 0.7577
1.70e-26 0.204 1.97e-8 0.0294

Disorder (predicted) 2.9600 1.4439 2.6310 1.2497
0.0 6.99e-44 1.23e-41 7.20e-6

Domain linker N/A N/A 0.9839 N/A0.399

Table 3.2: Fold change against expectation and statistical significance of CRPs in
the various residue classes and sequence regions. Statistically significant
results (those with p-values < 1e-3) are coloured according to the log2 of
the fold change, in red for depletion and in blue for enrichment.
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namically favourable. In contrast beta-sheets are more complex and involve more

long range contacts (Stanger et al., 2001). However, this explanation is not fully

satisfactory as the nascent chain is not able to fold at the moment of translation.

Rather, between 30 and 72 residues remain buried in the ribosomal exit tunnel where

they are unable to attain tertiary structure; the variability comes from the ability

of the nascent chain to form helices inside the exit tunnel, making the emerging

structure more compact (Zhang et al., 2009; Fedyukina and Cavagnero, 2011). This

effectively slows the emergence of the nascent chain with respect to translation rate.

Therefore the comparative slowing of sheet forming residues could act to maintain

a more consistent rate of extrusion and exposure to the cytosol over the course of

normal translation.

As mentioned in Section 2.6.1, despite the fact that our measure corrects for amino

acid usage frequencies, different amino acids do have differing propensities for clas-

sification as CRPs in accordance with the degrees of bias in their synonymous codon

sets. This is not a departure from what was sought, but is a potential confounding

factor in this sort of structural study because amino acids also have structural biases

determined by their physical properties. To ensure that the variations in CRP levels

in the different amino acid structures were not simply due to differences in amino

acid structural preferences aligning with CRP tendencies, the proportion of CRPs

in each amino acid in secondary structural regions was tested against the overall

proportions. If the proportions were similar or appeared to be drawn from the same

distribution, the variations in CRP levels in and out of secondary structures could be

attributed to amino acid propensities and not because of differences in the pressures

acting on codon usage. In all cases this null hypothesis can be rejected with very
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high confidence in favour of the explanation that codon usage differs in the various

secondary structural classes (see Figure 3.8).
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Figure 3.8: The proportion of amino acid residues involved in CRPs in the various
structural classes, plotted against the proportion that are involved in
CRPs across all residue types. Each series has a point for each amino
acid. The text labels show the horizontal positions of the amino acids,
representing their background CRP frequencies – the proportion of all
occurrences that are present in a CRP window. The dashed line repre-
sents equilibrium, i.e. the likelihood of finding a CRP in a given amino
acid does not depend on the type of secondary structure it belongs to.
Backgrounds were measured in proteins with known structure only. The
clearest pattern is in helices, were all amino acids have lower levels of
CRPs compared with their overall levels. Amino acids in strands and
turns also show a general reduction on average, whereas those in coils are
generally enriched. All amino acids are heavily enriched in CRPs when
found in disordered regions, either predicted or known – these data are
not plotted. In all cases the deviation is significant under a Chi-squared
test with p < 0.001.

On a residue level CRPs are enriched in disordered regions, both known and

predicted, at the N-terminus and internally. At the C-terminus, there is actually

a slight negative correlation between the occurrence of CRPs and known disorder,

but the signal is positive in predicted disorder in this region, when more proteins

are included in the population.

122



0 0.05 0.1 0.15 0.2

1

2

3

4

CRPs per residue

C
A

T
H

 d
om

ai
n 

cl
as

s

Figure 3.9: CRPs per residue in the various CATH domain classes. Class 1 domains
are mainly alpha helical, class 2 are mainly beta strand, class 3 are mixed
alpha/beta and class 4 have few secondary structures. Class 2 domains
have slightly more CRPs than class 1, although there is little difference
at this level. Mixed domains have fewer CRPs on average, and irregular
domains have more (although the sample is small). Note that the plot
only includes those domains containing at least one CRP.

Examining the numbers of CRPs per residue in known and predicted domains

belonging to different CATH classes (see Section 3.1.2) supports the above findings

but adds an interesting twist. As expected, the domain class with few secondary

structures is relatively enriched in CRPs (although the sample size is small, with

only 25 domains in the dataset from this class). In domains that have at least one

CRP there is little difference between mainly alpha and mainly beta class domains,

but mixed alpha/beta domains have fewer CRPs on average (see Figure 3.9). The

overall preferences hold in all domain classes, but depletion of CRPs in helices is

even stronger in mixed alpha/beta domains than in mainly alpha, with a fold change

of about 0.52 compared with 0.56 in the internal region.

There is no significant difference between the level of enrichment in domain linker

regions against the background. Domain linkers occur exclusively in the internal
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(i.e. non-terminal) regions of proteins. See Section 3.1.2 for information on how

domain boundary annotations were derived.

These findings are interesting, but there is no clear explanation relating direct

positional enrichment to translation rate or co-translational processes because of

the delay in cytosolic exposure following translation. Rather than examining the

coding of specific regions, it would be interesting to look for enrichment in CRPs

upstream or downstream of the features identified here. A statistical bootstrapping

method was developed to examine the levels of CRPs over a range of distances up-

and downstream of features and compare these to an expected level. This analysis

is presented in the next section.

3.4.2 Relative Positional Enrichment

A bootstrapping method was developed to assess the significance of positional cor-

respondences between CRPs and other features, without being influenced by the

independent positional preferences of feature sets. For example, as noted in Section

3.3.1 above, there are accepted explanations for the abundance of CRPs at the ter-

mini that are largely unrelated to co-translational events. Helices and beta sheets

occur more frequently in the internal regions of proteins because the termini are

often unstructured. In combination these factors result in a correspondence that is

unrelated to the interaction between the two features. It is necessary to determine

how much of the positional correspondence between features and observed CRPs

is due to co-dependence, rather than coincidence between independent positional

preferences. This can be done by generating random CRP patterns that follow the
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overall positional distribution of CRPs in the actual data and comparing these to

the features.

For each set of features, probability distributions were built to describe the like-

lihood of finding a CRP at a given distance from the C-terminus in sequences con-

taining the feature. Because they are unlikely to be involved in co-translational

events, CRPs in the N-terminal 38 residues were ignored. The distributions were

built by sorting the sequence lengths in descending order, anchoring them at the

C-terminus, and looking at segments defined by the gaps between successive lengths.

Probabilities were calculated by dividing the number of CRPs at each position by

the number of sequences represented in that segment. If a segment did not have

at least one rare codon in each position then the probabilities were averaged over

the whole segment. Distributions fitted in this way are termed “rare profiles”. Fig-

ure 3.10a illustrates the process of constructing a rare profile for a set of proteins,

and Figure 3.10b shows the resulting distribution of CRPs in sequences containing

helices as an example.

Having constructed a rare profile for a set of sequences containing both CRPs

and a feature of interest, all the distances between the actual CRPs and the start

and end positions of features are counted. New, random sets of CRPs are then

generated using the rare profile fitted to the set, and the distance counting is re-

peated. This was performed one million times for each feature, and the distance

counts were averaged over the repeats. By comparing the observed counts to the

averaged counts, the relative enrichment in CRPs can be calculated at each posi-

tion – that is, the enrichment compared with what would be expected if the CRPs

and features appeared independently. Relative enrichment was calculated at each
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Figure 3.10: Calculating the rare profiles of a set of proteins. (a) shows an illustra-
tion of the method. The rows represent protein sequences aligned at
the C-terminus, with CRPs shown as red boxes. Distances from the
C-terminus are divided into regions formed naturally by the ordered
lengths of proteins. Probabilities are averaged over the sparsely popu-
lated regions at high distances. Closer to the C-terminus, where there
is at least one CRP at each distance, the probabilities are position-
specific. These profiles are used to generate random CRPs patterns
whose positions are compared to the positions of feature sets. This
allows effective correction for inherent positional biases. (b) shows the
actual probability distribution used to generate random rare profiles
for sequences containing helices. The distribution is coarse at high dis-
tances where there are few proteins, but becomes more precise closer
to the C-terminus.

position as ne − nd

ne + nd

, where ne is the number of random patterns with fewer CRPs

than the observed pattern (indicating enrichment in the observed pattern) and nd

is the number with more (indicating depletion). The relative enrichment score at

a given position can range from -1, when the observed pattern has fewer CRPs at

that position than occurred in any of the randomly generated profiles, to 1 when

the observed pattern has more CRPs than any of the random profiles.

Applying this analysis to the secondary structure classes, additional evidence
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Figure 3.11: (a) Scatter plot of the number of helices against the number of non-N-
terminal CRPs in sequences that have both. There is a slight negative
correlation between the two values, especially in sequences with larger
numbers of rares. The number of comparisons is the sum of the products
of the number of helices and CRPs in each sequence. When the random
profiles are generated based on the overall positional distributions, this
results in more comparisons on average than are observed in the original
sequences. (b) The number of comparisons made between CRPs and
helices. The distribution is built by randomly re-pairing the observed
numbers of CRPs and helices, and is well described by a generalised
extreme value distribution (shown in red). The vertical cyan line shows
the actual number of comparisons in the observed data.

was found for the depletion of CRPs in helices, where a depleted region can be

seen downstream of the starts and upstream of the finishes corresponding to the

average helix length in the dataset (9.73 residues; see Figure 3.12a and b). An

overall depletion in the region downstream of helices can also be observed. This

arises partly from a slight negative correlation between the number of CRPs and

the number of helices in a sequence, especially in those sequences with large numbers

of CRPs, which reduces the overall number of comparisons made (see Figure 3.11).

It could also suggest a disincentive to use rare codons after a helix has occurred in

a protein.
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In strands, the slight enrichment within strand regions can again be observed,

but a stronger depletion far downstream, above 60-80 residues, is also apparent (see

Figure 3.12c and d). As mentioned above, this distance is significant with respect to

translation as it corresponds approximately to the number of residues of the nascent

chain that remain buried in the ribosome exit tunnel between the P-site and the

cytosol, although there is no obvious explanation in this case. There are no strong

positional enrichment patterns with respect to turn or coil regions.

Examining domain boundaries, there is no significant enrichment difference in

linker regions against the background level of CRPs. There does appear to be a peak

shortly upstream, and most strongly about 80 residues downstream of the finishes

of boundary regions (see Figure 3.12e and f). Again, this latter peak corresponds to

the number of residues that remain buried in the ribosomal tunnel after translation.

This could well be indicative of a pause to allow N-terminal domains to fold before

more C-terminal portions are translated. Looking at a larger region, it appears that

there is a slight enrichment in CRPs across the whole downstream region relative

to domain boundaries. Examining the numbers of rares per domain in N-terminal

and non-N-terminal domains, there is a small but significant difference (1.2757 vs.

1.1725, p < 0.0005 Wilcoxon’s Rank Sum test). This suggests that non-N-terminal

domains are more likely to contain CRPs, contrasting with the results of Chartier

et al. (2012).
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Figure 3.12: The positional enrichment of CRPs relative to selected structural
features: the starts of helices in (a) and (b), the finishes of strands
in (c) and (d), and the finishes of domain linker regions in (e) and
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(f). The horizontal axes show the sequence position, where nega-
tive is upstream (N-terminal) of the helix start. (a) The observed
counts at each position and the average counts generated from ran-
dom profiles based on the positional distribution of CRPs in helical
proteins. (b) The relative enrichment of CRPs at each position.
Relative enrichment scores were smoothed using a moving average
window of size 5. The depletion of CRPs within and far down-
stream of helices is clearly visible in both plots. (c) and (d) show
the observed and average counts and the relative enrichment with
respect to the finish positions of strand elements. The slight en-
richment within strands is visible, but the most noticeable feature
is the depletion downstream, starting between 60 and 80 residues.
(e) and (f) show the same data with respect to the finishes of do-
main linker regions. The enriched peak at 80 residues downstream
is the strongest feature, suggesting a possible link with separate
co-translational folding of domains.

3.4.3 Tertiary Structure

Protein secondary structure classifies the hydrogen bonding state of the backbone of

amino acid residues (Branden and Tooze, 1999). Secondary structural elements in

functional protein structures combine into more complex motifs, which themselves

compose independently folding domains. The size and complexity of motifs and

domains containing the same secondary structural elements can vary dramatically.

This prompted an investigation into whether CRPs might play a role in mediating

the folding of specific tertiary structures that are perhaps more complex than most,

or that form most efficiently when allowed to follow a certain kinetic pathway.

A number of structural motifs were assigned using the PROMOTIF output via

PDBSum (see Section 3.1.2). Four tertiary structural motifs were selected initially:

beta sheets (superstructures of beta strands; sheet and barrel configurations were

considered together), beta hairpins (consecutive anti-parallel hydrogen-bonded beta
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strands), beta-alpha-beta units (two parallel hydrogen-bonded beta strands con-

nected by a helix-containing loop), and helix-turn-helix motifs (interacting helices

separated by a turn, often involved in DNA binding and recognition). The rare

profiling method described in Section 3.4.2 was applied to the C-terminal points of

these motifs. In every case the samples were relatively small, but even so there was

no significant signal over the sequence range of -20 to +120 residues.

As mentioned in Section 3.4.1, there is a slight difference in the number of CRPs

per residue in different domain classes, although the overall preferences of secondary

structural classes hold. The CATH domain classification of our dataset was anal-

ysed at the Superfamily level (see Section 3.1.2) in order to determine whether any

particular structural family was heavily enriched in CRPs.

1047 domain superfamilies are represented in our dataset. As in the entire CATH

database, the sizes are heavily skewed; 487 superfamilies contain only one domain,

whereas the most heavily represented superfamily contains 284. After removing

paralogues (see Section 3.1.1), there were 673 superfamilies with only one domain

and the largest contained 66. The proportion of sequences in each family that had

CRPs in the internal or C-terminal region was examined. 170 superfamilies have

domains containing CRPs. Of the 43 families containing more than two domains

with CRPs, there are only three in which more than half of the domains contain

CRPs, and even these are not heavily populated – they contain 3, 4, and 5 domains,

and in each case there is one domain with no CRPs at all. In all three families there

is only partial correspondence between the locations of the CRPs (see Figure 3.13).

This strongly suggests that CRPs are not conserved in relation to tertiary struc-

tural features. Under the assumption that the folding pathway is conserved at the
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Figure 3.13: Superposition of four non-paralogous structures in CATH superfamily
1.10.340.30. The alignment shows the four domains from the CATH
family in our database. Three out of four domains contain CRPs, but
their positions do not correspond. The CRPs are coloured differently
in each sequence, in red, blue, and green.

superfamily level, one could conclude that CRPs are unlikely to be directly involved

in intra-domain co-translational folding. However, the specifics of folding pathways

remain mysterious, and it is quite possible that small variations in the amino acid

sequence could influence the specific pathway. Codon usage could modulating the

elongation rate through a more convoluted route than can be described by pure

frequency, or could be affecting the folding pathway through a different mechanism

altogether. Until more detailed investigation of folding pathways is available alter-

native explanations for the influence of codon usage on structure, such as mRNA

secondary structure or RNA interference, look more likely.
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3.5 Conclusions

This chapter presents evidence for position-specific evolutionary pressures that shape

the synonymous coding-sequences of genes in an organism-dependent manner. The

intention was to identify co-translational processes in which CRPs may play a role.

Although there are clear patterns in their locations within genes, and strong evidence

of varying preferences in secondary structural elements, there does not appear to be

a signal relating to protein folding at the domain level. There is a slight suggestion

that the region downstream of domain boundaries is enriched in CRPs, which could

indicate a pausing mechanism to allow proper folding of the preceding domain, but

it is difficult to draw firm conclusions in this regard.

The strongest signal relates to the coding in regions that adopt helical structure.

These regions consistently contain significantly fewer CRPs than any other class of

residue. It is possible that this pattern arises from a pressure to maintain a consistent

rate of extrusion. The ability of the nascent chain to adopt helical structure while

still inside the exit tunnel would result in an effective slowing of the rate of exposure

as the chain becomes more compact along the axis of the tunnel.

Additionally, there are numerous CRPs to be found in locations with dispropor-

tionately high variability in codon selection compared with amino acid selection

across the alignment. Although there is no apparent unifying principle that gov-

erns their occurrence, the identification of CRPs in essential and highly expressed

genes, including ribosomal constituents, is solid evidence for some conferred selective

advantage.
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4 Experimental Work

This chapter documents the experimental work that was undertaken in an effort to

verify the indications of the algorithm. Because of time pressures, candidate genes

highlighted by the still-ongoing computational work were selected for experimen-

tation. These genes were to be cloned, modified as indicated by the intermediate

computational results, and tested for altered activity.

Unfortunately, a mistake was discovered in the preliminary computational work

while the experimental work was still ongoing. The initial construction of the se-

quence database contained a number of organisms represented by multiple strains.

This redundancy introduces near-duplicate gene sequences with very similar codon

usage statistics, which distorts the significance values calculated by the algorithm,

so the redundant strains must be removed (see Section 2.5.1). The resulting changes

to the database structure eliminated the positions that had been identified as CRPs

in the selected candidate genes, rendering the experiments useless. At this stage in

the project time constraints precluded restarting the experimental process with new

candidates, so the experimental work presented here did not reach a satisfactory

conclusion. This chapter documents the work that was undertaking up until the

discovery of the computational error.
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4.1 Materials and Methods

4.1.1 DNA Synthesis and Manipulation

All DNA and primers were synthesised by DNA2.0 (https://www.dna20.com) to

order. Restriction digests were performed using New England Biolabs’ (NEB’s) NdeI

and HindIII restriction enzymes. These were performed in NEBuffer 2. Ligations

were performed with the NEB Quick Ligation kit, according to the manufacturer’s

protocol.

Gene variants were made using site directed mutagenesis. This was performed

with Agilent QuikChange Lightning Site Directed Mutagenesis kits as per the kit

protocol, in a thermal cycler with the lid pre-heated to 90 ◦C. Primers were de-

signed using Agilent Technologies’ QuikChange Primer Design web tool (http:

//www.genomics.agilent.com/primerDesignProgram.jsp; see Section 4.2.4).

4.1.2 Competent Cells

Two commercial strains of E. coli obtained from Agilent Technologies were used:

XL10-Gold Ultracompetent Cells (catalogue #200314) for cloning of plasmid DNA

produced by ligation or mutagenesis, and BL21(DE3)pLysS (catalogue #200132)

for protein expression.

Chemically competent cells were produced from the aphA Keio (Baba et al., 2006)

strain JW4015-1 using the following protocol: an overnight culture of the strain was

grown in 5ml kanamycin-selective Nutrient Broth (see Section 4.1.10). The follow-
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ing morning the overnight culture was added to 20ml Nutrient Broth containing

20mM MgCl2, pre-warmed to 37 ◦C, and grown for one hour in a shaker-incubator

at 37 ◦C, 225 rpm. The culture was removed and chilled in an ice bath, then cen-

trifuged at 8000 g, 4 ◦C for ten minutes. The culture was returned to an ice bath,

the supernatant discarded and the pellet resuspended in 2ml of just-thawed 75mM

CaCl2 in 15% glycerol. The suspension was divided into 200 µl aliquots in 0.5ml

tubes pre-chilled in dry ice. These were flash frozen in liquid nitrogen before storage

at −80 ◦C for subsequent use.

4.1.3 Transformations

A different protocol was followed when working with the induced-competent cells

derived from the aphA Keio strain as opposed to commercial competent cells. The

commercial cells were transformed using a “standard” method involving a 42 ◦C heat

shock, described as Protocol 1 below, whereas the Keio cells were transformed using

the quick method detailed in Protocol 2, in which cells are spread directly onto pre-

heated plates (Pope and Kent, 1996). The second protocol was found to produce

high transformation yields using the ampicillin- and kanamycin-resistant Keio cells.

Protocol 1: Standard method

DNA was prepared in a solution of sterile water to a final concentration of

50ngµl−1. 2 µl DNA were added to a 15 µl aliquot of competent cells suspended

in glycerol, defrosted on ice from −80 ◦C. This was mixed by flicking, then

returned to ice. The mixture was exposed to a 30 second heat shock in a

water bath at 42 ◦C, then returned to ice again. 0.5ml Terrific Broth (TB
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– see Section 4.1.10) at room temperature was added, mixed by inverting

and returned to ice for 5 minutes. The mixture was then incubated for 1

hour at 37 ◦C, 225 rpm in a shaker-incubator. Following incubation, 0.1-0.5ml

cell mixture was spread on kanamycin-selective agar plates and incubated

overnight at 37 ◦C. Plates were sealed with Parafilm and stored at 4 ◦C until

needed.

Protocol 2: Quick method

DNA was again prepared in a solution of sterile water at the same final concen-

tration and added in the same volume to an equivalent aliquot of cells. The

mixture was gently mixed and incubated on ice for 5 minutes, then spread

directly onto selective agar plates pre-heated to 37 ◦C and incubated at the

same temperature over night. Plates were sealed with Parafilm and stored at

4 ◦C until needed.

4.1.4 Plasmid Preparation

To prepare cultures, colonies were picked from plates and used to inoculate 5ml

lysogeny broth (LB – see Section 4.1.10) with 50 µgml−1 kanamycin in 50ml Falcon

tubes. Tubes were laid horizontally and incubated overnight in a shaker incubator at

37 ◦C, 225 rpm. Plasmid extraction then proceeded with a miniprep using QIAGEN

QiaPrep kits according to the manufacturer’s protocol.
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4.1.5 DNA Gel Electrophoresis

DNA gel electrophoresis was performed in 100ml of 1% agarose gel in Tris-borate-

EDTE buffer containing 5 µl ethidium bromide, with an electric potential of 120V

for 45 minutes. NEB Quick-Load DNA Marker (catalogue number NEB #N0303)

was used to indicate fragment sizes. Gel extractions were done with QIAGEN’s

QIAquick and MinElute spin kits.

4.1.6 Protein Expression

Protein expression was done in the BL21(DE3)pLysS strain of E. coli, with genes

incorporated into the pET29-a vector. Shaker-incubators were set to 37 ◦C, 250 rpm

unless otherwise specified.

To express the genes, colonies were picked from plates and used to grow starter

cultures of 10ml TB with kanamycin, in 50ml Falcon tubes placed horizontally in

a shaker-incubator overnight (16 hours). 100ml TB with kanamycin in a 500ml

shaker flask was inoculated with 4ml of the overnight cultures and placed in a

shaker-incubator at 37 ◦C, 250 rpm for 3 hours. Expression was induced with IPTG

at a final concentration of 0.5mM. Cultures were left to express in the shaker-

incubator under the same conditions for 3 hours, then divided into 50ml aliquots

and centrifuged at 15 000G for 10 minutes. The resulting pellets were stored at

−20 ◦C until required.
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4.1.7 Protein purification

Protein samples were purified prior to electrophoresis using nickel affinity chro-

matography. Cell pellets (see Section 4.1.6) were resuspended in binding buffer

(20mM imidazole, 0.1M HEPES, 300mM potassoim chloride) and lysed by soni-

cation (10 µm amplitude, 20 seconds on, 30 seconds off for 20 cycles). The lysate

was placed in a centrifuge and spun at 15 000 g for 15 minutes. The supernatant

containing the soluble proteins from the cell lysate was extracted and placed in a

settled column of nickel sepharose suspension. This was washed with imidazole in

increasing concentrations (5mM, 20mM, and three times with 500mM) to elute

the bound protein. The elution samples were collected and separated by size using

SDS-PAGE (see Section 4.1.8).

4.1.8 Protein Gel Electrophoresis

Protein gel electrophoresis was used for checking soluble expression of the protein

products. Polyacrylamide gels were made using National Diagnostics ProtoGel 15%

resolving gel and 4% stacking gel, made according to the supplied protocol. Samples

were mixed in equal volumes with Loading Buffer (National Diagnostics, catalogue

number EC-886) and heated to 95 ◦C for 10 minutes, then cooled to room tempera-

ture before loading. Separation was done under a constant current of 35mA for 40

minutes. Life Technologies PageRuler Unstained Protein Ladder (10 - 200 kDa) was

used for sizing proteins.
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4.1.9 Assays

Spectrophotometric assays were the most appropriate option given the resources

give the resources and expertise available in the research environment.

aphA – class B acid phosphatase

The acid phosphatase protein cleaves a phosphate group from para-nitrophenyl phos-

phate, producing para-nitrophenol (pNP). This activity can be measured by moni-

toring the electromagnetic absorption spectrum; pNP absorbs highly at wavelengths

in the range 390-420 nm.

Pellets from 50ml aliquots of expressed cell culture (see Section 4.1.6 for details

of expression) were resuspended in 10ml of assay buffer consisting of 20mM sodium

acetate, 1mM MgCl2 at pH 6.5 with 1mM DTT. The tube containing the resus-

pended cells was placed in an ice bath and the cells were lysed by sonication (10 µm

amplitude, 20 seconds on, 30 seconds off for 20 cycles). The lysate was then placed

in a centrifuge, pre-chilled to 4 ◦C, and spun at 15 000 g for 15 minutes. The super-

natant containing the soluble proteins from the cell lysate was extracted and further

diluted two-fold in the assay buffer.

Phosphatase activity was monitored using a stopped assay. A 25ml volume of

diluted supernatant from the previous step was warmed to 37 ◦C before the addition

of 1mM pNPP. The reaction was incubated at 37 ◦C. 250 µl samples were taken at

successive time points and quenched in 750 µl 2M NaOH to halt phosphatase activity

and allow measurement of pNP levels. Absorption was measured at 406 nm, the

observed peak absorbance of the standard samples, and the final concentration of
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phosphate-cleaved pNP was determined from the calibration curve shown in Figure

4.3.

4.1.10 Media Recipes

Lysogeny Broth

Lysogeny broth was made by dissolving 20 g Sigma-Aldrich LB Broth powder (cat-

alogue number L3022) in 1 l distilled water. The solution was autoclaved at 121 ◦C

for 15minutes.

Terrific Broth

Terrific broth (TB or TB+) was made by dissolving 47.6 g Sigma-Aldrich Terrific

Broth powder (catalogue number T0918) and 8ml glycerol in 1 l distilled water. The

solution was autoclaved at 121 ◦C for 15minutes.

A modified Terrific Broth, Gly- (Glu+) TB or TB−, was also used. This was

made by dissolving 47.6 g Sigma-Aldrich Terrific Broth powder (catalogue number

T0918) and 8 g glucose in 1 l distilled water. The solution was autoclaved at 121 ◦C

for 15minutes.

Nutrient Broth

Nutrient broth was made by dissolving 8 g Acumedia Nutrient Broth powder (cata-

logue number 7146A) in 1 l distilled water. The solution was autoclaved at 121 ◦C
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for 15minutes.

4.2 Results

4.2.1 Experimental Approach

A general approach for the experimental verification of the importance of conserved

rare codons was conceived:

1. From the set of analysed alignments (see Section 2.5), identify an Escherichia

coli gene containing conserved rare codons and suitable for experimental anal-

ysis (as defined in Section 4.2.2 below).

2. Build a library of variants of this gene, including the wild-type and a set

of variants with high-frequency codons substituted into the identified rare

regions.

3. Insert the variants into high-expression plasmid vectors, over-express them in

E. coli and measure the activity and expressions level of each variant.

4. Look for correspondence between the measured activity and the presence or

absence of the identified rare codons.

The expectation was that substitution of synonymous common codons for con-

served rare codons in the identified regions would have a deleterious effect on protein

function, while possibly simultaneously increasing expression levels due to the elimi-

nation of translational pauses. The approach has several advantages. Careful design

of the library of variants would provide extra information about the aptitude of the
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algorithm in identifying functionally relevant rare codons and elucidate any com-

binatorial effects. The wild type is assumed to be evolutionarily optimised for the

cellular environment in E. coli, so expressing in the same species takes advantage

of this. The use of plasmids makes transformation convenient, and over-expression

should mean that activity of the synthetic protein is significantly greater than that

of any native proteins, providing a healthy dynamic range across which to measure

any reduction in activity arising from the substitution of common codons for rare

ones. Monitoring the development of activity after induction could provide evidence

that the mechanism of change is related to translation rate.

4.2.2 Candidate Selection

Although alignments were generated and analysed for every gene in the E. coli

K-12 MG1655 genome (see Section 2.5.1), a large number of these are not easily

amenable to experimental analysis. The search for candidates was restricted to

genes that met the following three criteria: firstly, being of known structure, with at

least one corresponding entry in the protein data bank (PDB, Berman et al. (2000));

secondly, having only a single structural domain, determined from the domain entries

for the PDB structure in the CATH database (Sillitoe et al., 2013); and thirdly,

having an Enzyme Commission (EC) code for functional classification. The first

two requirements were intended to facilitate structural analysis, eliminate domain

linker regions, and yield a protein that would fold efficiently in the best case. The

third gives a rough indication of how readily the activity of the protein assayed.

These restrictions left a shortlist of 262 potential candidate genes.
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The shortlist was further reduced in a few steps. First and foremost, a gene with

a conserved rare codon region showing a low p-value was sought. At this stage in the

analysis this included all genes in the shortlist, so genes were ranked in ascending

order according to their minimum average codon usage frequency across a window

of three codons – this is approximately the test statistic used by the algorithm. The

literature was then consulted to assess the feasibility of assaying the highest-ranked

enzymes. The equipment and expertise available in the laboratory in which the

research took place favoured spectrophotometric assays.

Quantitative measures of the codon usage in alignments for enzymes that passed

the stringent constraint of assayability were examined in detail. The p-values for

windows in the alignment, the overall average codon usage, and the proportion of

aligned sequences at each position were considered. The codon usage in the seed

sequence was also closely examined to ensure that the experimental target shared

the general pattern of rareness across the alignment. This involved developing a

special metric, which is described in Section 4.2.2.

Seed Sequence Codon Frequency Analysis

To check whether the coding in the seed sequence over a particular window could

be said to be rarer than expected by chance, the sum of the frequencies observed in

the window was compared with the sum of the averages of the synonymous codon

sets. Using the notation introduced in Chapter 2 (see Table 2.1 for a quick reference

guide), the expectation f̄i and variance s2
i of codon frequency for a single amino acid

ai can be written
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f̄i =
∑

k∈1:n(ai)
fk × Pr(Fr(ai) = fk)

s2
i =

∑
k∈1:n(ai)

(fk − f̄i)2 × Pr(Fr(ai) = fk)

Parameters of a distribution for the sum of the codon frequencies in a window can

be derived from the expectations and variances of the composite amino acids:

F̄ =
∑

i∈1:z
f̄i

S2 =
∑

i∈1:z
s2

i

Dividing the difference between the observed sum Fo and the expectation F̄ by

the expected standard deviation of the window S yields a z-score, where a negative

z-score indicates rarer than expected coding:

z = Fo − F̄
S

This z-score was used as a relatively simple confirmation that the seed sequence

was included in the conservation pattern of the alignment.

This analysis identified two genes which were taken forward for further experi-

mental investigation: aphA, encoding a class-B acid phosphatase; and ubiC, which

produces the chorismate pyruvate-lyase enzyme. Figure 4.1 shows plots of the statis-
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Figure 4.1: Codon usage statistics plotted against residue number in aphA and ubiC.
Regions of interest are those that show a concurrent drop in p-value, av-
erage frequency, and seed z-score (see Section 4.2.2), together with high
coverage. Details of the regions identified are given in Table 4.1 and 4.2.
Regions with low seed z-scores but comparatively high p-values were
also selected to compare the efficacy of the alignment model against the
single-sequence z-score. The grey bars around the window-average fre-
quencies show the standard deviations of frequencies within the window.

tics that were examined in the process.

4.2.3 Gene Design

Synthetic constructs of the two wild type genes were obtained, with some minor

modifications to aid expression. A sequence of six histidine residues (a His-tag),

encoded with alternating CAT and CAC codons, was added to the 3’ end of the

constructs to give the option of protein purification via nickel affinity chromatogra-

phy. Two successive stop codons, TGA and TAA, were also added to ensure reliable

termination under strong promotion. Genes were designed with flanking restriction

sites to allow double digests. The intragenic region was scanned for restriction sites

and determined to be compatible with numerous restriction enzymes. The sites cho-

sen were for the NdeI enzyme at the 5’ end and HinDIII at the 3’ end. These were
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Figure 4.2: The first stage of the experimental work was transferring the gene in-
serts via restriction and ligation reactions to the pET29-a plasmid for
expression. The image shows a UV-exposed agarose gel containing dou-
ble restriction digests after electrophoresis. Lanes 1 and 2 show the
synthetic constructs of wild type aphA (711bp) and ubiC (606 bp) be-
ing removed from the pJ201 plasmids in which they were delivered. The
double bands in the kilobase region in these lanes probably arise from the
restriction digest being only partially successful – the samples contain a
portion of plasmid still bound to the insert. However, the lower bands
containing the inserts are dense enough for extraction and usage. Lanes
3 and 4 contain pET29-a with an unknown insert, present in a sample
in the laboratory. This was prepared for insertion of the synthetic aphA
and ubiC cassettes. (Note: image has been cropped)

both present in the polylinker regions of the chosen plasmid, with NdeI upstream.

The synthetic genes were delivered in the pJ201 plasmid. Genes were transferred

via restriction and ligation reactions to the pET29-a plasmid for expression in strain

BL21(DE3)pLysS. The pJ201 and pET29-a plasmids contain kanamycin resistance

markers, so kanamycin was used as the selective agent at 50 µgml−1 when working

with them. The pET29-a plasmid contains the lac repressor and operator and is

inducible by IPTG, and it uses the T7 promoter region, which is targeted by the T7

RNA polymerase present in BL21(DE3) (but not K-12). Figure 4.2 shows an image

of a DNA gel electrophoresis procedure used to separate the restricted inserts from

the delivery plasmids, and prepare a sample of expression plasmid for re-insertion.
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4.2.4 Variant Design

A library of variants was designed to reveal the effects of synonymous mutations

to the rare codon regions identified. As a control, variants were also designed to

include mutations to regions that were rare in the seed sequence, but where the

rareness was not conserved over the alignment.

The designed library of variants was produced from the synthetic wild-type con-

structs using site-directed mutagenesis. Because of the impact of additional muta-

tions on primer binding energies it is not recommended to perform more than seven

nucleotide changes with a single primer, so some regions had to be modified in mul-

tiple steps. These regions were split into a core section, including the extremum of

the p-value signal, and a peripheral section covering flanking rare codons in the seed

sequence. This meant that some variants required a series of mutagenesis reactions.

Modifications were verified by sequencing after all reactions.

An initial oversight in the design of some primers was identified. Primers were

designed to perform the required modifications on the wild-type sequence. In some

serial reactions on closely-located regions, later reactions would reverse the modifi-

cations made in earlier ones because the primers were designed to bind to the wild

type sequence and not the variant. Primers were redesigned to work in series and

the reactions repeated and again verified by sequencing.

To reduce the potential for introducing confounding variables, all variants were

checked for hybridisation with the E. coli anti-Shine-Dalgarno sequence. This is the

tail of the 16S rRNA, GAUCACCUCCUUA (5’-3’). Hybridisation energies were

checked using the free2bind package (Starmer et al., 2006; http://www.unc.edu/
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aphA variants
Variant

Index Residue Codon change A B C D E F G
RARE 25 Ala GCC>GCG • • •

26 Ser TCA>AGC • • • •
27 Ser TCT>AGC • • • •
28 Pro CCT>CCG • • • •
29 Ser TCA>AGC • • •
33 Pro CCT>CCG • • •
34 Gly GGG>GGC • • •
35 Thr ACT>ACC • • •
37 Asn GTT>GTG • • •

172 Pro CCA>CCG • •
173 Gly GGG>GGC • •
174 Gln CAA>CAG • •
175 Asn AAT>AAC • •
176 Thr ACA>ACC • •

CONTROL 117 Glu GAG>GAA •
118 Val GTC>GTG •
119 Ala GCT>GCG •

Table 4.1: Codon changes in the aphA gene variant library

~starmer/free2bind/) and found not to deviate significantly from the wildtype.

Tables 4.1 and 4.2 show the variants that were designed and what modifications

they included.

4.2.5 Assay Development

The aphA gene produces a protein, AphA, E.C. code 3.1.3.2, with phosphatase

activity on a broad range of organic substrates in the pH range 4.0-7.0 (Thaller

et al., 1997). A relatively simple assay for phosphatase activity can be constructed
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ubiC variants
Variant

Index Residue Codon change A B C D E F G H I J
RARE 34 Ser TCC>AGC • •

120 Phe TTC>TTT • • •
121 Thr ACA>ACC • • •
122 Ser TCA>AGC • • • • • •
123 Ser TCG>AGC • • •
124 Thr ACA>ACC • • •
125 Leu TTA>CTG • •
127 Arg CGG>CGC • •
128 Asp GAC>GAT • • • • •
131 Glu GAG>GAA • • • • •
132 Ile ATA>ATT • • • • •
134 Arg CGT>CGC • • • • •

CONTROL 54 Gly GGG>GGC •
56 Phe GTC>GTG •
57 Val GAG>GAA •

Table 4.2: Codon changes in ubiC gene variant library
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using para-nitrophenyl phosphate (pNPP) as a substrate. While pNPP is clear in

solution, cleavage of the phosphate group yields para-nitrophenol (pNP) which has

a strong yellow colour at basic pH that can be measured in the wavelength range

390-420 nm Passariello et al. (2006).

A review of the literature suggested that it may be possible to run a more con-

venient continuous assay, conducting the reaction in a cuvette and constantly mon-

itoring the change in absorption. AphA requires an acidic pH to function as a

phosphatase, but the absorbance of pNP is strongly pH dependent. Absorbance is

low at low pH, but above the pKa of around 7.2, as the equilibrium of proton disso-

ciation from the hydroxyl group shifts higher, absorbance increases sharply. These

two requirements are incompatible, as the low absorbance of pNP at the working

pH would have drastically reduced the sensitivity of the assay, so this approach was

ruled out after some preliminary work in favour of a stopped assay using a method

based on Passariello et al. (2006).

The strategy determined was to use raw cell lysate from cell cultures containing the

expressed protein variants. After expression (see Section 4.1.6), cultures would be

resuspended in assay buffer (see Section 4.1.9), lysed by sonication, and centrifuged

to separate the soluble fraction of protein. This supernatant would contain many

cellular proteins in addition to the synthetic variant, but if the use of a high copy

number and the powerful T7 promoter should lead to high protein yields. A volume

of supernatant would then be mixed with 1mm pNPP substrate and incubated at

37 ◦C. Small portions of the supernatant-substrate mix would be extracted at time

points and quenched using high-concentration sodium hydroxide. This also serves

to lower the pH. The quenched samples could then be measured for absorbance
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against a background of cell lysate and sodium hyroxide without reaction substrate,

to determine the amount of cleavage activity that had occurred in the incubation

time.

AphA-mediated phosphate cleavage of pNPP has a kcat of 156 s−1, and a KM of

169 µm. A substrate concentration of 1mm was selected in order to be well in excess

of the KM, which should yield a reasonably constant reaction rate over short time

periods. Only a modest yield (around 6mgml−1) would be required to achieve an

easily reaction over a timescale of a few minutes.

A calibration curve (see Figure 4.3) was derived to suit the intended assay condi-

tions by adding 250 µl samples of pNP in assay buffer (see Figure 4.3) at various con-

centrations to 750 µl 2M NaOH. A check for base-mediated cleavage of phosphate in

conditions equivalent to the stopped assay (pH 13.78) revealed no significant change

in absorption over 30 minutes.

A series of experiments were conducted to attempt to determine an appropriate

timescale for the assay reactions. Colonies of expression strains transformed with

plasmids containing wild type aphA were cultured, induced to express as described

in Section 4.1.6, and assayed as described in Section 4.1.9. Cells containing the same

plasmid with no insert were treated in the same way as a control. This revealed a

very high level of background activity in the cells containing the empty plasmid, pre-

sumably arising from the chromosomal aphA and possibly other acid phosphatases

(Dassa et al., 1991). In a test of phosphatase activity of the supernatant extracted

from cultures containing wild type aphA against cultures containing pET29-a with

no insert, the supernatant from the cultures with no insert actually showed more

activity over ten minutes (see Figure 4.4).
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Figure 4.3: Calibration curve for determination of pNP concentration in experimen-
tal samples. 250 µl samples of pNP in assay buffer were prepared at the
correct concentration, then added to 750 µl 2M NaOH in a 1ml optical
cuvette for absorbance measurements to obtain a sample pH above 13.5,
matching what could be expected from the assay protocol and well above
the pKa of pNP. Absorbance was measured at 400 nm, which was found
to be the peak response frequency. Measurements were taken at 10, 20,
30, 40, 50, 100 and 200 µM in triplicate. The response is confirmed to
be linear in this range. Regression line: slope = 0.0046 µM−1 (std. err.
= 4.97e-5), intercept = 0.0152 (std. err. = 4.42e-3), mean squared error
= 1.97e-4

The background activity would have drastically reduced the dynamic range of the

assay. Rossolini et al. (1994) found that acid phosphatase is not expressed in cells

using glucose as a carbon source, so repeat tests were conducted using a modified

Terrific Broth recipe, TB−, in which the glycerol was replaced with glucose (see

Figure 4.5, Section 4.1.10 for media recipes). This was found to slightly reduce the

background activity, but probably not sufficiently to allow sensitive investigation of

the effects of genetic variants. Dassa et al. (1991) report that E. coli produces acid

phosphatase in response to oxygen deprivation. The experiment was repeated in
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Figure 4.4: Comparison of phosphatase activity in the supernatants extracted from
cell cultures with the pET29-a plasmid containing the wild type aphA
gene or no insert. See Section 4.1.9 for full details of the assay method.
250 µl samples were taken from the reaction at timestops of 2:00, 3:30,
5:00, 7:30 and 10:00 miniutes. Each line shows the average of two repli-
cates, and the error bars indicate the actual recorded values. Although
all samples showed significant activity over the recorded time period,
the replicates were noisy. More alarmingly, the cultures with no active
insert being expressed displayed more phosphatase activity than those
containing the aphA gene.

smooth and baffled flasks to increase oxygen levels, but no difference was found.

The possibility of using a multifactorial design-of-experiments approach to find

growth conditions that resulted in reduced background activity was considered.

However, this would have meant deliberately perturbing the environment away from

the very conditions in which the enzyme had likely evolved, somewhat undermining

the reasoning behind the experiment. Purification of the protein using the His-tag

(see Section 4.1.1) prior to assaying was considered. However, the effect we are

seeking to measure could well arise from only slight alterations in the structure

compared to the native state. The energetic perturbations to the structure resulting

from binding to the nickel column, as well as the extra time between expression

155



Figure 4.5: Comparison of phosphatase activity in the supernatants extracted from
cell cultures with the pET29-a plasmid containing the wild type aphA
gene or no insert, expressed in modified Terrific Broth TB- containing
glucose instead of glycerol. See Section 4.1.9 for full details of the assay
method, and Section 4.1.10 for details of the media recipe. 250 µl samples
were again taken from the reaction at timestops of 2:00, 3:30, 5:00, 7:30
and 10:00 miniutes. The lines each show the average of two replicates
of the two culture types, and the error bars indicate the actual recorded
values. Overall activity was slightly reduced compared with expression
in TB+, and the cultures containing the insert displayed more activity
than those without, but the difference was not considered great enough
to give a viable dynamic range.

and assaying, might be enough to reverse the structural alterations arising from

the mutations to the coding sequence. Therefore the decision was made to attempt

expression in a knockout strain deficient in chromosomal aphA.

4.2.6 Keio Knockout Strains

The Keio collection (Baba et al., 2006) consists of a library of 3985 mutant strains

of E. coli K-12 in which single, non-essential genes have been deleted and replaced

with a kanamycin resistance marker. This provides an extremely useful and flexible
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framework for detailed genetic analysis of the species. By expressing variants of

the candidate genes in the relevant Keio strain, it should be possible to eliminate

background activity arising from the native, chromosomal copy of the gene under

investigation. To this end a culture of the aphA Keio strain JW4015-1 was obtained.

All Keio strains are delivered with kanamycin resistance cassettes flanked by FLP

recombination target sites in place of the deleted gene. Rather than remove the

kanamycin cassette and risk contaminating the culture, it was considered prudent

to retain it and switch the variants to a plasmid containing an alternative resistance

marker. An alternative plasmid would have been needed in any case because pET29-

a is under the control of the T7 phage promoter and polymerase, which is not present

in E. coli K-12.

The pJ444-01 vector was selected as a suitable substitute, as it contains an ampi-

cillin resistance marker and is uses the T5 promoter, which is recognised by the

native E. coli RNA polymerase and so can be expressed in most strains. Doubly-

selective media containing both ampicillin and kanamycin 50 µgml−1 was used when

working with the pJ444-01 plasmid. The library of variants was transferred to the

pJ444-01 vector via restriction-ligation reactions.

Chemically competent aphA-deficient Keio cells were prepared according to the

protocol described in Section 4.1.2, and transformed with the library of variants

in pJ444-01 using the quick transformation method described in Section 4.1.3.

The transformed cultures were grown in doubly-selective media containing both

kanamycin and ampicillin.

An alternative approach of measuring activity of the aphA variants indirectly
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through organism fitness, as assayed by growth rate, was considered but deemed

unlikely to produce results as differences in the growth rates of the Keio strain that

is completely deficient in aphA against the wild-type are not distinguishable from

biological noise (Baba et al., 2006, 2007). Early in the process of expression testing

in the keio strains it became clear that time pressures would not allow completion

of the experimental work, and unfortunately it had to be abandoned.

4.3 Discussion

The experimental work conducted as part of this thesis did not reach a satisfac-

tory conclusion. A key mistake made in the undertaking of the experimental work

presented here was the failure to properly verify the expression of the plasmid con-

structs before concluding that the experiments were not viable in a standard E.

coli expression strain and moving onto a Keio variant. However, the results would

almost certainly have been improved using the Keio variant as the measurable back-

ground activity could be expected to have been eliminated, so this decision was not

without base. The work yielded a great deal of experience with broadly applicable

molecular biology techniques, and the general approach was sound. The comparison

of differences in activity between proteins produced by synonymous genetic variants

remains an interesting avenue of investigation in the exploration of the effect of

codon usage.
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5 Conclusions and Future Work

Codon usage reflects the combination of manifold selective forces acting on the

extremely complex and vital process of protein metabolism. The data is available

in some form for any fully or partially sequenced genome across all kingdoms of

life, and is relatively amenable to analysis. For these reasons codon usage has

received a lot of attention over several decades of research. However, it remains an

abstraction of the actual biological process of translation. The nature of the impact

of changes to codon usage and its precise relationship with protein expression is not

only qualitatively uncertain, it may depend upon entirely unknown mechanisms.

The broadly accepted trend is that, in general, most genes with a high proportion

of common codons are expressed at higher levels. There appear to be cases where

the typical preferences of an organism are selectively defied, and reversing this is to

the detriment of protein function. These cases are currently indistinguishable from

instances of non-preferred coding that are either neutral or slightly deleterious.

The aims of this thesis were three-fold:

1. Develop a novel method for identifying selectively adaptive rare codons with

a sound statistical basis

2. Analyse the findings of the method and search for biological correlates as a
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form of validation

3. Seek experimental confirmation of the computational method

The first two aims were met. The alignment-based approach offers clear advan-

tages over single-sequence approaches in the form of reduced noise. In combination

with the window and gap handling methods developed here, this affords the algo-

rithm the ability to determine a local measure that is robust to alignment quality.

Use of the convolution as the test statistic, instead of a figure derived from the

geometric mean of frequencies (as used in tAI and RCRR; see Section 1.4), in ef-

fect places a more stringent requirement on conservation of rare codon usage. This

stringency makes the algorithm more robust to close homologues and cases where

a rare coding is only possessed by a set of outliers. The very stringent significance

threshold applied to determine rareness produces a very low expected false positive

rate, which gives confidence in the findings. For these reasons, the algorithm pre-

sented here could be fairly described as being among the best available methods for

pure codon usage analysis.

The algorithm was used to generate significance measures of the rareness of coding

over a dataset covering the majority of the Escherichia coli genome. Analysing these

data provided some validation of the algorithm in the form of agreement with the

most well-established codon usage patterns relating to the terminal regions of genes,

particularly the N-terminus (Tuller et al., 2010a; Clarke and Clark, 2010; Goodman

et al., 2013). The focus was then shifted to co-translational and structural aspects.

The algorithm identified a novel association with N-terminal methionine cleavage

and a striking depletion of rare codons in helical regions. The novel hypothesis

proposed here is that this latter finding may be related to a requirement for the
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maintenance of a steady rate of extrusion of the nascent chain into the cytosol.

There is no significant association with the transitions between secondary structural

features or with domain boundaries themselves, although there is a slight enrich-

ment of rare codons in non-N-terminal domains and at a biologically relevant offset

downstream of domain boundaries. However, there is no evidence for the conserva-

tion of rare positions at the level of structural domain families. The algorithm also

indicates that ribosomal and translational components are enriched in rare codons, a

surprising result that contributes to the debate on the use of such genes as exemplary

of optimal codon usage (Wang et al., 2011; Hershberg and Petrov, 2012).

5.1 Limitations and Potential Improvements

The algorithm, while currently state-of-the-art, could certainly be improved. Ex-

plicit computation of window distributions in place of Monte-Carlo simulations

would enhance the accuracy of significance scores. Moreover, a thorough and system-

atic exploration of the effect of varying the model parameters would be of interest.

Adjusting the window size and significance threshold in combination and monitoring

the significance and strength of the correlation with biological signals might help

to elucidate optimum values beyond estimates from the literature. However, such

approaches remain difficult to verify while there is a dearth of suitable experimental

examples. The development of more advanced and accurate methods will become

easier as relevant experimental data accumulates.

Another avenue for improvement to the algorithm would be accounting for the

shared evolution between similar genomes in the statistical significance measure.
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Such an extension to the probability calculations would be challenging, because it

would require some measure of the conditional probabilities of codon usage between

all combinations of organisms. These probabilities could perhaps be estimated using

a sample of representative alignments, but not without the potential for introducing

extra biases, and still not without considerable computational expense.

It is unfortunate that the experimental work presented in this thesis did not

reach a satisfactory conclusion, especially because lack of experimental evidence is

the major obstacle to progress in the field. Even negative results would have been of

utility in informing future algorithmic approaches. Experimental investigations in

iterative combination with computational work could yet shed light on this enigmatic

problem.

Alternative experimental approaches might also be worth exploring. The ap-

proach adopted here – over-expression of a modified version of a gene in comparison

with the wild-type – is promising and especially relevant for gene design where over-

expression is often the goal. However, it has its limitations with respect to biological

understanding because over-expression is inherently unnatural. Some possible alter-

native approaches are suggested in the next section.

5.2 Related Future Work

The focus of this project is the signal of codon usage, which as established is limited

in its ability to capture the complexity of translation and distil it into an estimate of

elongation rate. Future computational work that focusses on establishing evidence

for the hypothesis of elongation rate-mediated cotranslational folding should look to
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build more sophisticated models of elongation rate. Careful experimental work to

deconvolute the relative contributions of various sequence properties would facilitate

the development of such models. One avenue is large-scale comparative assessment of

the translational efficiency and functionality of synonymous transcripts. Effectively

sampling sequence space for peptides of significant length is virtually impossible,

because it is so large and the fitness landscape has many local minima, but for

small numbers of residues it is feasible (Chevance et al., 2014). Although there

are many factors this reductionist approach could bear fruit. The applicability of

such reductive results to full-scale proteins should then be tested with two avenues

of investigation; measurement of the translational efficiency and functional efficacy

of specially designed synthetic constructs; and genomic analysis, to detect natural

occurrences against expectation of features identified as critical.

The information thus generated would inform more specialised approaches. Knowl-

edge of the relative and combinatorial contribution to elongation rate of the various

sequence properties would allow the construction of species-specific models of elon-

gation rate. To fully leverage this information for the detection of evolutionary

signals of cotranslational folding would require a specialised alignment method that

attempts to align proteins based on the expected translational time signature rather

than on sequence divergence. This would be possible using the same dynamic pro-

gramming principles applied in traditional sequence alignment, but with a scoring

system that aimed to minimise, for example, the variance in predicted elongation

time between aligned residues. In proteins whose cotranslational folding depends

on elongation rate, this might elucidate the folding pathway by highlighting cases

where insertions fulfil the same translational delay that could be provided by other
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sequence properties.

Experimental protocols to investigate the effect of small changes to the elonga-

tion rate on the functionality of specific proteins are challenging to develop. The

requirement for ready assayability of protein function greatly constrains the choice of

target. Further, in preparing and purifying the sample there is a risk that the protein

structure could be perturbed through binding to column media or simply through

thermodynamic changes over time, thus obliterating or introducing noise to the very

effect that the experiment is seeking to detect. Over-expression negates the need

for purification, which mitigates this risk, but as mentioned above, the paradigm is

removed from the biological reality of translation. An alternative approach would

be to indirectly measure the efficacy of the protein product by monitoring the rel-

ative fitness of modified populations against the wild-type, either in isolation or in

direct competition. Fitness can be measured using growth rate, or maximal optical

density of a liquid culture. Detecting the small impact on fitness that would likely

be conferred by changes to single genes could be challenging, since most genes can

be deleted altogether without altering maximal optical density over growth peri-

ods of about one day (Baba et al., 2006). Growing modified strains in competition

would reduce problems arising from extrinsic noise, as would longer experimental

time scales. Another strategy would be to deliberately select growth conditions in

which the target protein made the biggest contribution to the chosen fitness measure.

These conditions could be found a priori using a multifactorial experimental design

approach. This would allow the experiments to mirror the process of evolution.

This work has focussed entirely on prokaryotes, but the ideal gene design algo-

rithm would be applicable to expression of any protein in any organism. Prokaryotes
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are often used in bioreactors for their flexibility, robustness, high growth density,

and rapid metabolisms, and so are of great interest as target organisms; and biomed-

ical components are often derived from human metabolites. The ability to optimise

a eukaryotic gene for expression in prokaryotes would be of great utility, but the

differences between the domains pose problems. Translation rates are globally dif-

ferent (about half the speed in eukaryotes), so even if elongation rate is modulated

by coding sequence in eukaryotes, and this is detectable, the same protein sequence

may need entirely different modulation when expressed in a prokaryotic system, just

to follow the same folding pathway. Also, eukaryotic organisms possess many more

cofactors and chaperones that may obviate the need for elongation rate modulation

in specific proteins. The ability to make predictions of protein folding pathways un-

der the two distinct sets of conditions, and how the elongation rate might influence

the dominant pathway, is beyond the scope of current full-scale protein structure

predictors and molecular dynamic models, but not beyond the realms of what may

be possible in the near future with greater computational power enhancing the res-

olution and timespan of simulations, not to mention the advent of new techniques.

5.3 Conclusions

The hypothesis that cotranslational folding is modulated by elongation rate is still

in its infancy and the body of evidence, although growing, is constrained to a

small number of isolated examples. There could well be uncontrolled variables,

such as RNA interference (Makarova et al., 2006), interaction with unknown cofac-

tors, tRNA depletion or interaction, ribosome interactions, or something else as-yet
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undiscovered. It is possible that the selected threshold used in this study was too

stringent to allow detection of a cotranslational signal, but it is probably fair to as-

sume that a vital signal would be detectable with very high significance. Therefore,

it is safe to conclude on the strength of this research that if the phenomenon of elon-

gation rate-modulated cotranslational folding is important to protein production, is

widespread, and is conserved across relatively close homologues, then codon usage

is not a sufficiently powerful signal to detect it.

However, there is still much work to be done in the field. Incorporating new sig-

nals into the development of algorithms and combining with an increased body of

experimental evidence will inform future gene design projects and studies of synony-

mous variant-linked pathologies, working towards a full understanding of the many

layers of information carried in the genetic code.
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