
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


공학박사 학위논문

Representation Learning for
Biological Sequence Data

생물학적 서열 데이터에 대한 표현 학습

2021년 8월

서울대학교 대학원

전기·정보공학부

민 선 우





Abstract

As we are living in the era of big data, the biomedical domain is not an

exception. With the advent of technologies such as next-generation sequenc-

ing, developing methods to capitalize on the explosion of biomedical data

is one of the most major challenges in bioinformatics. Representation learn-

ing, in particular deep learning, has made significant advancements in diverse

fields where the artificial intelligence community has struggled for many years.

However, although representation learning has also shown great promises in

bioinformatics, it is not a silver bullet. Off-the-shelf applications of represen-

tation learning cannot always provide successful results for biological sequence

data. There remain full of challenges and opportunities to be explored.

This dissertation presents a set of representation learning methods to ad-

dress three issues in biological sequence data analysis. First, we propose a

two-stage training strategy to address throughput and information trade-offs

within wet-lab CRISPR-Cpf1 activity experiments. Second, we propose an

encoding scheme to model interaction between two sequences for functional

microRNA target prediction. Third, we propose a self-supervised pre-training

method to bridge the exponentially growing gap between the numbers of unla-

beled and labeled protein sequences. In summary, this dissertation proposes a

set of representation learning methods that can derive invaluable information

from the biological sequence data.

Keywords: machine learning, deep learning, representation learning, artificial

intelligence, biological sequence, CRISPR, microRNA target, protein
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Chapter 1

Introduction

1.1 Motivation

As we are living in the era of big data, the biomedical domain is not an

exception. With the advent of advanced technologies such as next-generation

sequencing, significant amounts of biomedical data have been accumulated.

The biomedical data generation has been even exceeding researchers’ ability

to capitalize on the data [1]. The transformation of big data into valuable

knowledge is one of the significant challenges in bioinformatics.

Machine learning has been one of the most widely used and successful

methodologies to extract valuable knowledge from data. In contrast to other

methods, machine learning algorithms do not require strong assumptions on

underlying biological mechanisms [2]. Instead, they use large quantities of data

to uncover underlying patterns, build predictive models, and make predictions

with the fitted model for unseen data. Various conventional machine learning

algorithms (e.g., random forests, support vector machines (SVMs), Bayesian

networks, and hidden Markov models (HMMs)) have been widely applied in di-

verse problems in bioinformatics [3]. However, their performance relies heavily

on data representations called features. It typically requires human engineers

with the extensive domain expertise to design the hand-crafted features, and
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identifying effective features for a variety of tasks remains labor-intensive and

time-consuming processes [4].

Representation learning is one of the approaches to solve this central prob-

lem in conventional machine learning algorithms. Representation learning al-

gorithms eliminate the laborious feature engineering and learn effective repre-

sentations solely from data [5]. In particular, deep learning is a branch of rep-

resentation learning, which uses deep neural networks (DNNs) with multiple

nonlinear operations. Deep learning algorithms can learn complex hierarchical

data representations built out of simpler concepts with an increasing level of

abstraction. Based on big data, efficient computing, and sophisticated train-

ing algorithms, deep learning algorithms have made significant advancements

in diverse fields (e.g., image recognition, speech recognition, and natural lan-

guage processing) where the artificial intelligence community has struggled for

many years [6].

As summarized in our recent review paper [7], there also have been ex-

ponentially growing interests in deep learning for bioinformatics. For solv-

ing problems in a variety of bioinformatics domains (e.g., omics, biomedical

imaging, and biomedical signal processing), researchers have used different

deep learning model architectures e.g., multi-layer perceptrons (MLPs), con-

volutional neural networks (CNNs), recurrent neural networks (RNNs), and

transformers (TFMs) based on data characteristics and research objectives.

Although deep learning has shown great promise, it is not a silver bullet.

Off-the-shelf applications of deep learning algorithms cannot always provide

successful results, especially for biological sequence data analyses. There re-

main full of challenges and opportunities to be explored [8].

In this dissertation, we present a set of representation learning methods

to analyze biological sequence data, i.e., deoxyribonucleic acids (DNAs), ri-

bonucleic acids (RNAs), and proteins. A sequence can be defined as a series

of items where their orderings as well as identities of each item contain crit-

2



ical information. For example, DNAs and RNAs are composed of a series of

nucleotides; proteins are composed of a series of amino acids. Various represen-

tation learning methods have been used to derive invaluable information from

the biological sequence data [7]. In this dissertation, we focus on addressing

three issues in biological sequence data analysis: (1) throughput and informa-

tion trade-offs within wet-lab experiments, (2) modeling interaction between

two sequences, and (3) exponentially growing gap between the numbers of

unlabeled and labeled protein sequences.
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1.2 Contents of Dissertation

The contents of the dissertation are organized as follows. In Chapter 2, we

cover the background knowledge necessary to follow the main contributions.

In Chapters 3 - 5, we first introduce a bioinformatics problem and core issues in

previous machine learning approaches. Then, we propose novel representation

learning methods, which can address the core issues and derive invaluable

information from the biological sequence data. In Chapter 6, we discuss some

limitations of the proposed methods and promising research extensions for

future work. Finally, Chapter 7 concludes the dissertation and summarizes the

contributions towards analyzing biological sequence data with representation

learning.

Chapter 3 addresses throughput and information trade-offs within wet-lab

experiments. Over the last few years, genome editing using CRISPR (clus-

tered, regularly interspaced, short palindromic repeats) system has become a

crucial tool in biology [9]. One of the biggest challenges of CRISPR technology

is the determination of nuclease activity [10]. There are two critical genetic and

epigenetic factors that are known to affect the CRISPR activity [11]. However,

due to the low-throughput wet-lab experiments, it is difficult to obtain endoge-

nous target datasets which reflect both factors to train a model. Instead, we

can obtain high-throughput integrated target datasets which only reflect the

genetic factor. There are several shallow learning-based algorithms that enable

the prediction of CRISPR activity. Nevertheless, they rely on manual feature

extraction and do not consider the epigenetic factor, which inevitably reduces

their reliability [12, 11].

This dissertation proposes an end-to-end deep learning framework and two-

stage training strategy to address the throughput and information trade-offs

within wet-lab CRISPR-Cpf1 activity experiments. First, we used integrated

target datasets to train a deep-learning framework, dubbed as Seq-deepCpf1.

Then, we used endogenous target datasets to incorporate chromatin accessibil-
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ity information into a better-performing model, dubbed as DeepCpf1. We take

advantage of (1) a CNN for feature learning from target sequence composition

and (2) a multi-modal architecture for seamless integration of both genetic and

epigenetic factors. The proposed methods significantly outperform the conven-

tional machine learning-based approaches with an unprecedented level of high

accuracy. The contents of this Chapter are based on the following research:

• Hui Kwon Kim*, Seonwoo Min*, Myungjae Song, Soobin Jung, Jae Woo

Choi, Younggwang Kim, Sangeun Lee, Sungroh Yoon, and Hyongbum

Kim, “Deep learning improves prediction of CRISPR-Cpf1 guide RNA

activity,” Nature Biotechnology, vol. 36, no. 3, pp. 239-241, March 2018.

(*co-first authors)

Chapter 4 addresses modeling interaction between two biological sequences.

MicroRNAs play pivotal roles in gene expression regulation by binding to

target sites of messenger RNAs (mRNAs) [13]. While identifying functional

targets of microRNAs is of utmost importance, previous computational al-

gorithms share some major limitations [14, 15]. First, they use conservative

candidate target site (CTS) selection criteria mainly focusing on canonical

site types. Second, they rely on laborious and time-consuming manual feature

extraction. Third, they do not fully capitalize on the information underlying

microRNA-CTS interactions.

This dissertation proposes a deep learning-based algorithm with a novel

encoding scheme to model the interaction between two biological sequences.

To address the limitations of previous approaches, the proposed TargetNet has

three key components: (1) relaxed CTS selection criteria accommodating more

irregularities in the seed region, (2) a novel microRNA-CTS sequence encod-

ing scheme incorporating extended seed region alignment results, and (3) a

deep residual CNN-based prediction model. The proposed model was trained

with microRNA-CTS pair datasets and evaluated with microRNA-mRNA pair

datasets. Our experiment results showed that TargetNet advances the previ-

5



ous state-of-the-art (SOTA) algorithms used in functional microRNA target

classification. Furthermore, it demonstrates great potential for distinguishing

high-functional microRNA targets. The contents of this Chapter are based on

the following research:

• Seonwoo Min, Byunghan Lee, and Sungroh Yoon, “TargetNet: Func-

tional microRNA target prediction with deep neural networks,” Bioin-

formatics, under review.

Chapter 5 addresses the exponentially growing gap between the numbers

of unlabeled and labeled protein sequences. With the development of next-

generation sequencing technologies, protein sequences have become relatively

more accessible. However, annotating a sequence with meaningful attributes

such as its structures and functions is still time-consuming and resource-

intensive [16]. Several studies have adopted semi-supervised learning for pro-

tein sequence modeling [17, 18]. They pre-train models with a substantial

amount of unlabeled protein sequences, and the representations are transferred

to various downstream tasks with a small number of labeled protein sequences.

They have shown that pre-training helps improving prediction performance in

downstream protein biology tasks. However, most pre-training methods solely

rely on language modeling and still often exhibit limited performance [19].

This dissertation proposes a pre-training method to bridge the exponen-

tially growing gap between the numbers of unlabeled and labeled protein

sequences. We introduce a novel pre-training method for protein sequence

modeling and name it PLUS, which stands for Protein sequence representa-

tions Learned Using Structural information. The proposed PLUS consists of

masked language modeling and a complementary protein-specific pre-training

task, namely same-family prediction. PLUS can be used to pre-train various

model architectures. In this work, we use it to pre-train a bidirectional RNN

(BiRNN) and refer to the resulting model as PLUS-RNN. Our experiment

results demonstrate that PLUS-RNN outperforms other models of similar size

6



solely pre-trained with the language modeling in six out of seven widely used

protein biology tasks. It provides a novel way to exploit evolutionary rela-

tionships among unlabeled proteins and is broadly applicable across various

protein biology tasks. The contents of this Chapter are based on the following

research:

• Seonwoo Min, Seunghyun Park, Siwon Kim, Hyun-Soo Choi, and Sun-

groh Yoon, “Pre-training of deep bidirectional protein sequence repre-

sentations with structural information,” in the 14th Annual Workshop

on Machine Learning in Computational Biology, Vancouver, Canada,

December 2019.

• Seonwoo Min, Hyungi Kim, Byunghan Lee, and Sungroh Yoon, “Protein

transfer learning improves identification of heat shock protein families,”

PLOS ONE, vol. 16, no. 5, e0251865, May 2021.
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Chapter 2

Background

In this Chapter, we cover the background knowledge necessary to follow the

main contributions of the dissertation. We will explain an overview of rep-

resentation learning, various DNN architectures (i.e., MLPs, CNNs, RNNs,

and TFMs), training of DNNs, previous works using representation learning

methods in bioinformatics, fundamentals of biological sequence data analyses,

and common evaluation metrics.

2.1 Representation Learning

This section reviews different disciplines, including artificial intelligence, ma-

chine learning, representation learning, and deep learning. We note that the

contents of this section are referenced from the Deep Learning textbook [5]. Ef-

forts to create artificial intelligence algorithms have a long history. Figure 2.1

shows relationships between different artificial intelligence disciplines. In the

early days of artificial intelligence, people have succeeded in solving various

problems. Although these problems were intellectually difficult for humans,

they did not require any complex and general understanding of the world.

Most of the problems could be easily defined with formal rules, making it rel-

atively straightforward for computer algorithms. For example, one of the most
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Figure 2.1: A diagram showing relationships of different artificial intelligence
disciplines, i.e., artificial intelligence, machine learning, representation learn-
ing, and deep learning

popular early successes is IBM’s Deep Blue for playing chess [20]. It was a

huge milestone in the history of artificial intelligence. However, the challenge

at that time was very different from the one we are facing today. Chess can

be easily described with pre-defined rules containing how each piece can move

rigidly.

The challenge we are facing today with artificial intelligence comes from

problems that we cannot formally describe the rules. Humans can solve them

intuitively without acknowledging detailed logic. However, these problems re-

quire a tremendous amount of knowledge about the world, which is subjective

and difficult to articulate definitely. For example, think about the image recog-

nition problem, particularly classifying images of cats and dogs. Humans, even

a child, can easily classify images, but it is not easy to formally define which

images should be classified as cats or dogs. One of the critical challenges is how

to deliver such informal knowledge to artificial intelligence algorithms. Early

approaches tried to explicitly devise hard-coded rules for given tasks. Nonethe-

less, hand-designing all the rules to deal with complex real-world problems was

9



nearly impossible and could not achieve satisfactory results.

Machine learning has provided a viable solution to the challenge of artificial

intelligence. Instead of hard-coded knowledge, we can provide data represen-

tations known as features. Then, given a training dataset, machine learning

algorithms learn mappings from the features to target outcomes. For example,

in the image recognition problem, we may provide the presence or absence of

pointy ears as a feature. This feature alone is not enough to classify the images

of cats and dogs, but combining with other numerous features would be able

to provide the required information. The critical aspect of machine learning

algorithms is extracting the right set of effective features. The algorithms can-

not influence the way features are extracted, so they cannot make any useful

predictions without effective features. Unfortunately, however, it is also not

easy to hand-design effective features for given tasks. We may know the pres-

ence or absence of pointy ears would be a good feature, but it is still difficult

to precisely define it in terms of pixel values. Furthermore, for more complex

tasks in biological sequence data analyses, we often do not have enough domain

knowledge to hand-design the effective features.

Naturally, the next step for more advanced artificial intelligence was to

learn representation themselves from data, as well as their mappings to target

outputs. This type of algorithm is known as representation learning. One most

widely used example is an autoencoder. It consists of an encoder that converts

data into representations and a decoder that converts the representations back

into the data. By training the autoencoder to reconstruct data as much as

possible, the learned representations would contain a wealth of information of

data. The learned representations can often provide better performance than

hand-designed ones, which require a great deal of time, effort, and domain

expertise.

The challenge of a simple autoencoder is that it is difficult to learn complex

high-level representations from raw data. Recently, deep learning, a branch of

10



representation learning, has tackled this challenge by introducing DNNs. Deep

learning algorithms enable learning hierarchical representations of data with

increasing levels of abstraction, where complex representations are built out of

simpler representations. The DNNs are composed of multiple nonlinear oper-

ations gradually transform raw pixels into an informative representation. For

example, for the image recognition problem, we can understand deep learning

algorithms as learning to find edges from raw pixels, then contours from the

edges, object parts from the contours, and finally recognize object identities

from the object parts.

In summary, machine learning is currently the most viable approach to

build artificial intelligence systems [5]. It allows us to overcome the limitations

of hard-coded knowledge and improve with data. In this dissertation, we focus

on representation learning, particularly deep learning algorithms, which hold

excellent capability by learning to encode complex knowledge into hierarchical

representations of data with increasing levels of abstraction.

11



2.2 Deep Neural Networks

A cornerstone of the successes of deep learning is DNNs [6]. DNNs are com-

posed of multiple nonlinear operations called layers. The essence of DNNs is

that each layer transforms the input representations from the layer below into

slightly more abstract representations. The first layer is referred to as the in-

put layer which receives the observable raw data. Then, a series of layers are

put on top of the input layer. Since these layers extract hierarchical abstract

representations which are not observable from the raw data, they are referred

to as the hidden layers. Finally, the last layer is referred to as the output

layer. It computes the output predictions for given tasks from the last hidden

representations.

One of the key aspects that differentiate one deep learning algorithm from

another deep learning algorithm is the overall structure of DNNs. It is also

often referred to as deep learning model architectures. They include a variety

of architecture design considerations, such as which types of layers are used to

construct DNNs and how they are connected with other layers in the model.

In the following subsections, we will explain some of the representative DNN

architectures by categorizing them into four groups: MLPs, CNNs, RNNs, and

TFMs.

2.2.1 Multi-layer Perceptrons

MLPs are the most basic deep learning model architecture (Figure 2.2). They

are also often referred to as feedforward neural networks since the information

signal only flows from the input layer to the output layer and not vice versa.

MLPs are composed of a single layer type called fully-connected layers. We

can understand the MLPs as natural extensions of conventional linear regres-

sion models so that MLPs enable us to approximate more complex nonlinear

functions.

The building block of fully-connected layers is computational units called

12
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Figure 2.2: A diagram showing the basic structure of a MLP. Input layer
is denoted as x; hidden layers are denoted as h1, h2, and h3; output layer
is denoted as y. Each neuron in the hidden and output layers computes a
weighted sum and a non-linear function of its input values.

neurons. Loosely inspired by neuroscience, each neuron receives a vector input

from multiple neurons and computes a scalar output value using a possibly

nonlinear activation function [5]. Let hl denote a dl-dimensional dense vector

representations of l-th fully-connected layer, where h0 indicates the input data

x. Then, i-th neuron in the (l+ 1)-th fully-connected layer computes a scalar

output value as

hl+1
i = σ(wl+1

i hl + bl+1
i ) (2.1)

where wl+1
i and bl+1

i are the weight vector and scalar bias, respectively. A

variety of nonlinear functions can be used as the activation function σ including

sigmoid, hyperbolic tangent, or rectified linear functions.

In conventional machine learning algorithms, MLPs have been used as a

classifier such that hand-designed features are given as inputs. On the other

hand, in representation learning algorithms, they are used to learn more in-

formative hierarchical representations from raw data. Due to their capability
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in analyzing high-dimensional data, MLPs are of great importance and often

used as a component of more complex deep learning model architectures such

as TFMs.

2.2.2 Convolutional Neural Networks

CNNs are also a type of feedforward neural networks. They are specially de-

signed for data with a grid-like topology such as two-dimensional images or

one-dimensional biological sequences. CNNs are directly inspired by the vi-

sual cortex of the human brain. In the visual cortex, there is a hierarchy of

cell types e.g., simple cells and complex cells [21]. First, the simple cells react

to primitive patterns in sub-regions of visual stimuli. Then, the complex cells

synthesize the information from simple cells to identify more intricate forms.

Motivated by the powerful human vision system, CNNs leverage three essential

ideas to capture better representations: sparse interactions, parameter sharing,

and equivariant and invariant representations [5].

CNNs are composed of two types of layers: convolution and pooling layers

(Figure 2.3). The key element of convolution layer is, of course, the convo-

lution operation. Given a two-dimensional input function I(i, j) and a two-

dimensional weighting function K(m,n), the convolution operation computes

a weighted summation of inputs at every point as:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n). (2.2)

Since the flipping of the weighting function does not hold much importance in

terms of the machine learning perspectives, cross-correlations are more gen-

erally used for implementations of neural networks and simply called as the

convolutions:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n). (2.3)
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Convolution layer Pooling layer

Figure 2.3: A diagram showing the basic structure of a CNN. Convolution
layers discover local discriminative features with invariance to locations. Pool-
ing layers aggregate statistics of local features enabling invariance to local
transitions.

In CNNs, the weighting function K(m,n) is usually referred to as the kernel

or filter ; the output S(i, j) is usually referred to as the feature maps. Convo-

lution layers hold multiple filters and additionally apply nonlinear activation

functions for the feature maps.

We can understand the advantages of convolution layers more easily by

comparing them with the fully-connected layers. Fully-connected layers have

dense interactions with an input vector, where each output unit computes

weighted summation of every input unit. On the other hand, convolution layers

have sparse interactions. Each filter only computes the weighted summation

of a small number of local input units. Thus, rather than looking at the entire

image or sequences, it can more easily discover meaningful locally correlated

patterns from data. Furthermore, convolution layers use the same set of shared

filters regardless of the input locations within data. The parameter sharing

strategy enables us to obtain location-equivariant representations and also

improve training efficiency by significantly reducing the number of required

weight parameters.

While convolution layers find distinctive patterns, pooling layers compute

local summary statistics. For example, max-pooling layers compute the max-
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imum value from sub-regions in feature maps and neglect the other values. In

essence, pooling layers provide invariance to local transitions. Thus, they en-

able us to identify locally transformed but semantically similar features more

robustly. In addition, since pooling layers generally summarize the feature

maps into smaller sizes, they also reduce memory requirements and improve

training efficiency.

CNNs have made significant advancements in computer vision tasks such

as image recognition and object detection [6]. On top of the standard con-

volution and pooling layers, various architectural modifications (e.g., residual

connections [22] and squeeze-and-excitation modules [23]) are continuously

developed to improve the performance of CNNs.

2.2.3 Recurrent Neural Networks

RNNs are specialized neural networks for analyzing sequential information [5].

Their biggest difference compared to the previous feedforward neural networks

(i.e., MLPs and CNNs) is that the hidden units have feedback connections.

RNNs maintain state vectors in their hidden units. Then, they recurrently

process an input sequence one element at a time. They update the state vec-

tors based on the previous state vectors and the current input element of a

sequence. The feedback connection allows the state vectors to be fed back into

the hidden units. Since the state vectors are computed based on all the pre-

vious input elements, they implicitly store summarized information of all the

previous elements.

Figure 2.4 shows the basic structure of a RNN. When we unroll them in

time, we can more clearly understand their computations. At time step t, the

hidden unit ht receives input from the current input element xt and itself from

the previous time step ht−1 as:

ht = σ(wxxt + whht−1 + b), (2.4)
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Figure 2.4: A diagram showing the basic structure of a RNN. At time step
t, the hidden unit computes its state ht based on its previous state ht−1 and
current input xt. The output ot is computed from the ht which depends on all
the previous inputs xt′≤t.

where wx and wh are the weight vectors of the hidden unit for the input ele-

ment and the previous state vector, respectively. Note that the weight vectors

do not depend on the time index. As CNNs share weight parameters of fil-

ters across different locations within data, RNNs share weight parameters of

hidden units across different time steps within data. It allows us to discover

discriminative sequential patterns regardless of their locations within the se-

quence. In addition, parameter sharing reduces the required parameters by

using the same weights for different time steps. It enables models to more

robustly generalize to sequence data, which are even longer than those seen

during the training.

Based on the basic structure (Figure 2.4), there are a variety of extensions

of RNN architectures. For example, as in the feedforward neural networks,

it is also common to use multiple hidden layers for RNNs. In addition, for

problems where output may depend on both past and future input elements,

bidirectional models have shown great results [6]. Bidirectional RNNs with
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Figure 2.5: A diagram showing a LSTM unit [24]. It maintains cell states ct as
an explicit memory and controls the flow of information using multiplicative
gates. This Figure is from Christopher Olah’s blog [25].

L-layers can be defined as:

−→
hlt = σ(

−→
wl
xhl−1

t +
−→
wl
hhlt−1 +

−→
bl),

←−
hlt = σ(

←−
wl
xhl−1

t +
←−
wl
hhlt+1 +

←−
bl),

hlt = σ(wl
h[
−→
hlt;
←−
hlt] + bl) for l = 1, · · · , L,

(2.5)

where hlt denotes combined hidden states for l-th layer at time step t. Bidirec-

tional RNNs have two sets of hidden states, each containing separate weight

vectors. Forward hidden states
−→
hlt are computed by processing the input in for-

ward direction and contain summarized information of xt′≤t. Backward hidden

states
←−
hlt are computed by processing the input in reverse direction and con-

tain summarized information of xt′≥t. Therefore, the combined hidden states

can hold information for the whole input sequence.

Although RNNs are designed to analyze sequences with arbitrary lengths,

vanilla models have showed difficulties in learning long-term dependencies.

The same weights are multiplied recurrently, which makes gradients typically

vanish if propagated over many time steps. This is called the vanishing gradient

problem. One of the most effective solutions is using special hidden units
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with explicit memory cells. Through self-loops within the hidden units, they

produce paths for accumulating information and pass gradients for a long

time [6]. The long short-term memory (LSTM) unit is the first of the kind and

have effectively used in many practical applications [24]. It has a set of gating

mechanism controlling the flow of information as:

ft = σ(wf,xxt + wf,hht−1 + bf ),

it = σ(wi,xxt + wi,hht−1 + bi),

ot = σ(wo,xxt + wo,hht−1 + bo),

c̃t = σ(wc,xxt + wc,hht−1 + bc),

ct = ft ◦ ct−1 + it ◦ c̃t,

ht = ot ◦ σ(ct),

(2.6)

where ft, it, and ot denote the multiplicative forget, input, and output gates,

respectively. The LSTM unit maintains cell states ct as an explicit memory

(Figure 2.5). Based on the contexts, the multiplicative gates are used to control

the flow of information. The forget gate decides information to clear from the

old cell states. The input gate decides information to update into the new

cell states. The output gate decides information to deliver to the next layers.

There are other variants of the LSTM units such as the gated recurrent units

[26]. However, large-scale analyses have shown that no clear alternatives exist

that can improve the performance significantly [27].

2.2.4 Transformers

TFMs are a type of feedforward neural networks proposed for sequence-to-

sequence learning algorithms [28]. Before going into the details, we will ex-

plain the background of the attention mechanism, which is the core princi-

ple of TFMs. The objective of sequence-to-sequence learning algorithms is to

transform a variable-length sequence from one domain to a variable-length
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sequence from another domain. For example, in a neural machine translation

problem, they aim to transform a sentence from one language into another

language. Most sequence-to-sequence learning algorithms have an encoder-

decoder model architecture [29]. As similar to autoencoders, an encoder con-

verts the input sequence into representations called a context vector. Then, a

decoder generates a transformed sequence from the context vector.

Since early sequence-to-sequence learning algorithms are based on RNNs,

the encoder’s last hidden states hn are usually used as the context vector.

However, one clear limitation is that the fixed-size context vector is often

too small to summarize all the information within long sequences. Then, the

attention mechanism was proposed to mitigate the limitation [30]. It uses

attention scores to infer how strongly a model should attend to each input

element for the generation of each output element. More specifically, rather

than using a single context vector for generation of the whole output sequence,

the attention mechanism builds a customized context vector ct for each output

element as:
ct =

n∑
i=1

αt,ihi,

αt,i =
exp(score(yt−1,hi))∑n
i′=1 exp(score(yt−1,hi′))

,

score(yt−1,hi) = σ(wa[yt−1; hi] + ba),

(2.7)

where the attention scores are obtained from a jointly trained fully-connected

layer with weight parameters wa. The context vectors are the sum of hid-

den states weighted by attention scores αt,i. Higher attention scores indicate

that the hidden state hi is more relevant for the generation of the next out-

put yt. In the machine translation, the attention scores generally match the

correspondence between words in source and target language.

While TFMs consist of various components (e.g., fully-connect feedforward

layers, residual connections, and normalization layers), the key component of

TFMs is self-attention layers (Figure 2.6). The previous attention mechanism
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Figure 2.6: A diagram showing the basic structure of a TFM [28]. This Figure
is from Lilian Weng’s blog [25], which is a combined version of Figure 1 & 2
in the original paper.

only deals with the relationships between elements from two sequences. On

the other hand, the self-attention mechanism, which is also referred to as the

intra-attention mechanism, deals with the elements in a single sentence as well.

For the encoder, it replaces the RNNs which are used to compute represen-

tations of the input sequence. Instead, the self-attention layers compute the

representations of each input element by attending to other elements of the

same sequence. Then, for the decoder, they attend to elements from both the

input sequence and the generated output sequences as well. By directly ana-

lyzing the relationships of all the pairwise elements, the self-attention layers

are more capable of capturing long-term dependencies within a sequence.

A self-attention layer is composed of multiple attention heads [28]. Given

an input sequence, X = [x1, · · · ,xn], an attention head computes the output
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representations, Z = [z1, · · · , zn] as:

zi =
n∑
j=1

αij(xjwv),

αij = exp(eij)∑n
k=1 exp(eik)

, eij = (xiwq)(xjwk)T√
dz

.

(2.8)

Each output element is a weighted sum of value vectors computed by weight

parameters wv. Each attention coefficient, αij , is computed by taking dot

products of the query vector of the current element with the key vector of

other elements computed with weight parameters wq and wk, respectively.
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2.3 Training of Deep Neural Networks

Once we have defined deep learning model architectures, the next important

step is to train the DNNs. The goal of training is to optimize the weight param-

eters in each layer so that the most suitable hierarchical representations can be

learned. Currently, most deep learning algorithms adopt gradient-based itera-

tive optimization method called gradient descent for their training [5]. Suppose

we have a DNN f where θ denotes its weight parameters. The training of f is

done by repeating the following processes with training data (x,y). First, we

use x as inputs to the DNN. It sequentially computes the representations in

hidden layers and produces prediction outputs ỹ. This process is referred to

as the forward propagation. Then, we use a pre-defined objective function to

compute training loss J(θ) = L(y, ỹ) between the true outputs and the pre-

diction outputs. The objective function is also referred to as the loss function

or the error function. The weight parameters are updated with the derivative

of the objective function with regard to the weight parameters as:

θ ←− θ − ε∇θJ(θ). (2.9)

In order to compute the gradients with regard to all the weight parameters,

the error signal is propagated backward through the DNN using the chain rule.

This process is referred to as the backward propagation or back-propagation.

The gradients of the objective function indicate its slope in the parameter

space. Thus, by iteratively modifying θ in small steps towards the opposite

direction of the gradients, we can minimize the objective function step by

step. While we can use the entire training data to compute gradients for ev-

ery parameter update, in practice, deep learning algorithms generally adopt

stochastic gradient descent which uses a minibatch of uniformly sampled ex-

amples to more efficiently estimate the gradients.

To accelerate the training of DNNs, numerous variants of stochastic gradi-
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ent descent with additional mechanisms have been developed. For example,

momentum methods accumulate gradients with an exponentially decaying

moving average to more continuously move in one direction [31]. They are

shown to accelerate learning, especially when gradients are noisy, small but

consistent, and have high curvature [5]. Meanwhile, RMSProp uses adaptive

per-parameter learning rates to accommodate sensitivity differences of each

parameters [32]. Adam combines both approaches and applies per-parameter

learning rates from the first-order and second-order moments of the gradients

[33]. While the gradient-based optimization methods vary in detail, they still

share the learning rate as one of the hyperparameters. Various learning rate

schedulers are used to gradually decrease the learning rates over time, includ-

ing step decay, exponential decay, and recently proposed cosine annealing with

warm restarts [34].

There are still numerous other factors that can significantly affect the

training of DNNs. One factor is weight initialization. A common idea is to

randomly initialize them using Gaussian distribution with zero mean. How-

ever, if the variance is set too small or large, it quickly makes all activations

become zero or one, respectively. In both cases, gradients become too small

for stable training. He initialization strategy provides a solution by adjusting

variance based on the number of weights connected to each output unit [35].

Another factor is internal covariate shift, which indicates the change of input

distributions of hidden layers due to the simultaneous updates of all the lay-

ers. It often causes insatiability of training and requires lower learning rates.

Batch normalization alleviates the problem by forcing inputs of hidden lay-

ers to have a unit Gaussian distribution at the beginning of training [36]. It

consists of two operations: (1) normalization of each input based on its mean

and variance within a minibatch, and (2) linear transformation of each input

to restore the representation power of the network.

Another essential element in the training of DNNs is how to avoid overfit-
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ting. DNNs are often too complex and trained to fit noises as well, rather than

focusing only on the relevant signals. It hurts the generalization performance

of models leading to lower training error but higher test error. Regularization

strategies put extra constraints on model parameters or the objective function

to lead to a simpler model. Norm penalties and dropout are the two most

widely used regularization strategies. Norm penalties limit the model capacity

by adding a l1 or l2 to the objective function. Dropout randomly sets some

hidden units to zero so that the model cannot heavily rely on any single rep-

resentations [37].
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2.4 Representation Learning in Bioinformatics

A variety of representation learning methods have been widely used in various

bioinformatics domains (Figure 2.7). Researchers have used different neural

network architectures (i.e., MLPs, CNNs, RNNs, and TFMs) based on their

research objectives and corresponding data characteristics. In this section, we

will briefly review previous works which used representation learning methods

in bioinformatics problems and focus on the strengths of each model archi-

tecture. We note that some contents of this section are referenced from our

review paper [7].

MLPs have strengths in analyzing high-dimensional data and discover their

complex relationships. In early works, MLPs were used more as a classifier

with pre-processed hand-crafted features as inputs. For example, expression

measurements of landmark genes were used as inputs to infer the expression

of target genes [38]. Frequency components of electroencephalography (EEG)

signals were used as inputs to classify left-hand and right-hand motor imagery

skills [39]. More recently, MLPs were often used as a component of deep au-

toencoders to learn effective highly-abstract representations. Iterative training

of deep autoencoders improved prediction of secondary structure, local back-

bone angles, and solvent accessible surface area of proteins [40]. Deep autoen-

coders were also used to learn high-level representations from breast cancer

histopathology images and detect image patches containing nuclei. With a

more advanced training method for imbalanced data and a DNA-specific reg-

ularization technique, MLPs also showed great ability for predicting splice

junctions from DNA sequences and detecting subtle non-canonical splicing

signals [41].

CNNs have strengths in discovering patterns equivariant to locations and

invariant to small transformations. Since they were originally proposed for an-

alyzing general images, numerous works proposed to analyze biomedical im-

ages using CNNs. FingerNet proposed a finger joint detection system, which
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Figure 2.7: Research examples of representation learning in bioinformatics.
(A) Prediction of a splice junction from DNA sequences with a MLP [41].
(B) Finger joint detection from X-ray images with a CNN [42]. (C) Abnormal
detection from EEG signals with a RNN [43].

is a crucial step for medical examinations of bone age, growth disorders, and

rheumatoid arthritis [42]. A cascaded CNN architecture was also proposed

to segment brain tumors from magnetic resonance images by exploiting both

local and global contextual features [44]. On the other hand, the strengths

of CNNs have also made great advances in one-dimensional data such as bi-

ological sequences. In particular, for genomic sequence analysis, they have a

significant similarity with the traditional approaches. Traditional approaches

often incorporate hard-coded position-specific scoring matrices to identify reg-

ulatory motifs. The filters in convolution layers can be understood as learnable

position-specific scoring matrices. Furthermore, they enable discovering more

complex and longer motifs, integrate cumulative effects of observed motifs,

and eventually learn more sophisticated regulatory codes [45]. For example,

DeepBind [46] and Basset [47] proposed CNN models for transcription factor

binding site prediction and 164 cell-specific DNA accessibility multitask pre-

diction, respectively. DeepSEA proposed multitask joint learning of chromatin

factors (i.e., transcription factor binding, DNase I sensitivity, histone-mark
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profile) and prioritized expression quantitative trait loci and disease-associated

genetic variants [48].

RNNs have strengths in analyzing sequential information and handling

variable-length sequence data. Thus, for biological sequence data, they have

been a natural choice of DNN architectures. While one of the early works used

RNNs with perceptron hidden units for protein secondary structure predic-

tion [49], most recent works used multiplicative hidden units such as LSTM

units or gated recurrent units. DeepMirGene [50] and DeepTarget [51] used

the LSTM units for microRNA identification and target prediction and sig-

nificantly outperformed the SOTA approaches. Furthermore, RNNs are often

combined with CNNs to better capture local discriminative patterns. DeepLoc

proposed a convolutional RNN with the long-short term memory units for sub-

cellular localization of protein sequences [52]. A similar hybrid neural network

was also proposed for sleep stage classification with time and frequency com-

ponents of pediatric scalp EEG recordings [43].

TFMs have strengths in capturing long-term dependencies within data.

Since TFMs were proposed most recently, only a couple of works have used

them for bioinformatics. Inspired by BERT (Bidirectional Encoder Represen-

tations from TFMs), BioBERT proposed a pre-trained domain-specific lan-

guage representation model for biomedical text mining [53]. By pre-training

a TFM on large-scale biomedical corpora, it showed significant performance

improvement in biomedical named entity recognition, biomedical relation ex-

traction, and biomedical question answering. In addition, TFM models have

been used for protein sequences as well. TALE proposed a TFM-based model

to annotate protein function with the joint embedding of gene ontology la-

bels [54]. TransformerCPI improved the prediction of protein interaction with

chemical compounds, which is essential for drug discovery and chemogenomics

research [55].
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2.5 Biological Sequence Data Analyses

A sequence can be defined as a series of elements where their orderings as well

as identities of each element contain critical information. As a matter of fact, a

lot of data around us are actually sequence data. Texts are sequences of words,

videos are sequences of images, and stock market data are sequences of time-

varying prices. Each word, image, and price hold essential information, but

the change of their orderings can make completely different information. For

example, think about two sentences: (1) “He can even speak English” and (2)

“Even He can speak English.” The two sentences are composed of the same five

words, but they carry entirely different meanings due to the different orderings

of words. The former implies that the fact is surprising, and the latter implies

English is easy to learn.

A lot of biological information is carried in the form of sequence data. DNA

and protein sequences have genetic information and are composed of a series

of nucleotides and amino acids, respectively. As in the previous examples, both

identities of each element and their orderings in biological sequence data con-

tain critical information. One simple example is codons. Genetic information

in DNAs is transferred to RNAs through transcription and to proteins through

translation. During the processes, three consecutive nucleotides called codons

encode corresponding amino acids. According to the identities and orderings

of nucleotides, there are 64 different codons where 61 codons encode 20 amino

acids, and the remaining three serve as the stop signals [56].

There are numerous challenges that make it more difficult to analyze bio-

logical sequence data. First, biological sequences often have variable lengths.

For instance, the number of nucleotides in a gene can vary. The variable-length

issue often complicates the analyses by requiring a model to process and gen-

eralize regardless of their lengths. One of the conventional approaches used

to circumvent the issue is feature extraction into fixed-size vectors. While dis-

tribution of k consecutive elements, called k-mer, is widely adopted, it can
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Figure 2.8: Illustration of codons. Three consecutive nucleotides of DNAs un-
dergo transcription and translation to amino acids of proteins. This figure
is redrawn from the one from National Human Genome Research Institute
webpage [56].

only capture the dependencies within k. In representation learning methods,

it is more common to truncate or pad sequences to a pre-defined length. Some

models also support the handling of variable-length data such as RNNs and

CNNs with a global max-pooling layer [7].

Another challenge is capturing both short-term and long-term dependen-

cies. Biological sequences are often extremely long, and elements in distant po-

sitions can also have close dependencies. For example, proteins naturally fold

into three-dimensional structures determined by their amino acid sequences.

As these structures have a direct impact on protein functions, amino acids

in distant positions often co-mutate to maintain the indispensable structures

[57]. Each DNN architecture holds different capabilities in capturing short-

term and long-term dependencies. While CNNs and RNNs are more capable

of capturing local patterns, recently proposed TFMs are better at capture ex-

tremely long-term dependencies by handling all pair-wise relationships equally

[28].

To analyze biological sequence data with representation learning methods,

it is necessary to pre-process and convert sequences into numerical vectors
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[58]. In the following, we will explain the pre-process procedures step-by-step.

The first step is tokenization which divides sequences into discrete segments.

While it is common to divide them into each constituent element, dividing

them into overlapping k-mers are also often adopted for some works [59]. The

second step is vocabulary construction. Considering all possible elements can

sometimes significantly increase the size of input vectors. For example, if we use

overlapping k-mers, the number of possible elements increases exponentially

with the length k. Thus, vocabulary construction limits the number of elements

to consider and handles the other elements as the same token. The third step

is variable-length handling. It truncates or pads variable-length sequences to

a pre-defined length. The last step is encoding. Most methods use one-hot

encoding. It converts an item into a binary vector, in which all the values are

set to 0 except for the one corresponding to the element is set to 1.
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2.6 Evaluation Metrics

In this section, we review both classification and regression evaluation met-

rics used in the contents of the dissertation. First, for a binary classification

problem, we can categorize a prediction result into four categories based on

the class of a target and the correctness of the prediction (Figure 2.9). True

positive (TP) and true negative (TN) indicate correctly predicted samples

for positive and negative targets, respectively. False positive (FP) and false

negative (FN) indicate incorrectly predicted samples for positive and negative

targets, respectively. Then, numerous evaluation metrics are defined based on

the categorization. The most common and familiar classification metric would

be accuracy defined as:

Accuracy = TP + TN
TP + TN + FP + FN . (2.10)

While accuracy can show the overall correctness of classification models, it does

not take account of the correctness for identifying each class. This limitation

is more critical for imbalanced datasets. Suppose we have an inactive classifier

that always outputs negative predictions and a dataset composed of 97% of

negative targets and 3% of positive targets. Then, the accuracy of the classifier

is 97% even if it cannot correctly classify any of the positive targets.

Several evaluation metrics are used to quantify the performance for iden-

tifying each class. Sensitivity and specificity measures the fraction of correct

predictions for each class as:

Sensitivity = TP
TP + FN , Specificity = TN

TN + FP .
(2.11)

Sensitivity is also referred to as recall and true positive rate. It shows how

well a classifier can correctly classify samples from positive classes. Specificity

is also referred to as true negative rate and shows how well a classifier can
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Figure 2.9: An illustration of classification evaluation metrics, i.e., accuracy,
specificity, precision, and recall (sensitivity).

correctly classify samples from negative class. While sensitivity and specificity

are defined in terms of the true class of a target, precision measures the quality

of positive predictions as:

Precision = TP
TP + FP . (2.12)

Precision shows the proportion of correctly classified samples among all the

positive predictions. High precision indicates that the classifier is trustful when

it identifies a sample as a positive class. Finally, Fβ is defined by combining

precision and recall as:

Fβ = (1 + β2) · Precision · Recall
(β2 · Precision) + Recall . (2.13)

As similar to accuracy, Fβ score shows the overall classification performance

of a classifier but also takes account for the correctness for identifying each

class. If β is set to 1, it is simply the harmonic mean of precision and recall.

If β is larger than 1, Fβ score considers recall as β times more important as
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precision.

Most classifier models produce prediction scores in real value. Then, var-

ious thresholds are used to binarize them afterward. The previous metrics

can only evaluate the binarized predictions and cannot assess the prediction

scores in terms of different thresholds. The area under the receiver operating

characteristic curve (AUROC) and the area under the precision recall curve

(AUPRC) are the two classification evaluation metrics to mitigate the limi-

tation. AUROC computes the area under a line plot of the true positive rate

(sensitivity) against the false positive rate (1-specificity) calculated at various

thresholds. AUPR computes the area under a line plot of the precision against

the recall computed at various thresholds. Higher AUROC and AUPR gen-

erally indicate that a classifier would produce higher predictions for positive

instances than negative instances. They provide more robust ways to evaluate

classifiers without selecting explicit decision thresholds.

The most straightforward regression evaluation metrics are computing the

errors between the true targets and prediction scores. For example, mean ab-

solute error (MAE) measures absolute average errors and mean squared error

(MSE) measures squared average errors as:

MAE =
∑n
i=1 |yi − pi|

n
, MSE =

∑n
i=1(yi − pi)2

n
, (2.14)

where yi and pi denote the true target and prediction score of a sample, re-

spectively. MSE is more generally used than MAE for tasks where large er-

rors should be particularly more penalized. Additionally, correlations are also

widely used to evaluate regression models. Pearson correlation r is used to

show the strength of linear relationships between the true targets and predic-

tion scores as:

r =
∑n
i=1(yi − ȳ)(pi − p̄)√∑n

i=1(yi − ȳ)2
√∑n

i=1(pi − p̄)2 , ȳ = 1
n

n∑
i=1

yi, p̄ = 1
n

n∑
i=1

pi. (2.15)
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Although Pearson correlation is useful for most regression problems, it can

be problematic if the distribution of true targets is changed. For example,

in CRISPR-Cpf1 activity prediction (Chapter 3), true activity distributions

can significantly vary for each batch of experiments due to laboratory con-

ditions, personnel differences, and many other factors [60]. This is called a

batch effect. In such cases, Spearman correlation ρ is a more robust regression

evaluation metric showing the strength of monotonic relationships between

the true targets and prediction scores. It measures the Pearson correlation

between rankings of the true targets and prediction scores rather than their

raw values.
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Chapter 3

CRISPR-Cpf1 Activity

Prediction

Targeted genome editing using CRISPR system has rapidly become a main-

stream method in molecular biology [12, 61]. Cpf1 (from Prevotella and Fran-

cisella 1), a recently reported effector endonuclease protein of the class 2

CRISPR system, has a few different characteristics from the predominant Cas9

nuclease. Although Cpf1 has broadened our options to efficiently modify genes

in various species and cell types, we still have limited knowledge on Cpf1, es-

pecially regarding its target sequence-dependent activity profiles [62, 63].

CRISPR is an innate adaptable immune mechanism of bacteria, of which

we now take advantage for efficient targeted genome editing. There are two

primary components of the CRISPR system. The first one is an endonuclease

which cuts the target sequences, and the second one is a guide RNA which

directs the endonuclease to them [9]. The CRISPR system enables us to delete,

insert or replace DNAs in the genome. However, actually, we cannot cut any

sequence in the genome. CRISPR has one constraint where it can be deployed:

it can only cut the target sequences next to a short motif called PAM [64]. This

is one of the reasons why researchers have searched for different endonucleases

having distinct PAM sequences. Currently, Cas9 and Cpf1 are the most widely
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used ones. In this chapter, we focus on Cpf1 with TTTV PAM sequence [65].

One of the biggest challenges of CRISPR technology is identifying exactly

which part of a gene to target when a researcher wants to edit the gene. There

can be thousands of potential target sites with PAM sequences. The problem

is different target sites can have different CRISPR efficiencies. Some of them

are more editable than others, but some of them rarely respond to the endonu-

cleases. Therefore, choosing a target to rectify aberrant gene sequences with

maximum efficiency has been a significant concern for researchers from across

the world [10]. There are two critical genetic and epigenetic factors that are

known to affect the CRISPR activity [11]. The genetic factor is a target se-

quence composition. The composition of a target sequence (i.e., the upstream

of the PAM sequence, the PAM sequence, protospacer which hybridizes with

the guide RNA, and the downstream of the protospacer) dictates its thermo-

dynamics and affects the CRISPR activity. The epigenetic factor is chromatin

accessibility. Generally, if the target is more accessible, it shows higher activity

since the CRISPR complex can approach the target more easily.

To date, various researchers have manually tested synthetic targets in lab-

based experiments, but very few people have the expertise, time, or budget

for the laborious work [66]. Several computational approaches have been pro-

posed for the in silico prediction of CRISPR nuclease activities. However, they

heavily relied on manual feature extraction, which inevitably limits the effi-

ciency, robustness, and generalization performance [12, 11]. To address the

limitations of existing approaches, this chapter presents an end-to-end deep

learning framework for CRISPR-Cpf1 guide RNA activity prediction, dubbed

as DeepCpf1. It incorporates (1) a CNN for feature learning from target se-

quence composition and (2) multi-modal architecture for seamless integration

of an epigenetic factor (i.e., chromatin accessibility).

To evaluate the prediction performance of DeepCpf1, we compared its per-

formance with conventional machine learning algorithms, which are current
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SOTA approaches for Cas9 activity prediction. When evaluated using Cpf1

activities at endogenous sites in two different cell lines (i.e., HEK293T and

HCT116), the proposed algorithm significantly outperformed the other ap-

proaches, reaching Spearman correlations of 0.87 and 0.77, respectively. We

also evaluated it with other published datasets of different studies from inde-

pendent laboratories and confirmed excellent generalization performance.
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3.1 Methods

3.1.1 Model Architecture

DeepCpf1 receives a 34-nucleotide target sequence as input, and it produces a

regression score that highly correlates with CRISPR-Cpf1 activity. In contrast

to previous approaches [12, 11] that relied heavily on hand-crafted features

(e.g.k-mer counts, melting temperature, and free energy), DeepCpf1 eliminates

the need for laborious manual feature engineering, leveraged by the use of a

CNN. DeepCpf1 can thus automatically learn informative representations of

target sequences relevant to CRISPR-Cpf1 activity profiles.

DeepCpf1 was implemented using Theano [67] and Keras (http://keras.io)

libraries. Figure 3.1 shows an overview of DeepCpf1, which proceeds in five

stages. (1) The one-hot encoding input layer converts the sequence into nu-

merical representations for downstream processing. It encodes the nucleotide

in each position as a 4-dimensional binary vector, in which each element rep-

resents the type of nucleotide: A, C, G, and T. The encoding layer then con-

catenates the binary vectors into a 4-by-34 dimensional binary matrix repre-

senting the 34-nucleotide target sequence. (2) The convolution layer performs

one-dimensional convolution operations with 80 filters of length 5. The filters

slide along only one axis (i.e.sequence length) of the one-hot encoded matrix

containing the four nucleotide channels. This process is equivalent to scanning

learned PWMs across the target sequence in conventional techniques. The con-

volution layer then applies the rectified linear unit (ReLU) non-linear function

[f(x)=max(0,x)] to the convolution outputs. The pooling layer computes the

average in each of the non-overlapping windows of size 2, providing invariance

to local shifts and reducing the number of parameters. (3) DeepCpf1 uses

three fully connected layers with 80, 40, and 40 units, respectively. Each unit

in the fully connected layers performs linear transformations of the previous

layer’s outputs and applies the ReLU non-linear function. Multiple non-linear
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Figure 3.1: Overview of DeepCpf1.
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layers enable the model to learn hierarchical representations of data with in-

creasing levels of abstraction. (4) The chromatin accessibility integration layer

incorporates the sequence representations with the chromatin accessibility in-

formation of the target sequence. It uses another fully connected layer with

40 units to transform the 1-dimensional binary chromatin accessibility input

to a 40-dimensional real vector, which matches the output shape of the last

fully connected layer. Then, it integrates the 40-dimensional chromatin acces-

sibility and sequence representation vectors by performing element-wise mul-

tiplication. (5) The last stage, the regression output layer, performs a linear

transformation of the outputs of the chromatin accessibility integration layer

and predicts CRISPR-Cpf1 activity.

3.1.2 Training of Seq-deepCpf1 and DeepCpf1

We trained the proposed model in two main steps: (1) Model selection and

pre-training of the entire architecture (we denote the model that has been

trained up to this step as Seq-deepCpf1) with integrated target data, and (2)

Fine-tuning with endogenous target data considering an additional chromatin

accessibility input, which led to the development of DeepCpf1 (the outcome of

the training process). In both steps, we optimized the mean squared error loss

function using the Adam optimizer [33] and used dropout [37] for the model

regularization with a 0.3 dropout rate.

First, we conducted nested cross-validation (CV) to demonstrate the relia-

bility of the model selection (Figure 3.2). In each fold of the outer 10-fold CV,

we randomly constructed training datasets with different sizes (i.e.n = 1,000,

2,000, 4,000, 8,000, and 13,500) to evaluate the performance improvements

associated with different sizes of training datasets. Each training dataset was

used for the following model selection in the inner 5-fold CV and training of

the selected model. Of note is that the validation dataset (n = 1,500) was

fixed for all of the training datasets of different sizes within the same fold of
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Figure 3.2: Diagram of nested cross-validation (CV). In the inner loop of this procedure, we performed 5-fold CV to set the
values of model hyperparameters. In the outer loop, we performed 10-fold CV to train and validate the model selected from
the inner loop of the nested CV procedure.
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the outer CV. In each fold of the inner CV, the respective training and val-

idation datasets were used to train and validate 180 model candidates with

different hyperparameter configurations of the number of filters, filter lengths,

the number of fully connected layers, and the number of units in each fully

connected layer.

After verifying the expected performance of the proposed model, we carried

out the final model selection using a 5-fold CV. Among the 180 model can-

didates with different hyperparameter configurations, we selected the model

that showed the minimum average validation loss as the final model for Seq-

deepCpf1. We then pre-trained the final model (102,681 free parameters),

learning informative representations of target sequences relevant to CRISPR-

Cpf1 activity profiles.

To take chromatin accessibility as well as the learned sequence representa-

tions into account, we adopted an additional chromatin accessibility integra-

tion layer right before the regression output layer. During the fine-tuning, we

then optimized the mean squared error loss function, only updating the weight

parameters in the last two layers (121 free parameters). By fixing the weight

parameters in the other layers, DeepCpf1 could avoid overfitting and effec-

tively learn to incorporate the sequence representations with the chromatin

accessibility information.
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3.2 Experiment Results

3.2.1 Datasets

Integrated datasets

We first obtained large-scale datasets of Cpf1 activity at 16,292 (experiment

A) and 2,963 (experiment B) lentivirally integrated target sequences using a

high-throughput method in HEK293T cells [11]. The high-throughput experi-

ments A and B led to the generation of datasets HT 1 and HT 2, respectively,

consisting of target sequence compositions and corresponding indel frequen-

cies. dataset HT 1 was split into datasets HT 1-1 (n = 15,000) and HT 1-2

(n = 1,292) by random sampling. Note that the integrated target datasets are

barely influenced by chromatin accessibility, thus can only be used for learning

the effects of target sequence composition.

For high-throughput experiments A and B, a total of 67,301 Cpf1 target

sequences (55,003 and 12,298 for experiments A and B, respectively) were de-

signed from the coding sequences of 19,565 human genes using Cpf1-Database

(http://www.rgenome.net/cpf1-database). We selected three or four Cpf1 tar-

get sequences from each gene in the majority of cases; the numbers of selected

target sequences per gene were one in 927 genes, two in 893 genes, three in

6,461 genes, four in 11,255 genes, five in seven genes, six in nine genes, seven in

eight genes, and eight in five genes. Instead of 23-nucleotide guide sequences,

we used 20nt guide sequences because this guide RNA truncation perfectly

preserves Cpf1 activity and 3’ distal nucleotides outside of the 20-nucleotide

crRNA guide sequence do not form heteroduplexes with target DNA [68].

We designed each oligonucleotide to contain the 20-nucleotide guide-RNA-

encoding sequence, 20-nucleotide barcode, and 34-nucleotide target sequence

in a total length of 130 nucleotides. For experimental convenience, the 67,301

oligonucleotides were arbitrarily divided into six groups (five groups for high-

throughput experiment A and one group for high-throughput experiment B),
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Table 3.1: Datasets for CRISPR-Cpf activity experiments.

Dataset Type Method Cell line Samples

HT 1-1 Integrated High-throughput experiment A HEK293T 15,000
HT 1-2 Integrated High-throughput experiment A HEK293T 1,292
HT 2 Integrated High-throughput experiment B HEK293T 2,963
HT 3 Integrated High-throughput experiment C HEK293T 1,251

HEK-lenti Endogenous Lentiviral transduction HEK293T 148
HEK-plasmid Endogenous Plasmid transfection HEK293T 55
HCT-plasmid Endogenous Plasmid transfection HCT116 66
Kleinstiver 2016 Endogenous Plasmid transfection U2OS 22
Chari 2017 Endogenous Plasmid transfection HEK293T 18
Kim 2016 Endogenous Plasmid transfection HEK293T 10
datasets HT 1 to 3 contained the indel frequencies at integrated target sequences and were obtained from three independent
high-throughput experiments conducted in HEK293T cells. The dataset from high-throughput experiment A was divided into datasets HT
1-1 and HT 1-2 by random sampling. Indel frequencies at endogenous human coding and non-coding regions were included in datasets
HEK-lenti, HEK-plasmid, and HCT-plasmid. In the case of the experiment for dataset HEK-lenti, indel frequencies were evaluated at both
the integrated target sequences and the corresponding endogenous target sites. Different delivery methods and cell lines were used to
generate datasets HEK-lenti, HEK-plasmid, and HCT-plasmid and are described in the table.
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which were independently synthesized by CustomArray, Inc (Bothell, WA).

For the experiments in which datasets of indel frequencies at endogenous tar-

get sites were built, 223 oligonucleotides (148 for lentiviral transduction and

75 for transient transfection) containing guide RNA-encoding sequences, bar-

codes, and target sequences were synthesized by Cellemics, Inc (Seoul, South

Korea) or Macrogen, Inc (Seoul, South Korea).

Endogenous datasets

We prepared three independent datasets of Cpf1 activities at endogenous sites

in two different cell lines, i.e.HEK293T and HCT116 (datasets HEK-lenti,

HEK-plasmid, and HCT-plasmid). Note that the endogenous target datasets

are smaller and noisier than the integrated target datasets. They are signifi-

cantly affected by chromatin accessibility.

To generate the dataset covering a wide range of DNase I sensitivities, 141

endogenous target sites were arbitrarily selected from genome regions with var-

ious DNase I sensitivities. The remaining 82 target sites were derived from four

arbitrarily selected genomic regions within chromosomes 9, 15, 19, and 228.

Indel frequencies at a total of 223 (= 141 + 82) endogenous sites were analyzed

after transfection of plasmids encoding Cpf1 and crRNA (n = 55 for HEK293T

cells and n = 66 for HCT116 cells (ATCC); 46 target sequences were shared

by both experiments) or transduction of lentivirus encoding Cpf1 and crRNA

(n = 148 for HEK293T cells). For the transfection, plasmids encoding Cpf1

(100ng) and crRNA (100ng) were delivered to 70 - 80% confluent HEK293T

or HCT116 cells on a 96-well plate via Lipofectamine 2000 (Invitrogen). The

next day, the culture medium was exchanged with DMEM supplemented with

10% FBS and 2 μg/ml of puromycin. Five days post-transfection, cells were

harvested and analyzed for deep sequencing. For the transduction, HEK293T

cells were seeded onto 48-well plates and infected with individual lentiviral

vectors encoding crRNA and target sequence pairs. After three days of trans-
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duction, cells were treated with 2 μg/ml puromycin for the following three to

five days to select against untransduced cells. Next, cells were infected with

Cpf1-encoding lentivirus, and cells were further selected with 20 μg/ml blasti-

cidin S (InvivoGen, San Diego, CA). Five days after Cpf1-encoding lentivirus

transduction, genomic DNA was isolated from the cells and subjected to deep

sequencing.

We obtained binary chromatin accessibility information for these cell lines

using DNase-seq narrow peak data from the Encyclopedia of DNA elements

[69]. For each target site, 27 bases of PAM plus protospacer sequence were

aligned to the hg19 human reference genome using bowtie [70]. Only the target

sites that overlapped with DNase-seq narrow peaks were considered as DNase

I hypersensitive target sites.

3.2.2 Baselines

To evaluate DeepCpf1, we compared its prediction performance with that of

the following learning models that previously showed SOTA Cas9 activity

prediction [12], i.e.L1-regularized linear regression, L2-regularized linear re-

gression, L1L2-regularized linear regression, and gradient-boosted regression

tree (Boosted RT), and an algorithm that was previously used for Cpf1 activ-

ity prediction, i.e.logistic regression classifier-based CINDEL [11]. Note that,

because CINDEL is a classification model rather than a regression model,

we used binary labels in this case, such that we assigned 1 to the top 20th

percentile and 0 to the rest.

For featurization of nucleotide sequences, we used a previously described

feature extraction procedure [9, 11], which included position-independent nu-

cleotides and dinucleotides, position-dependent nucleotides and dinucleotides,

melting temperature, GC counts, and the minimum self-folding free energy.

We performed nested CV for model selection among the regularization param-

eter and hyperparameter configurations, the number of which is comparable
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Figure 3.3: Nested CV of Cpf1 activity prediction models trained on different
sizes of datasets. The Spearman correlation coefficients between experimen-
tally obtained indel frequencies and predicted scores from Seq-deepCpf1 and
other conventional machine learning approaches are plotted. For the sake of
clarity, results from statistical significance testing are shown only between the
best model and the two next-best models (Seq-deepCpf1 vs. L1L2 regression,
****P = 6.5 x 10-6; Seq-deepCpf1 vs. L2 regression, ****P = 5.5 × 106;
Steiger’s test).

to the number of hyperparameter configurations used for the development of

Seq-deepCpf1 (180). For L1-, L2-, L1L2-regularized linear regression models

and CINDEL, we searched over 250 points that were evenly spaced between

10-6 and 106 in log space to optimize the regularization parameter. For the

Boosted RT, we searched over 225 models selected from the following hyperpa-

rameter configurations: the number of base estimators (chosen from [50, 100,

150, 200]), the maximum depth of the individual regression estimators (cho-

sen from [2, 4, 6, 8, 10]), the minimum number of samples to split an internal

node (chosen from [2, 4]), the minimum number of samples to be at a leaf

node (chosen from [1, 2]), and the maximum number of features to consider

when looking for the best split (chosen from [all features, the square root of

all features, the binary logarithm of all features]).
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Figure 3.4: Performance comparison of prediction models. For three indepen-
dent test datasets (HT 1-2, HT 2, HT 3), the Spearman correlation coeffi-
cients between measured indel frequencies and predicted Cpf1 activity scores
are shown. For the sake of clarity, results from statistical significance testing
are shown only for the pair of the best and the next-best models (left to right;
*P = 0.015, *P = 0.026, and n.s. = not significant; Steiger’s test).

3.2.3 Evaluation of Seq-deepCpf1

As the size of training data for the CV increased, the average Spearman cor-

relation coefficients between experimentally obtained indel frequencies and

predicted scores from Seq-deepCpf1 steadily increased up to 0.75 (Figure 3.3).

Compared to conventional machine learning algorithms that performed best

in the current SOTA approaches, the Spearman correlation of Seq-deepCpf1

in the CV was significantly higher than those of these conventional machine

learning-based algorithms, especially when the training data size was suffi-

ciently high (vs. L1L2 regression, P = 6.5 x 10-6; vs. L2 regression, P = 5.5

× 106). One of the reasons why CINDEL showed the worst performance is

at least partly because CINDEL is a classification model, which leads to the

loss of detailed information during the modeling. Furthermore, when these

algorithms were evaluated using three different test datasets of Cpf1 activity

(HT 1-2, HT 2, HT 3) that were never used during the training, the Spear-
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quences. (a) Candidate lengths for the input target sequence. (b) Nested CV
results of Seq-deepCpf1 trained with different input target sequence lengths.

man correlations of Seq-deepCpf1 were significantly higher than those of the

conventional machine learning-based algorithms (Figure 3.4). Taken together,

these results suggest that deep learning outperforms these conventional ma-

chine learning methods for the prediction of Cpf1 activity based on target

sequence composition.

For ablation studies, we conducted two additional experiments using the

nested CV. First, we compared performance of Seq-deepCpf1 models trained

with different length of target sequences 3.5. Target sequence lengths of 34-

nucleotide and 50-nucleotide showed the best performance. Of the two, 34-

nucleotide was chosen for the final input target sequence length because it led

to a simpler model with fewer parameters, reducing the possibility of potential
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overfitting. Second, we compared the performance of Seq-deepCpf1 and multi-

layer perceptron, which lacks a convolution layer 3.6. The results showed that

the convolution layer that can discover locally correlated patterns is crucial

for predicting CRISPR activity. Note that We have also performed nested CV

to select among 209 multi-layer perceptron models with similar architectures

and number of parameters as Seq-deepCpf1.

3.2.4 Evaluation of DeepCpf1

When evaluated using datasets HEK-plasmid and HCT-plasmid as test datasets,

DeepCpf1 showed substantially improved performance compared to other mod-

els (Figure 3.7). The DeepCpf1 prediction scores and measured indel frequency

ranks showed high Spearman correlations both in HEK-plasmid and HCT-

plasmid datasets, reaching 0.87 and 0.77, respectively (Figure 3.8). To the

best of our knowledge they are the highest prediction performance achieved

for any targeted nuclease. The results showed that DeepCpf1 scores can also

be used to classify efficient endogenous targets into three groups (Figure 3.9).

Based on two-sample Kolmogorov-Smirnov tests, indel frequencies were signif-

icantly different between the three groups for both HEK-plasmid (**P = 2.6
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Figure 3.7: Performance comparison of DeepCpf1 with other prediction mod-
els in HEK293T cells (left, n=55) and HCT116 cells (right, n=66). The bar
graph shows Spearman correlations between measured indel frequencies and
predicted activity scores. For the sake of clarity, results from statistical sig-
nificance testing are shown only for the DeepCpf1 versus Seq-deepCpf1 and
DeepCpf1 versus next-best models (left to right; *P = 0.041, **P = 0.003, *P
= 0.031, and **P = 0.005; Steiger’s test).
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Figure 3.8: Correlation between DeepCpf1 prediction scores and measured
indel frequency ranks at endogenous target sites in (a) HEK293T cells (n=55)
and (b) HCT116 cells (n=66). The Spearman correlations (r) and P values
(P) obtained using the student’s t-test with n-2 degrees of freedom are shown.
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We evaluated DeepCpf1 with independent endogenous datasets of differ-

ent studies from independent laboratories [71, 72, 73]. The results showed

Spearman correlations of 0.61, 0.70, and 0.79, suggesting excellent generaliza-

tion performance (Figure 3.10). Furthermore, we also fine-tuned Seq-deepCpf1

with different training datasets i.e., HEK-plasmid or HCT-plasmid, develop-

ing DeepCpf1-HEK-plasmid and DeepCpf1-HCT-plasmid, respectively. Both

models showed high Spearman correlations ranging between 0.60 – 0.83 (Fig-

ure 3.10). It confirmed that the fine-tuning strategy of DeepCpf1 is a reliable

and effective approach for improving CRISPR activity prediction.
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Figure 3.10: Heat map of Spearman correlations using different models and datasets. The test datasets are arranged vertically,
whereas the prediction models are placed horizontally. Each cross-hatched box represents Spearman correlations of a model
evaluated against a test dataset that includes its own training dataset.
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3.3 Summary

Over the last few years, genome editing using the CRISPR system has become

a crucial tool in biology. This chapter proposed a new deep learning-based al-

gorithm that predicts CRISPR-Cpf1 activity at endogenous target sites based

on both the sequence composition and chromatin accessibility of those sites.

Incorporating a multi-modal CNN architecture, we found that deep learn-

ing outperforms shallow learning and that consideration of chromatin acces-

sibility significantly improves prediction accuracy. When evaluated using en-

dogenous test datasets i.e.HEK-plasmid and HCT-plasmid, the proposed algo-

rithm showed substantially improved performance than other models, reaching

Spearman correlations of 0.87 and 0.77, respectively. Furthermore, DeepCpf1

showed excellent generalization performance in other published datasets of dif-

ferent studies from independent laboratories. This high level of performance is

in contrast to that of previously reported Cas9 activity prediction algorithms,

which showed Spearman correlations of only 0.34 – 0.44 when independent

test datasets of different studies from independent laboratories were used [68].

We have achieved a breakthrough in the development of CRISPR therapeu-

tics for human diseases. To the best of our knowledge, this is the first work to

propose a deep learning-based model for CRISPR-Cpf1 activity. Through the

newly developed computational models, researchers can now more easily iden-

tify which of the thousands of sites within a gene should be targeted to achieve

maximum efficiency. We believe this would remarkably reduce the amount of

time, effort, and money invested in CRISPR genome editing, thereby bright-

ening the future of precision medicine.

55



Chapter 4

Functional microRNA Target

Prediction

Gene expression regulation is a key component of biological processes. The

expression levels of different genes are controlled through several mechanisms.

MicroRNAs (miRNAs) play a pivotal role in the post-transcriptional regula-

tion of ≥ 60% of human protein-coding genes [13]. MiRNAs are small non-

coding RNAs that can bind to the target sites of messenger RNAs (mRNAs).

This binding leads to the repression of efficient translation of mRNAs, thereby

down-regulating the expression of target genes [74]. The effectiveness of each

target site can vary depending on the site context and the binding stability

[75]. While identifying functional targets of miRNAs is of utmost importance,

their computational prediction remains a great challenge [76].

A miRNA can target multiple mRNAs by functioning as a sequence-specific

guide. The binding is primarily directed through the interaction between the

5’ ends of a miRNA, referred to as the "seed region," and the complementary

3’ untranslated region (UTRs) of a target mRNA. Previous large-scale tran-

scriptome studies have identified several target canonical site types that form

Watson-Crick (WC) parings with the miRNA seed region [77]. The canonical

site types include 6-mer sites (matching miRNA nucleotides 2-7), 7-mer-m8
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sites (matching miRNA nucleotides 2-8), 7-mer-A1 sites (matching miRNA

nucleotides 2-7 with an A opposite nucleotide 1), and 8-mer sites (matching

miRNA nucleotides 2-8 with an A opposite nucleotide 1). More recent stud-

ies have also revealed that target non-canonical site types with G:U wobble

pairings or gaps are also prevalent [76, 78].

A variety of computational algorithms have been proposed for functional

miRNA target prediction [14]. Most of them follow a similar pipeline consist-

ing of three stages (Figure 4.1). The first stage is the selection of candidate

target sites (CTSs). Then, in the second stage, a prediction model identifies

whether each miRNA-CTS pair is functional or non-functional. Finally, in the

third stage, the predictions are post-processed to obtain a final prediction for

the miRNA-mRNA pair. In general, a miRNA-mRNA pair is predicted to be

functional if there is at least one miRNA-CTS pair predicted as functional.

Since a miRNA partially forms WC pairings to its cognate target mRNAs,

it is vital to search for CTSs based on their binding characteristics in order

to reduce the search space of a prediction algorithm. Given a miRNA-mRNA

pair, computational algorithms use a sliding window to identify CTSs from 3’

UTRs of the mRNA fulfilling specific criteria as follows: [15] considered (a)

7-mer of a mRNA that forms complete WC parings to a miRNA starting at

nucleotide 1 or 2 and (b) a region that contains at least seven WC parings

to a miRNA starting at nucleotide 1. [79] considered (a) 6-mer of a mRNA

that forms complete WC parings to a miRNA starting at nucleotide 2, (b)

4-mer of a mRNA that forms three consecutive complete WC parings to a

miRNA starting at nucleotide 13, and (c) 12-mer of a mRNA that forms

eleven consecutive complete WC parings to a miRNA starting at nucleotide

4. [80] considered (a) a region that contains at least six WC parings to a

miRNA at the nucleotides 1–10, (b) a region which contains at least seven WC

parings to a miRNA at nucleotides 1–10, and (c) a region containing at least

seven WC parings to a miRNA at nucleotides 2–10. Although these criteria
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Figure 4.1: Schematic of functional miRNA target prediction algorithms.
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enable a target prediction algorithm to reduce false positives by pre-processing

CTSs based on empirical observations, they cannot capture non-canonical site

patterns [76].

We can categorize existing miRNA target prediction models into two types:

feature extraction-based and deep learning-based models. PITA [15], mirSVR [81],

miRDB [82], and TargetScan [79] are feature extraction-based models which

utilize different features individually. PITA utilizes site accessibility to com-

pute a dynamic programming-based score. mirSVR utilizes sequence and con-

textual features to train a regression model. miRDB utilizes seed conserva-

tion features to train a SVM model. TargetScan utilizes seed conservation and

structural features to train a regression model. Each feature engineering proce-

dure depends on the research design; hence, it is difficult to define a consistent

strategy. deepTarget [51] and miRAW [80] are deep learning-based models

which utilize raw sequences as inputs. deepTarget utilizes RNN-based auto-

encoders to learn features; however, it considers only canonical site patterns

and utilizes simulated training data to compensate for the number of negative

pairs. miRAW utilizes multi-layer perceptron networks to learn features; how-

ever, it requires additional information, including binding and site accessibility

energies. Although both models exploit CTSs to reduce the search space of

algorithms, they ignore the information underlying CTSs, such as how each

CTS forms pairings, mismatches, or bulges. To fully utilize the information

underlying CTSs, we proposed a novel encoding scheme for miRNA-mRNA

pairs.

While previous computational algorithms differ in CTS selection criteria

and prediction models, they share certain significant limitations. They gener-

ally use conservative CTS selection criteria, which mainly focus on canonical

site types. Because these conservative criteria only allow a limited number

of non-canonical site types with few irregularities, they cannot capture the

complete picture of functional miRNA target prediction [15]. In addition, the
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majority of prediction models are based on feature extraction followed by the

application of conventional machine learning classifiers (e.g., linear regression

and SVMs). They rely on the discovery of new hand-crafted features and often

exploit additional information such as site location, accessibility, or minimum

free energy [83]. Nevertheless, manual feature extraction requires laborious

and time-consuming processes. This inevitably impedes the improvement of

prediction models in terms of both efficiency and performance [7]. Several

studies have recently proposed deep learning-based prediction models to au-

tomatically learn effective features [51, 80]. However, they still have not fully

capitalized on information underlying miRNA-CTS interactions. Even though

the CTS selection stage provides information on how each CTS forms pair-

ings, mismatches, or gaps to bind with the miRNA seed region, previous stud-

ies only used miRNA-CTS sequences for their prediction models. This leaves

considerable room for improvement and the development of a more effective

data-driven computational algorithm.

In this section, we introduce TargetNet, a novel deep learning-based algo-

rithm for functional miRNA target prediction. To address the previous limita-

tions, TargetNet has three key components. First, it uses relaxed CTS selection

criteria. Employing a sliding window, we align the extended seed region of a

miRNA to the UTRs of a target mRNA. Then, we consider those aligned

regions with at least 6 WC or wobble base pairings as the CTSs. Second,

TargetNet uses a novel encoding scheme for miRNA-CTS sequences to incor-

porate the alignment information. This makes it easier for the DNN to learn

features from the bindings formed by a miRNA-CTS pair. Third, TargetNet

uses a deep residual network (ResNet) with one-dimensional convolutions as

its prediction model [22]. Compared to previously used multi-layer perceptrons

and RNNs, it is more effective for RNAs where local nucleotide motifs often

have significant implications.

We used experimentally verified public datasets for empirical validation
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[80, 75]. TargetNet was trained with miRNA-CTS pair datasets and evaluated

using miRNA-mRNA pair datasets. Leveraged by these three key components,

TargetNet demonstrates significant performance improvement in functional

miRNA target classification over previous SOTA algorithms. Furthermore,

top-ranked TargetNet prediction scores exhibit a high association with the

level of miRNA-mRNA expression down-regulation, which demonstrates its

great potential for distinguishing high-functional miRNA targets.
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4.1 Methods

We propose TargetNet, a novel deep learning-based algorithm for functional

microRNA target prediction (Algorithm 1). In the following, we will explain

the details of its CTS selection, miRNA-CTS input encoding scheme, ResNet

prediction model, and post-processing procedures.

Algorithm 1 TargetNet
Input: a miRNA-mRNA pair, SmiRNA and SmRNA

Output: a prediction score, 0 ≤ pmiRNA-mRNA ≤ 1

Stage 1: Candidate target site (CTS) selection (Section 4.1.1)
1: Use a 40-nt sliding window to obtain potential CTSs from the mRNA

. SCTS
i = 〈SCTS-DS

i , SCTS-ES
i , SCTS-US

i 〉
2: Conduct a sequence alignment of miRNA-CTS pairs’ extended seed regions

. SmiRNA = 〈SmiRNA-ES, SmiRNA-DS〉

. S̃miRNA-ES, S̃CTS-ES
i = Align(SmiRNA-ES, SCTS-ES

i )
3: Filter out miRNA-CTS pairs with the alignment scores < 6

. SmiRNA and SCTS
i

Stage 2-1: Input encoding (Section 4.1.2)
4: Replace the extended region sequences with their alignment results

. S̃miRNA and S̃CTS
i

5: Encode the miRNA and CTS sequences into 5-dimensional one-hot vectors
. EmiRNA and ECTS

i

6: Concatenate the encoded miRNA-CTS vectors with zero-paddings
. Ei = Concat(〈05,EmiRNA,045−Lm〉, 〈ECTS

i ,050−Lc〉)

Stage 2-2: Prediction model (Section 4.1.3)
7: Feed the encoded the miRNA-CTS input into the input stem

. Hi,1 = Stem(Ei)
8: Feed the output from the stem into the two residual blocks

. Hi,2 = ResBlock1(Hi,1) and Hi,3 = ResBlock2(Hi,2)
9: Compute the output score for the miRNA-CTS pairs

. pmiRNA-CTS
i = Dense(MaxPool(Hi,3))

Stage 3: Post-processing (Section 4.1.4)
10: Compute the final output score for the miRNA-mRNA pair

. pmiRNA-mRNA = max(pmiRNA-CTS
1 , · · · , pmiRNA-CTS

N )
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4.1.1 Candidate Target Site Selection

Given a miRNA-mRNA pair, TargetNet first identifies CTSs that have the

potential to be binding sites. We utilized a sliding window to scan through

3’ UTRs of the mRNA (Figure 4.1). Since nucleotides beyond the seed are

also important for miRNA-CTS interaction [84], we set the sliding window

length to 40 nucleotides and its step length as one nucleotide. For each step,

the sliding window produces a potential miRNA-CTS pair checked against

the CTS selection criteria. In the following, miRNA and CTS sequences are

denoted as:
SmiRNA = (smiRNA

1 , · · · , smiRNA
Lmi ),

SCTS
i = (sCTSi,1 , · · · , sCTSi,40 ),

smiRNA
j , sCTSi,j ∈ {A, U, G, C},

(4.1)

where SmiRNA and SCTS
i are in the 5’-to-3’ and 3’-to-5’ directions, respectively.

We use subscript i to indicate that there can be multiple CTSs for a given

miRNA-mRNA pair. SmiRNA has a variable length, Lmi, which is 22 nucleotides

on average while SCTS
i has a fixed length of 40 nucleotides.

TargetNet adopts relaxed CTS selection criteria similar to those used in

miRAW. First, we divide the SmiRNA into sub-sequences as:

SmiRNA = 〈SmiRNA-ES, SmiRNA-DS〉,

SmiRNA-ES = (smiRNA
1 , · · · , smiRNA

10 ),

SmiRNA-DS = (smiRNA
11 , · · · , smiRNA

Lmi ),

(4.2)

where SmiRNA-ES and SmiRNA-DS denote the extended seed region and down-

stream nucleotides of a miRNA sequence, respectively. Similarly, we divide
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SCTS into sub-sequences as:

SCTS
i = 〈SCTS-DS

i , SCTS-ES
i , SCTS-US

i 〉,

SCTS-DS
i = (sCTSi,1 , · · · , sCTSi,5 ),

SCTS-ES
i = (sCTSi,6 , · · · , sCTSi,15 ),

SCTS-US
i = (sCTSi,16 , · · · , sCTSi,40 ),

(4.3)

where SCTS-DS
i , SCTS-ES

i , and SCTS-US
i denote the downstream, extended seed

region, and upstream nucleotides of a CTS sequence, respectively. Note that

since SCTS
i is in a 3’-to-5’ direction, the former sub-sequence is toward the 3’

end, and hence, it is called SCTS-DS
i .

Then, we conduct a sequence alignment of the extended seed regions:

S̃miRNA-ES, S̃CTS-ES
i = Align(SmiRNA-ES, SCTS-ES

i ). (4.4)

We find their best global alignment using a Biopython pairwise2 package [85].

The scoring matrix for the alignment is defined to produce a score of 1 for WC

and wobble pairings and a score of 0 for the other pairings and gaps. If there are

multiple best alignments, we use the first one obtained from the package. The

alignment results, S̃miRNA-ES and S̃CTS-ES, are composed of s ∈ {A, U, G, C, -}

representing four nucleotides and a gap. The relaxed CTS selection criteria

are met if the alignment score is at least 6. It makes minimal assumptions

regarding miRNA-CTS interactions; hence, it can accommodate a wide range

of non-canonical sites and canonical sites.

4.1.2 Input Encoding

The most distinguishing component of TargetNet, which separates it from

other deep learning-based methods, is the way it encodes a miRNA-CTS pair.

Once the CTS selection is completed, the previous works use one-hot encoding

to convert only sequences into numerical representations. In contrast, we pro-
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pose a novel encoding scheme to incorporate additional information on how

the extended seed regions of a miRNA-CTS pair are aligned and form bindings

(Figure 4.2(A)).

TargetNet input encoding takes the alignment results of the extended seed

regions (i.e., S̃miRNA-ES and S̃CTS-ES
i ) in addition to the miRNA-CTS se-

quences (i.e., SmiRNA and SCTS
i ). Specifically, we replace the extended region

sequences, SmiRNA-ES and SCTS-ES
i , with their alignment results, S̃miRNA-ES

and S̃CTS-ES
i , and convert them using one-hot encoding:

EmiRNA = Encode(〈S̃miRNA-ES, SmiRNA-DS〉)

= 〈emiRNA
1 , · · · , emiRNA

Lm 〉,

ECTS
i = Encode(〈SCTS-DS

i , S̃CTS-ES
i , SCTS-US

i 〉)

= 〈eCTSi,1 , · · · , eCTSi,Lc 〉,

(4.5)

where emiRNA
j and eCTSi,j are 5-dimensional one-hot vectors indicating that the

position is one of the 5 possible characters, {A, U, G, C, -}. Both EmiRNA and

ECTS
i have variable lengths (i.e., Lm and Lc) due to possible gaps in the

alignment results.

Finally, we perform position-wise concatenation of EmiRNA and ECTS
i with

additional zero-padding 0k ∈ R5×k as:

Ei = Concat(ÊmiRNA
, ÊCTS

i ),

ÊmiRNA = 〈05,EmiRNA,045−Lm〉, ÊCTS
i = 〈ECTS

i ,050−Lc〉.
(4.6)

Zero-paddings are used (1) to align the positions of the extended seed regions

and (2) to make Ei be a 10-by-50 sized vector. The advantage of the proposed

input encoding is that it makes it more accessible for the following ResNet

to fully capitalize on information underlying miRNA-CTS interactions. The

input vector can now represent the miRNA-CTS sequences and how pairings,

mismatches, or gaps are formed within their extended seed regions.
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4.1.3 Residual Network

Motivated by the recent successes of ResNets in computer vision problems [22],

we use a ResNet as a prediction model for TargetNet (Figure 4.2(B)). To the

best of our knowledge, this is the first work to use the ResNet for functional

miRNA target prediction.

Let fk,n be a one-dimensional convolution layer, where k and n denote the

filter lengths and the number of filters, respectively. The filters are convolved

along the length axis and learned to find motifs. Compared to other layers, it

can be more effective for RNAs where motifs have significant implications. Fur-

thermore, the filters can also be understood to be learnable position-weighted

matrices used in conventional techniques [7]. Each convolution layer is followed

by a rectified linear unit activation function and dropout regularization [37].

We use zero-padding to keep the output sizes unchanged.

First, our model has an input stem (denoted as Stem) which takes the

encoded miRNA-CTS vector as input:

Hi,1 = Stem(Ei) = f5,16(f5,16(Ei,W1),W2), (4.7)

Then, its output is feed into the two residual blocks (denoted as ResBlock1

and ResBlock2), each consisting of two convolution layers:

Hi,2 = ResBlock1(Hi,1) = Hi,1 + f3,16(f3,16(Hi,1,W3),W4),

Hi,3 = ResBlock2(Hi,2) = Hi,2 + f3,32(f3,32(Hi,2,W5),W6),
(4.8)

where Wl is the learnable parameters of the l-th layer. Let F(X) be an optimal

function to be learned by a group of layers. While standard layers (e.g., input

stem) are formulated to learn F(X) directly, residual blocks are reformulated

with skip connections to learn its residual function, R(X) := F(X) − X. It

has been shown to ease learning by enabling us (1) to pre-condition F(X) to

be closer to an identity mapping and (2) to directly propagate forward and

67



backward signals [86].

Finally, we compute the output score 0 ≤ pmiRNA-CTS
i ≤ 1, which indicates

how likely a given miRNA-CTS pair is functional. Hi,3 is fed into a max-

pooling layer and a dense layer (denoted as MaxPool and Dense, respectively)

as:

pmiRNA-CTS
i = Dense(MaxPool(Hi,3),W7), (4.9)

where W7 denotes the learnable parameters of the dense layer. The max-

pooling layer reduces the output sizes by computing the channel-wise maxi-

mum value for non-overlapping windows of size 3. We use a sigmoid function

as an activation function for the dense layer.

For training of the ResNet prediction model, we use binary cross-entropy

objective function defined as:

L = −(y log(pmiRNA-CTS) + (1− y) log(1− pmiRNA-CTS)), (4.10)

where y ∈ {0, 1} specifies the label for a given miRNA-CTS pair. Note that

we use miRNA-CTS pair datasets to train the prediction model rather than

miRNA-mRNA pair datasets (Section 4.2.1). We use Adam optimizer [33], a

training epoch size of 50, a mini-batch size of 256, a learning rate of 0.001,

and a dropout probability of 0.5.

4.1.4 Post-processing

In the final stage, the output scores are post-processed to obtain a final score

for a miRNA-mRNA pair. We use the maximum value from the scores for each

miRNA-CTS pair. Formally, if there are N CTSs in a mRNA, we get output

scores pmiRNA-CTS
1 , · · · , pmiRNA-CTS

N for each CTS. The final score pmiRNA-mRNA

for a miRNA-mRNA pair is reported by:

pmiRNA-mRNA = max(pmiRNA-CTS
1 , · · · , pmiRNA-CTS

N ). (4.11)
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This results in the prediction of a miRNA-mRNA pair as functional if there is

at least one functional miRNA-CTS pair. For the binary classification of func-

tional targets, we used a threshold of 0.5 to binarize the final score pmiRNA-mRNA.

Note that in contrast to miRAW, we do not exploit any additional filters based

on site accessibility or minimum free energy.
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4.2 Experiment Results

In the following subsections, we will explain the experiment datasets, eval-

uation results for both binary functional target classification and real-valued

high-functional target regression, and ablation studies for different components

of TargetNet. All models were implemented using PyTorch library [87].

4.2.1 Datasets

miRNA-mRNA Pair Datasets

The complete TargetNet algorithm was evaluated with two types of experi-

mentally verified miRNA-mRNA pair datasets, (1) miRAW and (2) log fold

change (LFC) test datasets.

First, we used miRAW test datasets with binary labels indicating func-

tional and non-functional targets [80]. They originated from DIANA-TarBase

[88] and MirTarBase [89] databases. After removing duplicated samples, they

consisted of 309,912 positive and 1,096 negative miRNA-mRNA pairs. Then,

they were split in half and used for the train-validation (Section 4.2.1) and

test datasets, respectively. The authors generated ten randomly sampled test

datasets, consisting of 548 positive and 548 negative pairs. The miRAW test

datasets can help us evaluate the functional miRNA target classification per-

formance of TargetNet.

Second, we used LFC test datasets with real-valued labels indicating the

level of functionality of miRNA targets [75]. They contained 32,499 miRNA-

mRNA pairs from 11 microarrays. In each microarray, a miRNA was trans-

fected into HeLa cells, and the log fold change of mRNA expression down-

regulation was measured. Thus, more negative labels indicate more functional

miRNA-mRNA pairs. The LFC test datasets can help us to evaluate how well

TargetNet distinguishes high-functional miRNA targets.
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miRNA-CTS Pair Datasets

The prediction model of TargetNet was trained with miRAW miRNA-CTS

pair datasets. To obtain miRNA-CTS pairs from the excluded miRNA-mRNA

pairs, the authors pre-processed the positive pairs in two ways. One was cross-

referencing with binding sites from PAR-CLIP [90] and CLASH [91], and

keeping miRNA-CTS pairs that form stable duplexes. The other was cross-

referencing with conserved sites from TargetScanHuman [79]. The negative

pairs were pre-processed using a sliding window to identify miRNA-CTS pairs

forming stable duplexes. The stability was measured with RNACofold [92] by

checking whether their secondary structures produce negative free energy.

Since the miRAW dataset split was based on miRNA-mRNA pairs (Section

4.2.1), similar miRNAs can be distributed in both train-validation and test

datasets. In other words, there can be a concern that experiments with miRAW

datasets only enable us to evaluate generalization performance in terms of

different targets. Thus, we used independent LFC test datasets to further

evaluate generalization performance in terms of other miRNAs. We filtered out

miRNA-CTS pairs so that no two miRNAs from the miRAW train-validation

and LFC test datasets have Levenshtein edit distance lower than 7. Then,

we randomly selected 20 miRNAs and used 2,385 positive and 2,264 negative

miRNA-CTS pairs as a validation set. The remaining pairs containing 26,803

positive and 27,341 negative pairs were used as a training set.

4.2.2 Classification of Functional and Non-functional Targets

We compared the performance of TargetNet with six SOTA target predic-

tion algorithms. PITA [15], miRDB [82], miRanda [81], and TargetScan [79]

are feature extraction-based algorithms. deepTarget [51] and miRAW [80] are

deep learning-based algorithms. First, we compared their classification per-

formance. We used six binary classification evaluation metrics, including F1

score, accuracy, precision, recall, specificity, and negative precision.
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Table 4.1: Functional miRNA target classification results.

Method F1 Score Accuracy Precision Recall Specificity

PITA 0.2162 0.5053 0.5196 0.1365 0.8741
miRDB 0.2110 0.5373 0.7135 0.1239 0.9507
miRanda 0.3568 0.5001 0.4997 0.2775 0.7226
TargetScan 0.4712 0.5577 0.5852 0.3945 0.7208

deepTarget 0.4904 0.6521 0.8332 0.3477 0.9354
miRAW 0.7289 0.7055 0.6749 0.7923 0.6186

TargetNet 0.7739 0.7251 0.6572 0.9411 0.5091

Table 4.1 presents the averaged classification performance on the miRAW

test datasets. The results demonstrated that TargetNet outperforms the other

SOTA algorithms in general performance measures, namely, F1 score and ac-

curacy. The F1 score and accuracy differences between TargetNet and the

second-best algorithm, miRAW, were statistically significant with p-values of

1.1 × 10−5 and 2.1 × 10−3, respectively. For the evaluation of statistical sig-

nificance, we used the two-sample Kolmogorov-Smirnov test [93]. Its rejected

null hypothesis is that the two independent groups of samples (e.g., F1 scores

obtained from TargetNet and miRAW) are from the same distributions.

While the other models, PITA, miRDB, miRanda, TargetScan, and deep-

Target, exhibited high specificity, they failed to classify a large number of

functional miRNA targets correctly. This is mainly due to their conserva-

tive CTS selection criteria, which neglect the majority of non-canonical site

types. On the other hand, TargetNet and miRAW used more relaxed CTS

selection criteria, which resulted in their higher recall. Since TargetNet and

miRAW share similar CTS selection criteria and the same training dataset,

their comparison can illustrate the effectiveness of the prediction model. The

performance improvement indicates that the proposed encoding scheme and

ResNet architecture can better capture the information underlying miRNA-

CTS interactions.
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Table 4.2: Classification results with different CTS selection criteria.

Criteria Method F1 Score Precision Recall

miRAW-6-1:10 miRAW 0.7289 0.6749 0.7923
TargetNet 0.7491 0.7277 0.6945

miRAW-7-1:10 miRAW 0.7069 0.7188 0.6956
TargetNet 0.7388 0.7242 0.7014

miRAW-7-2:10 miRAW 0.7222 0.7193 0.7255
TargetNet 0.7422 0.7282 0.7056

TargetScan miRAW 0.5325 0.7859 0.4029
TargetNet 0.6747 0.6923 0.7155

PITA miRAW 0.5694 0.7654 0.4537
TargetNet 0.6901 0.6979 0.7081

We investigated more closely how CTS selection criteria affect classification

performance on miRAW test datasets. While keeping the other stages intact,

we evaluated miRAW and TargetNet using five different CTS selection criteria.

Note that miRAW-6-1:10 is identical to the one used in TargetNet, except that

it uses a sliding window step length of 5 nucleotides. From Table 4.2, we can

make the following observations. First, regardless of the CTS selection criteria,

TargetNet consistently outperformed miRAW in terms of the F1 score. This

once again demonstrated the effectiveness of the proposed model. Second,

using more conservative criteria deteriorates the performance of both miRAW

and TargetNet. It filters out most of the candidate targets before using the

prediction models, thus resulting in significant drops of recall and F1 score.

4.2.3 Distinguishing High-functional Targets

Next, we examined the association between the level of expression down-

regulation and the top-ranked prediction scores over a broad range of cutoffs.

We used independent LFC test datasets that do not contain any miRNAs sim-

ilar to those in the miRAW train-validation dataset. Note that miRDB and

TargetScan were trained with target expression data, thus, have a significant
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Figure 4.3: Performance of target prediction algorithms on distinguishing high-functional targets. (A) Mean log fold changes of
miRNA-mRNA expression down-regulation for top-ranked predictions. (B) Per-miRNA LFC score distributions for top-ranked
predictions. The hatched bars and boxes indicate the results from algorithms trained using target expression data.
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advantage in this task. In Figure 4.3, we used hatched boxes to differentiate

their results from the others.

Figure 4.3(A) presents the mean expression log fold changes of the top-

ranked predictions. We ranked 32,499 miRNA-mRNA pairs from the LFC

dataset according to the scores of each algorithm. Then, from the top-ranked

predictions, the averages of their expression log fold change values were plot-

ted. The results showed that the top TargetNet predictions were highly as-

sociated with the level of target expression down-regulation. As we select a

smaller number of top-ranked predictions from TargetNet, we can observe

more repressed, thus, more functional targets. Even though the proposed al-

gorithm does not exploit any expression training data, it shows comparable

performance with miRDB and TargetScan. Compared to the other algorithms,

TargetNet significantly outperformed both feature extraction-based and deep

learning-based algorithms.

To more quantitatively evaluate the distinguishing high-functional targets,

we propose a novel LFC score defined as:

sLFC = 1−
∑
k

(m
true
k −mpred

k

mtrue
k

)2,

k ∈ {10, 30, 50, 100, 500, 1000},

(4.12)

where mtrue
k and mpred

k denote the mean log fold change of the top-k predic-

tions in terms of true expression values and prediction scores, respectively. The

proposed score quantifies the strength of the association between the level of

expression down-regulation and the top-ranked prediction scores. The better

a prediction algorithm is, the more its scores resemble the true values and

its sLFC is closer to 1. Figure 4.3(B) presents the per-miRNA sLFC distribu-

tions for top-ranked predictions. TargetNet provides competitive performance

with miRDB and miRanda. The results demonstrated its great potential for

distinguishing high-functional miRNA targets.
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Table 4.3: Ablation studies on the prediction model of TargetNet.

Alignment
Encoding

Skip
Connection

Number of
Blocks

Widening
Factor F1 Score

BASE TRUE TRUE 2 1 0.8230

(A) FALSE TRUE 2 1 0.7204

(B) TRUE FALSE 2 1 0.7743

(C)
TRUE TRUE 2 0.5 0.7955
TRUE TRUE 2 2 0.8102
TRUE TRUE 4 1 0.7362

4.2.4 Ablation Studies

Table 4.3 presents the results of the ablation studies to better understand

TargetNet prediction models. We varied the components of the base model

and measured the classification performance on the miRAW validation set.

In row (A), we can observe that disregarding the proposed alignment input

encoding significantly degrades the model performance. This suggests that in-

corporating extended seed region alignments provides invaluable information

for functional miRNA prediction. In row (B), we replaced our ResNet model

with a conventional CNN by removing the skip connections. Note that the

compared model has the same number of parameters as the base model. Thus,

the performance drop confirms that the residual connection enables more effi-

cient training of the model. Finally, in rows (C), we varied the number of blocks

and the number of filters by a widening factor. While doubling the number

of filters produced similar results to the base model, other model complexity

alterations resulted in inferior classification performance.
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4.3 Summary

We proposed a deep learning-based algorithm for functional miRNA target

prediction. TargetNet adopts relaxed CTS selection criteria to accommodate

a variety of non-canonical and canonical site types. We introduced a novel in-

put encoding scheme to embrace both miRNA-CTS sequences and how their

extended seed regions form bindings. Then, we used ResNet to capture the

information underlying miRNA-CTS interactions. Our experimental results

supported that TargetNet demonstrates not only significant performance im-

provement in functional miRNA target classification but also its top-ranked

prediction scores show a high association with the level of miRNA-mRNA

expression down-regulation.
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Chapter 5

Self-supervised Learning of

Protein Representations

Proteins consisting of amino acids are among the most versatile molecules in

living organisms. They serve vital functions in biological mechanisms, e.g.,

transporting other molecules and providing immune protection [94]. The ver-

satility of proteins is generally attributed to their diverse structures. Proteins

naturally fold into three-dimensional structures determined by their amino

acid sequences. These structures have a direct impact on their functions.

With the development of next-generation sequencing technologies, pro-

tein sequences have become relatively more accessible. However, annotating

a sequence with meaningful attributes is still time-consuming and resource-

intensive. To bridge the exponentially growing gap between the numbers of

unlabeled and labeled protein sequences, various in silico approaches have

been widely adopted for predicting the characteristics of proteins [16].

Sequence alignment is a key technique in computational protein biology.

Alignment-based methods are used to compare protein sequences using care-

fully designed scoring matrices or HMMs [95, 96]. Correct alignments can

group similar sequences, provide information on conserved regions, and help

investigate uncharacterized proteins. However, its computational complexity
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increases exponentially with the number of proteins, and it has difficulties in

identifying distantly related proteins. Homologous proteins sharing a common

evolutionary ancestor can have high sequence-level variations [97]. Therefore,

a simple comparison of sequence similarities often fails to capture the global

structural and functional similarities of proteins.

Building upon the success of deep learning, several studies proposed deep

learning algorithms for computational protein biology. Some of these algo-

rithms only use raw protein sequences, whereas others may use additional

features [7]. They have advanced the SOTA for various protein biology tasks.

However, development of these algorithms requires highly task-specific pro-

cesses, e.g., training a randomly initialized model from scratch. It demands

careful consideration of the model architectures and hyperparameters tailored

for each task. Additional features, such as alignment-based features or known

structural traits, may also be required for some tasks [19].

Transfer learning is an important cornerstone of deep learning. For ex-

ample, in natural language processing, word representations are pre-trained

using a huge amount of unlabeled text [98, 99]. The learned information can

be transferred to a wide range of tasks by training task-specific models on top

of the pre-trained word representations. The crux of transfer learning is how to

pre-train representations. Several studies have proposed language model (LM)-

based approaches that can exploit unlabeled data. The key idea is that ideal

representations must convey syntactic and semantic information, and thus we

must be able to use a representation of a token to predict its neighboring

tokens.

For example, embeddings from language models (ELMo) learned contex-

tualized representations by adopting forward and reverse RNNs [100]. Given

a sequence of tokens without additional labels, the forward RNN sequentially

processes the sequence left-to-right. It is trained to predict the next token,

given its history. The reverse RNN is similar but processes the sequence in
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reverse, right-to-left. After the pre-training, the hidden states of both RNNs

are merged into a single vector representation for each token. Thus, the same

token can be transformed into different representations based on its context.

The major limitation of ELMo is that RNNs are trained using unidirectional

LM and simply combined afterward. As valuable information often comes from

both directions, unidirectional LM is inevitably suboptimal. To address this

problem, BERT was proposed to pre-train bidirectional natural language rep-

resentations using the TFM model [99]. Instead of the conventional LM, BERT

utilizes an masked language modeling (MLM) pre-training task. It masks some

input tokens at random and trains the model to predict them from the context.

In addition, BERT includes a complementary NLP-specific pre-training task,

next sentence prediction, which enables the learning of sentence relationships

by training a model to predict whether a given pair of sentences is consecutive.

Now, the natural question is: can protein biology also take advantage of

semi-supervised learning? According to the linguistic hypothesis [57], naturally

occurring proteins are not purely random. Evolutionary pressure constrains

them to a learnable manifold where indispensable structures and functions are

maintained. Thus, by observing many unlabeled protein sequences, we can ob-

tain an implicit understanding of the language of proteins. Several studies have

recently proposed LM-based pre-training methods for protein transfer learning

[18, 101, 102, 103]. Taking advantage of a large number of unlabeled protein

sequences, it was demonstrated that pre-trained protein representations con-

vey biochemical, structural, and evolutionary information. Therefore, accord-

ing to the recent benchmark results from tasks assessing protein embeddings

(TAPE), pre-trained representations can help improve model performance in

various protein biology tasks [19].

The most closely related previous methods to our work are P-ELMo [17]

and UniRep [18]. They have some common limitations and still often lag be-

hind task-specific models [19]. First, they learn unidirectional representations
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from unlabeled datasets. Unidirectional representations are sub-optimal for

numerous protein biology tasks, where it is crucial to assimilate global infor-

mation from both directions. Note that we do not consider combination of

two unidirectional representations as bidirectional representations since they

were simply combined after the unidirectional pre-training. Second, most pre-

training methods solely rely on LM to learn from unlabeled protein sequences.

Although LM is a simple and effective task, a complementary pre-training

task tailored for each data modality has been often the key to further im-

prove the quality of representations in other domains. For instance, in NLP,

BERT adopted the next sentence prediction task. In another example, AL-

BERT devised a complementary sentence order prediction task to model the

inter-sentence coherence and yielded consistent performance improvements for

downstream tasks [104]. Similarly, a complementary protein-specific task for

pre-training might be necessary to better capture the information contained

within unlabeled proteins.

In this section, we introduce a novel pre-training method for protein se-

quence modeling and name it PLUS, which stands for Protein sequence rep-

resentations Learned Using Structural information. PLUS consists of masked

language modeling (MLM) and an additional complementary protein-specific

pre-training task, same-family prediction (SFP). SFP leverages computation-

ally clustered protein families [105] and helps to better capture the global

structural information within unlabeled protein sequences. We use PLUS to

pre-train a BiRNN and refer to the resulting model as PLUS-RNN. This pre-

trained universal model is fine-tuned on various downstream tasks without

training randomly initialized task-specific models from scratch. Our experi-

ment results demonstrate that PLUS-RNN outperforms other models of simi-

lar size solely pre-trained with the conventional LM in six out of seven widely

used protein biology tasks. The seven tasks include three protein-level classi-

fication, two protein-level regression, and two amino-acid-level classification.
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PLUS provides a novel way to exploit evolutionary relationships among unla-

beled proteins and is broadly applicable across protein biology tasks. Further-

more, we also compare PLUS with larger SOTA protein LMs using the addi-

tional heat shock protein (HSP) identification task. Finally, we also present the

results from our qualitative interpretation analyses to illustrate the strengths

of PLUS-RNN.
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5.1 Methods

5.1.1 Pre-training Procedure

We introduce PLUS (Figure 5.1), a novel pre-training method for protein se-

quence modeling. PLUS can be used to pre-train various model architectures

that transform a protein sequence X = [x1, · · · ,xn] into a sequence of bidi-

rectional representations Z = [z1, · · · , zn]. In this work, we use it to pre-train

a BiRNN and refer to the resulting model as PLUS-RNN. PLUS consists of

two pre-training tasks: MLM and SFP. It can help the model to learn struc-

turally contextualized bidirectional representations. The complete pre-training

objective loss is defined as:

LPT = λPTLMLM + (1− λPT)LSFP (5.1)

where LMLM and LSFP are the MLM and SFP objective losses, respectively.

We use a hyperparameter λPT to control the relative importance of the MLM

and SFP objective losses.

Task #1: Masked Language Modeling (MLM)

Given a protein sequence,X, we randomly select 15% of the amino acids. Then,

for each selected amino acid xi, we randomly perform one of the following

procedures. For 80% of the time, we replace xi with the token denoting an

unspecified amino acid. For 10% of the time, we randomly replace xi with one

of the 20 proteinogenic amino acids. Finally, for the remaining 10%, we keep

xi intact. This is to bias the learning toward the true amino acids. For the

probabilities of masking actions, we follow those used in the pre-training of

BERT [99].

PLUS-RNN transforms a masked protein sequence, X̂, into a sequence of

bidirectional representations. Then, we use an MLM decoder to compute log

probabilities for X̃ over 20 proteinogenic amino acid types. The MLM task
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Figure 5.1: Overview of PLUS pre-training method. (A) We randomly mask 15% of amino acids (gray boxes) in each protein.
(B) PLUS-RNN transforms protein sequences into sequences of bidirectional representations. (C) PLUS consists of two pre-
training tasks. Masked language modeling trains a model to predict the masked amino acids (colored red within white boxes)
given their contexts. Same-family prediction trains a model to predict whether a pair of proteins belongs to the same protein
family.
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trains the model to maximize the probabilities corresponding to the masked

amino acids. As the model is designed to accurately predict randomly masked

amino acids, the learned bidirectional representations must convey syntactic

and semantic information within protein sequences.

Task #2: Same-Family Prediction (SFP)

Considering that additional pre-training tasks has been often the key for im-

proving the quality of representations in other domains [99, 104], we devise a

complementary protein-specific pre-training task. The SFP task trains a model

to predict whether a given protein pair belongs to the same protein family.

The protein family labels provide weak structural information and help the

model learn structurally contextualized representations. Note that PLUS is

still a semi-supervised learning method; it is supervised by computationally

clustered weak labels rather than human-annotated labels.

We randomly sample two protein sequences, Xa and Xb, from the training

dataset. In 50% of the cases, two sequences are sampled from the same protein

family. For the other 50%, they are randomly sampled from different families.

PLUS-RNN transforms the protein pair into sequences of representations Za =

[za1, · · · , zan1 ] and Zb = [zb1, · · · , zbn2 ]. Then, we use a soft-align comparison [17]

to compute their similarity score, ĉ, as a negative weighted sum of l1-distances

between every zai and zbj pair:

ĉ = − 1
C

n1∑
i=1

n2∑
j=1

ωij
∥∥∥zai − zbj

∥∥∥
1
, C =

n1∑
i=1

n2∑
j=1

ωij , (5.2)

where weight ωij of each l1-distance is computed as

ωij = 1− (1− αij)(1− βij),

αij =
exp(−

∥∥∥zai − zbj
∥∥∥

1
)∑n2

k=1 exp(−
∥∥zai − zbk

∥∥
1)
, βij =

exp(−
∥∥∥zai − zbj

∥∥∥
1
)∑n1

k=1 exp(−
∥∥∥zak − zbj

∥∥∥
1
)
.

(5.3)
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Intuitively, we can understand the soft-align comparison as computing an ex-

pected alignment score, where they are summed over all the possible align-

ments. We suppose that the smaller the distance between representations, the

more likely it is that the pair of amino acids is aligned. Then, we can consider

αij as the probability that zai is aligned to zbj , considering all the amino acids

from Zb (and vice versa for βij). As a result, ĉ is the expected alignment score

over all possible alignments with probabilities ωij . Note that the negative signs

are applied for converting distances into scores. Therefore, a higher value of ĉ

indicates that the pair of protein sequences is structurally more similar.

Given the similarity score, the SFP output layer computes the probabil-

ity that the pair belongs to the same protein family. The SFP task trains

PLUS-RNN to minimize the cross-entropy loss between the true label and the

predicted probability. As the model is designed to produce higher similarity

scores for proteins from the same families, learned representations must convey

global structural information.

5.1.2 Fine-tuning Procedure

The fine-tuning procedure of PLUS-RNN follows the conventional usage of

BiRNN-based prediction models. For each downstream task, we add one hid-

den layer and one output layer on top of the pre-trained model. Then, all

the parameters are fine-tuned using task-specific datasets. The complete fine-

tuning loss is defined as:

LFT = λFTLMLM + (1− λFT)LTASK (5.4)

where LTASK is the task-specific loss. LMLM is the regularization loss. We use

λFT to control their relative importance.

The model’s architectural modifications for the three types of downstream

tasks are as follows. For tasks involving a protein pair, we use the same compu-

tations used in the SFP pre-training task. Specifically, we replace only the SFP
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output layer with a new output layer. For single protein-level tasks, we adopt

an additional attention layer to aggregate variable-length representations into

a single vector [30]. Then, the aggregated vector is fed into the hidden and

output layers. For amino-acid-level tasks, representations of each amino acid

are fed into the hidden and output layers.

5.1.3 Model Architecture

PLUS can be used to pre-train various model architectures including BiRNN

and the TFM. The resulting models are referred to as PLUS-RNN and PLUS-

TFM, respectively. In this work, we mainly used PLUS-RNN, because of its

two advantages over PLUS-TFM. First, it is more effective for learning the

sequential nature of proteins. The self-attention layer of the TFM performs

dot products between all pairwise tokens regardless of their positions within

the sequence. In other words, it provides an equal opportunity for local and

long-range contexts to determine the representations. Although this facilitates

the learning of long-range dependencies, the downside is that it completely

ignores the locality bias within a sequence. This is particularly problematic for

protein biology, where local amino acid motifs often have significant structural

and functional implications [106]. In contrast, RNN sequentially processes a

sequence, and local contexts are naturally more emphasized.

Second, PLUS-RNN provides lower computational complexity. Although

the model hyperparameters have an effect, the TFM-based models generally

demand a larger number of parameters than RNNs [28]. Furthermore, the

computations between all pairwise tokens in the self-attention layer impose

a considerable computational burden, which scales quadratically with the in-

put sequence length. Considering that pre-training typical TFM-based models

handling 512 tokens already requires tremendous resources [99], it is compu-

tationally difficult to use TFMs to manage longer protein sequences, even up

to a few thousand amino acids.
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In this section, we explain the architecture of PLUS-RNN. First, an input

embedding layer, EM, embeds each amino acid, xi, into a de-dimensional dense

vector, ei:

E = [e1, · · · , en], ei = EM(xi). (5.5)

Then, a BiRNN of L-layers computes representations as a function of the entire

sequence. We use long short-term memory as the basic unit of the BiRNN [24].

In each layer, the BiRNN computes dh-dimensional forward and backward

hidden states (
−→
hli and

←−
hli) and combines them into a hidden state, hli, using a

non-linear transformation:

−→
hli = σ(

−−→
Wl

xhl−1
i +

−−→
Wl

hhli−1 +
−→
bl),

←−
hli = σ(

←−−
Wl

xhl−1
i +

←−−
Wl

hhli+1 +
←−
bl),

hli = σ(Wl
h[
−→
hli;
←−
hli] + bl) for l = 1, · · · , L,

(5.6)

where h0
i = ei; W and b are the weight and bias vectors, respectively. We use

the final hidden states, hLi , as representations, ri, of each amino acid:

R = [r1, · · · , rn], ri = hLi . (5.7)

We adopt an additional projection layer to obtain smaller dz-dimensional rep-

resentations zi of each amino acid with a linear transformation:

Z = [z1, · · · , zn], zi = Proj(ri). (5.8)

During pre-training, to reduce computational complexity, we use R and Z for

the MLM and SFP tasks, respectively. During fine-tuning, we can use either

R or Z, considering the performance on development sets or based on the

computational constraints.

We use two models with the fixed de of 21 and dz of 100:

• PLUS-RNNBASE: L = 3, dh= 512, 15M parameters
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• PLUS-RNNLARGE: L = 3, dh= 1024, 59M parameters

The hyperparameters (i.e., L and dh) of PLUS-RNNBASE are chosen to match

the BiRNN model architecture used in P-ELMo [17]. However, as P-ELMo

uses additional RNNs, PLUS-RNNBASE has less than half the number of pa-

rameters that P-ELMo has (32M).
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5.2 Experiment Results

5.2.1 Experiment Setup

Pre-training Dataset

We used Pfam (release 27.0) as the pre-training dataset [105]. After pre-

processing, it contained 14,670,860 sequences from 3,150 families. The Pfam

protein family was computationally constructed by comparing sequence simi-

larity using alignments. Owing to the loose connection between sequence and

structure similarities, the family labels only provide weak structural informa-

tion [107]. Note that we did not use any human-annotated labels. Therefore,

pre-training does not result in biased evaluations in fine-tuning tasks.

Fine-tuning Tasks

We evaluated PLUS-RNN on seven protein biology tasks. The datasets were

curated and pre-processed by the cited studies. In the main manuscript, we

provide concise task definitions and evaluation metrics.

Homology is a protein-level classification task [108]. The goal is to classify

the structural similarity level of a protein pair into family, superfamily, fold,

class, or none. We report the accuracy of the predicted similarity level and

the Spearman correlation, ρ, between the predicted similarity scores and the

true similarity levels. Furthermore, we provide the average precision (AP) from

prediction scores at each similarity level.

Solubility is a protein-level classification task [109]. The goal is to predict

whether a protein is soluble or insoluble. We report the accuracy of this task.

Localization is a protein-level classification task [52]. The goal is to clas-

sify a protein into one of 10 subcellular locations. We report the accuracy of

this task.

Stability is a protein-level regression task [110]. The goal is to predict a

real-valued proxy for intrinsic stability. This task is from TAPE [19], and we
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report the Spearman correlation, ρ.

Fluorescence is a protein-level regression task [111]. The goal is to predict

the real-valued fluorescence intensities. This task is from TAPE, and we report

the Spearman correlation, ρ.

Secondary structure (SecStr) is an amino-acid-level classification task

[112]. The goal is to classify each amino acid into eight or three classes, that

describe its local structure. This task is from TAPE. We report both the three-

way and eight-way classification accuracies (Q8/Q3) of this task.

Transmembrane is an amino-acid-level classification task [113]. The goal

is to detect amino acid segments that cross the cell membrane. We report the

accuracy of this task.

Baselines

We provided several baselines for comparative evaluations. Note that since

up-scaling of models and datasets often provide performance improvements,

we only considered those with a similar scale of model sizes and pre-training

datasets to focus on evaluating the pre-training methods.

First, in all the tasks, we used two baselines: P-ELMo and PLUS-TFM.

The former has a model architecture similar to PLUS-RNNBASE; thus, it can

show the effectiveness of the pre-training method. The latter is pre-trained

with PLUS, so it can show the effectiveness of the BiRNN compared to the

TFM architecture.

Second, for the tasks from TAPE, we provide their reported baselines:

P-ELMo, UniRep, TAPE-TFM, TAPE-RNN, and TAPE-ResNet. Note that

these comparisons are in their favor, as they used a larger pre-training dataset

(32M proteins from Pfam release 32.0). The TAPE baselines can demonstrate

that PLUS-RNN outperforms models of similar size solely pre-trained with

the LM.

Finally, we benchmarked PLUS-RNN against task-specific SOTA models
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Table 5.1: Results on pre-training tasks.

Method (M)LM (acc) SFP (acc)

PLUS-TFM 0.37 0.98
PLUS-RNNBASE 0.33 0.96
PLUS-RNNLARGE 0.37 0.97

P-ELMo∗ 0.29 -
P-ELMo† 0.28 -
UniRep† 0.32 -
TAPE-TFM† 0.45 -
TAPE-RNN† 0.40 -
TAPE-ResNet† 0.41 -
∗Our experiments (Pfam 27.0). †Excerpted from TAPE (Pfam 32.0).

trained from scratch. If no deep learning-based baseline exists for a given

task, we provided RNNBASE and RNNLARGE models without pre-training.

The comparison with those exploit additional features can help us identify the

tasks for which the proposed pre-training method is most effective and help

us understand its current limitations.

5.2.2 Pre-training Results

Table 5.1 lists the test accuracies for the MLM and SFP pre-training tasks.

Only the models pre-trained with PLUS were evaluated for the SFP task. Note

that our experiments and TAPE used different test datasets; care should be

taken in comparing them. Nonetheless, we can still indirectly compare them,

considering the following. First, both the test datasets comprised randomly

sampled proteins from different versions of the Pfam dataset (27.0 for PLUS

and 32.0 for TAPE). Second, P-ELMo was evaluated in both datasets and

showed similar LM accuracies. This indicates that the difference between the

two datasets is negligible.

We can see that some models have lower LM accuracies than others. How-

ever, the lower LM capability does not precisely correspond to the performance

in fine-tuning tasks. This discrepancy has been previously observed in TAPE,
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and it can also be observed in the following sections. In terms of SFP, all the

models pre-trained with PLUS exhibited high accuracies. As the Pfam fami-

lies were constructed based only on sequence similarities, a pair of analogous

sequences would probably be from the same family. Despite its simplicity, we

empirically demonstrated that the SFP complements the MLM by encouraging

the models to compare protein representations during pre-training.

5.2.3 Fine-tuning Results

Summarized Results

Table 5.2 presents the summarized results for the benchmark tasks. Specifi-

cally, we show the best results from two categories: LM pre-trained models

and task-specific SOTA models.

The PLUS-RNNLARGE model outperformed models of similar size solely

pre-trained with the conventional LM in six out of seven tasks. Consider-

ing that some pre-trained models exhibited higher LM capabilities, it can be

speculated that the protein-specific SFP pre-training task contributed to the

improvement. In the ablation studies, we further explained the relative impor-

tance of each aspect of PLUS-RNNȦlthough PLUS-TFM had almost twice as

many parameters as PLUS-RNNLARGE (110M vs. 59M), it exhibited inferior

performance in most tasks. We infer that this is because it disregarded the

locality bias.

We compared PLUS-RNNLARGE with task-specific SOTAmodels. Although

the former performed better in some tasks, it still lagged behind on the oth-

ers. The results indicated that tailored models with additional features provide

powerful advantages that could not be learned through pre-training. A classic

example is the use of position-specific scoring matrices generated from mul-

tiple sequence alignments. We conjectured that simultaneous observation of

multiple proteins could facilitate evolutionary information. In contrast, cur-

rent pre-training methods use millions of proteins; however, they still consider
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Table 5.2: Fine-tuning results on protein biology benchmark task.

Protein-level Classification

Method Homology (acc) Solubility (acc) Localization (acc)

PLUS-TFM 0.96 0.72 0.69
PLUS-RNNBASE 0.96 0.70 0.69
PLUS-RNNLARGE 0.97 0.71 0.70

LM Pre-trained 0.95 0.64 0.54

Task-specific SOTA 0.93 0.77 0.78

Protein-level Regression Amino-acid-level Classification

Method Stability (ρ) Fluorescence (ρ) SecStr (acc) Transmembrane (acc)

PLUS-TFM 0.76 0.63 0.59 0.82
PLUS-RNNBASE 0.77 0.67 0.61 0.89
PLUS-RNNLARGE 0.77 0.68 0.62 0.89

LM Pre-trained 0.73 0.68 0.61 0.78

Task-specific SOTA 0.73 0.67 0.72 0.80
For each task, the best pre-trained model is in bold. It is bold and underlined if it is the best when including the task-specific SOTA.
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Table 5.2: Detailed Homology prediction results.

Overall Per-level AP

Method acc ρ Class Fold Superfamily Family

PLUS-TFM 0.96 0.70 0.94 0.91 0.95 0.67
PLUS-RNNBASE 0.96 0.69 0.94 0.90 0.94 0.66
PLUS-RNNLARGE0.97 0.70 0.95 0.92 0.96 0.66

P-ELMo 0.95 0.69 0.90 0.88 0.94 0.65
P-ELMo† 0.95 0.69 0.91 0.90 0.95 0.65

NW-align† 0.78 0.22 0.31 0.41 0.58 0.53
phmmer† 0.78 0.07 0.31 0.26 0.35 0.54
HHalign† 0.79 0.23 0.40 0.62 0.86 0.52
TMalign† 0.81 0.37 0.55 0.85 0.83 0.57
RNNBASE 0.93 0.66 0.86 0.80 0.89 0.62
RNNLARGE 0.83 0.52 0.66 0.46 0.52 0.39
†Excerpted from P-ELMo.

each one individually. The relatively small improvement from PLUS could also

be explained by the fact that the SFP task only utilizes pairwise information.

We expect that investigating multiple proteins during pre-training might be

the key to a superior performance over the task-specific SOTA models

Detailed Homology and SecStr results

We present detailed evaluation results for the Homology and SecStr tasks. We

chose these two tasks because they are representative protein biology tasks

relevant to global and local structures, respectively. Improved results on the

former can lead to the discovery of new enzymes and antibiotic-resistant genes

[114]. The latter is important for understanding the function of proteins in

cases where evolutionary structural information is not available [112].

The detailed Homology prediction results are listed in Table 5.2. The

results show that PLUS-RNNLARGE outperformed both P-ELMo and task-

specific models. In contrast to RNNLARGE, which exhibited overfitting owing to

the limited labeled training data, PLUS pre-training enabled us to take advan-

95



Table 5.3: Detailed SecStr prediction results.

CB513 CASP12 TS115

Method Q8 Q3 Q8 Q3 Q8 Q3

PLUS-TFM 0.59 0.73 0.57 0.71 0.65 0.77
PLUS-RNNBASE 0.61 0.75 0.60 0.72 0.66 0.78
PLUS-RNNLARGE 0.62 0.77 0.60 0.73 0.68 0.79

P-ELMo∗ 0.61 0.77 0.54 0.68 0.63 0.76
P-ELMo† 0.58 0.73 0.57 0.70 0.65 0.76
UniRep† 0.57 0.73 0.59 0.72 0.63 0.77
TAPE-TFM† 0.59 0.73 0.59 0.71 0.64 0.77
TAPE-RNN† 0.59 0.75 0.57 0.70 0.66 0.78
TAPE-ResNet† 0.58 0.75 0.58 0.72 0.64 0.78

NetSurfP-2.0‡ 0.72 0.85 0.70 0.82 0.75 0.86
†Excerpted from TAPE. ‡Excerpted from [112].

tage of the large model architecture. The correlation differences among PLUS-

RNNLARGE (0.697), PLUS-RNNBASE (0.693), and P-ELMo (0.685) were small;

however, they were statistically significant with p-values lower than 10−15

[115]. The per-level AP results helped us further examine the level of struc-

tural information captured by the pre-training. The largest performance im-

provement of PLUS-RNN comes at the higher class level rather than the lower

family level. This indicates that even though Pfam family labels tend to be

structurally correlated with the Homology task family levels [97], they are not

the decisive factors for performance improvement. Instead, PLUS pre-training

incorporates weak structural information and facilitates inferring higher-level

global structure similarities.

The detailed SecStr prediction results are listed in Table 5.3. CB513,

CASP12, and TS115 denote the SecStr test datasets. The results show that

PLUS-RNNLARGE outperformed all the other models of similar size pre-trained

solely with LM. This demonstrates that the SFP task complements the LM

task during pre-training and helps in learning improved structurally contex-

tualized representations. However, PLUS-RNNLARGE still lagged behind task-
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Table 5.4: Pre-trained protein language models.

Model Parameter (M) Dimensions Proteins (M)

UniRep RNN 18 1,900 24
PLUS-RNN RNN 59 2,048 15
SeqVec RNN 94 1,024 33
ProtXLNet TFM 409 1,024 216
ProtBERT TFM 421 1,024 2,122
ESM TFM 669 1,280 27

specific SOTA models that employ alignment-based features. We infer that

this limitation might be attributable to the following two factors. First, as

previously stated, PLUS only utilizes pairwise information, rather than si-

multaneously examining multiple proteins during pre-training. Second, the

SFP task requires an understanding of the global structures, and thus the

local structures are relatively negligible. Therefore, we believe that devising

an additional pre-training task relevant to local structural information would

improve the performance on the SecStr task.

5.2.4 Comparison with Larger Protein Language Models

We compare PLUS with larger protein LMs using the HSP identification task.

The key differences among the protein LMs originate from two factors: (1) LM

architecture and (2) the number of proteins used for pre-training (Table 5.4).

In terms of the LM architecture, UniRep, PLUS-RNN, and SeqVec use RNNs;

ProtXLNet, ProtBERT, and ESM use TFMs. RNN-based models require less

resources for both pre-training and producing representations. Although TFM-

based models require significantly more resources, they are better at capturing

long-term dependencies within proteins and can provide more informative rep-

resentations [28]. The number of unlabeled proteins used in each study varied

considerably. The LMs with more parameters were usually pre-trained with a

larger number of proteins. Exceptionally, while ESM used the largest protein
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Figure 5.2: HSP identification results using different protein LMs.

LM, it was pre-trained with a relatively small number of proteins. This can

be attributed to its high-diversity dataset, which contains only representative

proteins from clusters based on sequence identity [103].

HSPs are stress-induced proteins that are highly conserved across organ-

isms ranging from bacteria to humans. They play a pivotal role as molecular

chaperones against unfavorable conditions, such as elevated temperature and

inflammation. According to core functions and molecular weights [116], HSPs

can be categorized into six major families. Previous studies on the computa-

tional identification of HSP families have two major limitations. First, they re-

lied heavily on amino acid composition features, which inevitably limited their

performance. Second, their prediction performance was overestimated because

of the independent two-stage evaluation and data redundancy [117, 118].

We trained a CNN model on top of pre-trained protein representations.

We explored various pre-trained protein LMs to compare their effectiveness:

UniRep, SeqVec, PLUS-RNN, ProtXLNet, ProtBERT, and ESM. Given a pro-

tein sequence, we used a pre-trained protein LM to convert it into a sequence of

representations. Then, a projection layer with shared weights across different
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positions embeds them into 20-dimensional vectors. The CNN model consists

of a convolution layer, a global max-pooling layer, and a fully-connected layer.

The global max-pooling layer computes the maximum value of the output of

each filter to obtain a fixed-length representation vector. Finally, the fully-

connected layer computes the classification outputs.

For cross-validation experiments, we utilized the same dataset used in pre-

vious studies [117, 118]. Non-HSP sequences were randomly selected without

homologous proteins from SwissProt [119]. HSP sequences were derived from

HSPIR [116]. Thereafter, the proteins with ≥ 40% pairwise sequence similarity

within the same family were removed using CD-HIT [120]. Finally, the non-

HSP and HSP sequences containing non-standard amino acids were filtered

out to obtain a cross-validation dataset.

We compared the performance of using different protein LMs through five-

fold cross-validation (Figure 5.2). As a baseline, we include the performance of

SOTA feature extraction-based SVM (FE-SVM) model and a CNN model with

one-hot encoding. Each box denotes the quartiles of F1 scores, and the star

denotes their average. The boxplot shows that all LMs improve the average

classification performance compared to the one-hot encoding and the feature

extraction-based SOTA SVM model. Taking advantage of a large number of

unlabeled proteins, the pre-trained protein representations provide a wealth

of information that cannot be learned from one-hot encoding.

While all the pre-trained protein LMs help in the identification of HSP fam-

ilies, their level of performance improvement varies significantly. The small gap

between OneHot and UniRep indicates that a sufficient number of parameters

are required to obtain a moderate increase (Table 5.4). LMs with more pa-

rameters generally provide more performance improvement. For example, the

larger TFM-based LMs outperformed the RNN-based LMs, and the largest

ESM showed the best performance. One exception is that although PLUS-

RNN has fewer parameters than SeqVec, it exhibits better performance. We
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conjecture that this can be attributed to its additional protein-specific pre-

training objective, which can better capture structural information of protein

sequences than those solely pre-trained with an LM.

5.2.5 Ablation Studies

Here, we show results from ablation studies on the Homology and SecStr tasks

to better understand the strengths and aspects of the PLUS framework. We

used PLUS-RNNBASE as the baseline model unless explicitly stated otherwise.

Note that we used the development sets for the ablation studies.

Pre-training and Fine-tuning of PLUS-RNN

We explored the effect of using different λPT values for controlling the rela-

tive importance of the MLM and SFP pre-training tasks (Table 5.5). The re-

sults indicated that the pre-trained models with different λPT values (PLUS-

RNNBASE, PT-A, PT-B, PT-C) always outperformed the RNNBASE model

trained from the scratch. Both pre-training tasks consistently improve the

prediction performance at all structural levels. Of the two pre-training tasks,

removing MLM negatively affects the prediction performance more than re-

moving the SFP. This coincides with the expected result, according to which,

the MLM task would play the primary role, and the SFP task would comple-

ment MLM by encouraging the models to compare pairwise representations.

During the fine-tuning, we simultaneously trained a model for the MLM

task as well as the downstream task. Moreover, we explored the effect of using

different λFT values for controlling their relative importance (Table 5.5). The

results showed that the models simultaneously fine-tuned with the MLM task

loss (PLUS-RNNBASE and FT-B) consistently outperformed the (FT-A) model

fine-tuned only with the task-specific loss. Based on this, we infer that the

MLM task serves as a form of regularization and improves the generalization

performance of the models.
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Table 5.5: Ablation studies on Homology and SecStr tasks.

Homology SecStr

Method λPT λFT acc ρ Class Fold Superfamily Family acc8 acc3

PLUS-RNNBASE 0.7 0.3 0.96 0.70 0.95 0.91 0.96 0.72 0.66 0.78

RNNBASE - 0.3 0.93 0.67 0.88 0.81 0.92 0.68 0.61 0.73
(PT-A) 0.0 0.3 0.94 0.68 0.91 0.85 0.93 0.70 0.62 0.74
(PT-B) 0.5 0.3 0.96 0.69 0.95 0.91 0.95 0.70 0.66 0.77
(PT-C) 1.0 0.3 0.96 0.69 0.93 0.89 0.95 0.70 0.65 0.77

(FT-A) 0.7 0.0 0.94 0.68 0.91 0.85 0.93 0.70 0.65 0.77
(FT-B) 0.7 0.5 0.96 0.69 0.95 0.91 0.95 0.70 0.66 0.78
We use the development sets for the ablation studies.
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Figure 5.3: Homology prediction results for different lengths.

Comparison of PLUS-RNN and PLUS-TFM

We compared the Homology prediction performances of PLUS-TFM and PLUS-

RNNLARGE for protein pairs of different lengths (Figure 5.3). Because PLUS-

TFM was pre-trained using protein pairs shorter than 512 amino acids, we de-

note Long for protein pairs longer than 512 amino acids and Short otherwise.

Next, we evaluated PLUS-TFM for the Long protein pairs in the following two

ways. First, we simply used the protein pairs as they were. Second, we trun-

cated them to 512 amino acids. The former is denoted as PLUS-TFM-EXT

(as in extended), and the latter is denoted as PLUS-TFM.

PLUS-RNNLARGE consistently provided competitive performance regard-

less of the protein length. In contrast, PLUS-TFM-EXT deteriorated for the

Long protein pairs, whereas PLUS-TFM exhibited a relatively less performance

degradation. The results presented the limitations of TFM models using the

limited context size of 512 amino acids. Although the number of Long protein

pairs in the Homology development dataset was relatively small (13.4%), com-

plex proteins that are found in nature make the ability to analyze long protein

sequences indispensable. Moreover, because this is due to the computational

burden of TFM scaling quadratically with the input length, we predict that

the recently proposed adaptive attention span approach [121] may be able to

help improve PLUS-TFM.
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5.2.6 Qualitative Interpreatation Analyses

To better understand the strengths of PLUS pre-training, we provide its qual-

itative analyses. We examined the Homology task to interpret how the learned

protein representations help infer the global structural similarities of proteins

To compare two proteins, PLUS-RNN used soft-align to compute a simi-

larity score, ĉ. Even though there was one more computation by the output

layer for the Homology prediction output, we could use the similarity scores

to interpret PLUS-RNN. Note that using the penultimate layer for model in-

terpretation is widely adopted in the machine learning community [122].

Figure 5.4 shows a scatter plot of the predicted similarity scores and true

similarity levels. For comparison, we also show the NW-align results based

on the BLOSUM62 scoring matrix [95]. The plot shows that NW-align often

produces low similarity scores for protein pairs from the same family. This is

because of high sequence-level variations, which result in dissimilar sequences

having similar structures. In contrast, PLUS-RNNLARGE produces high simi-

larity scores for most protein pairs from the same family.

Furthermore, we examined three types of protein pairs: (1) a similar sequence-

similar structure pair, (2) a dissimilar sequence-similar structure pair, and (3)
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a dissimilar sequence-dissimilar structure pair (Figure 5.5(A) and (B)). Note

that similar sequence-dissimilar structure pairs did not exist in the Homology

datasets. The sequence and structure similarities were defined by NW-align

scores and Homology dataset labels, respectively. The pairs with similar struc-

tures were chosen from the same family, and those with dissimilar structures

were chosen from the same fold. Figure 5.5(C) shows the heatmaps of the

NW-align of raw amino acids and soft-alignment of PLUS-RNN representa-

tions (ωij) for the three pairs. Owing to space limitations, we only show the

top left quadrant of the heatmaps. Each cell in the heatmap indicates the

corresponding amino acid pairs from proteins A and B. Blue denotes high

sequence similarity in NW-align and high structure similarity in PLUS-RNN.

First, we compared the pairs having similar structures (the first and sec-

ond columns in Figure 5.5(C)). The heatmaps show that NW-align successfully

aligned the similar-sequence pair, resulting in a score of 2.65. However, it failed

for the dissimilar-sequence pair, with a score of 0.92. This supports the ob-

servation that comparing raw sequence similarities cannot identify the correct

structural similarities. In contrast, the soft-alignment of PLUS-RNN represen-

tations was successful for both similar and dissimilar sequences, with scores

of 3.95 and 3.76, respectively. Next, we compared the second and third pairs.

Although only the second pair had similar structures, NW-align failed for both

and even yielded a higher score of 1.03 for the third pair. In contrast, regardless

of the sequence similarities, the soft-alignment of PLUS-RNN representations

correctly decreased only for the third pair, with dissimilar structures having a

score of 2.12. Therefore, the interpretation results confirmed that the learned

representations from PLUS-RNN are structurally contextualized and perform

better in inferring global structure similarities.
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5.3 Summary

We presented PLUS, a novel pre-training method for bidirectional protein se-

quence representations. Consisting of the MLM and protein-specific SFP pre-

training tasks, PLUS outperformed the conventional LM pre-training meth-

ods by capturing structural information contained within the proteins. PLUS

can be used to pre-train various model architectures. In this work, we used

PLUS-RNN because of its superior sequential modeling capability and lower

computational complexity. PLUS-RNN outperformed models of similar size

solely pre-trained with the conventional LM in six out of seven protein bi-

ology tasks. To better understand its strengths, we also provided the results

from our qualitative interpretation analyses.

We expect that the gap between the numbers of unlabeled and labeled pro-

teins will continue to grow exponentially, and pre-training methods will play a

larger role. We plan to extend this work in several directions. First, consider-

ing that PLUS-RNN is powerful for inferring global structural information, we

are interested in a more refined prediction of protein structures [123]. Second,

although pre-training helps, our method still lags behind task-specific models

in some tasks. We think that this limitation comes from weaknesses in learning

evolutionary information. We believe that there is still considerable room for

improvement. Investigation of multiple proteins during pre-training, as in the

alignment, could be the key [124].
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Chapter 6

Discussion

6.1 Challenges and Opportunities

In this dissertation, we proposed a set of representation learning methods to

analyze biological sequence data. While they have made significant contribu-

tions to different problems in bioinformatics, there is obviously huge room for

improvement. In the following, we will discuss several other challenges and

opportunities for future work.

One of the fundamental challenges in biological sequence analyses is cap-

turing both short-term and long-term dependencies. In biological sequences,

local discriminative patterns such as regulatory motifs definitely hold great

significance. Nevertheless, biological sequences are often extremely long, and

elements in distant positions can also have close dependencies. For example,

proteins naturally fold into three-dimensional structures determined by their

amino acid sequences. As these structures have a direct impact on protein

functions, amino acids in distant positions often co-mutate to maintain the

indispensable structures [57]. Therefore, in order to comprehensively analyze

and understand biological sequences, it is crucial to capture both short-term

and long-term dependencies. There are two research directions for capturing

both short-term and long-term dependencies: the development of (1) DNN
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architectures and (2) training algorithms. With abundant training data, it is

possible and even beneficial to learn any dependencies solely from data. How-

ever, obtaining millions of sequence data is often difficult due to complex and

expensive data acquisition processes in the bioinformatics domain. For smaller

datasets, introducing proper inductive biases into the DNN architectures or

training with more explicit information can facilitate learning both types of

dependencies more easily [125]. We think some of the promising approaches

would come from hybrid transformer models accompanied by convolutions

[126] and training with co-evolutionary information from multiple sequence

alignments [127].

The successes of representation learning algorithms in image recognition

and natural language processing did not solely come from the advanced DNN

architectures. Training procedure refinements have also significantly contributed

to their improved performance [128]. On the other hand, training procedure

refinements for biological sequence analyses have not been studied thoroughly,

which leaves significant room for expansion and innovation. We believe some

of the research opportunities are in the following directions. First, data aug-

mentations, which generate semantically similar but seemingly different data,

have played crucial roles in computer vision tasks. They are a cornerstone

not only to regularize large models effectively but also to learn representa-

tions from unlabeled data with self-supervised contrastive learning algorithms

[129]. Since data augmentations heavily rely on domain-specific knowledge,

proper augmentation strategies for biological sequences are still quite difficult

and under-developed. Another challenge and opportunity are in learning un-

der positive-negative data imbalance, where the number of negative samples

is significantly larger than the number of positive samples. For example, in

disease-related research, treatment groups are often smaller than the normal

(control) groups due to their rareness and privacy restriction. The positive-

negative data imbalance often leads to a poor model performance by under-
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emphasizing the positive samples during training. Currently, the most widely

used approaches to deal with the imbalance are data sampling and constant

class-weighted objective loss. The former balances the class distribution based

on methods such as the synthetic minority oversampling technique [130]. The

latter explicitly underrate training losses for negative samples with pre-defined

weights. We believe biological sequence analyses will be benefited more from

advanced methods such as dynamic down-weights for easy negative samples

[131] and dynamically generating difficult-to-classify positive samples based

on generative adversarial networks [132].

While representation learning has enabled unprecedented breakthroughs

in various domains, it has been mainly focused on improving its prediction

performance. However, merely providing good outcomes is not enough any-

more [7]. Researchers are also interested in how they would impact society

and have started to focus on different aspects. One of the major concerns is

that representation learning algorithms are generally used as a black-box. We

still know very little about how DNNs understand the world for producing pre-

dictions. Interpretability matters, particularly concerning bioinformatics and

healthcare. To build trust in the algorithms, we need to make sure to provide

logical reasoning behind its predictions like clinicians do for medical treat-

ments. Approaches to interpreting DNNs can be categorized into two groups

i.e., local explanations and global explanations. Local explanation methods

aim to interpret model predictions for each sample. Global explanation meth-

ods aim to interpret how a model characterizes each class of samples. For

example, DeepBind presented two interpretation approaches for transcription

factor binding site prediction [46]. First, the authors proposed a mutation map

for local explanations. A mutation man illustrates the importance of each nu-

cleotide by measuring the maximum change of prediction scores among all

possible mutations. Second, the authors proposed to use motifs for global ex-

planations of a trained model. For each filter in the convolution layer, they
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aligned all the subsequences which passed the activation threshold. Then, they

generated a position-specific scoring matrix and transformed it into a sequence

logo representing a motif. We believe interest in demystifying DNNs for bio-

logical sequence analyses will continue to grow. They will help us not only to

understand models based on our current knowledge but also to acquire new

biological knowledge from them.
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Chapter 7

Conclusion

While representation learning has shown great promise in diverse fields, it is

not a silver bullet. Full of challenges remain to derive invaluable information

through bioinformatics research. This dissertation proposed a set of represen-

tation methodologies to address the three issues for biological sequence data

analysis. The contributions of this dissertation are summarized as follows:

• In Chapter 3, we addressed throughput and information trade-offs within

wet-lab experiments. We proposed a two-stage strategy to train a deep-

learning framework that can consider both genetic and epigenetic factors

for CRISPR-Cpf1 activity prediction. First, we pre-trained a model with

the integrated target dataset for the target sequence composition. Then.

We fine-tuned the model with the endogenous target dataset to integrate

chromatin accessibility. The proposed DeepCpf1 model showed signifi-

cant performance boosts both in-house and independent datasets with

an unprecedented level of high accuracy.

• In Chapter 4, we addressed modeling interaction between two sequences

for functional microRNA target prediction. We proposed an encoding

scheme to incorporate sequence alignment information. It represents not

only the miRNA-CTS sequences but also how pairings, mismatches, or
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gaps are formed within their extended seed regions. Combined with the

relaxed CTS selection criteria and ResNet prediction model, the pro-

posed TargetNet demonstrated significant classification performance im-

provement. Its top-ranked prediction scores showed a high association

with the level of miRNA-mRNA expression down-regulation.

• In Chapter 5, we addressed the exponentially growing gap between the

numbers of unlabeled and labeled protein sequences. We proposed PLUS,

a novel pre-training method for bidirectional protein sequence represen-

tations. Consisting of the MLM and protein-specific SFP pre-training

tasks, PLUS can capture structural information contained within unla-

beled protein sequences. Our quantitative experiments and qualitative

interpretation analyses demonstrated that PLUS-RNN outperformed mod-

els of similar size solely pre-trained with the conventional LM in six out

of seven widely used protein biology tasks.

This dissertation lies at the intersection of representation learning and

bioinformatics. We believe representation learning will be able to reveal the

secrets behind genetic information, formulate effective therapeutics, and even-

tually revolutionize the healthcare system. To this end, we envision this disser-

tation to be a part of a disciplined and consistent effort to realize personalized

medicine, one of the long-time goals in bioinformatics research.
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초 록

우리는빅데이터의시대를맞이하고있으며,의생명분야또한예외가아니다.

차세대 염기서열 분석과 같은 기술들이 도래함에 따라, 폭발적인 의생명 데이터

의 증가를 활용하기 위한 방법론의 개발은 생물정보학 분야의 주요 과제 중의

하나이다. 심층 학습을 포함한 표현 학습 기법들은 인공지능 학계가 오랫동안 어

려움을겪어온다양한분야에서상당한발전을이루었다.표현학습은생물정보학

분야에서도많은가능성을보여주었다.하지만단순한적용으로는생물학적서열

데이터 분석의 성공적인 결과를 항상 얻을 수는 않으며, 여전히 연구가 필요한

많은 문제들이 남아있다.

본학위논문은생물학적서열데이터분석과관련된세가지사안을해결하기

위해, 표현 학습에 기반한 일련의 방법론들을 제안한다. 첫 번째로, 유전자가위

실험 데이터에 내재된 정보와 수율의 균형에 대처할 수 있는 2단계 학습 기법을

제안한다. 두 번째로, 두 염기 서열 간의 상호 작용을 학습하기 위한 부호화 방식

을 제안한다. 세 번째로, 기하급수적으로 증가하는 특징되지 않은 단백질 서열을

활용하기위한자기지도사전학습기법을제안한다.요약하자면,본학위논문은

생물학적 서열 데이터를 분석하여 중요한 정보를 도출할 수 있는 표현 학습에

기반한 일련의 방법론들을 제안한다.

주요어: machine learning, deep learning, representation learning, artificial

intelligence, biological sequence, CRISPR, microRNA target, protein

학번: 2015-20914
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