2,554 research outputs found

    RIVPACS database documentation. Final report

    Get PDF
    With the advent of the EU Water Framework Directive the concept of the 'reference condition' has become explicit within the legislative framework of the European Union. Reference condition has been established as a quality standard against which assessments of biological degradation must be compared. It is therefore essential that Member States can demonstrate that the biological datasets used to define their reference conditions meet the criteria of the WFD. The RIVPACS reference site dataset is therefore central to the definition of reference conditions for macroinvertebrates in streams and rivers in the United Kingdom. Objectives of research: • To establish the ownership of the RIVPACS reference site dataset • To liaise with all stakeholders of the dataset to establish unhindered access to the RIVPACS reference site dataset for the UK agencies (in perpetuity) • To deliver the RIVPACS reference site dataset to the UK agencies and to the public domain in a readily accessible database together will its accompanying physicochemical variables (both existing and newly collated as part of this project), historical and current anthropogenic stress data, and a range of calculated biotic indices. Key findings and recommendations: Ownership of the RIVPACS dataset resides with no single organization and several different organizations consider that they own different portions of the dataset. Formal permissions to release the dataset into the public domain have been obtained from all twelve extant organizations that have been identified as having funded various phases of RIVPACS research. In addition, CEH/NERC has also agreed to release the RIVPACS dataset to the public domain. Terms and conditions relating to the end use of the RIVPACS dataset have now been established. The RIVPACS database has been assembled in Microsoft® Access and can now be downloaded from the CEH web site. This report details the terms and conditions that apply to all end users of the database and it documents the tables given in the database, their structure and the origin of their data. A separate Pressure Data Analysis report describes the screening of the RIVPACS sites in terms of the current and emerging definitions of reference condition

    The impact of climate-induced distributional changes on the validity of biological water quality metrics

    Get PDF
    We present data on the distributional changes within an order of macroinvertebrates used in biological water quality monitoring. The British Odonata (dragonflies and damselflies) have been shown to be expanding their range northwards and this could potentially affect the use of water quality metrics. The results show that the families of Odonata that are used in monitoring are shifting their ranges poleward and that species richness is increasing through time at most UK latitudes. These past distributional shifts have had negligible effects on water quality indicators. However, variation in Odonata species richness (particularly in species-poor regions) has a significant effect on water quality metrics. We conclude with a brief review of current and predicted responses of aquatic macroinvertebrates to environmental warming and maintain that caution is warranted in the use of such dynamic biological indicators

    An introduction to RIVPACS

    Get PDF
    RIVPACS (River InVertebrate Prediction And Classification System) is a software package developed by the Institute of Freshwater Ecology (IFE). The primary application is to assess the biological quality of rivers within the UK. RIVPACS offers site-specific predictions of the macroinvertebrate fauna to be expected in the absence of major environmental stress. The expected fauna is derived by RIVPACS using a small suite of environmental characteristics. The biological evaluation is then obtained by comparing the fauna observed at the site with the expected fauna. RIVPACS also includes a site classification based on the macroinvertebrate fauna of the component reference sites. New sites, judged by their fauna to be of high biological quality, may be allocated to classification groups within the fixed RIVPACS classification. This has potential for evaluating sites for conservation. In this chapter, the origins and history of the RIVPACS approach are described, including major scientific and operational developments over the life of the project. RIVPACS III is described in detail and predictions at different taxonomic levels are demonstrated. The value of the reference dataset for river management and conservation is examined, and the chapter concludes with a brief consideration of some future challenges

    Guide to the National Invertebrate Database (NID)

    Get PDF

    The impact of cattle drinking points on aquatic macroinvertebrates in streams in south-east Ireland

    Get PDF
    peer-reviewedTeagasc PublicationMeasures that prevent cattle access to watercourses are commonly implemented through agri-environment schemes, in an effort to address the objectives of the Water Framework Directive. Despite the widespread implementation, few studies have assessed the impact of cattle access to streams on aquatic macroinvertebrates. This study assessed the local-scale impact of cattle drinking points on water quality parameters (i.e. macroinvertebrate and water chemistry metrics) on 39 intensively-managed grassland farms in the south-east of Ireland. The results indicate that sites that were more than or equal to good quality upstream of cattle drinking points, were more susceptible to cattle access impacts than sites where upstream water quality was less than good. The European Court of Auditors (2011) recommended that there should be a higher rate of EU contribution for measures with higher environmental potential, in this instance, for cattle exclusion measures targeted to sites where background quality is more than or equal to good. Appropriate efforts should thus be made to incentivise farmers in good to high status sites to adopt cattle exclusion measures

    Community structure and water quality in Mediterranean streams of a Natural Park (Sant Llorenç del Munt, NE Spain)

    Get PDF
    Se estudian las comunidades de macroinvertebrados de los ríos del Parque Natural de Sant Llorenç del Munt i la Serra de l'Obac (Barcelona, NE España) y su relación con las condiciones de flujo de los ríos. Hasta 78 localidades se visitaron en dos ocasiones (invierno y verano de 1996) y en 26 de ellas se tomaron muestras de macroinvertebrados. Mientras en invierno el 63 % de los kilÛmetros investigados tenía flujo continuo y menos del 1% estaba seco, en verano solo el 26% tenía flujo continuo, un 20% estaba totalmente seco y el resto presentaba pozas en su lecho. A pesar de ello el número de familias de macroinvertebrados fue de 54 en invierno y 94 en verano, siendo dominantes en este último caso los heterópteros, coleópteros, odonatos y dípteros, mientras que en invierno los tricópteros y plecópteros eran más diversos. En general, la comunidad presentó una estrategia trófica recolectora aunque la proporción de los ramoneadores y depredadores aumentó en verano. El estudio de las comunidades mediante el análisis de su abundancia en los dos perÌodos, mostró que las variables temporales (flujo, temperatura) o las relacionadas con el incremento de la producciÛn primaria (oxÌgeno, pH) explicaban la mayor parte de la variabilidad con los elementos mas reófilos propios de invierno y los leníticos de verano, mientras que otros factores fisicoquímicos no eran relevantes. Calculado el índice biológico BMWP' se demostró que los valores en verano eran superiores o similares a los de invierno lo que se explica por la mayor diversidad aunque la calificaciÛn individual de cada una de las familias encontradas en verano fuera menor que las halladas en invierno

    Ecological indicators for abandoned mines, Phase 1: Review of the literature

    Get PDF
    Mine waters have been identified as a significant issue in the majority of Environment Agency draft River Basin Management Plans. They are one of the largest drivers for chemical pollution in the draft Impact Assessment for the Water Framework Directive (WFD), with significant failures of environmental quality standards (EQS) for metals (particularly Cd, Pb, Zn, Cu, Fe) in many rivers linked to abandoned mines. Existing EQS may be overprotective of aquatic life which may have adapted over centuries of exposure. This study forms part of a larger project to investigate the ecological impact of metals in rivers, to develop water quality targets (alternative objectives for the WFD) for aquatic ecosystems impacted by long-term mining pollution. The report reviews literature on EQS failures, metal effects on aquatic biota and effects of water chemistry, and uses this information to consider further work. A preliminary assessment of water quality and biology data for 87 sites across Gwynedd and Ceredigion (Wales) shows that existing Environment Agency water quality and biology data could be used to establish statistical relations between chemical variables and metrics of ecological quality. Visual representation and preliminary statistical analyses show that invertebrate diversity declines with increasing zinc concentration. However, the situation is more complex because the effects of other metals are not readily apparent. Furthermore, pH and aluminium also affect streamwater invertebrates, making it difficult to tease out toxicity due to individual mine-derived metals. The most characteristic feature of the plant communities of metal-impacted systems is a reduction in diversity, compared to that found in comparable unimpacted streams. Some species thrive in the presence of heavy metals, presumably because they are able to develop metal tolerance, whilst others consistently disappear. Effects are, however, confounded by water chemistry, particularly pH. Tolerant species are spread across a number of divisions of photosynthetic organisms, though green algae, diatoms and blue-green algae are usually most abundant, often thriving in the absence of competition and/or grazing. Current UK monitoring techniques focus on community composition and, whilst these provide a sampling and analytical framework for studies of metal impacts, the metrics are not sensitive to these impacts. There is scope for developing new metrics, based on community-level analyses and for looking at morphological variations common in some taxa at elevated metal concentrations. On the whole, community-based metrics are recommended, as these are easier to relate to ecological status definitions. With respect to invertebrates and fish, metals affect individuals, population and communities but sensitivity varies among species, life stages, sexes, trophic groups and with body condition. Acclimation or adaptation may cause varying sensitivity even within species. Ecosystem-scale effects, for example on ecological function, are poorly understood. Effects vary between metals such as cadmium, copper, lead, chromium, zinc and nickel in order of decreasing toxicity. Aluminium is important in acidified headwaters. Biological effects depend on speciation, toxicity, availability, mixtures, complexation and exposure conditions, for example discharge (flow). Current water quality monitoring is unlikely to detect short-term episodic increases in metal concentrations or evaluate the bioavailability of elevated metal concentrations in sediments. These factors create uncertainty in detecting ecological impairment in metal-impacted ecosystems. Moreover, most widely used biological indicators for UK freshwaters were developed for other pressures and none distinguishes metal impacts from other causes of impairment. Key ecological needs for better regulation and management of metals in rivers include: i) models relating metal data to ecological data that better represent influences on metal toxicity; ii) biodiagnostic indices to reflect metal effects; iii) better methods to identify metal acclimation or adaptation among sensitive taxa; iv) better investigative procedures to isolate metal effects from other pressures. Laboratory data on the effects of water chemistry on cationic metal toxicity and bioaccumulation show that a number of chemical parameters, particularly pH, dissolved organic carbon (DOC) and major cations (Na, Mg, K, Ca) exert a major influence on the toxicity and/or bioaccumulation of cationic metals. The biotic ligand model (BLM) provides a conceptual framework for understanding these water chemistry effects as a combination of the influence of chemical speciation, and metal uptake by organisms in competition with H+ and other cations. In some cases where the BLM cannot describe effects, empirical bioavailable models have been successfully used. Laboratory data on the effects of metal mixtures across different water chemistries are sparse, with implications for transferring understanding to mining-impacted sites in the field where mixture effects are likely. The available field data, although relatively sparse, indicate that water chemistry influences metal effects on aquatic ecosystems. This occurs through complexation reactions, notably involving dissolved organic matter and metals such as Al, Cu and Pb. Secondly, because bioaccumulation and toxicity are partly governed by complexation reactions, competition effects among metals, and between metals and H+, give rise to dependences upon water chemistry. There is evidence that combinations of metals are active in the field; the main study conducted so far demonstrated the combined effects of Al and Zn, and suggested, less certainly, that Cu and H+ can also contribute. Chemical speciation is essential to interpret and predict observed effects in the field. Speciation results need to be combined with a model that relates free ion concentrations to toxic effect. Understanding the toxic effects of heavy metals derived from abandoned mines requires the simultaneous consideration of the acidity-related components Al and H+. There are a number of reasons why organisms in waters affected by abandoned mines may experience different levels of metal toxicity than in the laboratory. This could lead to discrepancies between actual field behaviour and that predicted by EQS derived from laboratory experiments, as would be applied within the WFD. The main factors to consider are adaptation/acclimation, water chemistry, and the effects of combinations of metals. Secondary effects are metals in food, metals supplied by sediments, and variability in stream flows. Two of the most prominent factors, namely adaptation/ acclimation and bioavailability, could justify changes in EQS or the adoption of an alternative measure of toxic effects in the field. Given that abandoned mines are widespread in England and Wales, and the high cost of their remediation to meet proposed WFD EQS criteria, further research into the question is clearly justified. Although ecological communities of mine-affected streamwaters might be over-protected by proposed WFD EQS, there are some conditions under which metals emanating from abandoned mines definitely exert toxic effects on biota. The main issue is therefore the reliable identification of chemical conditions that are unacceptable and comparison of those conditions with those predicted by WFD EQS. If significant differences can convincingly be demonstrated, the argument could be made for alternative standards for waters affected by abandoned mines. Therefore in our view, the immediate research priority is to improve the quantification of metal effects under field circumstances. Demonstration of dose-response relationships, based on metal mixtures and their chemical speciation, and the use of better biological tools to detect and diagnose community-level impairment, would provide the necessary scientific information

    The potential of RIVPACS for predicting the effects of environmental change

    Get PDF
    RIVPACS has been used successfully for biological assessment of river water quality but its potential in forecasting the effects of environmental change has not been investigated. This study has shown that it is possible to simulate faunal changes in response to environmental disturbance, provided that the disturbance directly involves the environmental variables used in RIVPACS predictions. These variables relate to channel shape, discharge and substratum. Many impacts, particularly those associated with pollution, will not affect these variables and therefore RIVPACS cannot simulate the effects of pollution. RIVPACS was sensitive only to major changes in substratum. It was concluded that, because of the static nature of RIVPACS, it cannot respond to the dynamic effects and processes associated with environmental disturbance. Thus RIVPACS, while showing direction of change and indicating sensitive taxa, cannot be used to predict or forecast the effects of environmental impacts

    Water quality related macroinvertebrate community responses to environmental gradients in the Portoviejo River (Ecuador)

    Get PDF
    The Portoviejo River, located in the central western part of Ecuador, has been heavily impacted by damming, intensive agriculture and untreated wastewater discharge. Unfortunately, detailed information on the water quality and the ecological status of the Portoviejo River is not available, inhibiting decision-making and the development of water management plans. Therefore, the aims of this study were (1) to assess the ecological water quality, (2) to investigate the point along the environmental gradient where the most significant change in macroinvertebrate community occurs and (3) to find potential macroinvertebrate taxa that significantly change in abundance and frequency of occurrence along the Portoviejo River. To this end, macroinvertebrate and physico-chemical data were collected and hydro-morphological conditions were recorded at 31 locations during the dry season of 2015. The results showed that the ecological water quality of the sampling sites ranged from good to bad. In addition, the Threshold Indicator Taxa ANalysis was used to examine changes in macroinvertebrate communities and revealed significant community change points for sensitive taxa declining at a conductivity value of 930 (mu S.cm(-1)) and nitrate-nitrogen concentrations of 0.6 mg.L-1. In addition, the thresholds estimated for tolerant taxa were set at a conductivity value of 1430 mu S.cm(-1) and nitrate-nitrogen concentration of 2.3 mg. L. Atyidae, Corbiculidae, Thiaridae, Acari, Baetidae and Leptohyphidae can be considered indicator taxa, showing shifts in the community. This study suggests that values of conductivity and nitrate-nitrogen concentrations should not exceed the threshold levels in order to protect macroinvertebrate biodiversity in the Portoviejo River
    • …
    corecore