22 research outputs found

    New strategies for the wastewater treatment with filtration membranes

    Get PDF
    A great expansion in the number of full-scale references in wastewater treatment with membranes ocurred in the last two decades. Costs, reference infrastructures, water quality requirements for a further reuse and bibliometric information was collected to assess the current state of based-on-membrane technologies. A compact aerobic approach, combining flocculent and biofilm biomass, treating municipal sewage was proposed. Alternatively, a membrane bioreactor as s polishing step reactors for methanogenic treatments has been also developed. Other approaches were also included, always with a common thread, a filtration membrane

    ベトナムの天然ゴム製造工程廃水を対象とした処理システムの開発

    Get PDF
    国立大学法人長岡技術科学大

    糖蜜系廃水を対象とした生物・物理化学処理システムの開発

    Get PDF
    国立大学法人長岡技術科学大

    Pathways to Water Sector Decarbonization, Carbon Capture and Utilization

    Get PDF
    The water sector is in the middle of a paradigm shift from focusing on treatment and meeting discharge permit limits to integrated operation that also enables a circular water economy via water reuse, resource recovery, and system level planning and operation. While the sector has gone through different stages of such revolution, from improving energy efficiency to recovering renewable energy and resources, when it comes to the next step of achieving carbon neutrality or negative emission, it falls behind other infrastructure sectors such as energy and transportation. The water sector carries tremendous potential to decarbonize, from technological advancements, to operational optimization, to policy and behavioural changes. This book aims to fill an important gap for different stakeholders to gain knowledge and skills in this area and equip the water community to further decarbonize the industry and build a carbon-free society and economy. The book goes beyond technology overviews, rather it aims to provide a system level blueprint for decarbonization. It can be a reference book and textbook for graduate students, researchers, practitioners, consultants and policy makers, and it will provide practical guidance for stakeholders to analyse and implement decarbonization measures in their professions

    Pathways to Water Sector Decarbonization, Carbon Capture and Utilization

    Get PDF
    The water sector is in the middle of a paradigm shift from focusing on treatment and meeting discharge permit limits to integrated operation that also enables a circular water economy via water reuse, resource recovery, and system level planning and operation. While the sector has gone through different stages of such revolution, from improving energy efficiency to recovering renewable energy and resources, when it comes to the next step of achieving carbon neutrality or negative emission, it falls behind other infrastructure sectors such as energy and transportation. The water sector carries tremendous potential to decarbonize, from technological advancements, to operational optimization, to policy and behavioural changes. This book aims to fill an important gap for different stakeholders to gain knowledge and skills in this area and equip the water community to further decarbonize the industry and build a carbon-free society and economy. The book goes beyond technology overviews, rather it aims to provide a system level blueprint for decarbonization. It can be a reference book and textbook for graduate students, researchers, practitioners, consultants and policy makers, and it will provide practical guidance for stakeholders to analyse and implement decarbonization measures in their professions

    Pathways to Water Sector Decarbonization, Carbon Capture and Utilization

    Get PDF
    The water sector is in the middle of a paradigm shift from focusing on treatment and meeting discharge permit limits to integrated operation that also enables a circular water economy via water reuse, resource recovery, and system level planning and operation. While the sector has gone through different stages of such revolution, from improving energy efficiency to recovering renewable energy and resources, when it comes to the next step of achieving carbon neutrality or negative emission, it falls behind other infrastructure sectors such as energy and transportation. The water sector carries tremendous potential to decarbonize, from technological advancements, to operational optimization, to policy and behavioural changes. This book aims to fill an important gap for different stakeholders to gain knowledge and skills in this area and equip the water community to further decarbonize the industry and build a carbon-free society and economy. The book goes beyond technology overviews, rather it aims to provide a system level blueprint for decarbonization. It can be a reference book and textbook for graduate students, researchers, practitioners, consultants and policy makers, and it will provide practical guidance for stakeholders to analyse and implement decarbonization measures in their professions

    Pathways to Water Sector Decarbonization, Carbon Capture and Utilization

    Get PDF
    The water sector is in the middle of a paradigm shift from focusing on treatment and meeting discharge permit limits to integrated operation that also enables a circular water economy via water reuse, resource recovery, and system level planning and operation. While the sector has gone through different stages of such revolution, from improving energy efficiency to recovering renewable energy and resources, when it comes to the next step of achieving carbon neutrality or negative emission, it falls behind other infrastructure sectors such as energy and transportation. The water sector carries tremendous potential to decarbonize, from technological advancements, to operational optimization, to policy and behavioural changes. This book aims to fill an important gap for different stakeholders to gain knowledge and skills in this area and equip the water community to further decarbonize the industry and build a carbon-free society and economy. The book goes beyond technology overviews, rather it aims to provide a system level blueprint for decarbonization. It can be a reference book and textbook for graduate students, researchers, practitioners, consultants and policy makers, and it will provide practical guidance for stakeholders to analyse and implement decarbonization measures in their professions

    Tratamento de águas residuais industriais com nanomateriais sintetizados para um ambiente sustentável

    Get PDF
    Quality of the final discharged effluents from industrial activities has been the subject of significant efforts over several decades to improve the performance of the methods applied for their treatment, either by physico-chemical, biological, or a combination of these processes. Among the emerging technologies, the application of various types of engineered nanomaterials (ENMs) has gained a particular attention in recent years. The present thesis aimed to carry out either experimental studies, surveys and critical reviews in order to synthesize the most sustainable nanomaterials for the treatment of recalcitrant pollutants from the content of industrial effluents. In parallel, the sustainability of other biological and physicochemical methods has been critically assessed and the most sustainable treatment methods have been suggested to be adopted by the industries. It was demonstrated in this thesis that the application of Tagguchi approach can considerably aid to control the properties of iron-based nanoscale particles synthesized by a liquidphase reduction process. Working with this system revealed that both the (reductant/Fe3+) ratio, (R), and the Fe3+concentration, [Fe3+], are the parameters that determine critical characteristics including particle crystalline phase composition, crystallinity and surface area although R has been revealed as the most important one. Nano zero valent iron particles with enhanced properties, synthesized by utilization of ultrasonic irradiation, was successfully tested to degrade organic dyes (methylene blue, as a case study) which are dominant in the wastewater from some industries such as textile factories. Recovery of the nanomaterials after being applied for the treatment purposes is also among the most important parameters for the selection and synthesis of the most sustainable nanomaterials for environmental applications. A novel ZnO/Fe3O4 on Bentonite nanocomposite prepared in this thesis showed acceptable photocatalytic decomposition of 2,4 dichlorophenol besides the ability to be recovered after being used. Magnetic nanocomposites were also tested for the degradation of AOXs from pulp and paper mill effluents and showed acceptable performance in such applications. A framework was also developed in this thesis for the sustainability assessment of the best available technologies to deal with industrial effluents, showing the efficiency of biological treatment methods to deal with industrial effluents although having some limitation to deal with phenolic industrial effluents. With a precise acclimatization process, very high efficiency for the biodegradation of phenol with a high degree of resistance to the shock of initial phenol concentration was achieved using activated sludge process. The results of a critical review, as the future outlook of this thesis, indicated the possibility of integration of engineered nanomaterials and also biological treatment with the membrane technologies in order to overcome the existing barriers for the rapid development of membrane technologies for the treatment of industrial effluents.A qualidade dos efluentes finais de atividades industriais tem sido, ao longo de várias décadas, objeto de esforços significativos para melhorar o desempenho dos seus métodos de tratamento, seja por via físico-química, biológica ou uma combinação destes. Entre as tecnologias emergentes, o recurso a nanomateriais sintetizados (ENMs) tem sido alvo de especial atenção nos últimos anos. A presente tese teve como objetivo realizar estudos experimentais, levantamentos de informação e revisões críticas, a fim de sintetizar nanomateriais sustentáveis para o tratamento de poluentes recalcitrantes existentes em efluentes industriais. Paralelamente, a sustentabilidade de outros métodos biológicos e físico-químicos foi avaliada criticamente, tendo-se sugerido os métodos de tratamento mais sustentáveis para serem adotados pelas indústrias. Foi demonstrado nesta tese que o recurso à abordagem de Tagguchi pode auxiliar consideravelmente no controlo das propriedades de partículas nanométricas à base de ferro, sintetizadas por um processo de redução em fase líquida. O estudo deste sistema revelou que tanto a razão (agente redutor/ Fe3+) como a concentração de Fe3+ são os parâmetros que determinam características críticas dos precipitados, incluindo a sua composição de fases cristalinas, grau de cristalinidade e área superficial específica. As nanopartículas de ferro de valência zero com propriedades melhoradas, sintetizadas pela utilização de irradiação por ultrasons, foram testadas com sucesso para degradar corantes orgânicos (azul de metileno como corante modelo) que são compostos dominantes nas águas residuais de algumas indústrias, designadamente de fábricas de têxteis. A recuperação dos nanomateriais após a sua aplicação em tratamentos de efluentes também é um dos aspectos mais importantes a ter em consideração na seleção e síntese de nanomateriais sustentáveis para aplicações ambientais. Um novo nanocompósito de ZnO/Fe3O4 sobre Bentonite, produzido neste trabalho, revelou uma capacidade aceitável para decomposição fotocatalítica do 2,4 diclorofenol, além da capacidade de ser recuperado após utilização. Testaram-se também nanocompósitos magnéticos na degradação de AOXs de efluentes da indústria do papel e celulose que evidenciaram um desempenho aceitável nessas aplicações. Definiu-se também nesta tese um contexto para a avaliação da sustentabilidade das melhores tecnologias disponíveis para lidar com efluentes industriais, tendo-se revelado a eficiência dos métodos de tratamento biológico para lidar com efluentes industriais, embora com alguma limitação para lidar com efluentes industriais fenólicos. Com um processo de aclimatação preciso, conseguiu-se uma eficiência muito elevada para a biodegradação do fenol, com alto grau de resistência ao choque da concentração inicial de fenol, utilizando-se o processo de lamas ativadas. Mediante uma revisão crítica da literatura, e como perspectivas de futuro a extrair do presente trabalho, aponta-se a possibilidade de integrar nanomateriais sintetizados e tratamento biológico nas tecnologias de membrana, para superar as barreiras actualmente existentes ao rápido desenvolvimento das tecnologias de membrana para o tratamento industrial efluentes.Programa Doutoral em Ciências e Engenharia do Ambient

    Understanding and modeling the microbial interactions in a novel nitrogen removal process

    Get PDF
    corecore