227 research outputs found

    Hot Topic Discovery in Online Community using Topic Labels and Hot Features

    Get PDF
    With huge volumes of information on Internet, how to extract user-concerned hot topics quickly and effectively has become a fundamental task for information processing on Internet. Generally, hot topic detection includes two tasks, the first one is topic discovery and the other is its hotness evaluation. In this paper, we propose a hot topic detection method. For topic discovery, topics are identified by clustering based on extracted topic labels. For hotness evaluation, the proposed model has fully considered the internal and external dual features and combined them together. The experimental results over TianYa BBS demonstrate the efficiency of the proposed method: compared with topic discovery based on latent semantic indexing, the improved vector space model based on topic labels gets better results and the identified topics are more accurate. Moreover, the proposed hotness features could reflect the popularity of a topic, and hence have obtained better hot topic results finally

    BlogForever D2.6: Data Extraction Methodology

    Get PDF
    This report outlines an inquiry into the area of web data extraction, conducted within the context of blog preservation. The report reviews theoretical advances and practical developments for implementing data extraction. The inquiry is extended through an experiment that demonstrates the effectiveness and feasibility of implementing some of the suggested approaches. More specifically, the report discusses an approach based on unsupervised machine learning that employs the RSS feeds and HTML representations of blogs. It outlines the possibilities of extracting semantics available in blogs and demonstrates the benefits of exploiting available standards such as microformats and microdata. The report proceeds to propose a methodology for extracting and processing blog data to further inform the design and development of the BlogForever platform

    Holistic interpretation of visual data based on topology:semantic segmentation of architectural facades

    Get PDF
    The work presented in this dissertation is a step towards effectively incorporating contextual knowledge in the task of semantic segmentation. To date, the use of context has been confined to the genre of the scene with a few exceptions in the field. Research has been directed towards enhancing appearance descriptors. While this is unarguably important, recent studies show that computer vision has reached a near-human level of performance in relying on these descriptors when objects have stable distinctive surface properties and in proper imaging conditions. When these conditions are not met, humans exploit their knowledge about the intrinsic geometric layout of the scene to make local decisions. Computer vision lags behind when it comes to this asset. For this reason, we aim to bridge the gap by presenting algorithms for semantic segmentation of building facades making use of scene topological aspects. We provide a classification scheme to carry out segmentation and recognition simultaneously.The algorithm is able to solve a single optimization function and yield a semantic interpretation of facades, relying on the modeling power of probabilistic graphs and efficient discrete combinatorial optimization tools. We tackle the same problem of semantic facade segmentation with the neural network approach.We attain accuracy figures that are on-par with the state-of-the-art in a fully automated pipeline.Starting from pixelwise classifications obtained via Convolutional Neural Networks (CNN). These are then structurally validated through a cascade of Restricted Boltzmann Machines (RBM) and Multi-Layer Perceptron (MLP) that regenerates the most likely layout. In the domain of architectural modeling, there is geometric multi-model fitting. We introduce a novel guided sampling algorithm based on Minimum Spanning Trees (MST), which surpasses other propagation techniques in terms of robustness to noise. We make a number of additional contributions such as measure of model deviation which captures variations among fitted models

    Neuron-level dynamics of oscillatory network structure and markerless tracking of kinematics during grasping

    Get PDF
    Oscillatory synchrony is proposed to play an important role in flexible sensory-motor transformations. Thereby, it is assumed that changes in the oscillatory network structure at the level of single neurons lead to flexible information processing. Yet, how the oscillatory network structure at the neuron-level changes with different behavior remains elusive. To address this gap, we examined changes in the fronto-parietal oscillatory network structure at the neuron-level, while monkeys performed a flexible sensory-motor grasping task. We found that neurons formed separate subnetworks in the low frequency and beta bands. The beta subnetwork was active during steady states and the low frequency network during active states of the task, suggesting that both frequencies are mutually exclusive at the neuron-level. Furthermore, both frequency subnetworks reconfigured at the neuron-level for different grip and context conditions, which was mostly lost at any scale larger than neurons in the network. Our results, therefore, suggest that the oscillatory network structure at the neuron-level meets the necessary requirements for the coordination of flexible sensory-motor transformations. Supplementarily, tracking hand kinematics is a crucial experimental requirement to analyze neuronal control of grasp movements. To this end, a 3D markerless, gloveless hand tracking system was developed using computer vision and deep learning techniques. 2021-11-3

    Second CLIPS Conference Proceedings, volume 2

    Get PDF
    Papers presented at the 2nd C Language Integrated Production System (CLIPS) Conference held at the Lyndon B. Johnson Space Center (JSC) on 23-25 September 1991 are documented in these proceedings. CLIPS is an expert system tool developed by the Software Technology Branch at NASA JSC and is used at over 4000 sites by government, industry, and business. During the three days of the conference, over 40 papers were presented by experts from NASA, Department of Defense, other government agencies, universities, and industry

    Safety Hazard and Risk Identification and Management In Infrastructure Management

    Get PDF
    Infrastructure such as transportation networks improves the condition of everyday lives by facilitating public services and systems necessary for economic activity and growth. However, constructing and maintaining transportation infrastructure poses safety hazards and risks to those working at the sharp end, leading to serious injuries and fatalities. Therefore, the identification of hazards and managing the risks they create is integral towards continually improving safety levels in Infrastructure Management. This work seeks to fully understand this problem and highlight past, present and future issues concerning safety in a comprehensive literature review. A decision support tool is proposed to improve the safety of transportation workers by facilitating hazard identification and management of associated control measures. This Tool facilitates the extraction of safety knowledge from real paper-based safety documents, capturing existing worker’s knowledge and experiences from industrial ‘corporate memory’. The Tool suggests the most appropriate control measures for new scenarios based on existing knowledge from previous work tasks. This is achieved by classifying work tasks using a new method based on unilateral UK legislation (Reporting of Injuries, Diseases and Dangerous Occurrences (1995) Regulations) and the innovative use of Artificial Intelligence method Case Based Reasoning. Case Based Reasoning (CBR) allows transparency in the Tool processes and has many benefits over other safety tools which may suffer from ‘black box’ stigmatism. The Tool is populated with knowledge extracted from a real transportation project and is hosted via the internet (www.Total-Safety.com). The end product of the Tool is the generation of bespoke method statements detailing appropriate control measures. These generated paper documents are shown to have financial and quality control benefits over traditional method statements. The Tool has undergone testing and analysis and is shown to be robust. Finally, the overall conclusions and opportunities for further research are presented and progress of the work against each of the five research objectives is assessed

    Tracking the Temporal-Evolution of Supernova Bubbles in Numerical Simulations

    Get PDF
    The study of low-dimensional, noisy manifolds embedded in a higher dimensional space has been extremely useful in many applications, from the chemical analysis of multi-phase flows to simulations of galactic mergers. Building a probabilistic model of the manifolds has helped in describing their essential properties and how they vary in space. However, when the manifold is evolving through time, a joint spatio-temporal modelling is needed, in order to fully comprehend its nature. We propose a first-order Markovian process that propagates the spatial probabilistic model of a manifold at fixed time, to its adjacent temporal stages. The proposed methodology is demonstrated using a particle simulation of an interacting dwarf galaxy to describe the evolution of a cavity generated by a Supernov

    Cannabidiol tweet miner: a framework for identifying misinformation In CBD tweets.

    Get PDF
    As regulations surrounding cannabis continue to develop, the demand for cannabis-based products is on the rise. Despite not producing the psychoactive effects commonly associated with THC, products containing cannabidiol (CBD) have gained immense popularity in recent years as a potential treatment option for a range of conditions, particularly those associated with pain or sleep disorders. However, due to current federal policies, these products have yet to undergo comprehensive safety and efficacy testing. Fortunately, utilizing advanced natural language processing (NLP) techniques, data harvested from social networks have been employed to investigate various social trends within healthcare, such as disease tracking and drug surveillance. By leveraging Twitter data, NLP can offer invaluable insights into public perceptions around CBD, as well as the marketing tactics employed by those marketing such loosely-regulated substances to the general public. Given the lack of comprehensive clinical CBD testing, the various health claims made by CBD sellers regarding their products are highly dubious and potentially perilous, as is evident from the ongoing COVID-19 misinformation. It is therefore critically important to efficiently identify unsupportable claims to guide public health policy and action. To this end, we present our proposed framework, the Cannabidiol Tweet Miner (CBD-TM), which utilizes advanced natural language processing (NLP) techniques, including text mining and sentiment analysis, to analyze the similarities and differences between commercial and personal tweets that mention CBD. CBD-TM enables us to identify conditions typically associated with commercial CBD advertising, or conditions not associated with positive sentiment, that are also absent from personal conversations. Through our technical contributions, including NLP, text mining, and sentiment analysis, we can effectively uncover areas where the public may be misled by CBD sellers. Since the rise in popularity of CBD, advertisements making bold claims about its benefits have become increasingly prevalent. The COVID-19 pandemic created a new opportunity for sellers to promote and sell products that purportedly treat and/or prevent the virus, with CBD being one of them. Although the U.S. Food and Drug Administration issued multiple warnings to CBD sellers, this type of misinformation still persists. In response, we have extended the CBD-TM framework with an additional layer of tweet classification designed to identify tweets that make potentially misleading claims about CBD\u27s efficacy in treating and/or preventing COVID-19. Our approach harnesses modern NLP algorithms, utilizing a transformer-based language model to establish the semantic relationship between statements extracted from the FDA\u27s website that contain false information and tweets conveying similar false claims. Our technical contributions build upon the impressive performance of deep language models in various natural language processing and understanding tasks. Specifically, we employ transfer learning via pre-trained deep language models, enabling us to achieve improved misinformation identification in tweets, even with relatively small training sets. Furthermore, this extension of CBD-TM can be easily adapted to detect other forms of misinformation. Through our innovative use of NLP techniques and algorithms, we can more effectively identify and combat false and potentially harmful claims related to CBD and COVID-19, as well as other forms of misinformation. As the conversations surrounding CBD on Twitter evolve over time, concept drift can occur, leading to changes in the topics being discussed. We observed significant changes within the CBD Twitter data stream with the emergence of COVID-19, introducing a new medical condition associated with CBD that would not have been discussed in conversations prior to the pandemic. These shifts in conversation introduce concept drift into CBD-TM, which has the potential to negatively impact our tweet classification models. Therefore, it is crucial to identify when such concept drift occurs to maintain the accuracy of our models. To this end, we propose an innovative approach for identifying potential changes within social network streams, allowing us to determine how and when these conversations evolve over time. Our approach leverages a BERT-based topic model, which can effectively capture how conversations related to CBD change over time. By incorporating advanced NLP techniques and algorithms, we are able to better understand the changes in topic that occur within the CBD Twitter data stream, allowing us to more effectively manage concept drift in CBD-TM. Our technical contributions enable us to maintain the accuracy and effectiveness of our tweet classification models, ensuring that we can continue to identify and address potentially harmful misinformation related to CBD
    • 

    corecore