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Luis Elvin Dominguez Granda5, Thu Huong Thi Hoang6 and Peter L.M. Goethals1

1 Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Campus Coupure – Building F – 2nd floor,
Coupure Links 653, B-9000 Ghent, Belgium

2 Research Institute for Aquaculture No1, Dinh Bang, Tu Son, Bac Ninh, Vietnam
3 Provincial Centre of Environmental Research, Godshuizenlaan 95, B-9000 Ghent, Belgium
4 Departamento de Ingenierı́a Industrial, Universidad Técnica de Manabı́, Av. Universitaria y Che Guevara,
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Abstract – The Portoviejo River, located in the central western part of Ecuador, has been heavily impacted

by damming, intensive agriculture and untreated wastewater discharge. Unfortunately, detailed information
on the water quality and the ecological status of the Portoviejo River is not available, inhibiting decision-
making and the development of water management plans. Therefore, the aims of this study were (1) to assess
the ecological water quality, (2) to investigate the point along the environmental gradient where the most

significant change in macroinvertebrate community occurs and (3) to find potential macroinvertebrate taxa
that significantly change in abundance and frequency of occurrence along the Portoviejo River. To this end,
macroinvertebrate and physico-chemical data were collected and hydro-morphological conditions were re-

corded at 31 locations during the dry season of 2015. The results showed that the ecological water quality of
the sampling sites ranged from good to bad. In addition, the Threshold Indicator Taxa ANalysis was used to
examine changes in macroinvertebrate communities and revealed significant community change points for

sensitive taxa declining at a conductivity value of 930 (mS.cmx1) and nitrate-nitrogen concentrations of
0.6 mg.Lx1. In addition, the thresholds estimated for tolerant taxa were set at a conductivity value of
1430 mS.cmx1 and nitrate-nitrogen concentration of 2.3 mg.L. Atyidae, Corbiculidae, Thiaridae, Acari,

Baetidae and Leptohyphidae can be considered indicator taxa, showing shifts in the community. This study
suggests that values of conductivity and nitrate-nitrogen concentrations should not exceed the threshold levels
in order to protect macroinvertebrate biodiversity in the Portoviejo River.
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Introduction

Rivers are one of the most important freshwater
resources for human life (Chapman, 1996). They provide
many ecosystem services such as a source of drinking
water, irrigation of croplands, industrial and municipal
water supply, waste disposal, fishing, sightseeing, shipping

and an aesthetic value (Chapman, 1996; Pan et al., 2012).
However, the increase in population and human activities
often leads to habitat degradation, poor water quality
(Kibena et al., 2014) and reduced ecosystem services (Pan
et al., 2012) as rivers are highly vulnerable to anthropo-
genic activities (e.g., urbanization, changes in land use,
intensification of agriculture) (Bredenhand and Samways,
2008). For example, the construction of a dam changes the
hydrological conditions, and modifies the flow regime and*Corresponding author: pieter.boets@oost-vlaanderen.be
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sediment transportation (Takao et al., 2008), thus
strongly influencing aquatic ecosystems (Zhang et al.,
2010).

Water pollution, erosion, alterations in stream hydro-
logy and changing habitat structure are known to affect
freshwater organisms (Allan, 2004). Various types of
aquatic organisms (e.g., fish and macroinvertebrates) have
been used as indicators of water quality and biological
integrity. Among them, macroinvertebrates are considered
to be good indicators of overall ecosystem health (Water
Framework Directive, 2002). Their presence, abundance
and activities are a representation of water quality and
may effectively reveal the ecological status of the ecosys-
tem (Bredenhand and Samways, 2008). Moreover, macro-
invertebrates reflect stream conditions and integrate hu-
man and natural stressors over a long period of time, thus
giving a good representation of the quality of their
surroundings (Cairns and Pratt, 1993). Therefore, macro-
invertebrates have been used for freshwater monitoring
and assessment for several decades (Smith et al., 2007).
The information about the ecological sensitivities of each
macroinvertebrate taxon has been used to develop
biological indices (e.g., biological monitoring working
party (BMWP) (Armitage et al., 1983)) for the assessment
of water quality. Afterwards, the English BMWP index
was adapted to specific countries or regions such as the
BMWP for Colombia (Pérez, 2003a). The BMWP-
Colombia index has already been applied in Ecuador to
study the ecological water quality in the Guayas river
basin (Damanik-Ambarita et al., 2016) and Chaguana
river basin (Dominguez-Granda et al., 2011).

In Ecuador, water quality issues, aquatic ecosystems
and ecosystem services received limited attention. To our
knowledge, standardized sampling procedures and envir-
onmental monitoring programs are not available to assess
water quality, resulting in limited availability of informa-
tion on the physical, chemical and ecological status of
Ecuadorian rivers (Andres, 2009; Nolivos et al., 2015).
However, water managers and political leaders need to
manage water to meet human requirements, to identify
and protect endangered species and to support freshwater
ecosystems (Richter et al., 2003). Therefore, threshold
identification is needed for the development of environ-
mental standards for river water quality. However, when
reviewing the criteria for preservation of aquatic life
established for the Ecuadorian environment, most of the
criteria were found to be defined only for heavy metals
(e.g., Ag, Pb) and water quality standards for important
variables (e.g., conductivity) were missing.

Portoviejo city is considered as the center of economic,
political and cultural events in the province of Manabı́.
During recent years, high pressure has been exerted on
water quality and natural ecosystems in the Portoviejo
River basin driven by the growing population and
increasing anthropogenic activities such as intensive
agriculture and damming. Pollution of the Portoviejo
River causes scarcity of clean water for domestic con-
sumption and irrigation, loss of fishing grounds (Párraga
and Aguirre, 2010) and strongly affects biodiversity and

mangrove ecosystems in the Portoviejo River Estuary
(ACBIO, 2012). However, to our knowledge, no research
has been carried out on the assessment of water quality
and macroinvertebrate communities in the Portoviejo
River. Therefore, the main objective of this study was to
assess the ecological water quality of the Portoviejo River
based on benthic macroinvertebrate communities. More
specifically, we investigated shifts in macroinvertebrate
communities along measured physico-chemical gradients
and identified potential macroinvertebrate indicator taxa
that significantly change in abundance and frequency of
occurrence due to water quality degradation. The thresh-
olds relevant to the macroinvertebrate communities’
response in the Portoviejo River will be particularly
useful for early warning in Ecuadorian rivers. This
information could be used to establish priorities for
conservation efforts for the Portoviejo River and other
similar river basins, where water resources are facing
multiple threats.

Materials and methods

Study area

Portoviejo is the capital of the Province of Manabı́
(Ecuador) and is situated 30 km from the Pacific coast.
The Portoviejo River basin, with a total area of 2231 km2

and a river length of 132 km (Pérez, 2003b), is located
along the coast in the western part of Ecuador (US Army
Corps of Engineers, 1998). The river provides water to
700 000 inhabitants for domestic use, agriculture, recrea-
tion and other purposes (Pérez, 2003b). The Portoviejo
River basin is one of the most productive farming regions
in Ecuador, with production of bananas, mangoes and
other tropical fruits, tomatoes, onions, peppers, coffee and
especially cattle and fish (http://www.gutenberg.us 2016).
The Poza Honda dam is located 30 km upstream from
the city of Portoviejo and started operating in 1971. The
Poza Honda reservoir has a water storage capacity of
100 million m3 (US Army Corps of Engineers, 1998),
a maximum surface area of approximately 607.5 ha and a
maximum depth of 37.3 m. The reservoir faces eutrophica-
tion problems due to intensive agriculture and livestock
(Perez, 2004) in the surrounding area.

Portoviejo is located at low latitude and has a
semi-arid, hot climate. The seasons are well defined;
rainfall is concentrated in the period December–May,
in which 90% of the annual rainfall occurs and the
dry season months are June–November. The mean
temperature and monthly rainfall of the region vary
between 24 and 29 xC and 2–115 mm, respectively (http://
www.portoviejo.climatemps.com “http://www.gutenberg.us,
2016 Portoviejo.http://www.gutenberg.us/article/
WHEBN0001827357/Portoviejo (in Spanish, assessed
date 12.02.2016”). Land use in the basin consists mostly of
arable land and plantations (onions, bananas and other
tropical fruits), with urban and semi-urban areas.
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Sampling and assessment methods

Description of sampling sites

The physico-chemical water quality variables and
macroinvertebrate samples were collected from 31 loca-
tions along the Portoviejo River in Ecuador (Fig. 1). We
assumed worst-case conditions in terms of water quality
(e.g., conductivity) during the dry season (low dilution due
to rain), possibly indicating severe water quality problems.
Therefore, each sampling site was sampled once during the
dry season (August) of 2015 in order to assess the water
quality and the ecological status of the river. In the
Portoviejo River, it was expected that the ecological water
quality would decrease from source to mouth due to
increasing human pressure. Main sources of disturbance
are residential areas, wastewater treatment plants and
agricultural activities. The sites were selected based on
accessibility and presence of point sources of pollution. In
total 18 sites were sampled starting from 10 km upstream
of Portoviejo city to the mouth of the river. These sites are
located near visual sources of disturbance (e.g., densely
populated areas, downstream of wastewater treatment
plants, downstream of hydropower dam and intensive

agriculture activities) and were considered affected sites.
In addition, 13 sites from 20 km upstream of Portoviejo
city to the source of the river were chosen as less affected
sites and served as reference locations. Differentiation
between affected and reference sites was based on popula-
tion density and surrounding land use.

Recording of environmental variables

At each sampling site, the values of temperature ( xC),
pH, dissolved oxygen (DO) (mg.Lx1), chlorophyll
(mg.Lx1), turbidity (FTU) and electrical conductivity
(EC) (mS.cmx1) were measured using a multiprobe (model
YSI 6600 V2, YSI manufacturer). The multiprobe con-
tains different sensors and was placed directly underneath
the water surface to measure water quality. The values
of each reading were saved after the reading was stable.
Moreover, water samples from each sampling location
were collected and stored in plastic bottles (1 L), kept cool
and in the dark immediately after collection and subse-
quently transported to the laboratory for further analysis.
At the laboratory, Hach-Lange DR 3900 spectro-
photometer kits were used to determine biological

Fig. 1.Map of the study area of the Portoviejo River with indication of the ecological water quality based on the BMWP-Colombia for
each sampling site.
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oxygen demand (BOD5) (mg.Lx1), total phosphorus
(TP) (mg.Lx1), orthophosphate-phosphorus (oPO4

3x)
(mg.Lx1), ammonium-nitrogen (NH4

+) (mg.Lx1), nitrate-
nitrogen (NO3

x) (mg.Lx1), nitrite-nitrogen (NO2
x)

(mg.Lx1), total nitrogen (TN) (mg.Lx1) and total organic
carbon (TOC) (mg.Lx1).

The elevation of sampling sites was measured using
Global Positioning System (GPS) equipment (Garmin
GPS). Stream velocity was measured with a handheld
flow meter (HFA, Höntzsch, Waiblingen, Germany). The
surrounding land use was visually estimated at both
banks for a stretch of 100r10 m (the point where the
water sample was taken was considered as the centre).
The surrounding land use was divided into five classes
(shrubs/grasses, orchard, residential/urban areas, arable
land (suitable for farming) and forest). The type of
dominant substrate was visually assessed at each site
and divided into five classes (silt or clay, sand, gravel,
cobble and boulder). The sludge layer was classified into
absent, <5, 5–20 and >20 cm. Six classes of pool-riffle
pattern were distinguished (structural changes, absent,
poorly developed, moderately developed, well developed
and pristine). The percentage of water hyacinth cover was
visually estimated from the bank along a transect of
100 m. The site where water samples were taken was
considered as the centre. The vegetation cover classes
were divided as follows (based on the Braun-Blanquet
cover/abundance scale): 0=non-vegetated/absent,
1=1–5% (rare), 2=5–25% (occasional), 3=25–50%
(frequent), 4=50–75% (common) and 5=75–100%
(abundant). Classes rather than exact values for cover of
vegetation were used as this yields more reliable measures
(Ellenberg and Mueller-Dombois, 1974). The hydro-
morphological characteristics of the sampling sites were
determined based on field inspection and completed per
sampling location by a standard field protocol. The field
protocol was modified from the Australian River
Assessment System (AUSRIVAS) physical assessment
protocol (AUSRIVAS, 1994) and UK and Isle of Man
River Habitat Quality (Raven et al., 1998).

Sampling of macroinvertebrates

Samples of macroinvertebrates were collected from
each sampling site immediately after determining the
physico-chemical water quality variables. Macro-
invertebrates were collected with a standard hand net
consisting of a metal frame holding a conical net (mesh-
size 300 mm) at the same sites where water quality was
measured. Macroinvertebrates were collected over 5 min
active sampling, including all different microhabitats
present at the sampling site (Gabriels et al., 2010). Samples
were sieved (500 mm mesh size) in the laboratory and
sorted in white trays. Macroinvertebrates from each
location were placed in separate small plastic vials
containing 80% ethanol for preservation. After sorting,
organisms were counted and identified under a stereo-
microscope. Macroinvertebrates were identified to family
level using the identification keys developed by

Domı́nguez and Fernández (2009) for two reasons. Firstly,
previous research has shown that using biotic indices
based on family level provides sufficient information to
assess biological water quality (Dominguez-Granda et al.,
2011; Mereta et al., 2013; Everaert et al., 2014). Secondly,
because of practical implications, we could only identify
up to family level as there are no detailed keys available to
lower taxonomic levels.

Calculation of macroinvertebrate metrics

The biotic macroinvertebrate index BMWP-Colombia
was calculated according to the method proposed by
Zuniga and Cardona (2009). Each macroinvertebrate
taxon received a score that reflects its susceptibility to
pollution, where pollution-intolerant taxa receive high
scores, whereas pollution-tolerant taxa were given low
scores (Zuniga and Cardona, 2009). Eight taxa did not
appear in the original index and were considered in
the BMWP-Colombia index calculation, being Acari
(Actinotrichida), Cambaridae (Decapoda), Corbiculidae
(Veneroidea), Gerridae (Hemiptera), Littorinidae
(Neotaenioglossa), Mysidae (Mysida), Ochteridae
(Hemiptera) and Spionidae (Polychaeta). The BMWP-
Colombia was calculated per site based on a summation
of all tolerance scores of the macroinvertebrate taxa
present. The total score for each site indicated ecological
water quality, with categories ranging from very bad
(0–15), bad (16–35), poor (36–60), moderate (61–100) to
good (>100). To obtain a more complete understanding
of the community structure, species abundances were
calculated and taxonomic richness (number of taxa) and
Shannon–Wiener Diversity Index (Shannon and Wiener,
1949) were computed using the Vegan package (Oksanen
et al., 2016) for each sampling site.

Data analysis

All statistical analyses were done using R software
(version 3.2.3) (R Core Team, 2015). The protocol for
data exploration as described by Zuur et al. (2010) was
used to avoid common statistical problems related to
outliers and correlated variables. Prior to the actual data
analysis, the initial data set was tested for outliers
and correlations between explanatory variables. One
sampling location with five extremely high and low
values compared to the majority of observations (e.g.,
conductivity=49384 mS.cmx1, TN=below detection
limit, elevation=x4 m a.s.l.), was discarded from the
analysis as high conductivity indicated saline conditions.

Spearman’s rank correlation coefficient was used to
explore the relationship among physico-chemical variables
and the BMWP-Colombia ecological water quality index.
A Mann–Whitney U-test was used to compare physico-
chemical variables between more affected and less affected
sampling sites in order to test for significant differences in
environmental variables between these sites. Scatter plots
were made to visualize the relationship between the
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BMWP-Colombia water quality index and all measured
variables. A Kruskal–Wallis test followed by post hoc
multiple pairwise comparisons was performed to test
whether significant differences in ecological indices could
be found between different types of land use, dominant
substrate, sludge layer and pool-riffle pattern.

Threshold Indicator Taxa ANalysis (TITAN) was used
to detect community shifts along each measured physico-
chemical variable in the Portoviejo River. TITAN is a
non-parametric technique that integrates occurrence,
abundance and directionality of taxa responses along a
physico-chemical gradient. For each value within this
gradient, the data were split into two groups: one group
consisting of taxa present at lower values (the so-called
negative side of the partition, i.e., the (zx)-group) and
one group consisting of taxa present at higher values
(the so-called positive side of the partition, i.e., the
(z+ )-group). For each taxon, an optimal change point
was determined as the value that maximizes the associa-
tion of taxa within both groups. When passing this change
point from low to high values, the abundance and
frequency of occurrence of the (zx)-group will decrease,
while an increase will be observed for the (z+ )-group. To
determine the accuracy of the change point value, boot-
strapping (1000 repetitions) was implemented. This
allowed us to derive two important diagnostic indices for
evaluating the quality of the response for each taxon:
purity and reliability. Purity is defined as the proportion
of response directions (increasing or decreasing) when
passing the change point that agree with the observed
response. Pure indicators are consistently assigned the
same response direction. Reliability is estimated by the
proportion of change points that consistently result in
the significant grouping of a taxon. Only taxa with high
reliability (i0.95) can be considered as indicator taxa.
Graphical representation of the change point identifica-
tion is supported by the summation of the standardized
association values for each indicator taxon along the

physico-chemical gradient, resulting in fsum(zx ) and
fsum(z+) scores. Both scores will obtain a maximum
value along the physico-chemical gradient, representing
the change points for both the (zx)-group and the
(z+)-group separately, and can be defined as the commu-
nity change point (of the considered taxa). TITAN was
performed in the package TITAN 2 (Baker et al., 2015) in
R software (version R.3.2.3). Only taxa occurring in at
least five sites were included in the TITAN (Baker et al.,
2015). Abundance data were not transformed because
transformation is unnecessary in TITAN 2. 1000 permuta-
tions were used to determine species specific z-scores and
related fsum(z)-scores, as this calculation is based on a
small dataset, thus a higher number of permutations are
recommended for more precise z-scores (Baker et al.,
2015). Further information and details of the TITAN
method can be found in Baker and King (2010), King and
Baker (2014) and Baker et al. (2015).

Results

Physico-chemical water quality

High oxygen levels were observed for most sampling
sites. The lowest water velocity (0 m.sx1) was measured
at the reservoir. There was a significant negative
correlation between elevation and conductivity, NO3

x,
NO2

x, oPO4
3x, TP and TOC (r=x0.84, r=x0.81,

r=x0.78, r=x0.76, r=x0.73, r=x0.86, respec-
tively) (Appendix 1). The lower conductivity values
(<880 mS.cmx1) were observed at non-affected sites,
while higher conductivity values (980–2447 mS.cmx1) were
measured at the affected and more downstream sites.
The values of every variable measured at 30 sampling
locations (one site was discarded from the analysis) within
the Portoviejo River are presented in Table 1. Based on the
Mann–Whitney U-test (P<0.05), it was found that

Table 1. Mean, median, maximum, minimum values and standard deviation of continuous environmental variables measured in the

Portoviejo River and their Spearman’s Rank correlation coefficients with the BMWP-Colombia index (*P<0.05, **P<0.01).

Variable Mean Median Max. Min. SD r

Velocity (m.sx1) 0.38 0.45 0.88 0.00 0.29 0.48**

Temperature ( xC) 27.71 27.91 31.33 25.56 1.40 x0.38*
Conductivity (mS.cmx1) 880 385 2447 164 722 x0.39*
pH 7.87 7.85 8.81 6.50 0.41 x0.05
Dissolved oxygen (mg.Lx1) 8.05 7.72 18.29 2.22 2.50 0.08
Chlorophyll (mg.Lx1) 13.50 7.21 55.16 1.86 15.18 x0.47**

Turbidity (FTU) 14.46 12.40 34.54 0.00 11.20 0.09
BOD5 (mg.Lx1) 3.02 2.94 5.86 0.79 1.47 x0.21
Nitrate-nitrogen (mg.Lx1) 1.05 0.54 2.81 0.23 0.89 x0.27
Nitrite-nitrogen (mg.Lx1) 0.04 0.03 0.14 0.00 0.04 x0.33
Ammonium-nitrogen (mg. Lx1) 0.09 0.08 0.19 0.04 0.04 0.30
Total nitrogen (mg.Lx1) 1.81 1.20 5.70 0.50 1.49 x0.18
Orthophosphate (mg.Lx1) 0.20 0.21 0.33 0.05 0.08 x0.17
Total phosphorus (mg.Lx1) 0.23 0.21 0.53 0.05 0.11 x0.39*
Total organic carbon (mg.Lx1) 15.78 16.85 37.70 3.00 10.38 x0.35
Elevation (m a.s.l.) 61 59 121 0 37 0.39*
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conductivity and concentrations of NO3
x, NO2

x, oPO4
3x,

TN, TP, TOC and chlorophyll were significantly higher
for more affected sites, compared with reference (less
affected) sites.

Relationship between macroinvertebrate
communities, physico-chemical conditions and
habitat characteristics

In total, more than 8300 individuals belonging to
53 macroinvertebrate families were found (Appendix 2).
The taxon richness varied from 4 to 22 taxa per sampling
site. Chironomidae (Diptera) was the most frequently
encountered taxon, followed by Coenagrionidae
(Odonata) and Libellulidae (Odonata) (29, 21 and 20 sites,
respectively). Thiaridae (Pectinibranchia) was the most
abundant taxon, followed by Chironomidae (5231 and 805
individuals, respectively). Based on the BMWP-Colombia
scores, the sampling sites of the Portoviejo River were
categorized into four water quality classes: good, moder-
ate, poor and bad (Fig. 1). The Shannon–Wiener index
ranged from 0.23 to 2.58, representing from very low to
intermediate community diversity. There was a strong
positive correlation between the BMWP-Colombia scores
and taxonomic richness (S) (Spearman’s rank correlation
coefficient=0.94). The Spearman’s rank correlation coef-
ficient between BMWP-Colombia and Shannon’s diversity
index (H) was 0.58. The Spearman’s rank correlation

coefficient between the BMWP-Colombia and taxa
abundance was 0.30. The highest BMWP-Colombia value
(140) was recorded at one sampling site where the
taxonomic richness was also the highest (22 taxa). This
location is surrounded by forest, has gravel substrate and a
moderately developed pool-riffle pattern.

The Spearman’s rank correlation coefficients between
the biological water quality index (BMWP-Colombia) and
the physico-chemical variables indicated that the BMWP-
Colombia scores were positively correlated with elevation
and stream velocity (Table 1, Fig. 2). In addition, BMWP-
Colombia values showed a negative association with
temperature, conductivity, chlorophyll and TP (Table 1,
Fig. 2). Higher BMWP-Colombia values were observed
at sampling sites surrounded by arable land, gravel
sediment, absence of a sludge layer and at least a
moderately developed pool-riffle pattern (Fig. 3).
However, the statistical analysis did not reveal any
significant difference.

Threshold change points and indicator taxa

TITAN was used to detect the variation in taxonomic
composition of macroinvertebrate communities in re-
sponse to all physico-chemical variables. However, due
to the low number of reliable indicator taxa, TITAN did
not find strong evidence of a threshold for temperature,
pH, DO, chlorophyll, turbidity, BOD5, TP, oPO4

3x,

Fig. 2. Plots of physico-chemical variables in relation to BMWP-Colombia for sampling sites in the Portoviejo River.
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NH4
+, NO2, TN, TOC and stream velocity. TITAN

could only reveal the community change along the
gradient of elevation, conductivity and nitrate-nitrogen
concentration (Table 3).

Two groups of indicator taxa were identified: (1) taxa
preferring low altitude (zx ), but high conductivity and
nitrate concentrations (z+) and (2) taxa preferring high
altitude (z+ ), but low conductivity and nitrate concentra-
tion (zx ). The first group is characterized by a sharp
increase in either abundance or frequency of occurrence
when conductivity values go beyond 1430 mS.cmx1 and
nitrate concentrations pass the 2.3 mg.Lx1 change point.
The second group will show a sharp decrease in either
abundance or frequency of occurrence when conductivity
values go beyond 930 mS.cmx1 and nitrate concentrations
pass the 0.6 mg.Lx1 change point (Table 2, Fig. 4(C)
and (E)). In contrast, the first group is negatively influenced
by increasing elevation (change point at 30 m a.s.l.), while

the second group is positively influenced (change point at
58 m a.s.l.) (Table 2, Fig. 4(A)).

The threshold values were obtained for different taxa
such as Atyidae (Decapoda), Thiaridae (Gastropoda)
and Corbiculidae (Bivalvia), which displayed a negative
response to increasing elevation (zx), while they showed
a positive response to the increase of conductivity
and nitrate-nitrogen (z+ ). In contrast to those taxa,
Acari, Baetidae (Ephemeroptera) and Leptohyphidae
(Ephemeroptera) showed a positive response to increasing
elevation (z+ , Fig. 4(B)) and displayed a negative
response to increasing conductivity (zx , Fig. 4(D)) and
increasing nitrate-nitrogen values (zx , Fig. 4(F)).
Naucoridae (Hemiptera) showed a positive response to
an increase in elevation (z+ , Fig. 4(B)), while Veliidae
(Hemiptera) and Libellulidae (Odonata) showed a nega-
tive response to an increase of conductivity and nitrate-
nitrogen, respectively (zx , Fig. 4(D) and (F)).

Fig. 3. Boxplots of the different classes of land use, type of sediment, sludge layer and pool-riffle class in relation to BMWP-Colombia
for sampling sites in the Portoviejo River. Bold horizontal lines represent medians, boxes represent interquartile ranges (25–75%

percentiles) and range bars show maximum and minimum values; small black dots show outliers.

Table 2. Threshold Indicator Analysis (TITAN) community response results for observed changes points (Obs.) and selected
quantiles (5, 50 and 95%) correspond to change points from 1000 bootstrap replicates of the observed data. Thresholds are given
for only those taxa that are determined to be pure and reliable indicators.

Environmental gradient Change points

Obs. 5% 50% 95%
Elevation (m.a.s.l.) fsumzx 30 26 32 53

fsumz+ 58 44 58 66
Conductivity (mS.cmx1) fsumzx 930 330 930 1160

fsumz+ 1430 663 982 1433
Nitrate-Nitrogen (mg.Lx1) fsumzx 0.6 0.2 0.6 1.5

fsumz+ 2.3 0.6 1.7 2.5
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Discussion

Water quality of the portoviejo river

The majority of the sampling locations have DO
concentrations ranging from 7 to 10 mg.Lx1. The lowest
value of DO (2.2 mg.Lx1) was observed at the Poza
Honda reservoir, which was characterized by the highest
BOD5 (5.9 mg.Lx1), a sludge layer between 5 and 20 cm,
a water hyacinth coverage of 50–75% and stagnant water.
Based on the ecological water quality index (BMWP-
Colombia), this sampling site (site Po3, Fig. 1) had bad
water quality with seven taxa present. This finding may be
explained by a combination of unfavorable conditions
(e.g., low stream velocity, thick sludge layer) for rheophilic
taxa and the fact that when the percentage of water
hyacinth cover is higher than 50%, the cover might be too
dense, which negatively affects the physico-chemical water
quality (e.g., DO, BOD5) (Nguyen et al., 2015). Flow
velocity is often considered as one of the most important
variables that influences macroinvertebrate communities

(Forio et al., 2015; Damanik-Ambarita et al., 2016). In this
respect, damming causes unfavorable changes in the
riverine biota through changes in flow regime, sediment
transport and habitat modification (Käiro et al., 2011).
As the Poza Honda dam started operating in 1971, there
might be sediment accumulation. Sedimentation can
negatively affect the macroinvertebrate community by
changing the suitability of the substrate for some taxa,
increasing drift due to sediment deposition, affecting
respiration due to the deposition and affecting feeding
activities (Wood and Armiage, 1997).

The negative correlation between elevation and con-
ductivity, nutrient concentrations (e.g., NO3

x, NO2
x,

oPO4
3x, TP) and TOC (Appendix 1) indicates the

cumulative negative impacts of human disturbance on
water quality from upstream to downstream in the
Portoviejo River. The affected sites have higher conduc-
tivity, a higher chlorophyll concentration and higher
concentrations of NO3

x, NO2
x, oPO4

3x, TN, TP and
TOC, compared with less affected sites. The Portoviejo
River suffers from a high level of environmental

Fig. 4. Threshold Indicator Taxa ANalysis and change points (dots) for the pure and reliable indicator taxa response to elevation
(A, B), conductivity (C,D) and nitrate-nitrogen (E, F) gradient (Pj0.05, purity=0.95, reliability=0.95 for 5 minimum number of

observations, 1000 bootstrap and 1000 permutation replicates). Negatively associated taxa (z–) are indicated by black symbols and
lines and positively associated taxa (z+ ) are indicated by red symbols and dashed lines. Solid and dashed lines are cumulative
frequency distributions of sum(z–) and sum(z+ ) maxima (respectively) across bootstrap replicates. Size of change point symbol (dots)

is proportional to the magnitude of the taxa response. Zx species responded negatively to an increase in the environmental gradient,
Z+ species responded positively to an increase in the gradient. Horizontal lines suggest 5–95% quantiles from the bootstrapped
change point distribution. ACARI, Acari; ATYIDAE, Atyidae; BAETIDAE, Baetidae; CORBICUL, Corbiculidae, LEPTOHYP,

Leptohyphidae; LIBELLUL, Libellulidae; NAUCORID, Naucoridae, THIARIDA, Thiaridae; VELIIDAE, Veliidae.
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deterioration caused by deforestation, burning of vegeta-
tion, drainage of agrochemicals and fertilizers, garbage
disposal and discharge of sewage without adequate
previous treatment (Párraga and Aguirre, 2010; ACBIO,
2012). Nutrients (e.g., NO3

x) enter the water as a result of
domestic wastewater discharge, agricultural activities (e.g.,
using manure and fertilizer containing NO3

x) and as a
result of oxidation of nitrogenous waste products in
human and animal excreta (Singh and Sharma, 2014).

Lower BMWP-Colombia scores were reported for sites
located right after the outlets of wastewater treatment
plants (sites Po31 and Po34, Fig. 1), in front of a small weir
(site Po47, Fig. 1) and right after the small weir (site Po40,
Fig. 1); with chlorophyll concentrations higher than
30 mg.Lx1. It is estimated that each year roughly 20 million
cubic meters of wastewater are discharged into the
Portoviejo River (ACBIO, 2012). As such, the Portoviejo
River continues to suffer from sewage pollution, as the
related increase in nutrient concentrations supports
phytoplankton growth. Our results indicate negative
effects of anthropogenic disturbances on biological diver-
sity and water quality in the Portoviejo River. Based on
our results, we emphasize the need for management
actions to control the diffuse pollution and future
investments in wastewater treatment in order to reduce
the nutrient load in the river.

Relevance of the TITAN method: indicator taxa
of environmental change and threshold
for macroinvertebrates

TITAN uncovered a clear community change along
both human affected gradients (e.g., conductivity and
nitrate-nitrogen) and a natural gradient (e.g., elevation).
For instance, a community change point for tolerant
taxa (z+ ) was observed at 1430 mS.cmx1, which is close
to the findings of Schröder et al. (2015), who determined
a community threshold for tolerant taxa at 1464 mS.cmx1

in the Lippe River, Germany. The change point for
sensitive indicator taxa (zx ) at a conductivity value
of 930 mS.cmx1 in the Portoviejo River is similar to the
threshold identified by Schröder et al. (2015) at
926 mS.cmx1. In this study, half of the sites (i.e., less
affected sites) had conductivity values lower than
500 mS.cmx1, the other half (i.e., affected sites) had values
higher than 1400 mS.cmx1 and only two sites had
conductivity values in between (Fig. 4(C)). Moreover,
only four taxa (Acari, Veliidae, Leptohyphidae and
Baetidae) showed a negative association (zx) with
increasing conductivity. In this case, it is possible that the
community change point was high due to the limited
amount of samples in the middle section of the conductiv-
ity gradient (only two). Therefore, the results should be
carefully considered before use.

Nitrate-nitrogen was found to influence community
composition at a concentration of 0.6 mg.Lx1 (for
sensitive (zx) taxa) and 2.3 mg.Lx1 (for tolerant (z+ )
taxa). There was a strong relationship between

conductivity and NO3
x (r=0.82), NO2

x (r=0.75) and
TOC (r=0.73), suggesting that a similar effect could be
observed for NO2

x and TOC gradients. However, these
were not observed when applying TITAN. Nevertheless,
the observed influence of NO3

x is consistent with the
literature, as it has been shown that there is a strong
relationship between nutrient concentrations and macro-
invertebrate communities (Ashton et al., 2014).

Combining the observed change points and the
ecological water quality shows that the less affected
sites had a conductivity lower than 880 mS.cmx1 and a
nitrate-nitrogen concentration lower than 0.6 mg.Lx1

(Appendix 3), while the ecological water quality ranged
from poor to good. On the other hand, at the affected sites,
conductivity was higher than 980 mS.cmx1 and the nitrate-
nitrogen concentration was higher than 0.6 mg.Lx1

(Appendix 3), while the ecological water quality ranged
from bad to poor. This supports the assumption that
macroinvertebrate communities respond predictably to
the degradation of water quality in the Portoviejo River.
However, biological communities are always affected
by multiple factors, making it impossible to separate
the effects of each factor when they co-vary (Berger
et al., 2016). Therefore, the identified thresholds for
conductivity and nitrate-nitrogen should be seen as
preliminary results.

Finally, elevation was found to influence the macro-
invertebrate community with a change point at 30 m a.s.l.
(fsumzx) and at 58 m a.s.l. (fsumz+ ). Yet, elevation is a
natural gradient that was highly correlated with conduc-
tivity (r=x0.84) and nitrate-nitrogen (r=0.81); thus, a
similar pattern in community shift was expected. The
elevation of the sampling sites in the Portoviejo River
ranged between 0 and 121 m a.s.l., which is very low.
As such, the reported change points for elevation may not
represent the influence of altitude on the community, but
indicate the cumulative negative impacts of human
disturbance on water quality from upstream to down-
stream in the Portoviejo River.

Among the tolerant taxa, three widely distributed taxa
were present: Atyidae, Thiaridae and Corbiculidae.
Moreover, these taxa are also considered to be invasive,
which highlights the importance of identifying change
points so as to conserve sensitive species and predict local
community composition (Schröder et al., 2015). With
increasing conductivity and nitrate-nitrogen, sensitive taxa
like Baetidae and Leptohyphidae will show a decrease in
abundance and frequency of occurrence, which will reduce
the indigenous community composition and allow for
invasive species to take over. Based on these observations,
management related to aquatic conservation, biological
invasions, ecosystem restoration and natural resources can
be performed (King and Baker, 2010). Moreover, these
change point values have valuable applications for detect-
ing reference condition boundaries and selecting sites at
greatest risk of significant change (Kovalenko et al., 2014).
Nevertheless, the obtained change point values should be
considered as preliminary results, as this is only the first
publication on macroinvertebrate communities in the
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Portoviejo River and therefore require confirmation
through future research.

Conclusions

In the present research, we provided baseline informa-
tion about the physico-chemical water quality and the
macroinvertebrate community composition in the
Portoviejo River (Ecuador). The BMWP-Colombia scores
showed that water quality of the sampling sites within the
Portoviejo River ranged from good to bad. TITAN
revealed clear tipping points in elevation, conductivity
and nitrate-nitrogen concentrations and associated indi-
cator taxa. Atyidae, Corbiculidae and Thiaridae showed a
positive response to the increase in conductivity and
nitrate-nitrogen, while they were assigned a negative
response to increasing elevation. In contrast to these taxa,
Acari, Baetidae and Leptohyphidae showed a negative
response to the increase in conductivity and nitrate-
nitrogen, while they were assigned a positive response to
increasing elevation. Based on these correlations, these
taxa can be considered as indicator taxa that significantly
change in abundance and frequency of occurrence due to
the change in water quality along the Portoviejo River.
Based on the patterns that are characterized in this
research, novel management approaches can be developed
and implemented.
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Appendix 2. List of all families and their tolerance score of macroinvertebrate taxa collected in the Portoviejo river.

Taxa Shortcode BMWP-Colombia score No. present Frequency
Acari ACARI – 184 6
Atyidae ATYIDAE 8 199 6
Baetidae BAETIDAE 7 181 19
Belostomatidae BELOSTOM 4 12 9
Calopterygidae CALOPTER 7 93 11
Cambaridae CAMBARID – 16 6
Ceratopogonidae CERATOPO 5 19 8
Chironomidae CHIRONOM 2 805 29
Coenagrionidae COENAGRI 7 124 21
Corbiculidae CORBICUL – 247 9
Corydalidae CORYDALI 6 19 3
Culicidae CULICIDA 2 1 1
Dryopidae DRYOPIDA 6 28 3
Elmidae ELMIDAE 6 8 6
Ephydridae EPHYDRID 4 1 1
Gelastocoridae GELASTOC 5 1 1
Gerridae GERRIDA – 8 5
Glossiphoniidae GLOSSIPH 5 8 1
Gomphidae GOMPHIDA 9 71 17
Haliplidae HALIPLID 4 13 9
Hydrobiidae HYDROBII 7 59 1
Hydrophilidae HYDROPHI 3 29 5
Hydropsychidae HYDROPSY 7 74 9
Hydroptilidae HYDROPTI 8 7 4
Lampyridae LAMPYRID 10 2 1
Leptoceridae LEPTOCER 8 22 9
Leptohyphidae LEPTOHYP 7 175 11
Leptophlebiidae LEPTOPHL 9 61 8
Libellulidae LIBELLUL 5 231 20
Limoniidae LIMONIID 3 15 7
Littorinidae LITTORIN – 20 1
Lymnaeidae LYMNAEID 8 1 1
Mysidae MYSIDAE – 1 1
Naucoridae NAUCORID 8 42 12
Nepidae NEPIDAE 5 8 3
Notonectidae NOTONECT 5 135 2
Ochteridae OCHTERID – 1 1
Palaemonidae PALAEMON 8 30 4
Perlidae PERLIDAE 10 3 1
Philopotamidae PHILOPOT 9 7 1
Physidae PHYSIDAE 3 2 2
Pleidae PLEIDAE 6 12 6
Polycentropodidae POLYCENT 9 5 1
Ptilodactylidae PTILODAC 10 1 1
Pyralidae PYRALIDA 7 11 4
Scirtidae SCIRTIDA 4 4 3
Simuliidae SIMILIID 7 2 2
Spionidae SPIONIDA – 14 2
Stratiomyidae STRATIOM 3 12 5
Tabanidae TABANIDA 5 6 3
Thiaridae THIARIDA 5 5231 17
Tubificidae TUBIFICI 1 18 6
Veliidae VELIIDAE 7 56 11
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Appendix 3. Boxplots of the different elevation, conductivity and nitrate-nitrogen in relation to impact level. Bold horizontal lines

represent median, boxes represent interquartile ranges (25–75% percentiles) and range bars show maximum and minimum values,
small black dots show outliers.
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