12 research outputs found

    Optimal route reflection topology design

    Get PDF
    An Autonomous System (AS) is a group of Internet Protocol-based networks with a single and clearly defined external routing policy, usually under single ownership, trust or administrative control. The AS represents a connected group of one or more blocks of IP addresses, called IP prefixes, that have been assigned to that organization and provides a single routing policy to systems outside the AS. The Internet is composed of the interconnection of several thousands of ASes, which use the Border Gateway Protocol (BGP) to exchange network prefixes (aggregations of IP addresses) reachability advertisements. BGP advertisements (or updates) are sent over BGP sessions administratively set between pairs of routers. BGP is a path vector routing protocol and is used to span different ASes. A path vector protocol defines a route as a pairing between a destination and the attributes of the path to that destination. Interior Border Gateway Protocol (iBGP) refers to the BGP neighbor relationship within the same AS. When BGP neighbor relationship are formed between two peers belonging to different AS are called Exterior Border Gateway Protocol (eBGP). In the last case, BGP routers are called Autonomous System Border Routers (ASBRs), while those running only iBGP sessions are referred to as Internal Routers (IRs). Traditional iBGP implementations require a full-mesh of sessions among routers of each AS

    Optimization of BGP Convergence and Prefix Security in IP/MPLS Networks

    Get PDF
    Multi-Protocol Label Switching-based networks are the backbone of the operation of the Internet, that communicates through the use of the Border Gateway Protocol which connects distinct networks, referred to as Autonomous Systems, together. As the technology matures, so does the challenges caused by the extreme growth rate of the Internet. The amount of BGP prefixes required to facilitate such an increase in connectivity introduces multiple new critical issues, such as with the scalability and the security of the aforementioned Border Gateway Protocol. Illustration of an implementation of an IP/MPLS core transmission network is formed through the introduction of the four main pillars of an Autonomous System: Multi-Protocol Label Switching, Border Gateway Protocol, Open Shortest Path First and the Resource Reservation Protocol. The symbiosis of these technologies is used to introduce the practicalities of operating an IP/MPLS-based ISP network with traffic engineering and fault-resilience at heart. The first research objective of this thesis is to determine whether the deployment of a new BGP feature, which is referred to as BGP Prefix Independent Convergence (PIC), within AS16086 would be a worthwhile endeavour. This BGP extension aims to reduce the convergence delay of BGP Prefixes inside of an IP/MPLS Core Transmission Network, thus improving the networks resilience against faults. Simultaneously, the second research objective was to research the available mechanisms considering the protection of BGP Prefixes, such as with the implementation of the Resource Public Key Infrastructure and the Artemis BGP Monitor for proactive and reactive security of BGP prefixes within AS16086. The future prospective deployment of BGPsec is discussed to form an outlook to the future of IP/MPLS network design. As the trust-based nature of BGP as a protocol has become a distinct vulnerability, thus necessitating the use of various technologies to secure the communications between the Autonomous Systems that form the network to end all networks, the Internet

    On the scalability of LISP and advanced overlaid services

    Get PDF
    In just four decades the Internet has gone from a lab experiment to a worldwide, business critical infrastructure that caters to the communication needs of almost a half of the Earth's population. With these figures on its side, arguing against the Internet's scalability would seem rather unwise. However, the Internet's organic growth is far from finished and, as billions of new devices are expected to be joined in the not so distant future, scalability, or lack thereof, is commonly believed to be the Internet's biggest problem. While consensus on the exact form of the solution is yet to be found, the need for a semantic decoupling of a node's location and identity, often called a location/identity separation, is generally accepted as a promising way forward. Typically, this requires the introduction of new network elements that provide the binding of the two names-paces and caches that avoid hampering router packet forwarding speeds. But due to this increased complexity the solution's scalability is itself questioned. This dissertation evaluates the suitability of using the Locator/ID Separation Protocol (LISP), one of the most successful proposals to follow the location/identity separation guideline, as a solution to the Internet's scalability problem. However, because the deployment of any new architecture depends not only on solving the incumbent's technical problems but also on the added value that it brings, our approach follows two lines. In the first part of the thesis, we develop the analytical tools to evaluate LISP's control plane scalability while in the second we show that the required control/data plane separation provides important benefits that could drive LISP's adoption. As a first step to evaluating LISP's scalability, we propose a methodology for an analytical analysis of cache performance that relies on the working-set theory to estimate traffic locality of reference. One of our main contribution is that we identify the conditions network traffic must comply with for the theory to be applicable and then use the result to develop a model that predicts average cache miss rates. Furthermore, we study the model's suitability for long term cache provisioning and assess the cache's vulnerability in front of malicious users through an extension that accounts for cache polluting traffic. As a last step, we investigate the main sources of locality and their impact on the asymptotic scalability of the LISP cache. An important finding here is that destination popularity distribution can accurately describe cache performance, independent of the much harder to model short term correlations. Under a small set of assumptions, this result finally enables us to characterize asymptotic scalability with respect to the amount of prefixes (Internet growth) and users (growth of the LISP site). We validate the models and discuss the accuracy of our assumptions using several one-day-long packet traces collected at the egress points of a campus and an academic network. To show the added benefits that could drive LISP's adoption, in the second part of the thesis we investigate the possibilities of performing inter-domain multicast and improving intra-domain routing. Although the idea of using overlaid services to improve underlay performance is not new, this dissertation argues that LISP offers the right tools to reliably and easily implement such services due to its reliance on network instead of application layer support. In particular, we present and extensively evaluate Lcast, a network-layer single-source multicast framework designed to merge the robustness and efficiency of IP multicast with the configurability and low deployment cost of application-layer overlays. Additionally, we describe and evaluate LISP-MPS, an architecture capable of exploiting LISP to minimize intra-domain routing tables and ensure, among other, support for multi protocol switching and virtual networks.En menos de cuatro décadas Internet ha evolucionado desde un experimento de laboratorio hasta una infraestructura de alcance mundial, de importancia crítica para negocios y que atiende a las necesidades de casi un tercio de los habitantes del planeta. Con estos números, es difícil tratar de negar la necesidad de escalabilidad de Internet. Sin embargo, el crecimiento orgánico de Internet está aún lejos de finalizar ya que se espera que mil millones de dispositivos nuevos se conecten en el futuro cercano. Así pues, la falta de escalabilidad es el mayor problema al que se enfrenta Internet hoy en día. Aunque la solución definitiva al problema está aún por definir, la necesidad de desacoplar semánticamente la localización e identidad de un nodo, a menudo llamada locator/identifier separation, es generalmente aceptada como un camino prometedor a seguir. Sin embargo, esto requiere la introducción de nuevos dispositivos en la red que unan los dos espacios de nombres disjuntos resultantes y de cachés que almacenen los enlaces temporales entre ellos con el fin de aumentar la velocidad de transmisión de los enrutadores. A raíz de esta complejidad añadida, la escalabilidad de la solución en si misma es también cuestionada. Este trabajo evalúa la idoneidad de utilizar Locator/ID Separation Protocol (LISP), una de las propuestas más exitosas que siguen la pauta locator/identity separation, como una solución para la escalabilidad de la Internet. Con tal fin, desarrollamos las herramientas analíticas para evaluar la escalabilidad del plano de control de LISP pero también para mostrar que la separación de los planos de control y datos proporciona un importante valor añadido que podría impulsar la adopción de LISP. Como primer paso para evaluar la escalabilidad de LISP, proponemos una metodología para un estudio analítico del rendimiento de la caché que se basa en la teoría del working-set para estimar la localidad de referencias. Identificamos las condiciones que el tráfico de red debe cumplir para que la teoría sea aplicable y luego desarrollamos un modelo que predice las tasas medias de fallos de caché con respecto a parámetros de tráfico fácilmente medibles. Por otra parte, para demostrar su versatilidad y para evaluar la vulnerabilidad de la caché frente a usuarios malintencionados, extendemos el modelo para considerar el rendimiento frente a tráfico generado por usuarios maliciosos. Como último paso, investigamos como usar la popularidad de los destinos para estimar el rendimiento de la caché, independientemente de las correlaciones a corto plazo. Bajo un pequeño conjunto de hipótesis conseguimos caracterizar la escalabilidad con respecto a la cantidad de prefijos (el crecimiento de Internet) y los usuarios (crecimiento del sitio LISP). Validamos los modelos y discutimos la exactitud de nuestras suposiciones utilizando varias trazas de paquetes reales. Para mostrar los beneficios adicionales que podrían impulsar la adopción de LISP, también investigamos las posibilidades de realizar multidifusión inter-dominio y la mejora del enrutamiento dentro del dominio. Aunque la idea de utilizar servicios superpuestos para mejorar el rendimiento de la capa subyacente no es nueva, esta tesis sostiene que LISP ofrece las herramientas adecuadas para poner en práctica de forma fiable y fácilmente este tipo de servicios debido a que LISP actúa en la capa de red y no en la capa de aplicación. En particular, presentamos y evaluamos extensamente Lcast, un marco de multidifusión con una sola fuente diseñado para combinar la robustez y eficiencia de la multidifusión IP con la capacidad de configuración y bajo coste de implementación de una capa superpuesta a nivel de aplicación. Además, describimos y evaluamos LISP-MPS, una arquitectura capaz de explotar LISP para minimizar las tablas de enrutamiento intra-dominio y garantizar, entre otras, soporte para conmutación multi-protocolo y redes virtuales

    Concepção e implementação de experiências laboratoriais sobre MPLS

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesO Multiprotocol Label Switching (MPLS) é um mecanismo de transporte de dados, sob a forma de um protocolo agnóstico, com grande potencial de crescimento e adequação. Opera na “Camada 2.5” do modelo OSI e constitui um mecanismo de alto desempenho utilizado nas redes de núcleo para transportar dados de um nó da rede para outro. O sucesso do MPLS resulta do facto de permitir que a rede transporte todos os tipos de dados, desde tráfego IP a tráfego da camada de ligação de dados, devido ao encapsulamento dos pacotes dos diversos protocolos, permitindo a criação de “links virtuais” entre nós distantes. O MPLS pertence à família das “redes de comutação de pacotes”, sendo os pacotes de dados associados a “etiquetas” que determinam o seu encaminhamento, sem necessidade de examinar o conteúdo dos próprios pacotes. Isto permite a criação de circuitos “extremo-aextremo” através de qualquer tipo de rede de transporte e independentemente do protocolo de encaminhamento que é utilizado. O projecto do MPLS considera múltiplas tecnologias no sentido de prestar um serviço único de transporte de dados, tentando simultaneamente proporcionar capacidades de engenharia de tráfego e controlo “out-of-band”, uma característica muito atraente para uma implementação em grande escala. No fundo, o MPLS é uma forma de consolidar muitas redes IP dentro de uma única rede. Dada a importância desta tecnologia, é urgente desenvolver ferramentas que permitam entender melhor a sua complexidade. O MPLS corre normalmente nas redes de núcleo dos ISPs. No sentido de tornar o seu estudo viável, recorreu-se nesta dissertação à emulação para implementar cenários de complexidade adequada. Existem actualmente boas ferramentas disponíveis que permitem a recriação em laboratório de cenários bastante complicados. Contudo, a exigência computacional da emulação é proporcional à complexidade do projecto em questão, tornando-se rapidamente impossível de realizar numa única máquina. A computação distribuída ou a “Cloud Computing” são actualmente as abordagens mais adequadas e inovadoras apara a resolução deste problema. Esta dissertação tem como objectivo criar algumas experiências em laboratório que evidenciam aspectos relevantes da tecnologia MPLS, usando para esse efeito um emulador computacional, o Dynamips, impulsionado por generosas fontes computacionais disponibilizadas pela Amazon ec2. A utilização destas ferramentas de emulação permite testar cenários de rede e serviços reais em ambiente controlado, efectuando o debugging das suas configurações e optimizando o seu desempenho, antes de os colocar em funcionamento nas redes em operação.The Multiprotocol Label Switching (MPLS) is a highly scalable and agnostic protocol to carry network data. Operating at "Layer 2.5" of the OSI model, MPLS is an highperformance mechanism that is used at the network backbone for conveying data from one network node to the next. The success of MPLS results from the fact that it enables the network to carry all kinds of traffic, ranging from IP to layer 2 traffic, since it encapsulates the packets of the diverse network protocols, allowing the creation of "virtual links" between distant nodes. MPLS belongs to the family of packet switched networks, where labels are assigned to data packets that are forwarded based on decisions that rely only on the label contents, without the need to examine the packets contents. This allows the creation of end-to-end circuits across any type of transport medium, using any protocol. The MPLS design takes multiform transport technologies into account to provide a unified data-carrying service, attempting simultaneously to preserve traffic engineering and out-of-band control, a very attractive characteristic for large-scale deployment. MPLS is the way to consolidate many IP networks into a single one. Due to this obvious potential, it is urgent to develop means and tools to better understand its functioning and complexity. MPLS normally runs at the backbone of Service Providers networks, being deployed across an extensive set of expensive equipment. In order to turn the study of MPLS feasible, emulation was considered as the best solution. Currently, there are very good available tools to recreate, in a lab environment, quite complicated scenarios. However, the computational demand of the emulation is proportional to the complexity of the project, becoming quickly unfeasible in a single machine. Fortunately, distributed computing or Cloud computing are suitable and novel approaches to solve this computation problem. So, this work aims to create some lab experiments that can illustrate/demonstrate relevant aspects of the MPLS technology, using the Dynamips emulator driven by the computational resources that were made available by the Amazon ec2 cloud computing facilities. The utilization of these emulation tools allows testing real networks and service scenarios in a controlled environment, being able to debug their configurations and optimize their performance before deploying them in real operating networks

    Strategies for internet route control: past, present and future

    Get PDF
    Uno de los problemas más complejos en redes de computadores es el de proporcionar garantías de calidad y confiabilidad a las comunicaciones de datos entre entidades que se encuentran en dominios distintos. Esto se debe a un amplio conjunto de razones -- las cuales serán analizadas en detalle en esta tesis -- pero de manera muy breve podemos destacar: i) la limitada flexibilidad que presenta el modelo actual de encaminamiento inter-dominio en materia de ingeniería de tráfico; ii) la naturaleza distribuida y potencialmente antagónica de las políticas de encaminamiento, las cuales son administradas individualmente y sin coordinación por cada dominio en Internet; y iii) las carencias del protocolo de encaminamiento inter-dominio utilizado en Internet, denominado BGP (Border Gateway Protocol).El objetivo de esta tesis, es precisamente el estudio y propuesta de soluciones que permitan mejorar drásticamente la calidad y confiabilidad de las comunicaciones de datos en redes conformadas por múltiples dominios.Una de las principales herramientas para lograr este fin, es tomar el control de las decisiones de encaminamiento y las posibles acciones de ingeniería de tráfico llevadas a cabo en cada dominio. Por este motivo, esta tesis explora distintas estrategias de como controlar en forma precisa y eficiente, tanto el encaminamiento como las decisiones de ingeniería de tráfico en Internet. En la actualidad este control reside principalmente en BGP, el cual como indicamos anteriormente, es uno de los principales responsables de las limitantes existentes. El paso natural sería reemplazar a BGP, pero su despliegue actual y su reconocida operatividad en muchos otros aspectos, resultan claros indicadores de que su sustitución (ó su posible evolución) será probablemente gradual. En este escenario, esta tesis propone analizar y contribuir con nuevas estrategias en materia de control de encaminamiento e ingeniería de tráfico inter-dominio en tres marcos temporales distintos: i) en la actualidad en redes IP; ii) en un futuro cercano en redes IP/MPLS (MultiProtocol Label Switching); y iii) a largo plazo en redes ópticas, modelando así una evolución progresiva y realista, facilitando el reemplazo gradual de BGP.Más concretamente, este trabajo analiza y contribuye mediante: - La propuesta de estrategias incrementales basadas en el Control Inteligente de Rutas (Intelligent Route Control, IRC) para redes IP en la actualidad. Las estrategias propuestas en este caso son de carácter incremental en el sentido de que interaccionan con BGP, solucionando varias de las carencias que éste presenta sin llegar a proponer aún su reemplazo. - La propuesta de estrategias concurrentes basadas en extender el concepto del PCE (Path Computation Element) proveniente del IETF (Internet Engineering Task Force) para redes IP/MPLS en un futuro cercano. Las estrategias propuestas en este caso son de carácter concurrente en el sentido de que no interaccionan con BGP y pueden ser desplegadas en forma paralela. En este caso, BGP continúa controlando el encaminamiento y las acciones de ingeniería de tráfico inter-dominio del tráfico IP, pero el control del tráfico IP/MPLS se efectúa en forma independiente de BGP mediante los PCEs.- La propuesta de estrategias que reemplazan completamente a BGP basadas en la incorporación de un nuevo agente de control, al cual denominamos IDRA (Inter-Domain Routing Agent). Estos agentes proporcionan un plano de control dedicado, físicamente independiente del plano de datos, y con gran capacidad computacional para las futuras redes ópticas multi-dominio.Los resultados expuestos aquí validan la efectividad de las estrategias propuestas, las cuales mejoran significativamente tanto la concepción como la performance de las actuales soluciones en el área de Control Inteligente de Rutas, del esperado PCE en un futuro cercano, y de las propuestas existentes para extender BGP al área de redes ópticas.One of the most complex problems in computer networks is how to provide guaranteed performance and reliability to the communications carried out between nodes located in different domains. This is due to several reasons -- which will be analyzed in detail in this thesis -- but in brief, this is mostly due to: i) the limited capabilities of the current inter-domain routing model in terms of Traffic Engineering (TE); ii) the distributed and potentially conflicting nature of policy-based routing, where routing policies are managed independently and without coordination among domains; and iii) the clear limitations of the inter-domain routing protocol, namely, the Border Gateway Protocol (BGP). The goal of this thesis is precisely to study and propose solutions allowing to drastically improve the performance and reliability of inter-domain communications. One of the most important tools to achieve this goal, is to control the routing and TE decisions performed by routing domains. Therefore, this thesis explores different strategies on how to control such decisions in a highly efficient and accurate way. At present, this control mostly resides in BGP, but as mentioned above, BGP is in fact one of the main causes of the existing limitations. The natural next-step would be to replace BGP, but the large installed base at present together with its recognized effectiveness in other aspects, are clear indicators that its replacement (or its possible evolution) will probably be gradually put into practice.In this framework, this thesis proposes to to study and contribute with novel strategies to control the routing and TE decisions of domains in three different time frames: i) at present in IP multi-domain networks; ii) in the near-future in IP/MPLS (MultiProtocol Label Switching) multi- domain networks; and iii) in the future optical Internet, modeling in this way a realistic and progressive evolution, facilitating the gradual replacement of BGP.More specifically, the contributions in this thesis can be summarized as follows. - We start by proposing incremental strategies based on Intelligent Route Control (IRC) solutions for IP networks. The strategies proposed in this case are incremental in the sense that they interact with BGP, and tackle several of its well-known limitations. - Then, we propose a set of concurrent route control strategies for MPLS networks, based on broadening the concept of the Path Computation Element (PCE) coming from the IETF (Internet Engineering Task Force). Our strategies are concurrent in the sense that they do not interact directly with BGP, and they can be deployed in parallel. In this case, BGP still controlls the routing and TE actions concerning regular IP-based traffic, but not how IP/MPLS paths are routed and controlled. These are handled independently by the PCEs.- We end with the proposal of a set of route control strategies for multi-domain optical networks, where BGP has been completely replaced. These strategies are supported by the introduction of a new route control element, which we named Inter-Domain Routing Agent (IDRA). These IDRAs provide a dedicated control plane, i.e., physically independent from the data plane, and with high computational capacity for future optical networks.The results obtained validate the effectiveness of the strategies proposed here, and confirm that our proposals significantly improve both the conception and performance of the current IRC solutions, the expected PCE in the near-future, as well as the existing proposals about the optical extension of BGP.Postprint (published version

    Abstracting network policies

    Get PDF
    Almost every human activity in recent years relies either directly or indirectly on the smooth and efficient operation of the Internet. The Internet is an interconnection of multiple autonomous networks that work based on agreed upon policies between various institutions across the world. The network policies guiding an institution’s computer infrastructure both internally (such as firewall relationships) and externally (such as routing relationships) are developed by a diverse group of lawyers, accountants, network administrators, managers amongst others. Network policies developed by this group of individuals are usually done on a white-board in a graph-like format. It is however the responsibility of network administrators to translate and configure the various network policies that have been agreed upon. The configuration of these network policies are generally done on physical devices such as routers, domain name servers, firewalls and other middle boxes. The manual configuration process of such network policies is known to be tedious, time consuming and prone to human error which can lead to various network anomalies in the configuration commands. In recent years, many research projects and corporate organisations have to some level abstracted the network management process with emphasis on network devices (such as Cisco VIRL) or individual network policies (such as Propane). [Continues.]</div

    WSN based sensing model for smart crowd movement with identification: a conceptual model

    Get PDF
    With the advancement of IT and increase in world population rate, Crowd Management (CM) has become a subject undergoing intense study among researchers. Technology provides fast and easily available means of transport and, up-to-date information access to the people that causes crowd at public places. This imposes a big challenge for crowd safety and security at public places such as airports, railway stations and check points. For example, the crowd of pilgrims during Hajj and Ummrah while crossing the borders of Makkah, Kingdom of Saudi Arabia. To minimize the risk of such crowd safety and security identification and verification of people is necessary which causes unwanted increment in processing time. It is observed that managing crowd during specific time period (Hajj and Ummrah) with identification and verification is a challenge. At present, many advanced technologies such as Internet of Things (IoT) are being used to solve the crowed management problem with minimal processing time. In this paper, we have presented a Wireless Sensor Network (WSN) based conceptual model for smart crowd movement with minimal processing time for people identification. This handles the crowd by forming groups and provides proactive support to handle them in organized manner. As a result, crowd can be managed to move safely from one place to another with group identification. The group identification minimizes the processing time and move the crowd in smart way

    Performance Evaluation of MPLS in a Virtualized Service Provider Core (with/without Class of Service)

    Get PDF
    The last decade has witnessed a major change in the types of traffic scaling the Internet. With the development of real-time applications several challenges were faced within traditional IP networks. Some of these challenges are delay, increased costs faced by the service provider and customer, limited scalability, separate infrastructure costs and high administrative overheads to manage large networks etc. To combat these challenges, researchers have steered towards finding alternate solutions. Over the recent years, we have seen an introduction of a number of virtualized platforms and solutions being offered in the networking industry. Virtual load balancers, virtual firewalls, virtual routers, virtual intrusion detection and preventions systems are just a few examples within the Network Function Virtualization world! Service Providers are trying to find solutions where they could reduce operational expenses while at the same time meet the growing bandwidth demands of their customers. The main aim of this thesis is to evaluate the performance of voice, data and video traffic in a virtualized service provider core. Observations are made on how these traffic types perform on congested vs uncongested links and how Quality of Service treats traffic in a virtualized Service Provider Core using Round Trip Time as a performance metric. This thesis also tries to find if resiliency features such as Fast Reroute provide an additional advantage in failover scenarios within virtualized service provider cores. Juniper Networks vSRX are used to replicate virtual routers in a virtualized service provider core. Twenty-Four tests are carried out to gain a better understanding of how real-time applications and resiliency methods perform in virtualized networks. It is observed that a trade-off exists when introducing QoS on congested primary and secondary label switched paths. What can be observed thru the graphs is having Quality of Service enabled drops more packets however gives us the advantage of lower Round Trip Time for in-profile traffic. On the hand, having Quality of Service disabled, permits more traffic but leads to bandwidth contention between the three traffic classes leading to higher Round-Trip Times. The true benefit of QoS is seen in traffic congestion scenarios. The test bed built in this thesis, shows us that Fast Reroute does not add a significant benefit to aid in the reduction of packet loss during failover scenarios between primary and secondary paths. However, in certain scenarios fast reroute does seem to reduce packet loss specifically for data traffic
    corecore