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1 General Introduction 

We select and listen to our favorite channels by quickly tuning the radio into 

specific frequencies. Oscillators, which are an important part of the electronic 

circuitry of the radio, are not only limited to man-made gadgets but also occur 

frequently in biological systems. For instance, the central pattern generators in the 

spinal cord facilitate rhythmic motor activity during behaviors such as walking, 

feeding and swimming (Kandel et al., 2000). In the human brain, oscillatory activity 

was first observed by Hans Berger in the 1920s using the Electroencephalography 

(EEG) technique that he developed (Millett, 2001; Buzsáki, 2005). EEG non-

invasively records field potential signals that mainly reflect summed synaptic activity 

(transmembrane currents) in local neuronal populations (Buzsáki, Anastassiou and 

Koch, 2012; Pesaran et al., 2018; Schneider et al., 2020). In the seminal paper on EEG 

(Berger, 1929), Hans Berger observed two types of waves in the EEG recordings. 

First, higher amplitude waves that appeared 10-11 times in one second, which he 

referred to as alpha waves. Second, smaller waves that appeared 20-30 times in one 

second, which he referred to as beta waves. Furthermore, the alpha waves during his 

experiments were observed when the subjects closed their eyes and the beta waves 

were observed when the subjects kept their eyes open, suggesting an association 

between oscillations and behavior. In agreement with this, numerous studies have 

demonstrated the correlation between oscillations at different frequencies with 

different behaviors, referred to as the behavioral correlates of oscillations. To 

investigate the relationship between the frequency bands of oscillations in the brain, 

Buzśaki and his colleagues defined ten different classes of frequencies (Figure 1) 

(Penttonen and Buzsáki, 2003; Buzsáki and Draguhn, 2004). Interestingly, a common 

ratio (equal to the Neper’s number 𝑒) was identified between the mean frequencies of 

adjacent frequency bands resulting in a linear progression of mean frequencies on a 

logarithmic scale.  
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Among early studies inquiring the behavioral correlates of oscillations using 

EEG, slow oscillations including delta band oscillations were observed primarily 

during states of sleep or inactivity in humans as well as in animals (Norton and 

Jewett, 1965; Novak, Lepicovska and Dostalek, 1992; Achermann and Borbély, 1997; 

Amzica and Steriade, 1998). Theta band oscillations were detected in awake cats 

during orienting reflex (Grastyán et al., 1959), which was quickly followed by several 

other studies that found associations between hippocampal theta and behaviors such 

as arousal, attention, movement, memory, visual search, decision-making, learning 

and sensorimotor processing (Buzsaki, 2006).   

 

Figure 1: Categorization of oscillations in the brain into frequency band classes. For each 
class, its range of frequencies is shown along with its commonly used name. Note that the ranges 
defined here have not been strictly followed and across studies there is variability. An example 
behavioral correlate of each frequency band is included in brackets. Adapted from Buzsáki and 
Draguhn (2004). 

Oscillations in the beta band have been associated with motor rest (Jasper and 

Penfield, 1949) and gamma band with response to visual stimuli (Regan, 1968). The 

works of Jasper and Penfield were also crucial to establishing the technique of 



 1 General Introduction 

   

 

13 

intracranial EEG (iEEG) or Electrocorticography (ECoG). An example ECoG 

recording made from the movement related areas of the brain illustrates beta 

oscillations during the relaxation period followed by a suppression of beta during 

movement execution (Figure 2). EEG and ECoG techniques, however, are not suitable 

to record higher frequency oscillations originating from deeper regions of the brain 

because of the frequency dependent attenuation of field potentials with distance 

(Logothetis, Kayser and Oeltermann, 2007). Microelectrodes, such as the tungsten 

microelectrode (Hubel, 1957) that can be inserted in the target areas of the brain, are 

employed for this purpose. Using microelectrodes inserted in the hippocampus of 

human patients (Bragin et al., 1999) and animals (Buzsáki et al., 1992) higher 

frequency oscillations covering the fast and ultra-fast frequency spectra have been 

recorded. 

 

Figure 2: ECoG signals recording during a finger movement task. ECoG signals from post- and 
pre- central face and hand areas recorded during digit movements composed of successive touching of 
individual digits to the thumb. Adapted from Jasper and Penfield (1949). 

1.1 Neuronal signal recording techniques 

The activity of the brain can be recorded at three different scales: micro-scale, 

meso-scale and macro-scale. Micro-scale includes the level of individual neurons and 
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neuron compartments such as the cell body, dendrites, axons, ion channels, and 

synapses. Meso-scale includes the level of local populations of neurons (around tens 

of thousands), whereas macro-scale corresponds to the level of areas of the brain. 

Detailed analyses of signals recorded from each of these levels with appropriate 

spatial as well as temporal resolution are ideal to address how different levels of brain 

dynamics together produce function (Buzsáki and Christen, 2016). Although there is 

no one-fit-for-all solution, experimental and technological progress has made it 

possible to record neuronal signals with varying degrees of tradeoff between spatial 

and temporal resolutions (Sejnowski, Churchland and Movshon, 2014).  

Another factor to consider when recording neuronal signals is the  degree of 

invasiveness and the amount of neuronal damage induced by the recording technique. 

Functional magnetic resonance imaging (fMRI) is a non-invasive imaging technique 

in which neuronal activity is indirectly estimated based on the oxygenation level of 

the blood flowing near the neuronal structures (Logothetis et al., 2001). Using fMRI, 

the 3D volume of the whole-brain can be captured at the meso- and macro-scales, 

albeit at very low sampling rates (typically below 1 Hz). Because of its indirect 

approach, fMRI would fail to capture potential coding schemes of the brain involving 

temporal correlations that are not associated with concurrent changes in firing rate 

(Buzsaki, 2006). Calcium imaging is another recording technique that has a similarly 

low sampling rate. However, it targets the micro-scale and has been employed to 

record simultaneously from almost all neurons of the brain in small animals such as 

the zebrafish (Ahrens et al., 2013). Furthermore, by combining calcium imaging 

technique with electron microscopy, the functional properties of neurons such as its 

response to stimuli of different orientations can be studied alongside its structural 

properties such as its incoming and outgoing projections (Bock et al., 2011). Although 

calcium imaging technique is very promising, it has largely been restricted to studies 

in smaller animal models. Its application in larger animals such as non-human 

primates faces a number of challenges because of the differences in the physical scale 

and the increased need for experimental longevity, which still needs re-engineering 

efforts (O’Shea et al., 2017).  
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In comparison to the more recently developed optical technique discussed 

above, electrophysiological recordings date back to more than a century considering 

the electrical activity of the mammalian brain demonstrated by Richard Caton 

(Caton, 1875; Millett, 2001).  Currently, there is a multitude of electrophysiological 

recording options that can record at submillisecond temporal resolution and at all 

three scales (micro, meso, and macro) of brain activity (Figure 3).  

 

Figure 3: Illustration of electrophysiological recording techniques. A. Macroscopic 
recording using EEG and mesoscopic recording using ECoG and implantable microelectrodes (left). 
Example waveforms from each technique is shown to the right. B. MEG recording electrodes (left). 
Example MEG (black) and depth EEG (red) recordings.  C. Neurons illustrated across cortical layers 
along with microelectrode probe (for extracellular recording) and glass pipette (for intracellular 
recording) (left). Example extracellular and intracellular recordings (right). Adapted from Buzsaki 
et al., (2012) and Obien et al., (2015). 
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At the micro-scale, the patch clamp technique (Neher and Sakmann, 1992) 

makes it possible to record intracellular currents at the level of single neurons (Figure 

3C). However, this technique is mainly performed in-vitro on slices of the brain, with 

very few studies carried out in-vivo. The experiments conducted in animal models 

were limited to recording 2 - 4 neurons in parallel that were spatially less than 100 

m apart (Poulet and Petersen, 2008; Jouhanneau et al., 2015). 

At the macro- and meso-scales, a majority of electrophysiological techniques 

record field potential signals reflecting mainly the synchronous activity of hundreds 

to thousands of neurons  (Buzsáki, Anastassiou and Koch, 2012). Examples of such 

electrophysiological recordings are EEG (when measured from outside the skull), 

magnetoencephalogram (MEG) (when magnetic field induced by this activity is 

recorded from outside the skull), ECoG (when measured using subdural electrodes 

placed on the cortical surface inside the skull), and local field potential (LFP) (when 

recorded using microelectrodes inserted in the brain) (Figure 3).  

Tungsten microelectrode recordings pioneered by Hubel’s work (Hubel, 1957) 

has inspired several generations of single and multi-electrode designs and recoding 

techniques (Hong and Lieber, 2019). Single-neuron recordings are performed by 

inserting a microelectrode in the brain and adjusting its position until neural activity 

is detected (Figure 3C). This method offers manual control on the recording site. 

However, it can lead to preferential selection of neurons that respond to a particular 

stimulus or task condition (Harris et al., 2016). Such sampling bias is avoided by 

using microelectrode arrays with many recording sites that are chronically implanted 

in the brain. Michigan probe (Wise, Angell and Starr, 1970) and Utah array (Rousche 

and Normann, 1998) represent two distinct and widely employed multi-electrode 

array architectures (De Vittorio, Martiradonna and Assad, 2014). Michigan probes 

include distributed recording sites along the length of its silicon shanks. Neuropixels 

probes (Jun et al., 2017) is a notable recent development in Michigan-type neural 

probes that tremendously increased the number of recording sites (n = 960) that can 

be selected for recording. In contrast to Michigan-type probes, Utah arrays (Rousche 

and Normann, 1998) consist of multiple rigid microelectrodes mounted on a 
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lightweight platform. Individual electrodes in these arrays are separated from each 

other by a few hundred micrometers, and the recording sites are present at the tip of 

each electrode.  

Although architecturally similar to Utah arrays, floating microelectrode arrays 

(Figure 4A) were manufactured using a different fabrication technique that achieved 

over five-fold increase in electrode length (Musallam et al., 2007). With this increase 

in the length of electrodes, deep sulci and other deeper neural areas became 

accessible. Furthermore, floating microelectrode arrays allow mixing electrodes of 

different lengths, electrode spacing, and electrode impedance, thereby extending the 

range of applications of microelectrode arrays. As the brain moves relative to the 

skull, these electrodes move freely with the brain, thereby minimizing damage to the 

surrounding tissue. The signals recorded from each electrode of the array consist of 

action potentials or spikes of neurons in the high frequency range (∼300-5000 Hz) 

and LFPs in the low frequency range (∼1-100 Hz) (Figure 4A).  

 

Figure 4: Exemplar LFP and spike signals recorded a microelectrode array . A. A 32 
channel Floating microelectrode array (FMA) from Microprobe Inc (shown at a top-left corner). 
Example raw extracellular signal recorded from the FMA. Low pass filter is applied to the raw 
signal to obtain LFP signal; high pass filter is applied, followed by spike sorting to segregate spikes 
of individual neurons. B. Spike waveforms of two neurons isolated by spike sorting are illustrated. 

Adapted from Dann (2017). 

Each electrode in the array records spikes from multiple neurons that are 
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present in the vicinity of its recording site. Spikes of neurons are considered to be all 

or nothing potentials, which can be isolated using spike-sorting algorithms (Quiroga, 

Nadasdy and Ben-Shaul, 2004; Dann et al., 2016; Rossant et al., 2016). Because the 

voltage deflection caused by a neuron is similar over all of its spike events, spike 

sorting algorithms exploit this similarity to identify and cluster spike waveforms with 

distinct features (Figure 4B), thus isolating neurons. 

1.2 Functional connectivity 

The brain is a dynamical system in which neuronal interactions are thought to 

be central to generate behavior, perception and cognition. Interactions between 

neuronal signals can be quantified using different measures of functional connectivity 

(Bastos and Schoffelen, 2016), which capture the temporal correlations in the signals. 

Measures of functional connectivity can be divided into directed and non-directed, 

which can be further sub-divided into model-based or model-free categories (Bastos 

and Schoffelen, 2016). Non-directed measures are designed to capture some form of 

signal interdependences, whereas directed measures seek to identify causal 

influences between signals. Model-based measures are developed assuming linearity 

in the signal interactions and are computationally more efficient than their model-

free counterparts that can also capture non-linear interactions. A few exemplar 

measures of functional connectivity for the different categories are illustrated (Figure 

5). 

Rhythmic co-fluctuations in neuronal activity referred to as oscillatory 

synchrony is an important type of neuronal interaction that has been proposed to 

support flexible and effective communication (Fries, 2005, 2015). Oscillatory 

synchrony has been increasingly documented during many behaviors (Scherberger, 

Jarvis and Andersen, 2005; Sirota et al., 2008; Gregoriou et al., 2009; Canolty et al., 

2010; Bosman et al., 2012).  Coherence and phase locking value are the frequently 

used measures to capture oscillatory synchrony, which were also employed in the 

above studies. Both measures take values ranging from 0 to 1, with 0 
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corresponding to not at all synchronized and 1 corresponding to fully 

synchronized signals. The first step to compute coherence and phase locking 

value is to transform neuronal signals from the time domain to frequency domain 

using techniques such as Fourier transformation. Following this, coherence is 

calculated by taking the absolute value of the cross spectrum of the two signals, which 

is then normalized by the geometric mean of their individual auto-spectra (Mitra and 

Pesaran, 1999). The computation of phase locking value is similar to coherence, 

however, it includes a minor modification: signals in the frequency domain are 

amplitude normalized prior to computing cross spectrum. Thus, phase locking value 

(Lachaux et al., 1999) reflects phase synchronization more strictly than coherence 

and mitigates amplitude correlations from affecting the measured phase locking 

values (Bastos and Schoffelen, 2016).  

 

Figure 5: Taxonomy of functional connectivity metrics. Measures of functional connectivity 
are divided into directed and non-directed, which is further subdivided into model-based or model-

free categories in the time domain. When a frequency domain adaptation of a method exists, it 
follows the same categorization as its time domain counterpart. Adapted from Bastos and Schoffelen 
(2016) 

The type of recorded signal is another crucial factor to consider in the analysis 

of functional connectivity. Three different types of measures of functional 
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connectivity exist based on the type of neuronal signal: field-field, spike-spike, and 

spike-field measures (Figure 6). While only pairwise interactions are depicted in the 

illustration (Figure 6), given a dataset with a large number of simultaneously 

acquired signals, functional connectivity can be measured between all pairs of 

recorded signals to obtain networks of functional connectivity (Dann et al., 2016; 

Nigam et al., 2016). 

 

Figure 6: Synchrony between different types of signals. Illustration of binary spike trains 
and continuous field potential signals and the three different types of interaction between them. 
Figure inspired from Arce-McShane et al., (2016) 

1.2.1 Field-field synchrony 

Field-field coherence is largely employed to examine neuronal synchrony 

(Brovelli et al., 2004; Bosman et al., 2012; Nácher et al., 2013; Bastos et al., 2015) 

because recording field potentials is relatively easier (see section 1.1). Furthermore, 

the measures of functional connectivity, such as coherence and phase locking value 

described in the previous section are directly applicable to field potentials, whereas 

some modifications are required to apply them to binary spike signals.  

Enhanced field-field coherence in the beta band (14 – 30 Hz) has been observed 

during a motor task in which monkeys pressed and held a hand lever (Brovelli et al., 

2004). In addition to computing coherence, Granger causality (Dhamala, Rangarajan 

and Ding, 2008; Seth, 2010) was also analyzed by Brovelli and colleagues revealing 

directed functional connectivity from parietal areas to central and post-central motor 

areas.  Delta (1 – 4 Hz) coherence has also been reported in the fronto-parietal areas 

during a somatosensory discrimination task suggesting low frequency synchrony to 
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be involved in decision-making task processes (Nácher et al., 2013). In contrast to 

fronto-parietal movement related areas discussed above, gamma coherence is 

predominantly documented in the visual areas of the brain. Modulation of gamma 

(60-80 Hz)  coherence with attention has been demonstrated between visual areas V1 

and V4 during a selective attention task (Bosman et al., 2012), suggesting the 

selection of relevant input for further processing by increase gamma synchrony. To 

examine the role of the different frequencies of inter-areal coherence, field potential 

signals were recorded in parallel from 8 different brain areas (Bastos et al., 2015). 

Then, coherence and Granger causality analyses were conducted, which revealed 

theta (~ 4 Hz) and gamma (60-80 Hz) synchrony to carry feedforward and beta (14-

18 Hz) synchrony to carry feedback influences. 

It is important to note that due to volume conduction, field potential signals 

spread via the neural tissue across large cortical volumes, thereby confounding the 

measured field-field coherence values. To address this problem, methods such as 

weighted phase lag index (Vinck et al., 2011) and the imaginary part of coherency 

(Nolte et al., 2004) have been developed. These methods exploit the fact that volume 

conduction predominantly affects the real part of cross-spectral density because the 

cortical tissue has been demonstrated to be resistive and not capacitive (Logothetis, 

Kayser and Oeltermann, 2007). By ignoring the real part and employing only the 

imaginary part of the cross-spectral density for coherence analysis, volume 

conduction effect is eliminated.  

However, volume conduction is not the only problem affecting field-field 

measures. Recently, it has been demonstrated that field-field measures such as 

coherence as well as Granger causality are confounded by the synaptic mixing of local 

and afferent inputs in the LFP signal (Pesaran et al., 2018; Schneider et al., 2020).  

To elaborate, spikes in an area contribute to synaptic potentials not only in the same 

area but also in other anatomically connected areas. This results in correlated 

components in the field potential signals that are recorded from any two anatomically 

connected areas, which are in turn captured by field-field measures of coherences. 

Therefore, even in the absence of true oscillatory coupling between two areas, higher 
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values of coherence can be obtained due to synaptic mixing. Unlike volume 

conduction, synaptic mixing is not instantaneous therefore, it cannot be removed 

using the solution developed for volume conduction (Schneider et al., 2020) that was 

discussed in the previous paragraph. Given the synaptic mixing problem, strong 

entrainment of neurons to the oscillatory rhythm has been proposed as a prerequisite 

to establish functionally relevant coupling between two distinct oscillators (Schneider 

et al., 2020).  

1.2.2 Spike-spike and spike-field synchrony 

Oscillatory coupling of spikes can be quantified using spike-spike and spike-

field measures. Cross correlation histogram (CCH) obtained by calculating Pearson 

correlation coefficient at incremental time lags applied to one neuronal signal with 

respect to the other is a commonly used measure that is employed to capture spike-

spike synchrony (Gray et al., 1989; König, Engel and Singer, 1995; Dann et al., 2016). 

In cat V1, gamma (40-60 Hz) synchronization was discovered by researchers 

examining spike-spike interactions (Gray et al., 1989). V1 neurons in cats exhibit not 

only short (within hemisphere) but also long-range (across hemisphere) gamma (30-

70 Hz) synchrony during passive viewing of visual stimuli (König, Engel and Singer, 

1995). More recently, low (3-7 Hz) and beta (18-35 Hz) synchronized neurons were 

found in fronto-parietal areas during a delayed grasping task that included a decision 

component (Dann et al., 2016).  

Spike-field measures capture how neurons preferentially fire spikes at 

particular phases of the LFP signal (Pesaran et al., 2018). Spike-field measures have 

several advantages in comparison to field-field and spike-spike measures. First, 

oscillatory synchrony can be analyzed with single neuron resolution using spike -field 

measures of coherence. This mitigates the problem of synaptic mixing, which was 

earlier discussed in the context of field-field measures. While spike-spike measures 

also satisfy this requirement, they suffer from an inherent rate bias due to the 

masking of subthreshold potentials by the spiking threshold of neurons (Cohen and 

Kohn, 2011). Also, spike-spike interactions reflect a small subset of all network 
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interactions due to the restricted number of neurons that can be recorded 

simultaneously using electrophysiology. Second, spikes and LFPs carry different and 

complementary types of information: spikes are the outputs generated by neurons, 

whereas LFPs reflect the inputs and local processing (Scherberger, Jarvis and 

Andersen, 2005; Pesaran, 2010). By including these complementary signals in the 

estimation of oscillatory synchrony, a larger part of the underlying network is 

sampled. 

Coherence (Mitra and Pesaran, 1999) is a frequently used measure to quantify 

spike-field synchrony (Pesaran et al., 2002; Brovelli et al., 2004), although it has a 

known dependency on spike rate (Lepage, Kramer and Eden, 2011). This dependency 

makes it difficult to use this measure to compare neurons and experimental 

conditions with different spike rates as it requires further corrective steps. A method 

based on generalized linear modeling was proposed to overcome the problem of rate-

dependence of coherence computed between spikes and LFPs (Lepage et al., 2013). 

However, this solution is model-dependent and therefore has to be carefully 

interpreted (Aoi et al., 2015). Other corrective measures include spike-thinning 

procedures (Gregoriou et al., 2009), but they can result in the removal of a 

considerably large number of spikes from neurons, especially when the firing-rate 

differences between experimental conditions are large. Furthermore, this approach 

of randomly removing spikes until the mean firing rate matches assumes Poisson or 

non-history dependent firing neurons, which is often violated in real neurons (Aoi et 

al., 2015).  

Phase Locking Value (PLV) (Lachaux et al., 1999) is another commonly used 

spike-field measure that quantifies the homogeneity in the LFP phases at which the 

neuron fires. However, for small sample sizes PLV has been shown to overestimate 

synchrony (Vinck et al., 2010). To overcome this problem, pairwise phase consistency 

(PPC), a novel measure of spike-field phase locking was introduced (Vinck et al., 2010, 

2012). PPC implementation (Figure 7) removes rate bias by introducing a pairwise 

approach to computing phase similarity. Furthermore, bias due to history effects such 

as bursting are also be removed by considering pairs of spike-LFP phases recorded 



 1 General Introduction 

   

 

24 

from different trials during PPC calculation. PPC is calculated by taking the average 

of the cosine transformed phase differences between all pairs (except the within trial 

pairs) of spike phases measured relative to the LFP signal. PPC value of 1 

corresponds to perfect synchrony and 0 corresponds to the absence of synchrony. 

However, as a consequence of being an unbiased measure, PPC has higher variance 

at lower firing rates and can sometimes take negative values (Vinck et al., 2010). To 

address this issue, studies employing PPC often set a fixed number of spikes (e.g., 50 

spikes) as the minimum number of spikes required for PPC computation (Vinck et al., 

2013; Onorato et al., 2020). It is also important to note that LFP signals especially at 

higher frequencies are contaminated by spikes recorded from the same channel 

(Waldert, Lemon and Kraskov, 2013). Thereby, typically spikes and LFPs recorded 

from different electrodes that are separated by several hundred micrometers are used 

in spike-field coherence analysis.  

 

Figure 7: Illustration of pairwise phase consistency. The phases of the spikes measured 
relative to the LFP signal called spike-LFP phases are shown along the left and bottom margins. 
The numbers included with each phase vector indicates the trial from which the spikes were 
recorded. Gray scales in the matrix indicate the similarity between the spike-LFP phase pairs 
shown along the corresponding row and column. PPC is calculated by averaging over all the dot 
products (excluding the within trial spike-LFP phase pairs). PPC illustration adapted from Vinck 
et al., (2012) 

Given these advantages, the number of studies using spike-field measures is 

growing. In agreement with visual system studies discussed earlier, gamma 

oscillatory synchrony has also been captured between neurons and field potential 
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signals using PPC in V1 across mice, capuchin and macaque monkeys during fixation 

tasks (Onorato et al., 2020). Similarly, in monkey V4, neurons whose receptive field 

overlapped with the attended stimuli exhibited increased gamma synchrony with 

local neuronal populations (Fries, 2001). Motor system studies that included 

recordings from the parietal cortex have predominantly documented beta spike-field 

coherence during movement planning. For example, in a center-out reach task, 

enhanced synchrony in the beta band was observed during reach planning 

(Scherberger, Jarvis and Andersen, 2005). Recently, more evidence has been 

accumulated supporting the role of parietal beta synchrony in movement preparation 

(Pesaran, Nelson and Andersen, 2008; Dean, Hagan and Pesaran, 2012; Wong et al., 

2016). Since beta synchrony across studies has been mainly observed during steady 

states of the task, i.e., when neither the external stimulus nor the behavior changes, 

it has been inferred that beta synchrony has an important role in maintaining steady 

state (Engel and Fries, 2010).  

A detailed tabulation of many other studies including their task, recording 

details, and the documented behavioral correlates of spike-field oscillatory synchrony 

is included (Appendix B : supplementary tables) separately for motor (Table 1), visual 

(Table 2) and other cognitive tasks (Table 3).  

1.3 Selective and flexible information processing  

How the collective activity of neurons underlies different functions of the brain 

such as perception, cognition and behavior is still not fully understood. Several 

theories has been put forth to address this question. Donald Hebb in his seminal work 

titled “The Organization of Behavior” proposed that the ability of the brain to 

generate coherent thought stems from the activation of many neurons organized in 

distinct groups (Hebb, 1949). Describing how some neuron pairs might form stronger 

connections, Hebb said, “When an axon of cell A is near enough to excite a cell B and 

repeatedly or persistently takes part in firing it, some growth process or metabolic 

change takes place in one or both cells such that A’s efficiency, as one of the cells firing 
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B, is increased.” Extending this idea to many neurons, he coined the term “cell 

assembly” to describe groups of neurons presumably self-organized by synaptic 

strengthening caused by contiguous firing. Sequential activation of different cell 

assemblies was proposed as the neuronal substrate of perception and other cognitive 

capabilities such as planning, decision making, learning, and memory.  

While the theory of cell assembly was proposed in 1949, experimental evidence 

supporting this hypothesis took much longer due to limitations on recording large 

number of neurons simultaneously. Recordings of hippocampal pyramidal neurons 

(up to 68 neurons recorded simultaneously) provided the basis to test the hypothesis 

on cell assemblies (Harris et al., 2003). Cell assembly hypothesis predicts that the 

firing rate of neurons includes two different components. First, the part that is 

modulated by external sensory input; second, the part that is internally generated 

and shared between neurons belonging to the assembly. As a consequence, firing rate 

of neurons can be better predicted from the combination of recorded activity of other 

neurons which belong to the same cell assembly and the external behavioral 

information. In agreement with this, the prediction of spiking of individual neurons 

was demonstrated to improve when spiking of other neurons was employed in 

addition to the information derived from behavior. Furthermore, by using a time 

window based approach to the prediction process, the time windows within which the 

spike times of individual neurons were best predicted from the population was shown 

to vary between 10ms and 30ms, suggesting that the neurons are organized in 

assemblies whose activity synchronizes transiently. This time-scale might be optimal 

for information processing as it is within the time required for the post-synaptic 

potentials arriving at the hippocampal pyramidal neurons to decay, thereby the 

spikes from the cell assembly arriving within this time window can be effectively 

integrated by the receiving neuron (Harris et al., 2003). Intriguingly, this time 

window also corresponds to the time period of gamma oscillations suggesting gamma 

oscillatory synchronization of the cell assembly. 

A limitation of the cell assemblies concept introduced by Hebb is that when 

two different cell assemblies are simultaneously activated, there is no explicit 
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mechanism by which they can be distinguished (von der Malsburg, 1981). For 

example, when multiple objects are present in the visual scene, each object activates 

a different group of neurons in the brain. When the objects in the visual scene are 

overlapping, their representation in the primary visual cortex would also be 

overlapping due to the retinotopic organization of neurons, which means that the 

neurons are anatomically arranged such that they reflect the spatial relationship 

between the stimuli that activated them.  To disentangle this, the cell assemblies 

approach was extended under the binding by synchrony (BBS) hypothesis. BBS was 

put forth to address the multiple-object encoding problem in the visual system (von 

der Malsburg and Schneider, 1986; Singer, 1993; Singer and Gray, 1995). BBS 

predicted that neurons activated by different objects are synchronized to different 

oscillatory rhythms. Thereby, multiple cell assemblies can be simultaneously active 

while still being distinguishable. An implicit goal of the BBS theory was to explain 

how object attributes such as colors and contours are bound together in its neuronal 

representation. In a contour grouping task carried out in monkeys this theory was 

tested on data recorded from area V1 (Roelfsema, Lamme and Spekreijse, 2004). In 

this task, firing rate of neurons was found to correlated to the grouping of contours, 

whereas synchrony was found to be uncorrelated, (Roelfsema, Lamme and Spekreijse, 

2004), thereby disproving BBS.  

The theories discussed above focused on how oscillatory synchrony might 

coordinate spatially distributed neuronal activity into a representational code. 

However, theory on how flexible neuronal communication might be facilitated by 

oscillatory synchrony has not yet been discussed. Before going into the depth of this 

topic, a few definitions crucial for the following discussion that have been adopted 

from literature (Fries, 2015) are presented. Firstly, neuronal representation is 

defined as the ‘spatial activation pattern in a group of neurons’. Secondly, neuronal 

communication is defined as the ‘transfer of one representation in the presynaptic or 

sending group to a new representation in a postsynaptic or receiving group’. Lastly, 

neuronal computation is the ‘transformation that happens between the 

representations’. With these definitions in place, communication can be examined as 
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an important computational process that transforms inputs into new representations 

in the brain, which sometimes leads to behavior. Traditionally, neuronal 

communication is associated with anatomical connectivity. However, sometimes 

different activation patterns of neurons is elicited by the same external stimulus due 

to internal factors such as attention, past experiences, and internal choice. In visual 

areas, gamma synchrony has been demonstrated to be modulated by attention (Fries, 

2001; Gregoriou et al., 2009). Communication through coherence (CTC) proposes that 

oscillatory neuronal synchronization facilitates the formation of flexible 

communication structures supporting cognitive functions such as selective attention 

(Fries, 2005, 2015).  

To elaborate, during the gamma cycle it is known that excitatory neurons are 

first activated leading to a window of opportunity for incoming signals to be 

integrated (Buzsáki and Wang, 2012; Fries, 2015). This time window is very short 

and lasts for only about 3ms, soon after the local inhibitory neurons are activated. 

The next cycle of gamma oscillation can only begin after the activity of the inhibitory 

neurons decays. To be effective, the inputs from the pre-synaptic neuronal group have 

be timed such that they arrive at the post-synaptic neuronal group during its 

excitation phase in each cycle of gamma oscillation (Figure 8). Given the repetitive 

nature of oscillatory signals, the theory of communication through coherence (CTC) 

proposed that oscillatory synchrony subserves the precise synchronization between 

the pre- and post-synaptic groups of neurons (Fries, 2015). Furthermore, dynamic 

changes in neuronal coherence can lead to selective processing of behaviorally 

relevant information in a hard-wired anatomical neuronal network. Experimental 

evidence for selective communication, as hypothesized by CTC,  has been obtained 

from primates performing a selective attention task in which they were cued to attend 

one of two visual stimuli presented on a monitor (Bosman et al., 2012). In this study 

(Bosman et al., 2012), evaluation of field-field coherence revealed that the V1 neurons 

activated by the attended stimulus were preferentially synchronized with V4 neurons 

while V1 neurons activated by the unattended stimulus were not synchronized. From 

this finding, selective communication in the brain has been inferred to be facilitated 
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by oscillatory synchrony. However, it was recently demonstrated that inter-areal 

field-field coherence can be precisely predicted by anatomical connectivity and 

oscillatory synchronization in the sending area (Schneider et al., 2020). These 

findings argue against the theory of communication through coherence and suggest 

that it might be the other way around, that is, coherence through anatomical 

connectivity, and hence communication. 

 

Figure 8: Selection of information from lower to higher visual stream via CTC. Each group 
undergoes a network-level excitation phase (around the peak of red traces), which is followed by an 
inhibition phase (around the peak of blue traces). As the input from the presynaptic neuronal group 
that represents the apple reaches the post-synaptic neuronal group during its excitation phase, this 
information is optimally transmitted, whereas the representation of the pear is suppressed. Adapted 
from Fries (2015). 

Alternatively, another theory was proposed describing the syntax or grammar 

of neural communication (Buzsáki, 2010). This theory provides the following 

objective, and reader-centric definition of cell assemblies: neurons that fire within the 

integration time window of the downstream reader define a cell assembly (Buzsáki, 

2010). Here, it is noteworthy that neuronal synchrony, which is central to the 

formation of cell assemblies, can only be objectively defined from the perspective of a 

downstream neuron or more generally a downstream reader/observer and not from 

the stimulus based bottom-up approach used earlier (e.g. in BBS). Furthermore, in 

the modified definition of cell assembly the functional effect of the assembly on the 

reader is emphasized, whereas the requirement on the synaptic connectivity of the 
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members of the cell assembly is relaxed. The simplest example of a reader is a neuron 

and the functional effect the cell assembly has on the reader is binary: action potential 

or no action potential. The reader in this model need not necessarily be a neuron, it 

can also be a cell assembly that can further be combined by the next set of 

downstream readers to generate neural words. There are numerous advantages to 

cell assembly-based implementation of functions of the brain. First, single neurons 

can be vulnerable to potential failures in spike transmission, whereas an assembly 

has higher failure tolerance because for the reader spike rate variations in individual 

neurons do not matter as much as the collective intensity of the activity of the 

assembly. Second, nearly unlimited cell assemblies are possible thereby greatly 

enlarging number of possible representations that can be encoded in the brain 

(Buzsáki, 2010). 

Empirical evidence supporting the formation of cell assemblies has been 

largely obtained from studies on hippocampal cells involved in navigational tasks. 

LFP signals recorded from the hippocampus oscillating in the theta frequency band 

for instance have been demonstrated to phase modulate neocortical cell assemblies of 

neurons oscillating in gamma frequency band (Sirota et al., 2008).  In this case the 

cell assembly formation was facilitated by gamma oscillations whereas the theta 

oscillations in the hippocampal LFPs provided a mesoscopic reader mechanism that 

temporally sequenced the cell assemblies. Importantly, in this framework as well, 

oscillations in the brain have been suggested as a potential mechanism for the 

coordination of cell assemblies. Taken together, oscillations have been commonly 

proposed across the above discussed theories as the central mechanism for selective 

communication across spatially distributed areas in the brain.  

Modelling studies simulating networks of connected single neurons have also 

demonstrated how transient oscillations of the brain can flexibly modulate 

information flow, which is essential for context-dependent behavior (Palmigiano et 

al., 2017). However, empirical evidence on network reconfiguration is available 

predominantly at the level of macro- and meso-scales from studies examining changes 

in whole brain networks over time (Leonardi et al., 2013; Allen et al., 2014; 
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Khambhati, Mattar and Bassett, 2017), behavioral conditions (Cole et al., 2014; 

Hearne et al., 2017; Thompson, Brantefors and Fransson, 2017) including 

pathological conditions (Bassett et al., 2009). To improve the biological plausibility of 

the simulated models the dynamics of oscillatory network structure must be 

characterized at the level of single neurons during behavior. Study of networks at the 

level of single neurons is scarce and has mostly been done in-vitro with the exception 

of a few experiments conducted in-vivo (Dann et al., 2016; Nigam et al., 2016). In 

these studies, the characterization of the single neuron resolved network structure 

revealed that the strongly connected neurons in the network form dense connections 

with one another. The resulting rich-club network topology has been linked to 

efficient communication of information (van den Heuvel and Sporns, 2013). 

Furthermore, the rich club was found to be predominantly composed of oscillatory 

neurons, which strongly synchronized within and between areas and may be central 

to flexible information processing (Dann et al., 2016). However, how changes in the 

oscillatory network structure might support selective information processing that is 

essential for context-dependent behavior is largely unexplored particularly during 

sensorimotor transformations.  

1.4 The fronto-parietal grasping network 

Grasping behavior is an important function of the brain that enables direct 

interaction with the environment. These interactions include context-dependent 

behaviors requiring flexible selection and transformation of relevant sensory 

information into appropriate movement relevant activity. Cortical networks have to 

perform multiple complex computations even for simple hand-object interactions. The 

seemingly trivial task of grasping a coffee mug is carried out by executing a sequence 

of processing steps including perceptual, motor processes as well as sensorimotor 

transformations. 

For visually guided grasping movements, visual assessment is the first step 

that informs about the physical properties of the mug such as its shape and size, as 
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well as its spatial properties such as location and orientation. At this stage, the 

perceived visual information is still in an eye-centered frame of reference and is 

transformed into a body-centered frame of reference for movement planning and 

execution (Batista et al., 1999; Lehmann and Scherberger, 2013; Michaels and 

Scherberger, 2018). Then, depending on the context (e.g. whether to drink coffee or to 

move the mug, whether the mug is full or empty, cold or hot) a grip type is selected 

(Baumann, Fluet and Scherberger, 2009; Fluet, Baumann and Scherberger, 2010; 

Dann et al., 2016). The selected grip type is executed by activating appropriate arm 

and hand muscles to reach and grasp the mug. As movement is being performed,  

sensory receptors in the digits provide feedback (e.g. on the grip-force being applied, 

texture) and any errors that might arise during the movement are monitored to apply 

corrective measures.  

Visual processes underlying behaviors such as the one described above are 

carried out in two distinct pathways: the ventral and the dorsal pathway.  

Anatomically, both the pathways begin at the primary visual cortex (V1) and diverges 

with the ventral stream traversing the occipitotemporal cortex and the dorsal stream 

going through the occipitoparietal cortex (Figure 9). Functionally, the ventral and 

dorsal pathways are hypothesized to be involved in object identification and object-

oriented action processes, respectively (Goodale and Milner, 1992). Patient case 

studies in which either the ventral or the dorsal pathway was damaged demonstrated 

the complementary roles played by these two pathways (Goodale et al., 1991, 1994). 

In these case studies, two patients performed a shape discrimination and a grasping 

task. One patient (RV) who had sustained bilateral lesion along the dorsal stream 

was unable to correctly pre-shape her hand to perform object-directed movements, 

although she could correctly identify the objects. In contrast, the patient (DF) with a 

bilateral lesion in the ventral stream was unable to recognize objects although she 

was capable of performing grasping movements with appropriate grip aperture and 

orientation. These findings taken together with many other supportive evidence 

gathered over the last few decades suggest that the dorsal stream extracts the 

information from vision that is required for action, whereas the ventral stream 
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extracts the information from vision that is required for perception (Goodale, 2014).  

Distinct parietal and frontal areas along the dorsal stream have been identified 

to be crucial for the planning and execution of different types of movements such as 

grasping, reaching and saccade movements (Luppino and Rizzolatti, 2000; Rizzolatti 

and Luppino, 2001). Ventral premotor area F5 in the frontal lobe and anterior 

intraparietal area AIP in the parietal lobe are strongly involved in grasping 

movements (Rizzolatti and Luppino, 2001; Janssen and Scherberger, 2015; Borra et 

al., 2017) and are also known to be strongly interconnected (Luppino et al., 1999). 

Inactivating either one of these areas leads to deficits in hand movements. The deficit 

in grasping following the inactivation of AIP was characterized by a mismatch 

between object properties and the hand shape used to grasp it (Gallese et al., 1994). 

Similar deficits were also observed following the inactivation of F5 (Fogassi et al., 

2001). Further supporting the role of areas F5 and AIP in grasping, neurons in these 

areas have been found to respond strongly during the planning and execution of 

grasping movements towards specific objects (Rizzolatti et al., 1988; Taira et al., 1990; 

Murata et al., 1997, 2000). Interestingly, Murata and colleagues (Murata et al., 1997, 

2000) also documented that some of the neurons that were strongly active during the 

grasping tasks were also similarly activated during fixation when the same objects 

were presented.  

To dissociate grip- from vision-related neural coding, a physiologically 

plausible model of the fronto-parietal grasping network including areas F5 and AIP 

called the FARS (Fagg/Arbib/Rizzolatti/Sakata) model (Fagg and Arbib, 1998) was 

developed. A number of simulation experiments were carried out with this model. For 

the first simulation, objects with different visual appearance but grasped the same 

way were chosen;  second, two different grasps were instructed for the same object 

with some trials having a delay between the go signal and the grip instruction; third, 

boxes of different heights and widths were grasped. Results from these simulations 

led to a number of hypotheses and predictions on the functional role of the F5-AIP 

grasping network, which is summarized in the illustration (Figure 9). Briefly, the 

model suggested that all potential action opportunities associated with an object 
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referred to as affordances are extracted from the visual features of the object in area 

AIP. This process is likely to have object identity information from the reciprocal 

connections existing between AIP and inferior temporal (IT) cortex of the ventral 

stream (Webster, Bachevalier and Ungerleider, 1995).  Furthermore, AIP was also 

implicated in maintaining the affordances of the object in active memory, which is 

partly shared with F5 due to the strong anatomical connectivity between the two 

areas. F5, on the other hand, was hypothesized to select a grasp plan depending on 

factors such as the intention of the individual, and action goals. The key ideas 

introduced by the FARS models discussed above have been employed across many 

other models describing the cortical grasping network (Rizzolatti and Luppino, 2001; 

Cisek, 2007). 

 

 

Figure 9: Sensorimotor integration in the fronto-parietal network during grasping. Areas 
of the brain involved in grasping and the computations carried out by them are at the bottom and 
top rows, respectively. Affordances, illustrated in the mid-row are the opportunities for action 
offered by the object. Figure modified from Kandel et al., (2000). 
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Decoding analyses carried out on spikes from neurons recorded simultaneously 

from primates during a delayed grasping task (42-48 objects), lends strong support to 

the predictions of this model (Schaffelhofer and Scherberger, 2016).  In their study, 

F5 neurons were found to be predominantly modulated by grip type whereas AIP 

neurons were found to be predominantly modulated by the visual object properties 

type. Interestingly, AIP neural population could discriminate differently shaped 

objects including abstract objects that were grasped similarly even when grasps were 

executed in dark, suggesting coding of not only visual features but also object 

affordances (Schaffelhofer and Scherberger, 2016). More evidence for coding of 

affordances in AIP was obtained from another delayed grasping task in which the 

objects were first presented and the grip type (power or precision) instruction was 

given after a delay (Baumann, Fluet and Scherberger, 2009). Neurons recorded from 

AIP coded both grip types simultaneously until the grip type instruction was 

provided.  

Despite the supporting empirical evidence, a disadvantage of the earlier 

models of the grasping network is that they required manual tuning of neurons to fit 

the hypothesized roles of the areas, which might introduce subjective biases. 

Recently, an artificial neural network based model for the entire processing pipeline 

from the processing of visual inputs to the generation of grasp movements has been 

proposed (Michaels et al., 2020). In addition to areas F5 and AIP, this model also 

includes primary motor cortex (M1), which is reciprocally connected to F5, and 

directly modulates motoneurons innervating the arm and hand muscles (Rathelot 

and Strick, 2009). The neurons of the model demonstrated visual- and movement-

related information being present in all three areas, with a visuomotor gradient from 

AIP to F5 to M1 during the transformation of vision to action (Michaels et al., 2020). 

In comparison to the earlier models, networks trained by Michaels and colleagues 

captured more variance in the recorded neural activity and also mirrored some of the 

inter-areal relationships in the neural data without being explicitly trained to do the 

same. Furthermore, some of the known deficits from lesions studies were also 

reproduced by the network, there providing a more biologically plausible model for 
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the generation of grasping movements. 

Interestingly, low frequency oscillations were observed in the dynamics of 

recurrent neural networks (RNNs) during the execution of hand movements 

(Michaels et al., 2020). Similar to this observation, RNNs trained on reaching 

movements also exhibited low frequency oscillations (Sussillo et al., 2015; Michaels, 

Dann and Scherberger, 2016) during movement execution. While these RNNs were 

trained on smoothed spike signals that were further averaged over trials, networks 

trained on non-smoothed spike signals that were trial separated exhibited oscillations 

in the higher frequencies (15-40 Hz) during movement preparation (Pandarinath et 

al., 2018). These findings strongly agree with the findings of low and beta frequency 

oscillations observed in the fronto-parietal areas related to grasping (Scherberger, 

Jarvis and Andersen, 2005; Dann et al., 2016) and reaching (Martínez-Vázquez and 

Gail, 2018) movements. Importantly, the networks strongly matched the recorded 

neuronal data only when they were optimized to be simple, which resulted in the 

underlying solution being a low dimensional oscillator (Sussillo et al., 2015; Vyas et 

al., 2020). These oscillations might be facilitating effective and flexible 

communication within and between cortical areas (Fries, 2005, 2015) for 

sensorimotor transformations. 

1.5 Tracking hand kinematics 

Hands provide the means by which one can grasp and manipulate objects, 

thereby interacting with the environment. Tracking hand kinematics, which includes 

movement parameters such as position, and orientation is important not only to 

understand the motor behavior of the hand but also to investigate the neuronal 

circuitry generating hand movements. However, hand movement tracking poses 

challenges due to its remarkable dexterity observed particularly in primates. The 

complex hand movements result from the interaction between 27 bones and over 30 

muscle-tendon units (Schwarz and Taylor, 1955; Jones and Lederman, 2006). The 

index, middle, ring and little finger of the hand each have 3 bones (proximal, middle 
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and distal phalanges), whereas the thumb has 2 bones (proximal and distal 

phalanges). The carpal and metacarpal bones are distributed in the palm and wrist 

(Figure 10A). Furthermore, the 27 degrees of freedom (DOFs) targeted to estimate 

hand pose and position (Figure 10B) are as follows. The digits of the hand, excluding 

the thumb, each have 4 DOFs: extension/flexion at the proximal interphalangeal 

(PIP), extension/flexion at the distal interphalangeal (DIP), extension/flexion and 

abduction/adduction at the metacarpophalangeal (MCP) joints. The thumb exhibits 5 

DOFs: extension/flexion at the interphalangeal (IP), extension/flexion and  

abduction/adduction at the MCP and Carpometacarpal (CMC) joints. The wrist has 3 

DOFs: extension/flexion, pronation/supination, and ulnar/radial deviation. Lastly, 

the hand is transported by the arm along three orthogonal directions leading to an 

additional 3 DOFs. 

 

Figure 10: Hand anatomy and degrees of freedom. A. The bone names abbreviated in this 
figure are the following. Among carpal bones are the greater multangular (GM) also called 

trapezium, navicular (N), lunate (L), triquetrum (T),  pisiform (P), lesser multangular (L), capitate 
(C), hamate (H). The metacarpal bones are present one in each digit and labelled M-I to M-V. FP, 
SP and TP correspond to first, second and third phalanges, also called proximal, middle and distal 
phalanges, respectively. In addition, labelled hand joints are radiocarpal (RC), intercarpal (IC), 
carpometacarpal (CM or CMC),  metacarpophalangeal (MP or MCP), proximal interphalangeal 
(PIP), and distal interphalangeal (DIP). Figure adapted from Schwarz and Taylor (1955). B. DOFs 
of the hand including 3 at the wrist, and 4 for the joint rotations of each of the five digits, and an 
additional 5th DOF of the thumb. Translation of the hand in the x , y, and z directions (not shown 
in figure) adds 3 more DOFs to hand and arm movements. Figure adapted from Holden et al., (1999) 
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Numerous industrial applications such as patient rehabilitation, gesture based 

device automation, robot control, sign language detection, virtual reality also require 

reliable hand tracking. Given these applications, solutions to hand movement 

tracking have been pursued by the industry and academia, with incremental success 

over the last five decades.  The first glove prototypes including Sayre glove and the 

MIT-LED glove were developed in the late 1970s and early 1980s, respectively, for 

hand movement tracking in lab environments (Sturman and Zeltzer, 1994; Dipietro, 

Sabatini and Dario, 2008). The Sayre glove is a sensor-based glove that used flexible 

tubes mounted on each digit with a light source and a photocell at opposite ends. The 

amount of light received by the photocell was converted into the degree of digit 

flexion. In contrast, MIT-LED glove used cameras to track LEDs mounted on the 

glove. A camera placed in front of the hand captured the illumination pattern of the 

LEDs, which was then interpreted as a specific hand gestures. These tracking options 

were limited to tracking simple hand gestures and were not yet capable of capturing 

finer digit movements of the hand. Over the years, hand movement tracking 

techniques using instrumented gloves, as well as camera-based systems have 

advanced technologically to capture more detailed hand kinematics.  

1.5.1 Instrumented data gloves 

Different types of instrumented gloves have been developed using optical, 

stretch, and piezoresistive sensors (Dipietro, Sabatini and Dario, 2008). DataGlove 

(VPL Research Inc., Redwood City, California) was the first commercially available 

hand tracking device (Zimmerman and Lanier, 1991). The DataGlove used optical 

flex sensors (Zimmerman, 1985) mounted on each digit, consisting of a tube that 

surrounds the digit such that when the digit is extended maximum amount of light 

is received by the photosensitive detector, and the amount of light received is 

attenuated with digit flexion. A major drawback of this design is that it does not 

measure the extent of abduction of digits as has already been pointed out (MacKenzie, 

1995). This problem was addressed by the later designs of optical gloves such as the 

5DT glove (Fifth Dimension Technologies Inc.,)  and the ShapeHand (Measurand 



 1 General Introduction 

   

 

39 

Inc.,). Alternatively, bend sensors whose resistance changes with digit flexion have 

also been designed (Yun et al., 1997; Simone et al., 2007; Gentner and Classen, 2009) 

and employed in Cyberglove II (CyberGlove Systems LCC). One variant of Cyberglove 

II (Figure 11) is a 22-sensor model that uses multiple proprietary flexion and 

abduction sensors to measure joint angles. Cyberglove II also has a wireless 

interfacing module which can be conveniently wrapped to the arm to accurately track 

the human hand (Dipietro, Sabatini and Dario, 2008). 

For the investigation of neuronal control of hand movements, the hand 

tracking solution must also be applicable to non-human primates since many insights 

on the neuronal underpinnings of grasping movements have been acquired from this 

animal model (Schieber and Hibbard, 1993; Lemon, 2008; Vargas-Irwin et al., 2010; 

Dann et al., 2016; Schaffelhofer and Scherberger, 2016; Michaels and Scherberger, 

2018).  

 

Figure 11: Illustration of a wireless data glove. Cyberglove II, a commercially available 
instrumented glove that tracks 22 joint-angles. (http://www.cyberglovesystems.com/cyberglove-
ii#specs, accessed Sept 1, 2020)  

The first glove designed for non-human primates used 9 flex sensors that were 

stitched into the pockets of the elastic glove material (Overduin et al., 2010). However 

these sensors in addition to requiring a prolonged calibration procedure (Overduin et 

al., 2010) have been found to exhibit a decay in measurement over time (Simone and 

Kamper, 2005) making them rather unreliable to measure fine changes in bend angle. 

To address these issues, a kinematic data glove based on electro-magnetic sensors 

was developed to record hand kinematics of non-human primates (Schaffelhofer and 

Scherberger, 2012). This solution required only 7 electromagnetic sensors to track 27 

DOFs of the macaque hand and the arm. The usage of fewer sensors makes the glove 

http://www.cyberglovesystems.com/cyberglove-ii#specs
http://www.cyberglovesystems.com/cyberglove-ii#specs
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less bulky and therefore more suitable for use on the macaque hands. Although 

recording grasp kinematics over a large repertoire of objects and grasps has been 

demonstrated using the glove (Schaffelhofer and Scherberger, 2016), it requires 

intense training to get the animals to tolerate it. Furthermore, tracking is limited to 

the range of the electromagnetic field generator (around 0.5m x 0.5m x 0.5m in the 

above-cited papers) and ferromagnetic substances cannot be used in the experimental 

setup. Importantly, appropriate distancing (~30 cm in the above-cited papers) 

between the field generator and the workspace of the experiment must be maintained 

to ensure no interference of the generated field with neuronal recordings. Overall, 

instrumented gloves limit the range of natural hand movements due to the sensors 

mounted on the digits and impose many restrictions on the experimental setup 

making it necessary to explore alternative solutions.  

1.5.2 Camera based hand tracking systems 

Camera based systems have the potential for markerless and even completely 

contactless hand tracking. With current technology, camera based tracking systems 

have the potential to record from larger workspace volumes than instrumented 

gloves. Furthermore, cameras that record at the same or even higher spatial as well 

as temporal resolution than instrumented gloves are available.  

Early camera-based tracking systems used fingertip markers (Davis and Shah, 

1994), and colored cloth gloves (Iwai et al., 1996) for rather simple gesture 

recognition. Although these systems did not require the user to wear instrumented 

gloves, they still required targeted visual markers or cloth gloves without sensors. 

The idea of completely markerless and gloveless hand tracking was implemented in 

Digiteyes (Rehg and Kanade, 1994a). Digiteyes employs a hand model consisting of 3 

digits and palm, which was used to estimate the state or the pose of the hand from 

images acquired from a single camera. Pose estimation in model-based approaches 

involves searching across candidate configurations of the model to select a 

configuration which has features that best match the features extracted from the 

input image (Erol et al., 2007). The three digits hand model of Digiteyes was intended 
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for use in simple human computer interaction such as gesture based tracking of the 

computer mouse. An alternative hand model with 27 DOFs that estimated more 

complex poses of the hand was also integrated with Digiteyes (Rehg and Kanade, 

1994b). Features extracted from images acquired simultaneously from 2 cameras 

were matched with the features of this model for pose estimation. This solution was 

limited by technology at the time, for example the acquisition frame rate of cameras 

was around 10 Hz. Furthermore, the models required knowledge of the geometry of 

the hand to be tracked and worked only under controlled conditions on small subsets 

of hand poses. Changes in background, increased speed of hand movements, and 

occlusions among other real world conditions had very strong adverse effects on hand 

pose estimation. Due to these difficulties in markerless tracking, commercial systems 

such as the Vicon motion tracking system (Vicon Motion Systems, Oxford, UK) chose 

passive reflective markers, and Cineplex Behavioral Research System (Plexon Inc., 

Dallas, Texas) chose tracking colored regions defined by the user. These tracking 

systems provide the position of each tracked marker in separable data streams 

making the implementation of post-processing routines easier. Depth sensors such as 

Kinect (Microsoft Corp., Redmond, Washington), RealSense (Intel Corp., Santa Clara, 

California), and Leap Motion (Leap Motion, Inc., San Francisco, California) that 

record depth spectrum along with 2D image of the scene revived research interest in 

markerless tracking. These depth sensors have been employed successfully for 

markerless 3D hand (> 20 DOFs) tracking in multiple studies (Sharp et al., 2015; 

Sridhar et al., 2015) albeit without including any object interactions.  

Object interactions are an important part of studies investigating cortical 

control of hand movements (Baumann, Fluet and Scherberger, 2009; Rouse and 

Schieber, 2015; Schaffelhofer and Scherberger, 2016). Including object interactions 

increases the complexity of tracking hand movements for vision-based systems 

because certain parts of the hand get occluded by the object. Vicon system has been 

used in experiments that correlated hand kinematics with neuronal data (Vargas-

Irwin et al., 2010; Aggarwal et al., 2013). In these two studies a large number of 

optical markers (n = 29, n = 30 markers were used in the study by Irwin et al., (2010) 
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and Aggarwal et al., (2013), respectively) and cameras (n = 12, n =18) were required 

to track  DOFs (n = 25, n = 21) in the hand and the arm of non-human primates. 

Although submillimeter precise tracking was obtained in these studies, the 

requirement of unobstructed line of sight restricted the studied hand movements 

making them more unnatural, such as fetching objects suspended on a swinging cable 

in order to minimize occlusions (Vargas-Irwin et al., 2010).  

Vision-based markerless hand tracking including object interactions and 

occlusion management are increasingly being addressed by solutions employing 

artificial neural networks (Cao et al., 2017; Simon et al., 2017). These solutions are a 

promising alternative to track unrestricted and natural hand kinematics. 

1.5.3 Deep learning for computer vision 

Deep learning allows computational models such as artificial neural networks 

that are composed of many processing layers to learn different data representations 

for feature extraction, pattern recognition, and classification purposes (Deng and Yu, 

2013; LeCun, Bengio and Hinton, 2015). Artificial neural networks consist of many 

simple, connected processing units called neurons that produce sequences of real -

valued activations (Schmidhuber, 2015). Training corresponds to learning the 

weights or connection strength between all the connected neurons in the network. In 

supervised learning, which is the most common form of machine learning (LeCun, 

Bengio and Hinton, 2015), networks learn the mapping between inputs and outputs 

from the training examples provided to them. In the remainder of this section, some 

concepts of deep learning that are relevant for this thesis are introduced along with 

example deep neural networks used in computer vision applications.  

Generally, training neural networks begins with forward propagation, which 

is carried out as follows. First, inputs belonging to the training dataset are passed 

through the network. Second, the network generates outputs based on the initial set 

of weights, which are typically randomly initialized.  Third, the network generated 

outputs are compared to the desired outputs provided in the training set and a loss 

function (e.g., mean squared error) is employed to estimate the loss or error values. 
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Following forward propagation, loss is minimized using gradient descent based 

optimization. The derivatives (or gradients) that are essential for gradient descent in 

multilayer networks are calculated by implementing backpropagation (Rumelhart, 

Hinton and Williams, 1986). Weights of the network are updated from the calculated 

gradients such that the average output error computed on training examples is 

reduced and the loss value gets closer to a minimum. The forward and the backward 

propagation steps are repeated for many iterations until the loss reduces to a level 

that is acceptable for the application. In a variant of gradient descent called stochastic 

gradient descent, instead of employing the entire training set during every iteration 

only a small randomly selected subset called a batch is used. Stochastic gradient 

descent has been demonstrated to yield a good set of network weights surprisingly 

quickly in contrast to more complicated optimizing procedures (LeCun et al., 2012). 

Following training, network performance is quantified on a separate set of examples 

called a test set, which evaluates the generalization capabilities of the network. 

Different types of layers are exploited in the design of artificial neural 

networks. Fully connected layers connect all the neurons of one layer to the next. In 

contrast, convolutional layers transform activity of one layer to the next by applying 

two dimensional convolutional or filtering operations. Contrary to fully connected 

layers, the connections in convolutional layers are more local, and shared. 

Convolutional neural network (ConvNet) is a category of neural networks that 

includes convolutional as well as fully connected layers in its architecture and has 

achieved immense practical success in the field of computer vision in recent years. A 

ConvNet called AlexNet (Krizhevsky, Sutskever and Hinton, 2012), was the first 

neural network that outperformed other machine learning techniques in image 

classification at the ‘ImageNet Large Scale Visual Recognition Challenge’ 

(Russakovsky et al., 2015) conducted in the year 2012. The first few stages of AlexNet 

are composed of convolutional and pooling layers. The task of the convolutional layers 

is to extract different features present in the data for further processing. Typically a 

pooling layer follows the convolutional layer to downsize the data by replacing the 

activations of local groups of neurons with the maximum value of the group. Pooling 
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operation not only downsizes the data but also provides invariance to small shifts and 

distortions in data. In the last stages of AlexNet, fully connected layers are used. This 

design of AlexNet reflects the typical architectural principle of ConvNets, which 

allows features extracted from input images using different filters to be processed 

separately in the initial stages and combined later for classification. 

 Assuming that adding more layers increases the complexity of the features 

learnt by the network, deeper networks were expected to outperform shallower 

networks. Contrary to this line of reasoning, He et al., (2016) demonstrated that 

increasing the depth beyond a maximum threshold resulted in degradation in 

classification accuracy in deep neural network models. Overfitting was examined as 

a plausible cause for this degradation of network performance. However, this 

possibility was ruled out as increased error in deeper networks was present not only 

on testing dataset but also on training dataset. The problem in training deeper 

networks is sometimes linked to the magnitude of gradients. Vanishing gradients 

(Hochreiter, 1991; Bengio, Simard and Frasconi, 1994) for example result in small or 

no update in weights of neurons in the early layers as the gradients get reduced due 

to repeated multiplication during back propagation. The identity or skip connections 

introduced in residual neural networks (ResNets) provided an additional direct path 

between some of the layers. This solved the problem of training deep architectures 

making deep neural networks highly scalable (He et al., 2016). ResNet with 152 

layers achieved an error rate of 3.57% on the test data of ImageNet database in object 

classification, which was lesser than that observed in humans (Alom et al., 2018). 

However, it is important to note that the error rate used for this comparison 

corresponds to top-5 error rate, which is the percentage of images where the correct 

output was not among the top-5 most likely outputs. Nevertheless, with its high 

accuracy in object recognition, ResNet-152 was the top-performer of the ‘ImageNet 

Large Scale Visual Recognition Challenge ’ in the year 2015. Since then ResNet has 

been successfully employed in many computer vision related applications 

(Insafutdinov et al., 2016; Mathis et al., 2018).   



 1 General Introduction 

   

 

45 

1.5.4 ConvNets in hand tracking applications 

Several solutions have been proposed for vision based hand tracking by 

exploiting the advances in deep learning. The first application of ConvNet to 

reconstruct continuous 3D pose of human hands was made on images captured using 

depth sensors (Tompson et al., 2014). In this system images were segmented and the 

hand centered segments were given as inputs to a ConvNet with two convolutional 

layers followed by three fully connected layers. The outputs of the network were 

heatmaps and the number of heatmaps corresponded to the number of joints tracked 

in the study. The peak of heat maps indicated the 2D position of the joints of interest. 

To obtain 3D from 2D positions, a model fitting procedure was then carried out. 

Another study inspired by the above idea used a similar network architecture (Ge et 

al., 2016), however, it avoided the model fitting procedure by first projecting the input 

depth images onto x-y, y-z, and x-z planes and then training 3 different ConvNets to 

track joints in 2D across all the three planes. Following this, the predictions of the 

joints obtained from the 3 planes were combined to estimate the 3D joint positions. 

The authors compared their ConvNet-based solution to other solutions that did not 

use neural networks on different challenging academic datasets and demonstrated 

the better hand tracking capability of their ConvNet. While the above systems 

employed ConvNets for hand pose estimation on images captured using depth 

sensors, a much more computationally efficient solution for gesture recognition was 

proposed by the research group at Google Inc. Their solution is called MediaPipe 

Hands and it predicts 21 key points of the hand from RGB input images in real-time 

with high precision even on consumer mobile devices (Zhang et al., 2020). However, 

the above gesture recognition systems, did not include hand-object interactions as 

they are intended for applications such as decoding of sign language and other device 

automation procedures. 

To track hand kinematics with higher DOFs and object interactions precisely, 

it is essential to address the issue of occlusions. A recently developed solution has 

been demonstrated to estimate hand pose even in the presence of heavy occlusions 

(Simon et al., 2017). Simon and others trained a ConvNet called convolutional pose 
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machine (Wei et al., 2016) for the hand tracking task. They recorded from a large 

number of cameras such that the redundancies in the videos acquired from the 

cameras can be exploited to automatically generate large training datasets. The main 

drawback of this solution, however, is that it employs a large number (n = 31) of HD 

cameras operating in a specially designed panoptic studio (Joo et al., 2019), which is 

not easy to replicate across lab experiments. 

Alternatively, DeepLabCut (DLC) a markerless tracking solution that can be 

easily applied across different lab experiments was proposed (Mathis et al., 2018).  

 

Figure 12: 2D keypoint inference using DLC. Illustration of a ResNet-50 pretrained on 
ImageNet database applied to infer keypoints of a mouse hand. The network outputs heatmaps 
which have the same size as the input images. The number of output heatmaps matches the number 
of keypoints to be tracked and the intensity values of the heatmap correspond to the likelihood 
values of the associated keypoint. Figure from Mathis et al., (2018) 

Using DLC, ResNet pretrained on ImageNet database (Deng et al., 2009) for object 

recognition task can be retrained to infer keypoints on the hand (Figure 12). This 

approach of initiating network training from a pre-trained network instead of a 

network with random weights is referred to as transfer learning. Networks trained 

for commercial applications on massive datasets can be retrained with relatively 

small datasets for other tasks sharing common features using transfer learning. DLC 
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exploits transfer learning to make training possible even with very limited training 

data (a few hundred examples). It has already been successfully applied to track 

motor behaviors in several species including mice, flies, horses (Mathis et al., 2018) 

and also, more recently, in monkeys (Berger, Agha and Gail, 2020). However, the 

tracked kinematics had lesser degrees of freedom than the primate hand, object 

interactions were non-existent or very simple, and occlusions were rather minimal. 

As a part of this thesis, a solution for markerless tracking of 27 DOFs of the primate 

hand during object interactions was developed that employed only 5 cameras. 

Importantly, by exploiting constrains of multiview geometry we programmed a 

procedure to automatically increase the number of keypoint annotations that can be 

employed for network training.  Furthermore, the solution is applicable to track 

unoccluded keypoints as well as keypoints that are occluded in some of the camera 

views.  

This thesis is divided into two parts. The first part (Chapter 2.1) is dedicated 

to the study of neuron-level dynamics of oscillatory network structure during 

sensorimotor transformations. To this end, two macaques were trained to perform a 

delayed grasping task with randomly mixed instructed and free-choice trials in which 

a handle had to be grasped with one of two possible grip types. Neuronal activity was 

recorded in parallel from the fronto-parietal grasping network including the ventral 

premotor cortex (area F5) and the anterior intraparietal area (AIP) with 64 electrodes 

chronically implanted in each area. Networks of oscillatory synchrony estimated from 

spike-field phase locking were characterized to examine their role in behavior 

dependent information processing.  

The second part of this thesis including Chapters 2.2 and 2.3 are dedicated to 

the development of a markerless tracking paradigm for grasping behavior in 

primates. The system tracks 22 keypoints of the human hand from videos acquired 

simultaneously from 5 cameras by exploiting deep learning for computer vision as 

detailed in Chapter 2.2. Occlusions during object interactions and the availability of 

a relatively small number of human annotated training data were two of the 

important challenges addressed. The system was validated on a human grasp 
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tracking experiment that included 10 objects and a large repertoire of grasps. 

In Chapter 2.3, 3D reconstruction of keypoints of the hand tracked in 2D across 

multiple cameras, which is an important step for computer vision based tracking of 

hand kinematics is detailed. A Matlab (The MathWorks Inc., Natick, Massachusetts) 

implementation of a semi-automated 3D reconstruction workflow called pose3d1 that 

includes camera calibration, undistortion, and triangulation of keypoints tracked 

using DLC (or any other 2D tracking software) is presented. 

  

 
1 https://github.com/SwathiSheshadri/pose3d 
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2 Original Articles and Manuscripts 

This Chapter contains the following research articles and manuscripts 

 

2.1 Distinct beta and low frequency oscillatory neurons 
participate in a behavior dependent reconfiguration of the 
fronto-parietal grasping network in macaques 
 
Swathi Sheshadri*, Benjamin Dann*, Hansjoerg Scherberger. *Equal contribution 

 

Manuscript prepared for submission  

Author contributions: S.S., B.D., and H.S. designed and planned the project. S.S., and 

B.D. analyzed the data. S.S., and B.D. wrote the manuscript. All authors revised the 

manuscript. 

 
2.2 Precise markerless tracking of the hand during object 
grasping 
 
Swathi Sheshadri*, Timo Hueser*, Benjamin Dann*, Hansjoerg Scherberger.  
*Equal contribution 

 

Manuscript under preparation  

Author contributions: S.S., T.H., B.D., and H.S. designed and planned the project. 

T.H., B.D., and S.S performed the experiment and built the experimental setup. S.S., 

and T.H. analyzed the data. S.S. wrote the manuscript. All authors revised the 

manuscript. 

 
2.3 3D reconstruction toolbox for behavior tracked with 
multiple cameras 

 
Swathi Sheshadri, Benjamin Dann, Timo Hueser, Hansjoerg Scherberger 

 

Published in JOSS: DOI: https://joss.theoj.org/papers/10.21105/joss.01849 

Author contributions: S.S., B.D., T.H., and H.S. designed and planned the project. 

S.S., programmed and documented the toolbox. T.H., B.D., and S.S performed the 

experiment and built the experimental setup. S.S. wrote the manuscript. All authors 

revised the manuscript.
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Abstract 

Oscillatory synchrony is proposed to play an important role in flexible sensory-

motor transformations. Thereby, it is assumed that changes in the oscillatory 

network structure at the level of single neurons lead to flexible information 

processing. Yet, how the oscillatory network structure at the neuron-level changes 

with different behavior remains elusive. To address this gap, we examined changes 

in the fronto-parietal oscillatory network structure at the neuron-level, while 

monkeys performed a flexible sensory-motor grasping task. We found that neurons 

formed separate subnetworks in the low frequency and beta bands. The beta 

subnetwork was active during steady states and the low frequency network during 

active states of the task, suggesting that both frequencies are mutually exclusive at 

the neuron-level. Furthermore, both frequency subnetworks reconfigured at the 

neuron-level for different grip and context conditions, which was mostly lost at any 

scale larger than neurons in the network. Our results, therefore, suggest that the 

oscillatory network structure at the neuron-level meets the necessary requirements 

for the coordination of flexible sensory-motor transformations. 
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Introduction 

One of the most important functions of the primate brain is to transform 

perceived information into the generation of movements to interact with the 

environment. This process requires the flexible selection of relevant perceptual 

information, which needs to be flexibly transformed into movement related activity 

according to the behavioral demands. Rhythmic co-activations of neurons, referred to 

as oscillatory synchrony, has been proposed as a mechanism for selective and flexible 

behavior dependent information processing (Roelfsema et al., 1997; Pesaran, Nelson 

and Andersen, 2008; Buzsáki, 2010; Nácher et al., 2013; von Nicolai et al., 2014; 

Bastos, Vezoli and Fries, 2015; Fries, 2015; Wong et al., 2016). Thereby it is assumed 

that changes in oscillatory network structure at the neuron-level lead to flexible 

information processing.  

The fronto-parietal circuit is known to be strongly involved in flexible sensory-

motor transformations (Baumann, Fluet and Scherberger, 2009; Fluet, Baumann and 

Scherberger, 2010; Michaels et al., 2015; Dann et al., 2016; Michaels and Scherberger, 

2018), which are accompanied with changes in oscillatory synchrony (Pesaran et al., 

2002; Scherberger, Jarvis and Andersen, 2005). At the area-level within and between 

these areas, several studies have reported strong beta synchrony during steady states 

such as periods of rest or movement preparation (Scherberger, Jarvis and Andersen, 

2005; Pesaran, Nelson and Andersen, 2008) and a global decrease in beta synchrony 

was shown to be predictive of movement initiation (Canolty, Ganguly and Carmena, 

2012; Womelsdorf, Westendorff and Ardid, 2013). Therefore, beta is assumed to be 

related to the maintenance of status quo (Engel and Fries, 2010) and to be involved 

in the transition from movement planning to execution. However, the involvement of 

beta in flexible information processing remains debated because several studies 

reported only small or even no context or condition dependent changes in beta 

synchrony (Scherberger, Jarvis and Andersen, 2005; Pesaran, Nelson and Andersen, 

2008; Engel and Fries, 2010; Haegens et al., 2011, 2017; Dean, Hagan and Pesaran, 

2012; Martínez-Vázquez and Gail, 2018). In contrast to beta synchrony, recent 
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studies have related low frequency synchrony within and between fronto-parietal 

areas to movement execution (Churchland et al., 2012; Elsayed et al., 2016; Martínez-

Vázquez and Gail, 2018).  

In the fronto-parietal network at the neuron-level, a few studies provided 

evidence that only a distinct class of neurons is oscillatory synchronized in the low 

frequency and beta bands, while many neurons are not oscillatory synchronized 

(Dean, Hagan and Pesaran, 2012; Dann et al., 2016; Wong et al., 2016). These 

oscillator-neurons were strongly synchronized within and between areas forming a 

subnetwork, which may be central for flexible information processing (Dann et al., 

2016).  

These previous approaches that either examined temporal dynamics at the 

area-level or the network structure at the neuron-level of oscillatory synchrony fall 

short, however, to capture how changes in the oscillatory network structure at the 

neuron-level are related to flexible transformation processes. In this regard, several 

fundamental questions remain elusive. During behavior dependent processes, it is 

unknown whether the same population of neurons synchronizes in different 

oscillatory frequencies or whether distinct subpopulations of neurons exist that only 

synchronize in one particular frequency band (Figure 1A). Furthermore, it is also 

unknown whether at the level of neurons in the network, different frequencies are 

associated with different behavioral states, and whether different frequencies in the 

network are therefore mutually exclusive (Figure 1B). Finally, it is unclear whether 

fine-scale reconfigurations of the oscillatory network structure are present at the 

neuron-level for different conditions (e.g., different sensory inputs, movement plans 

or movement executions), which are lost at larger scales such as the area-level (Figure 

1C). This is of particular importance because condition dependent changes of the 

oscillatory network structure are a prerequisite for flexible information processing by 

oscillatory synchrony. 

Here, we investigated changes in the oscillatory network structure at the 

neuron-level over time and across different conditions during flexible sensory-motor 

transformations. For this purpose, we simultaneously recorded large populations of 
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single neurons and LFPs of the fronto-parietal grasping network (F5 and AIP).  

 

 

Figure 1: Hypothesized oscillatory network structure dynamics of the fronto-parietal grasping 

circuit. (A) Illustration of the hypothesis in which the groups of neurons participating in the two behavior -

relevant frequency bands (low and beta) were examined to understand if the same or different neurons 

participate in oscillatory synchrony in the two frequency bands. Distinct groups of neurons participating in the 

two frequency bands result in segregated networks, while overlapping groups result in mixed networks. (B) In  

this hypothesis, we focused on the temporal dynamics of the networks. We examined if the networks in the low 

frequency and beta bands were active at different times mutually exclusively or at the same time overlappingly. 

(C) In this hypothesis, we examined the behavior dependence of networks underlying task conditions. Different 

networks underlying different task conditions result in task condition dependent networks, while the same 

networks underlying different task conditions result in task condition independent networks.   

In agreement with previous studies, we found strong 3-6 Hz low frequency and 17-35 

Hz beta synchrony across the network. However, individual neurons were 

predominantly either beta or low frequency synchronized with large parts of the 

network forming separate frequency specific subnetworks, with beta neurons 
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predominantly located in AIP and the low frequency neurons in F5. Over the time 

course of the task, beta neurons were strongly synchronized with the network during 

steady states such as the delay epoch and weakly synchronized during active states 

such as movement execution, while low frequency neurons showed the opposite 

temporal profile. This suggests that both frequencies are mutually exclusive in the 

network at the neuron-level. Furthermore, individual neurons showed strong 

condition dependent changes in oscillatory synchrony with the network in both 

frequencies, despite only small detectable changes at the area-level. Closer 

examinations of the entire oscillatory network structure revealed that more than 80% 

of condition dependent changes can only be captured at the fine-scale network-level 

and that changes of individual connections even accounted for more than 25% of these 

changes. Our results thus suggest that fine-scale reorganizations of frequency specific 

subnetworks of neurons are the core of behavior dependent information processing 

by oscillatory synchrony.  

Results 

Behavioral tasks, single neurons and LFPs recordings  

To study changes in oscillatory synchrony during transformation processes, we 

trained two monkeys (S and Z) to perform a delayed grasping task. In this task, the 

monkeys were either instructed to grasp a target with one of the two possible grip 

types (power and precision), or could choose freely between the grips, as described in 

detail in previous studies (Michaels et al., 2015; Dann et al., 2016) (Figure 2A). In the 

instructed-context monkeys were visually cued by one of two discs displayed on a 

monitor to perform the associated grip type. In the free-choice context both discs were 

displayed and monkeys could choose freely between the grip types. Both monkeys 

learned to perform the task with high accuracy and high trial counts (percentage of 

successful trials: 95 ± 0.01 SD % and 96 ± 0.03 SD %, number of successful trials: 730 

± 106 SD and 722 ± 167 SD for S and Z, respectively).  
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During the task, we simultaneously recorded large populations of single 

neurons and LFPs from the ventral premotor cortex (area F5) and the anterior 

intraparietal area (AIP), which are both part of the fronto-parietal grasping network.  

 

 

Figure 2: Experimental design and location of implanted floating micro-electrode arrays. (A) In this 

delayed grasping task paradigm monkeys were cued to grasp a handle with one of two different grip types 

displayed on a monitor and superimposed onto the handle. To start the trial the monkeys had to  fixate a red 

disk for 600–1000ms (Fixation). Then, the cue epoch lasting 300ms followed, when either (‘Power’) a green disk  

was presented on the left indicating a power grip, (‘Precision’) a grey disk was presented on the right indicating 

precision grip, or (‘Free-choice’) both disks were presented indicating a free-choice between power and precision 

grips. After the cue was turned off, the monkeys were required to remain steady during the memory epoch 

(duration: 1100–1500ms). Then, the fixation dot was turned off (go-signal), indicating to the monkey to execute 

the grasp movement (maximum duration: 800ms). (B) Pictures of implanted floating micro-electrode arrays in  

monkey Z (left) and monkey S (right). Animals were implanted with 4-6 floating Microprobe arrays, in areas 

AIP and F5 (M1 data from monkey S not used for this study). 

Recordings were made from two chronically implanted 32-channel microelectrode 

arrays per area (64 channels per area and 128 channels in total; Figure 2B; see STAR 

Methods). For all the following analyses, 6 recording sessions from monkey S and 3 

from monkey Z were used. To ensure a stable estimate of oscillatory synchrony of 

individual neurons over time and across conditions, only well-isolated neurons (see 

STAR Methods) with at least 70 spikes during all 800ms time windows of all 

conditions of the task were used for all further analyses. This resulted in an average 

number of neurons per recording session of 15.6 ± 2.6 and 14.3 ± 3.5 for area F5 and 

24.1 ± 2.8 and 8.6 ± 0.5 for area AIP for S and Z, respectively. Noisy LFP-sites were 

excluded from all analyses and to ensure that the LFP signals are local, we removed 

the common recording reference by using linear regression (see STAR Methods). This 
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resulted in an average number of LFP-sites per recording session of 54.8  2.7 and 

52.0  1.73 for area F5 and 56.6  1.2 and 58  1.0 for area AIP for S and Z, 

respectively. 

Area-level spike-field phase locking over time and across conditions  

We characterized the behavior dependent changes in oscillatory synchrony in 

the fronto-parietal network by estimating the strength of spike-LFP phase locking 

between all neuron-LFP pairs per recording session employing the method PPC (see 

STAR methods) (Vinck et al., 2010, 2012). PPC was computed over the time course of 

the task with a sliding window of 800ms and separate per condition (step size of 

100ms, 23 time windows x 4 conditions). Using PPC to estimate phase locking has 

the advantage that PPC is unbiased by spiking rate. Thus, spike-LFP phase locking 

estimated by PPC allows the comparison of different neurons, LFP-sites, time points 

and conditions without the confounding influences of rate changes. 

Figure 3A shows all PPC spectra of an example AIP neuron with all 

simultaneous recorded LFP-sites during memory epoch for all four task conditions of 

a representative recording session from monkey S. The example neuron was strongly 

phase locked in the beta band (18 - 35 Hz) with most of the LFP-sites in AIP and some 

of the LFP-sites in F5. Across all neuron-LFP pairs of both areas, time windows, 

conditions and recording sessions, neurons were strongly phase locked in the low 

frequency (3 - 6 Hz) and beta bands for both monkeys (Figure 3B; see Figure S1 for 

an example F5 neuron phase locked in the low frequency band with many of the 

simultaneously recorded LFP-sites). In a direct comparison of both areas, F5 neurons 

were on average predominantly phase locked in the low frequency band and AIP 

neurons predominantly phase locked in the beta band with LFP-sites from both areas 

for both monkeys. LFP-site phase locking per area averaged across all neurons 

showed qualitatively the same but weaker area bias in the beta band, and was similar 

between areas in the low frequency band (Figure S1B). These results therefore 

suggest that phase locking of neurons is more area specific than phase locking of LFP-
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sites. 

To validate whether the observed low frequency and beta band phase locking 

was significant and to test whether significant phase locking was present in other 

frequency bands, we used cluster-based surrogate statistics (see STAR methods). For 

this purpose, first, surrogate PPCs were generated for every neuron-LFP pair by 

randomly permuting LFP trials within each behavioral condition, while preserving 

the total number of spikes and LFP power per frequency for every condition (see 

STAR methods). Second, each PPC spectrum per neuron-LFP was tested against the 

corresponding surrogate PPC spectra employing cluster-based statistics. As expected 

by the average phase locked strength per area (Figure 3B), we found a higher number 

of significant neuron-LFP phase locking pairs in the low frequency band with neurons 

predominantly from F5 and in the beta band with neurons and LFP-sites 

predominantly from AIP (Figures 3C and S1C).  

Given strong low frequency and beta band phase locking in the fronto-parietal 

grasping network, we next examined whether and how phase locking at the area-

level changes over the time course of the task. Figure 3D depicts the average PPC 

spectrograms across all neuron-LFP-pairs of all neurons per area, conditions, and 

recording sessions (see Figure S1D for LFP-sites per area). In both areas beta phase 

locking of neurons and LFP-sites was strong during fixation and memory epochs, 

weak during cue epoch, and nearly absent during movement epoch. Conversely, low 

frequency phase locking was strong during cue epoch, strongest during movement 

epoch and nearly absent during fixation and memory epochs. In agreement with the 

time averaged phase locking results above, AIP neurons and LFP-sites were stronger 

beta phase locked and F5 neurons stronger low frequency phase locked over the time 

course of the task.  

We further determined the extent to which beta and low frequency phase 

locking at the area-level differed between the four conditions of the task. Displayed 

in Figure 3E are the average PPC spectra per condition across all neuron-LFP-pairs 

of all neurons per area, time windows, and recording sessions (see Figure S1E for 

LFP-sites per area). Except for small condition dependent differences in low 
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frequency phase locking of F5 neurons from monkey S and AIP neurons from monkey 

Z, the average phase locking of neurons and LFP-sites was highly similar across 

conditions in both frequency bands and areas.  

 

 

Figure 3: Example spectra and the spatial, temporal and task condition specific differences in 

neural population averages. (A) PPC spectra during memory epoch of a representative neuron recorded 

from area AIP with spatially distributed LFP signals recorded from F5 and AIP in monkey S. (B) Population 

average phase locking in PPC spectra of neurons recorded from areas F5 and AIP with all LFP signals. Line  

shadings indicate standard error across recording sessions. (C) Percentage of significant phase locking 

(identified using cluster-based surrogate tests, see STAR methods) of neurons recorded from F5 and AIP with 

all LFP signals. Line shadings show standard error across recording sessions. (D) PPC spectrograms of neurons 

recorded from F5 and AIP with LFP signals from both areas to illustrate time-resolved phase locking (100ms 

resolution). In the PPC spectrograms, data were clipped at 95th percentile for visualization purposes.  (E) PPC 

spectrograms of neurons recorded from F5 and AIP with LFP signals from both areas illustrating condition 

resolved phase locking. (in (B), (C), (D) and (E) results are shown for monkeys S and Z separately).  

Taken together, we found strong low frequency and beta spike-LFP phase 

locking in the fronto-parietal grasping network, in agreement with previous studies 

(Scherberger, Jarvis and Andersen, 2005; Pesaran, Nelson and Andersen, 2008; 

Haegens et al., 2011; Churchland et al., 2012; Martínez-Vázquez and Gail, 2018). On 

average, AIP neurons were predominantly beta phase locked and F5 neurons 
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predominantly low frequency phase locked. Yet, a small but significant number of F5 

and AIP neurons were also beta and low frequency phase locked, respectively.By 

contrast, phase locking of the LFP-sites in both frequency bands was less different 

between the areas. One explanation for the higher degree of frequency specificity of 

neurons than LFP-sites could be that different populations of neurons are phase 

locked in the beta and low frequency bands with LFP-sites of both areas (Figure 1A). 

In this case, neurons would form frequency specific subnetworks, which consist of 

mostly neurons from one area, but also some neurons from the other area. Thus, 

phase locking of LFP-sites would be less frequency specific because they reflect the 

average phase locking of all surrounding neurons. 

Over the time course of the task at the area-level beta phase locking was strong 

during fixation and memory epoch, while low frequency phase locking was strong 

during the cue und movement epoch. This raises the question whether beta phase 

locking is related to steady states and low frequency phase locking to active 

observance and movement and therefore phase locking in the two frequency bands is 

mutually exclusive during sensory-motor transformations (Figure 1B). If phase 

locking is mutually exclusive in the two frequency bands, both frequencies should be 

clearly separated in the network of neurons over the time course of the task. 

Average beta and low frequency phase locking at the area-level was highly 

similar for the different grip as well as context conditions of the task. This finding is 

in accordance with previous studies also showing little to no condition dependent 

differences in oscillatory synchrony (Pesaran, Nelson and Andersen, 2008; Haegens 

et al., 2017). Suppose that the phase locking in one frequency of individual neurons 

changes independently for different conditions, this would result in fine -scale 

reconfigurations of the phase locking network that are lost at any scale larger than 

neurons. Therefore the possibility remains that condition dependent reconfigurations 

in the beta and low frequency phase locking network exist at the neuron-level (Figure 

1C).  

However, the investigation of these three fundamental questions (Figure 1) 

requires network analyses at the neuron-level. First, because simultaneous 
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recordings of neurons with the same LFP-sites are necessary in order to compare 

their phase locking with each other. Second, because simultaneous recordings of 

many LFP-sites are necessary to ensure that neuron-level phase locking in both 

behavior related frequencies is detectable in the same network. 

Separate populations of low frequency and beta phase locked neurons  

The large number of simultaneously recorded neurons and LFP-sites allows to 

examine the relationship between low frequency and beta phase locking at the level 

of neurons in the network. Based on this, we first examined the question whether the 

same or different populations of neurons are phase locked in the two frequency bands 

(Figure 1A).  

Displayed in Figure 4A is the time and condition averaged anatomical 

networks of spike-field phase locking separately for the 3 – 6 Hz low frequency and 

18 – 35 Hz beta bands of one representative recording session from monkey S (see 

Figure S1A for one representative recording session from monkey Z). Interestingly, 

the strength of phase locking per neuron averaged over all LFP-sites was highly 

heterogeneous across the population of neurons in both frequency bands. For a better 

comparison of low frequency and beta phase locking, we depict both networks as 

connectivity matrices with the average strength of phase locking per neuron and per 

LFP-site at the corresponding edges (Figure 4B, see Figure S2A for a representative 

recording session from monkey Z). As expected, strong beta phase locked neurons 

were predominantly located in AIP and strong low frequency phase locked neurons 

were predominantly located in F5. However, we also observed weakly beta phase 

locked neurons in F5 and weakly low frequency phase locked neurons in AIP. In direct 

comparison of the low frequency and beta phase locking networks, neurons strongly 

phase locked in one frequency seem to be weakly phase locked in the other frequency. 

LFP-sites, in contrast, were more uniformly phase locked and seem to have a clear 

overlap in both frequency bands.  

To examine whether beta and low frequency neurons belong to the same or 
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different populations of neurons, we compared the average beta and low frequency 

phase locking per neuron across all recordings separately for the two monkeys (Figure 

4C). Note that the comparison was done separately for both monkeys because the 

average strength of beta and low frequency phase locking was different between 

monkeys. For both monkeys, neurons with higher low frequency phase locking were 

weakly beta phase locked and vice versa. We calculated the cosine similarity between 

low frequency and beta phase locking of all neurons to quantify their degree of 

overlap. Cosine similarity between frequencies was low for both monkeys (0.37 and 

0.27 for S and Z, respectively). However, a low cosine similarity does not necessarily 

indicate that low frequency and beta neurons belong to different populations, because 

the distributions of phase locking of neurons in both frequency bands can influence 

the results. In particular, the heavy-tailed distribution of phase locking with most 

neurons weakly phase locked and a few neurons very strongly phase locked, such as 

in this case, could lead to a large variability of cosine similarity. We therefore used 

permutation statistics preserving both phase locking distributions to test whether 

neurons phase locked in the two frequencies belong to different populations (see 

STAR Methods). Cosine similarity was smaller than expected by chance for both 

monkeys (2-sided permutation test, p < 0.0001 for S and Z), suggesting that low 

frequency and beta phase locked neurons belong to separate populations.  

We next examined whether low frequency and beta phase locking is also 

separated at the LFP-level. In contrast to neurons, cosine similarity between low 

frequency and beta phase locked LFP-sites was high (Figure S3A; 0.69 for and 0.72 

for S and Z, respectively) and significantly above chance (2-sided permutation test, p 

< 0.0001 for S and Z) suggesting that low frequency and beta phase locking overlaps 

at the LFP-level.  

Together, these results suggest that fronto-parietal low frequency and beta 

phase locked neurons form separate subnetworks (Figure 1A). Interestingly, the 

separation of the frequency specific subnetworks could only be detected at the neuron-

level and not at the LFP-level. This suggests that both subnetworks contain neurons 

from the same local populations and are therefore already mixed at the LFP-level. 
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Figure 4: Segregated groups of neurons participate in the low frequency and beta networks. (A)  

Schematic illustrating average PPCs over all task conditions and time windows in an anatomical 

representation. In these networks, the four rounded rectangular boxes correspond to the arrays implanted of 

F5 and AIP, with the dashed line used to separate the two areas. The inner circles correspond to neurons and 

the outer circles correspond to LFP signals. The thickness of the lines drawn between neurons and LFPs 

reflects the strength of phase locking between them. The graded color-filling of the neurons shows the average 

PPC value of the corresponding neuron. (B) Networks in (A) illustrated in the format of connectivity matrices 

with columns representing neurons, rows representing LFP-sites and the graded color scale used to represent 

the strength of phase locking between neuron-LFP pairs in the network. Average PPC values associated with 

each neuron and LFP signal are plotted along the top and right margins of the connectivity matrices, 

respectively. (A) and (B) illustrate networks corresponding to a representative recording session from monkey 

S and PPC values in the network illustrations were clipped at 99th percentile for better visualization by de -

emphasizing outliers. (C) Comparison of average low frequency and beta PPC values for neurons from all 

recording sessions shown separately for monkeys S and Z with color coding to highlight area specificity.  

Low frequency and beta phase locking are mutually exclusive over time  

We next addressed the question whether beta and low frequency phase locking 

are associated with different behavioral states at the neuron-level in the network and 

therefore whether they are mutually exclusive during sensory-motor transformations 

(Figure 1B). As mentioned above, several studies have related different oscillatory 
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frequency bands with different behavioral states (Engel and Fries, 2010; Churchland 

et al., 2012). However, it has not been investigated yet, whether the relationship of 

different behavioral states with different frequencies also holds true at the level of 

neurons in the network. For example, if two spatially overlapping populations of 

neurons are phase locked with the network in the same phase during one behavioral 

state and with random or opposing phases during the other behavioral state, analyses 

of brain signals coarser resolved then neurons would detect a decrease in phase 

locking for the second state. Therefore, analyses at the network-level with neuron-

resolution are required to investigate behavioral state dependent differences in 

oscillatory synchrony.  

Displayed in Figures 5A and S2B are the low frequency and beta networks of 

one representative recording session per monkey over the time course of the task 

averaged across all conditions per spike-field pair. Across the network, low frequency 

phase locking was weak during fixation, increased slightly around cue epoch, was 

weak again during memory epoch and was strongest around movement. Beta phase 

locking in contrast was strong during fixation, decreased slightly around cue, was 

strong again during memory epoch, and was nearly absent around movement. 

Average spike-field phase locking of all spike-LFP pairs over the time course of the 

task confirmed the observation that strong low frequency phase locking is associated 

with active observance and movement and strong beta phase locking with steady 

states during fixation and memory epochs (Figure 5B).  

The finding that low frequency and beta phase locking is associated with 

different behavioral states indicates that phase locking in both frequencies is 

mutually exclusive in the network at the neuron-level. To examine this assumption, 

we directly compared beta and low frequency phase locking of all neurons over the 

time course of the task separately per monkey (Figure 5C). Neuron-level phase 

locking over time was clearly separated into the two frequency bands and the cosine 

similarity of beta and low frequency phase locking was significantly below chance 

level for both monkeys (0.06 and 0.12 for S and Z, respectively; 2-sided permutation 

test, p < 0.00001 and p = 0.016 for S and Z, respectively). 
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Figure 5: Low frequency and beta networks active strongly during different behavioral epochs. (A)  

Network representation over time for an exemplar recording session from monkey S shown at a temporal 

separation of 200ms (networks were computed at a temporal separation of 100ms, only every second network 

shown here).  Low frequency and beta networks from time windows corresponding to peak beta phase locking 

(800ms time window centered around 900ms after cue onset) representing memory epoch and peak low 

frequency phase locking (800ms time window centered around 100ms before movement onset) representing 

movement epoch shown in anatomical network illustration. PPC values in the network illustrations were 

clipped at 99th percentile for visualization. (B) PPC values corresponding to a time window averaged over all 

neurons, LFPs and task conditions. Normalized low frequency and beta PPC values averaged over recording 

sessions to compare temporal activation profiles (Line shadings indicate standard error across recording 

sessions). (C) Comparison of average low frequency and beta PPC values corresponding to neurons at different 

time windows from all recording sessions. Results shown for monkey S and Z separately in (B) and (C). 
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In comparison to time averaged neuron-level phase locking (Figure 4C), the 

separation into the two frequency bands was stronger for time resolved neuron-level 

phase locking implying that phase locking in both frequencies is separated in time. If 

low frequency and beta phase locking are mutually exclusive over time, this 

relationship should also be present for LFP-sites. In agreement with this assumption 

and in contrast to time averaged LFP-site phase locking (Figure S3A), LFP-site phase 

locking over time was also separated into the two frequencies (Figure S3B; 0.12 and 

0.26 for S and Z, respectively; 2-sided permutation test, p < 0.00001 for monkeys S 

and Z) 

Together, these results suggest that at the level of neurons in the network low 

frequency phase locking is associated with active behavioral states and beta phase 

locking with steady behavioral states, in agreement with previous literature  (Engel 

and Fries, 2010). Furthermore, the clear temporal separation of both frequencies at 

the neuron- and LFP-level suggest that low frequency and beta phase locking are 

mutually exclusive in the network (Figure 1B). 

Low frequency and beta networks reconfigure for different conditions  

Given segregated low frequency and beta phase locked subnetworks of neurons 

active during different states of sensory-motor transformations, the question remains 

whether these subnetworks are the same or reconfigure at the neuron-level for 

different grip and context conditions (Figure 1C). As mentioned earlier, it is possible 

that despite a similar condition dependent phase locking at the area-level (Figure 3E) 

the phase locking of individual neurons changes independently for different 

conditions, which can only be examined at the fine-scale network-level with neuron-

resolution. 

To address this question, we first examined whether and at which times 

neuron-level beta and low frequency phase locking was different between task 

conditions. We quantified condition dependent differences by estimating the neuron-

level phase locking variance across conditions and then compared the variance at 
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each time window with surrogate data variance. Surrogate phase locking networks 

were generated by permuting trials from all four conditions before estimating PPC, 

thus preserving the total number of spikes, LFP power, and the amount of low 

frequency and beta phase locking per neuron-LFP pair (see STAR Methods). The 

neuron-level phase locking variance was significantly higher between conditions 

around cue and movement epochs in the low frequency band and during memory 

epoch in the beta band for both monkeys (Figure 6A; cluster-based surrogate test, p 

< 0.007). However, visual inspection of the time averaged phase locking networks 

during the three significant periods showed only small differences between conditions 

(see Figure 6B, and Figure S2B for one representative recording session from monkey 

S and Z, respectively). This observation is reinforced by a high cosine similarity 

between all pairs of conditions during all three significant epochs in the 

corresponding frequency bands (Low frequency cue: 0.71  0.08 and 0.92  0.02, beta 

frequency memory: 0.93  0.01 and 0.81  0.05, low frequency movement: 0.86  0.06 

and 0.80  0.15 for S and Z, respectively). Cosine similarity was significantly above 

chance in all cases except for grip type differences in low frequency phase locking 

during movement for monkey Z (2-sided permutation test, p < 0.05 Bonferroni 

corrected for the number of condition pairs).  

The supposed discrepancy between significant condition dependent phase 

locking at the neuron-level and high cosine similarity could be explained by a large 

amount of condition independent phase locking and a smaller but significant amount 

of condition dependent phase locking. In agreement with this assumption, condition 

differences only explained on average 23.5% of phase locking variance at the neuron-

level (low frequency cue period: 42  12 SD % and 15  7 SD %, beta memory period: 

11  3 SD % and 25  12 SD % of, and low frequency movement period: 21  7 SD % 

and 27  3 SD % for S and Z, respectively). However, a few neurons showed strong 

condition dependent changes in phase locking, while most neurons did not (see, for 

example, the encircled neurons in Figure 6C and S4). To examine condition 

dependent differences in phase locking across neurons, we computed the difference 

in phase locking per neuron for grip-type, context and grip-context-interaction during 
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all three epochs separately per monkey (Figure 6D).  

 

 

Figure 6: Task condition dependent differences in the low frequency and beta networks. (A)  

Variance in the neuron-level phase locking corrected by subtracting the average and dividing by the standard 

deviation of the variances computed over 1000 surrogate networks generated by shuffling condition identity 

before calculating PPC. Dots indicate time windows when significant condition dependent differences were 

detected in the low frequency (blue dots) and the beta bands (orange dots). (B) Low frequency networks during 

movement epoch (time windows selected based on the observed significant differences across conditions in (A): 

800ms duration windows centered from 300ms before movement onset to 100ms after movement onset) and 

beta frequency networks during memory epoch (800ms duration windows centered from 600ms after cue onset 

to 1200ms after cue onset) for the four task conditions. (C) Exemplar differences between instructed power and 

free precision task conditions during memory epoch shown for beta frequency using anatomical network 

representations. Black circles drawn around select neurons highlight large differences in the average PPC 

values between the two task conditions. In (B) and (C), PPC values were clipped at 99th percentile for 

visualization purposes. (D) Grip, context and grip-context interaction effects observed at the level of neurons 

in the network in the low frequency band during the cue and movement epochs and in the beta frequency band 

during the memory epoch. Grip effect (Power vs. Precision) was determined by averaging PPC values over the 

two context types in the task for each grip type and subtracting PPC values corresponding to “Precision grip” 

from PPC values corresponding to “Power grip”. Context effect (Instructed vs. Free -choice) was determined by 

averaging PPC values over the two grip types in the task and subtracting PPC values corresponding to “Free-

choice” task from the “Instructed” task condition. Interaction effect was determined by adding PPC values 

corresponding to “Free-choice Precision and Instructed Power” and subtracting it from the summed PPC values 

corresponding to “Free-choice Power and Instructed Precision” task conditions. 

We found that phase locking changes across neurons were in general heterogeneously 
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distributed with most neurons showing little to no condition dependent differences, 

and a few neurons showing strong condition dependent differences. Interestingly, 

neurons showed comparable differences for grip, context and grip-context interaction 

during cue and memory period in the low frequency and beta band, respectively, while 

neurons showed almost exclusively grip-type differences during the movement period 

in the low frequency band. Behavior dependent changes in phase locking of LFP-sites 

were more homogeneously distributed in comparison to neurons during the same 

three periods in the corresponding frequency bands (Figure S3C). Nonetheless, LFP-

sites showed a similar ratio of grip, context and grip-context differences in phase 

locking as neurons during all three periods.  

The results above show that grip type and context dependent changes in phase 

locking are present in the fronto-parietal low frequency and beta subnetworks at the 

neuron-level. Therefore, these findings confirm that condition dependent 

reconfiguration of the phase locking network structure at the neuron-level can be 

present despite little to no condition dependent differences at the area-level (Figure 

3E). A possible explanation for this apparent discrepancy could be the comparable 

amount of condition dependent weaker and stronger phase locked neurons (Figure 

6D), which would cancel each other out at any larger scale than neurons. This 

explanation is supported by the finding that condition dependent differences for LFP-

sites were similar but less pronounced compared to neurons.  

Interestingly, grip and context related changes in phase locking were present 

during the cue and memory period, but only grip related changes were present during 

the movement period. To solve the given task both context and grip information must 

be processed and transformed differently during the cue and memory period in order 

to ultimately perform the same two grasp movements regardless of the context. Thus, 

the found changes in phase locking for grip and context during the three periods 

accurately reflect the expected behavioral demands. 
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Neurons with strong phase locking show stronger condition dependent 

changes 

The high level of heterogeneity at the neuron-level of overall phase locking 

(Figure 4) and condition dependent changes in phase locking (Figure 6) raises the 

question how both parts of phase locking are related. If overall weakly phase locked 

neurons show the strongest behavior dependent changes in phase locking, it would 

suggest that changes in the activation of these neurons indirectly cause phase locking 

with the core of strongly phase locked neurons. If overall strongly phase locked 

neurons show the strongest behavior dependent changes in phase locking, it would 

suggest that the core of strongly phase locked neurons directly causes changes in 

phase locking. 

To investigate this relationship, we first estimated the distribution of overall 

phase locking per neuron over time and across conditions. Neuron-level phase locking 

was heavy-tailed distributed in both frequency bands for both monkeys (Figure 7A). 

Thereby, the majority of neurons was significantly more weakly phase locked and a 

few neurons significantly more strongly phase locked with the network than expected 

by chance with the same spatial distance dependent decrease in phase locking 

(network-level cluster-based permutation test, p < 0.05, see STAR Methods). 

Given the presence of weakly and strongly phase locked neurons in both 

frequencies, we next investigated the relationship between these populations and 

behavior dependent changes in phase locking. Figure 7B depicts phase locking per 

neuron for all four conditions sorted by overall phase locking during all three 

significant periods in the corresponding frequency band of one representative dataset 

from monkey S and Z. In all example cases, neurons with higher overall phase locking 

showed stronger condition dependent changes in phase locking. To compare the 

dependency of overall and condition dependent changes in phase locking across 

recording sessions, we first computed the variance in phase locking between 

conditions per neuron and second resampled and averaged the variance sorted by the 

overall phase locking to compensate for the different number of neurons across 

recording sessions (Figure 7C). In accordance with the observations above, the 
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variance between conditions was higher with increasing overall phase locking and 

strongly phase locked neurons had a significantly higher variance than weakly phase 

locked neurons in all cases (2-sided permutation test; p < 0.00002 in all cases).  

 

 

Figure 7: Strongly connected neurons in the network exhibit higher variance in PPC over task 

conditions. (A) Distribution of PPC values over neurons in the network compared against the average of 1000 

surrogate distributions generated by distance dependent shuffling that preserves the average PPC values 

corresponding to within array, within cortical area and across cortical areas phase locking. (B) PPC per neuron 

for all four conditions sorted by overall PPC for exemplar recording sessions from monkeys S and Z. PPC values 

for the cue epoch (800ms duration windows centered from 100ms after cue onset to 500ms after  cue onset) and 

the movement epoch (800ms duration windows centered from 300ms before movement onset to 100ms after 

movement onset) are from low frequency networks and the PPC values shown for the memory epoch (800ms 

duration windows centered from 600ms after cue onset to 1200ms after cue onset) are from beta frequency 

networks. (C) Variance across the average PPC per neuron for the four task conditions shown in (B) averaged 

over all recording sessions separately for monkeys S and Z. Line shadings indicate standard error across 

recording sessions. 

 

LFP-site phase locking was also significantly heavy-tailed distributed (Figure 

S5A; network-level cluster-based permutation test, p < 0.05). In comparison to 

neurons, however, the distribution of LFP-site phase locking was less heterogeneous 

with more moderately and less weakly or strongly phase locked LFP-sites. 

Nevertheless, strongly phase-locked LFP-sites also had a significantly higher state-

dependent variance than weakly phase-locked LFP-sites in all cases except for the 

low frequency movement period in monkey Z (Figure S5B, and S5C; 2-sided 

permutation test; p < 0.05 in all but one case). 

The finding that overall strongly phase locked neurons show the strongest 
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condition dependent changes in phase locking in both frequencies, suggests that 

condition dependent reconfigurations of the network structure are driven by its 

strongly phase locked core of neurons.  

Condition dependent changes of individual connections 

Given that neurons and LFP-sites show behavior dependent changes in phase 

locking it remains unclear whether phase locking of individual connections in 

networks changes for different conditions. If condition dependent changes of 

individual connections are present, it would indicate that the full extent of behavior 

dependent changes in phase locking can only be captured at the entire network-level, 

without any averaging of phase locking. If, in contrast, average phase locking of 

neurons and LFP-sites captures all condition dependent changes, it would indicate 

that phase locking network analyses at the connection-level are unnecessary. 

In order to capture behavior dependent changes in the entire low frequency 

and beta phase locking networks, we first performed principal component analysis 

(PCA) of all neuron-LFP pairs. PCA were performed across all conditions and time 

points separately for both frequency bands and per recording session. The first 30 

PCs, corresponding to less than 1.5% of all neuron-LFP pairs in all cases, captured 

most of network-level phase locking variance in both frequencies (low frequency: 90.1 

 0.03 % and 96.6  0.01 %, and beta frequency 94.3  0.01 %  and 86.0  0.02 %  for 

S and Z, respectively). This result suggests that fronto-parietal low frequency and 

beta phase locking subnetworks are low dimensional during the performed sensory-

motor transformation task and most of the meaningful network patterns are captured 

by these PCs.  

Next, we projected low and beta frequency phase locking of one representative 

recording session from monkey S onto its corresponding PCs. The first two PCs of low 

frequency phase locking captured strong condition independent as well as strong grip -

type dependent phase locking during the movement period (see Figure 8A first 

column for example PCs). Low frequency PCs 7 and above additionally captured 
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comparable amounts of condition dependent and independent phase locking during 

the cue period (see Figure 8A second column for example PCs). Note that cue-related 

phase locking captured predominantly by the higher order PCs was expected, because 

movement-related phase locking was much stronger and therefore dominated the 

earlier PCs (Figures 5B and 6A). The first PCs of beta phase locking also captured 

strong condition independent phase locking during the fixation and memory periods 

and strong condition dependent phase locking during the memory period (see Figure 

8A right for example PCs). The large amount of condition dependent network phase 

locking captured by early PCs in both frequencies is surprising because earlier results 

suggest a clear dominance of condition independent phase locking (Figures 5 and 6). 

Therefore, these findings indicate that the full extent of condition dependent changes 

in phase locking can only be captured at the entire network-level.  

To investigate this possibility, we estimated how much network-level phase 

locking per frequency over the time course of the task can be explained by individual 

factors neurons, LFP-sites and conditions, and how much by the interaction of these 

factors. Phase locking variance captured by single factors reflect global behavior 

dependent changes in phase locking. Phase locking variance captured by first-order 

factor interactions reflects fine-scale behavior dependent changes in network-level 

phase locking as described earlier in detail for neuron-condition and LFP-condition 

(Figure 6 and S3C). While phase locking variance captured by the full interaction of 

neurons, LFPs and conditions reflects condition dependent changes in the phase 

locking of individual connections in the network. To compute variance explained by 

the different factors and their interactions, we first linearly decomposed network-

level phase locking over time into factors and factor interactions (Kobak et al., 2016) 

separately per frequency band and recording session (see STAR Methods). Second, 

we calculated the variance explained by all decomposed factors. For both frequency 

subnetworks, neuron and LFP-site differences in phase locking explained a large 

percentage of phase locking variance, while average condition differences explained 

only a small percentage of phase locking variance (Figure 8B) in accordance with 

area-level results above (Figure 3B-E). The interaction factor neuron-LFP also 
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explained a large percentage of phase locking variance in both frequencies, 

suggesting the presence of subnetworks consisting of a subset of neurons and LFP-

sites. As expected by the high level of heterogeneity of condition dependent phase 

locking of neurons and LFP-sites (Figures 6D, 7B, 7C, S3C, S5B and S5C), neuron-

condition and LFP-condition interactions explained more network phase locking 

variance than the factor condition. However, the interaction between neurons, LFP-

sites and conditions explained most condition related phase locking variance in all 

cases. Thus, these results suggest the presence of strong condition dependent changes 

in phase locking of individual connections in both frequency subnetworks. 

Yet, the finding that higher order factors, especially the full interaction factor, 

capture more condition dependent changes in phase locking should be interpreted 

with some caution, because the different factors also capture different amounts of 

noise. The higher the order of an interaction factor, the fewer neuron-LFP pairs are 

averaged to estimate the factor. Hence, higher order interaction factors also capture 

more noise. 

The surrogate data used earlier to examine condition dependent changes over 

time preserve the signal-to-noise ratio at all scales, but not condition dependent 

differences (Figure 6A; see STAR Methods). To compare condition dependent phase 

locking variance captured by different factors, we therefore corrected phase locking 

variance of all factors with the variance of the corresponding surrogate factor. Thus, 

the corrected variance per factor is only explained by condition dependent differences 

and not by any other factor or noise.  

Displayed in Figure 8C is the corrected amount of network phase locking 

variance captured by the condition and all condition interaction factors over the time 

course of the task. In agreement with the results above, all factors only captured 

condition dependent variance in the beta band during the memory period and in the 

low frequency band predominantly during the movement period and for condition and 

neuron-condition also during the cue period. However, in contrast to uncorrected 

variance (Figure 8B), all four factors captured comparable amounts of corrected 

condition dependent variance. 



 2.1 Behavior related dynamics of oscillatory network structure  

   

 

75 

 
Figure 8: Network-level PCA and condition dependent variances in network factors. (A) Projection 

of PPC networks onto the principal components capturing highest variance during cue (PC7 and PC9 capturing 

2% and 1.4% variance of low frequency networks), movement (PC1 and PC2 capturing 37.2% and 12% variance  

of low frequency networks) and memory (PC1, PC2, PC3 and PC4 capturing 54.4%, 6.6%, 5.8% and 4.7% 

variance of the beta frequency networks)  epochs for an exemplar recording session from monkey S. (B) 

Percentage of the total variance captured by the factors of the network, shown separately for low frequency 

and beta networks. (C) Factor-wise variance profiles averaged over recording sessions shown separately for 

monkeys S and Z. Variance in the PPC values of each factor were corrected by subtracting the average and 

dividing by the standard deviation of the corresponding factor-wise variances computed from 1000 surrogate 

networks generated by shuffling condition identity before computing PPC. Dots indicate the time win dows 

when significant condition dependent differences were detected in each illustrated factor of the low frequency 

and beta networks. Dot size increases proportionately with the number of recording sessions in which 

significant differences were detected. Line shadings indicate standard error across recording sessions. Results 

shown for monkey S and Z separately in (B) and (C). 

 

Therefore, these results confirm an increasing amount of noise captured by higher 

order factors. Nevertheless, even for corrected variance 25.82% of all condition 

dependent changes in phase locking are captured by neuron-condition, 29.88% by 

LFP-condition, 32.46% by the full interaction neuron-LFP-condition, and only 11.82 

% by the factor condition alone across both frequencies and monkeys (see Figure 8C 

for both frequency bands and monkeys, separately). 

In summary, these results suggest that specific phase locking network 

patterns exist for different conditions in both frequency bands. Therefore, the full 

extent of behavioral changes in phase locking can only be captured at the entire 
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network level with neuron-resolution. At each coarser level only a small fraction of 

condition dependent change in the phase locking will be detected, which leads to a 

strong underestimation of behavior dependent differences in phase locking. 
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Discussion 

Oscillatory synchrony in distinct frequency bands in the brain is strongly 

related to different cognitive and behavioral processes. For a better mechanistic 

understanding of how oscillatory synchronization coordinates task-dependent 

neuronal communication, it is essential to examine dynamic oscillatory network 

structure at the level of their origin: networks of neurons. In macaque monkeys 

performing a delayed grasping task, we estimated oscillatory network structure 

underlying behavioral epochs and conditions by computing pairwise phase 

consistency between neurons and LFPs recorded simultaneously from premotor area 

F5 and parietal area AIP. Neurons were preferentially synchronized either in the low 

or beta frequency band forming separate networks with area- and time-specificity. 

Low frequency synchrony was predominant during the cue and movement epochs, 

while beta synchrony was predominant during the fixation and memory epochs. 

Distinct network patterns were observed for context-types as well as grip-types of the 

task during the cue and memory epochs in low frequency and beta networks, 

respectively. In contrast, low frequency networks were distinct during the movement 

epoch only for grip-types, thus revealing flexible and behavior related network 

reconfigurations. Furthermore, a sub-group of strongly phase locked neurons 

contributed maximally to network reconfiguration in networks of both frequencies. 

These findings together might provide a framework for biologically plausible 

mechanistic models of flexible information processing coordinated by oscillatory 

synchrony. 

Converging evidence supports task-specificity and site-specificity of the 

frequency of oscillatory synchrony (Engel and Fries, 2010). Fronto-parietal areas 

oscillatory synchronize in the low and beta frequency bands during tasks involving 

sensorimotor transformations (Scherberger, Jarvis and Andersen, 2005; Pesaran, 

Nelson and Andersen, 2008; Martínez-Vázquez and Gail, 2018). In congruence, 

behavior related oscillatory synchronization within areas F5 and AIP was almost 

exclusively in the low and beta frequencies during our delayed grasping task (Figures 
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3B and 3C). Although dominant frequency components of oscillatory synchrony can 

be identified at the area-level, any fine-scale differences that might be present at the 

level of single neurons will be lost. In the fronto-parietal network a distinct group of 

neurons oscillatory synchronized in the low and beta frequency bands whereas the 

other neurons remained non-oscillatory (Dean, Hagan and Pesaran, 2012; Dann et 

al., 2016; Wong et al., 2016). Furthermore, the oscillatory neurons were maximally 

inter-connected within this network, making them potential candidates for flexible 

information processing (Dann et al., 2016). However, the dynamics of oscillatory 

network structure essential for flexible information processing has remained largely 

unexplored at the level of neurons due to methodological challenges such as the 

unavailability of simultaneous neural recordings or the confounding rate bias 

affecting spike-based measures of synchrony (Cohen and Kohn, 2011). Overcoming 

these challenges in our study, we examined the spatial and temporal dynamics of 

oscillatory networks of neurons that might be crucial for context-dependent sensory-

motor transformations. 

Examining oscillatory synchrony of neurons individually we identified 

separate groups of neurons participating in the low and beta frequency networks 

(Figure 4C). This implied that neurons participating strongly in beta synchrony only 

weakly or not at all participated in oscillatory synchrony in the low frequency band 

and vice versa. We wondered if area-specificity explained this separation as F5 neural 

averages were stronger synchronized in the low frequency band than the AIP neural 

averages and vice versa in the beta frequency band (Figures 3B and 3C). However, 

examining individual neurons in each area revealed the diversity in their preferred 

frequency bands. In some cases spatially neighboring neurons within an area 

preferred different frequencies of oscillatory synchrony. Therefore, area-specificity 

alone cannot sufficiently explain the separation of neural populations by their 

frequency of oscillatory synchrony. A plausible explanation for this strong separation 

is offered by studies identifying differences in oscillatory synchrony across distinct 

classes of neurons (Vinck et al., 2013; Onorato et al., 2020). We speculate that distinct 

neural classes with different inherently preferred frequencies might form specific 
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micro-circuits of oscillatory synchrony during different task-processes. In contrast to 

the separate groups of neurons, overlapping groups of LFPs participated in the low 

and beta frequency networks (Figure S3A). This finding further confirmed that the 

low and beta synchronized neurons were not confined to any one area since LFPs 

reflect averages over local neural populations. Furthermore, LFPs that can 

oscillatory synchronize in both frequency bands might provide a common substrate 

for selective entrainment of distinct neural populations in different frequencies. 

Oscillatory synchrony in specific frequency bands might be a signature of 

certain behavioral states (Engel, Fries and Singer, 2001).  During context-dependent 

sensorimotor transformations, a reduction in beta synchrony in motor areas has been 

associated with movement initiation (Canolty, Ganguly and Carmena, 2012) and 

increased oscillatory synchrony in the low frequency band between fronto -parietal 

areas has been associated with movement execution (Martínez-Vázquez and Gail, 

2018). In agreement with the above studies, we found low frequency synchrony 

associated with active behavioral states involving interactions with the environment 

such as cue and movement and beta synchrony associated with steady states of the 

task such as fixation and memory (Figure 5B). Detecting multiple frequencies of 

oscillatory synchrony in the same network raised the question on the type of temporal 

relationship between them. Temporal relationship between oscillatory frequencies 

has revealed potential mechanisms for cognitive processes. For instance, 

simultaneous oscillatory synchronization in theta and gamma bands is proposed as a 

potential coding scheme for long term memorization of sequences (Lisman and 

Buzsáki, 2008). In contrast, a push-pull interaction with a reduction in beta 

synchronization triggering the onset of gamma synchronization has been shown to be 

crucial for the successful completion of working memory tasks (Lundqvist et al., 

2018). However, the temporal relation between behavior related low and beta 

oscillatory synchrony during sensorimotor transformations has not yet been 

examined at the level of single neurons. We demonstrated not only that the neurons 

preferentially synchronize in distinct frequencies (Figure 4C) but also that their 

activation times differ (Figure 5C), thus suggesting mutually exclusive low and beta 



 2.1 Behavior related dynamics of oscillatory network structure  

   

 

80 

frequency oscillatory networks at the neuron-level. Oscillatory synchrony might thus 

facilitate switches in behavioral states by activating subnetworks of distinct, task-

epoch relevant neural populations in agreement with its proposed role as a state 

trigger (Canolty, Ganguly and Carmena, 2012; Womelsdorf, Westendorff and Ardid, 

2013). 

Flexible neuronal communication over task conditions is essential for context-

dependent behavior in addition to state-dependence. During movement execution low 

frequency oscillatory dynamics at the population level has been found to be 

discriminatory for task conditions (Churchland et al., 2012; Elsayed et al., 2016). 

Small but significant task condition related changes in beta oscil latory synchrony 

have also been reported in the population averages around planning epochs across 

tasks (Pesaran, Nelson and Andersen, 2008; Haegens et al., 2017). However, evidence 

for task condition dependence of oscillatory synchrony is still lacking at the level of 

single neurons during sensorimotor transformations. Agreeing with earlier studies, 

our evaluation of neuron-level differences demonstrated significant task condition 

dependent variances in the low frequency networks around cue and movement epochs 

and in the beta networks around memory epoch (Figure 6A). Furthermore, the lower 

dimensional network trajectories obtained using network-level PCA were already 

condition-specific in the first few PCs capturing maximal variance during different 

behavioral epochs (Figure 8A). This finding strongly suggests task conditions to be a 

primary explanatory factor of variance across networks of both frequencies.  

Comparing condition-specific variance terms in our network demonstrated that 

oscillatory processes at the level of single neurons are more informative of differences 

across task conditions than the LFPs (Figures 8B, 6D and S3C). Intriguingly, we also 

found that the strongest phase locked neurons contributed maximally to changes in 

the oscillatory network structure revealing the heterogeneity in the neural 

contributions to network reconfiguration (Figure 7C). These findings agree with 

earlier studies showing different neurons with different oscillatory propensities 

(Vinck et al., 2013; Dann et al., 2016; Onorato et al., 2020) and implies that an even 

smaller subnetwork within the subgroup of neurons actively participating in each 



 2.1 Behavior related dynamics of oscillatory network structure  

   

 

81 

frequency band might be central to network reconfiguration. Furthermore, studies 

typically average over populations when examining oscillatory synchrony. However, 

here we showed that the lowest amount of condition-specific variance is captured in 

such averages. In contrast, the highest amount of variance was captured in the 

interaction of neurons and LFPs with conditions (Figure 8B), implying specific 

oscillatory network patterns underlying different task conditions. These results are 

the first, to our knowledge, to demonstrate larger condition-specific variances present 

at the level of the entire network, which can only be captured by neuron-resolved 

network analysis.  

Overall, our findings suggest a state-dependent selection of neurons and a 

behavior dependent reconfiguration of networks of neurons coordinated by oscillatory 

synchrony during context-dependent sensorimotor transformations. These results 

inform future mechanistic models on flexible information processing by providing a 

biologically plausible framework of behavior related oscillatory synchrony.  
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STAR Methods 

Basic procedures 

Neural activity was recorded simultaneously from many channels in two 

female rhesus macaque monkeys (Animals S and Z; body weight 9 and 7kg, 

respectively). Detailed experimental procedures have been described previously 

(Michaels et al., 2015; Dann et al., 2016). All procedures and animal care were in 

accordance with German and European law and were in agreement with the 

Guidelines for the Care and Use of Mammals in Neuroscience and Behavioral 

Research (National Research Council, 2003). 

Behavioral task 

Figure 2A illustrates the time course of the behavioral task described in detail 

previously (Michaels et al., 2015; Dann et al., 2016). Monkeys were trained to perform 

a mixed free-choice and instructed delayed grasping task. They were seated in front 

of a handle that could be grasped in two different ways and visual cues were displayed 

on a masked monitor that was superimposed on the handle using a beam splitter 

mirror. Trials started after the monkey placed both hands on the resting positions 

and fixated a red fixation disk (fixation epoch). After 600 to 1000ms, cues in the form 

of disks were shown next to the fixation disk for 300ms and the handle was 

illuminated. In the instructed context, one of two discs was displayed instructing the 

monkey about the required grip type (power or precision; cue epoch). In the free -

choice context both disks were displayed indicating the monkey to freely choose 

between the two grip types. After the cue was turned off the monkey had to remain 

steady for a variable time of 1100 to 1500ms (memory epoch).  

The turning off of the fixation light instructed the monkey to reach and grasp 

the target with the required grip type (movement epoch) to receive a liquid reward. 

Note that to encourage the monkey to perform both grip types during free -choice 

context, the reward was iteratively reduced every time the monkey repeatedly chose 
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the same grip type (mean power choice: 38.5±4.2% SD and 53.3±5.2% SD for S and Z, 

respectively). All trials were randomly interleaved and executed in darkness.  

Electrode implantation and recordings 

Surgical procedures have been described in detail previously (Michaels et al., 

2015; Dann et al., 2016). Briefly, two floating microelectrode arrays (FMAs; 

Microprobes for Life Sciences; 32 electrodes; spacing between electrodes: 400μm; 

length: 1.5 to 7.1 mm monotonically increasing to target grey matter along the sulcus) 

were implanted per area in the ventral premotor cortex (area F5) and in the anterior 

intraparietal area (AIP), resulting in  64 electrodes per area and 128 electrodes in 

total. Monkeys S and Z were implanted in the left and the right hemispheres, 

respectively (Figure 2B). Extracellular signals from the implanted arrays were 

amplified and digitally stored using a 128-channel recording system (Cerebus, 

Blackrock Microsystems; sampling rate 30 kS/s; 0.6-7500Hz band-pass hardware 

filter) while the monkeys performed the delayed grasping task. All data were saved 

to disk and analyzed in Matlab (The Mathworks Inc., Natick, MA).  

Spike detection and sorting 

For spike detection, the broadband signals were first low-pass filtered with a 

median filter (window length 3ms) and the result subtracted from the raw signal, 

corresponding to a nonlinear high-pass filter. The signal was then low-pass filtered 

(4th order non-causal Butterworth filter, 𝑓𝑐 : 5000 Hz). To eliminate common noise 

sources, principal component (PC) artifact cancellation was applied for all electrodes 

of each array, as described previously (Musial et al 2002; Dann 2016).To ensure that 

no individual channels were eliminated, PCs with any normalized coefficient greater 

than 0.36 (conservatively chosen) were retained. Spike waveforms were detected and 

semi-automatically sorted using a modified version of the offline spike sorter 

Wave_clus (Quian Quiroga, Nadasdy and Ben-Shaul, 2004; Kraskov et al., 2009; Dann 

et al., 2016). 
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Units were classified as single- or non-single unit based on five criteria: (1), the 

absence of short (1–2ms) intervals in the inter-spike interval histogram for single 

units; (2), the homogeneity and SD of the detected spike waveforms; (3), the 

separation of waveform clusters in the projection of the first 17 features (a 

combination for optimal discriminability of PCs, single values of the wavelet 

decomposition, and samples of spike waveforms) detected by Wave_clus; (4), the 

presence of well-known waveform shapes characteristics for single units; and (5), the 

shape of the inter-spike interval distribution. 

After the semiautomatic sorting process, redetection of the different average 

waveforms (templates) was done to detect overlaid waveforms (Gozani and Miller, 

1994; Dann et al., 2016). To achieve this, filtered signals were convolved with the 

templates starting with the biggest waveform. Independently for each template, 

redetection and resorting were run automatically using a linear discriminate analysis 

for classification of waveforms. After spike identification, the target template was 

subtracted from the filtered signal of the corresponding channel to reduce artifacts 

during the detection of the next template. This procedure allowed us to detect spikes 

with a temporal overlap up to 0.2ms. Unit isolation was evaluated again, based on 

the five criteria mentioned above, to determine the final classification of all units into 

single or non-single units. Stationarity of firing rate was checked for all units and in 

case it was not stable over the entire recording session (more than 30% change in 

firing rate between the first 10 min and the last 10 min of recording) the unit was 

excluded from further analyses (~3% of all single units). Note that only well isolated 

single neurons based on the five criteria above were used for further analysis.  

LFP preprocessing  

To isolate LFPs, we first low-pass filtered the broadband signal with a median 

filter (window length 6.7 ms). Then, signals were high-pass filtered (4th order non-

causal Butterworth filter, 𝑓𝑐 : 1 Hz) and down-sampled from 30000 to 1000 samples 

per second by averaging every 30 consecutive samples. Broken channels and noisy 
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trials were identified and removed based on the total power, the Fischer z-

transformed Pearson correlation coefficient of all LFP-signals, and the maximum 

absolute amplitude. LFP-signals in which any one of the three feature values 

deviated more than five standard deviations were classified as noisy and excluded 

from further analysis. Next, we removed the influence of the on-array ground and 

reference electrodes by regressing out the stratified average of all LFP-signals per 

array (leaving out the two highest and two lowest values per time point) of each LFP-

signal. 

Quantification of spike-LFP phase locking  

Spike-LFP phase locking analyses were performed using custom scripts and 

the FieldTrip toolbox (Oostenveld et al., 2011). We first binned spike events from 

single neurons in non-overlapping 1-ms windows to ensure that the spikes and LFP 

signals had the same sampling rate of 1000 Hz. Next, spikes and LFP signals of all 

trials were aligned to the cue and movement onsets (cue onset: -800 to 1600ms, and 

movement onset: -800 to 500ms). Note that we chose two alignment points because 

activity was locked to both events with the variable memory epoch in between.  

Spike-LFP phase locking was computed using overlapping window of 800ms 

with a step size of 100ms separate for all four conditions. For this purpose, the 

instantaneous phases of LFP signals were estimated for 64 log-spaced frequencies 

between 2 and 130 Hz by convolving the LFP signals with Hann tapered complex 

sinusoids (6 cycles/frequency). For every neuron-LFP pair, we quantified the 

similarity in the phases of the spikes relative to the LFP signal using pairwise phase 

consistency (PPC), which is a measure of the strength of phase locking unbiased by 

firing rate (Vinck et al., 2010, 2012). PPC as a function of frequency f is given by the 

below equation, 

 

 
𝑃𝑃𝐶(𝑓) =  

∑ ∑ ∑ ∑ cos (𝑙,𝑘(𝑓) −  𝑚,𝑗(𝑓)) 
𝑁𝑙
𝑘=1

𝑁𝑚
𝑗=1

𝑀
𝑙≠𝑚

𝑀
𝑚=1

∑ ∑ 𝑁𝑚𝑁𝑙  𝑀
𝑙≠𝑚

𝑀
𝑚=1

 
(1) 



 2.1 Behavior related dynamics of oscillatory network structure  

   

 

91 

 

Here, M is the total number of trials and l and m are respectively the l-th and 

m-th trials,  j is the j-th spike of trial m and k is the k-th spike of trial l. 𝑁𝑚 and 

𝑁𝑙  represents the number of spikes present in trials m and l, respectively. 𝑙,𝑘 is the 

estimated phase of the LFP signal at the time of the k-th spike of trial l. 𝑚,𝑗 is the 

estimated phase of the LFP signal at the time of the j-th spike of trial m. 

In the employed version of PPC all spike-LFP phases belonging to the same 

trial are excluded to avoid bias due to history effects like burstiness and 

refractoriness (Vinck et al., 2012).  Because the phase locking estimates for neurons 

with lower spike counts have higher variance (Vinck et al., 2013), we excluded PPC 

values estimated from neurons firing less than 70 spikes in any time window. Note 

that all neuron-LFP pairs on the same electrode were discarded from all further 

analyses to avoid artificial synchrony.  

Cosine similarity analysis 

We used cosine similarity analysis to compare vectors of low frequency and 

beta phase locking values (Figures 4C, S5C, S3A and S3B). Cosine similarity between 

any two vectors 𝑣1 and 𝑣2 is defined as 

 

 cos ()  =
𝑣1. 𝑣2

|𝑣1||𝑣2|
 (2) 

 

Note that the cosine similarity is equivalent to a correlation without mean 

subtraction and is therefore more robust for non-unimodally distributed data.  

Principal component analysis (PCA) of dynamic phase locking networks  

To visualize and capture behavior dependent changes in the entire low 

frequency and beta phase locking networks, we performed PCA of all neuron-LFP 

pairs across all conditions and time points separately for both frequency bands and 
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per recording session (Figure 8A). PCA identifies a lower number of orthogonal 

dimensions that explain most of the covariance of the entire phase locking networks 

across conditions and over time. We employed PCA to reduce the dimensionality of 

the matrix 𝑐𝑡 ×  𝑛𝑙 to 𝑐𝑡 ×  𝑘 where 𝑐 is the number of conditions, 𝑡 the number of 

time windows, 𝑛 the number of neurons, 𝑙 the number of LFP-sites, and 𝑘 the number 

of PCs. Note that each PC is a linear combination of all neuron-LFP pairs. 

Marginalization of dynamic phase locking networks 

To quantify factor-wise variances, we decomposed the low and beta phase 

locking networks into network factors (neuron, LFP and condition) and its interaction 

terms adopting the marginalization procedure employed in demixed-PCA (Kobak et 

al., 2016). Let us denote 𝑎 as the network of all phase locking values of a frequency 

band at a time window., 𝑎 can be expressed as the sum of the uncorrelated terms as 

shown below 

 

 𝑎 =  𝑎 +  𝑎𝑛 +  𝑎𝑙 +  𝑎𝑐 +  𝑎𝑛𝑙 +  𝑎𝑛𝑐 +  𝑎𝑙𝑐 +  𝑎𝑛𝑙𝑐 (3) 

 

Individual factors in the above equation are defined as, 

 𝑎 =  〈𝑎〉 𝑛𝑙𝑐 (4) 

 𝑎𝑛 =  〈𝑎 −  𝑎 〉𝑙𝑐  
(5) 

 𝑎𝑙 =  〈𝑎 −  𝑎 〉𝑛𝑐  (6) 

 𝑎𝑐 =  〈𝑎 −  𝑎 〉𝑛𝑙 
(7) 

 𝑎𝑛𝑙 =  〈𝑎 −  𝑎  −  𝑎𝑛 −  𝑎𝑙 −  𝑎𝑐 〉𝑐 
(8) 
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 𝑎𝑛𝑐 =  〈𝑎 −  𝑎  −  𝑎𝑛 −  𝑎𝑙 − 𝑎𝑐 〉𝑙 
(9) 

 𝑎𝑙𝑐 =  〈𝑎 −  𝑎  −  𝑎𝑛 −  𝑎𝑙 − 𝑎𝑐 〉𝑛 (10) 

 𝑎𝑛𝑙𝑐 = 𝑎 −  𝑎  −  𝑎𝑛 −  𝑎𝑙 −  𝑎𝑐 −  𝑎𝑛𝑙 −  𝑎𝑛𝑐 −  𝑎𝑙𝑐 (11) 

 

In the above equations, 𝑎 is a three dimensional matrix containing 𝑁𝑥𝐿𝑥𝐶 

phase locking values, where 𝑁 is equal to the total number of neurons, 𝐿 is equal to 

the total number of LFP-sites and 𝐶 is equal to the total number of conditions. 𝑎 is 

the average computed over all neurons, LFPs and conditions. 〈 〉Angular brackets 

denote the average over neurons (n), LFPs (l), and/or conditions (c). Furthermore, 

since the networks are mean centered prior to marginalization, 𝑎 = 0, thus reducing 

equation (3) to 

  

𝑎 =  𝑎𝑛 +  𝑎𝑙 +  𝑎𝑐 +  𝑎𝑛𝑙 +  𝑎𝑛𝑐 +  𝑎𝑙𝑐 +  𝑎𝑛𝑙𝑐 (12) 

 

Applying equation 12 at each time window, we decomposed the low frequency 

and beta networks into 7 marginalized terms: neuron (𝑎𝑛), LFP (𝑎𝑙), condition (𝑎𝑐), 

neuron x LFP (𝑎𝑛𝑙), neuron x condition (𝑎𝑛𝑐), LFP x condition (𝑎𝑙𝑐), and neuron x LFP 

x condition (𝑎𝑛𝑙𝑐 ). After marginalizing the networks, variance was computed 

separately for each factor and factor interactions across all time points (Figure 8B) 

and separately for all time points (Figure 8C). 

Cluster-based surrogate tests 

We used cluster-based surrogate tests to identify significant peaks in spike-

field PPC spectra and significant periods of increased phase locking variance across 

conditions (Maris and Oostenveld, 2007; Dann et al., 2016). For the two cases, we 
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generated two different sets of surrogate data, while the testing procedure was the 

same in both cases.  

The first set of surrogates was generated by randomly pairing non-

simultaneous LFP trials with spike trials per condition and recomputing PPC (Figure 

3C) (Perkel, Gerstein and Moore, 1967). This surrogate PPC set preserves the 

variability of PPC due to firing rate differences of neurons and power differences of 

LFP-sites over the time course of the trial per condition, while any PPC due to spike -

field phase locking is removed. The testing procedure was then applied to the PPC 

values. 

The second set of surrogates was generated by randomly reassigning spike -

LFP trial pairs of the four conditions, resulting in four subsets with an equal number 

of trials as the four conditions (Figures 6A and 8C). Then, PPC for all neuron-LFP 

pairs was recomputed for the four subsets over the time course of the task. These 

surrogate PPC sets preserve the spike-field phase locking per neuron-LFP pair over 

time, but remove any condition dependent differences in phase locking. Before the 

testing procedure, the variance across conditions of all neuron-LFP pairs per time 

window was estimated for the recorded and the surrogate data. The variance was 

estimated for the average phase locking of neurons (Figure 6A) as well as for all 

marginalized factors that captured condition dependent changes in phase locking 

(Figure 8C). The testing procedure was then applied to the condition dependent 

variances. 

In both cases, 1000 surrogate sets per recording session were generated and 

the cluster-based surrogate tests was performed in the following way: 

 

1. z-transform every surrogate PPC value per frequency bin or surrogate variance 

value over time per surrogate set by subtracting the average and dividing the 

standard deviation of the corresponding surrogate data values. 

2. Select all surrogate z-scored values greater than 2.5 and cluster them on the 

basis of frequency or temporal adjacency.  
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3. Sum clustered surrogate z-values and take the largest summed surrogate z-

value.  

4. Repeat steps 1-3 for all surrogate sets to construct a distribution of largest 

summed z-values. 

5. z-transform every measured PPC value per frequency bin or variance value 

over time by subtracting the average and dividing the standard deviation of 

the corresponding surrogate data values. 

6. Select all z-scored values greater than 2.5 and cluster them on the basis of 

frequency or temporal adjacency.  

7. Sum clustered z-values and take all summed z-values.  

8. For every summed z-value calculate the proportion of surrogate values that 

are larger than the measured summed z-values, which corresponds to the p-

value. 

9. Compare each p-value with a critical alpha-level (0.05 in all cases). 

 

Note that this single comparison replaces the multiple comparisons of PPC values 

across frequency bins or variance values over time.  

Network-level cluster-based permutation test 

To test whether some neurons and LFP-sites are more or less strongly phase 

locked to the network than expected by chance (Figure 7A), we used a cluster-based 

permutation test at the network level. For this purpose, we generated 1000 surrogate 

networks by randomly permuting PPC values of the time and condition averaged 

connectivity matrix separately per frequency and recording session. Because 

connectivity strength decreases with distance (Smith and Kohn, 2008), we preserved 

distance dependent connectivity by separately permuting PPC values of neuron-LFP 

pairs within arrays, within areas and between areas. We next computed the average 

phase locking of neurons or LFP-sites of all measured and surrogate networks and 

binned the resulting values into 41 equally sized bins ranging from 0 to the maximum 
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value per frequency and monkey. For all bins, measured and surrogate data was 

compared by estimating t-values and clustering adjacent bin values exceeding a 

critical alpha-level of 0.05 separately for positive and negative t-values (corresponds 

to the 2.5th and 97.5th quantile of a T-distribution). Note that the performed t-tests 

are not the testing statistic and t-values are only used as a critical value for 

clustering. Subsequently, a test distribution was generated by: 

 

1. randomly reassign measured and surrogate values of each bin while 

maintaining the group size. 

2. re-estimate t-values and cluster adjacent bin values based on a critical alpha-

level of 0.05  

3. take the largest summed t-value 

4. Repeat steps 1-3 1000 times 

 

For the final statistical testing, we calculated the p-value for each measured 

cluster under the largest summed t-value test distribution and comparing them with 

a critical alpha-level of 0.05, as described above. 

Permutation tests  

We employed 2-sided permutation tests first, to test whether cosine similarity 

between low frequency and beta phase locking of all neurons and LFP-sites (Figures 

4C, 5C, S3 A,B) as well as between all pairs of conditions during all three significant 

epochs in the corresponding frequency bands was below or above chance. Second, to 

test whether the condition dependent variance differences in phase locking of overall 

strongly and weakly phase locked neurons was below or above chance (Figure 7C, 

S5C). For cosine similarity testing, we generated a permutation distribution by 

randomly reassigning the PPC values of one frequency band or condition relative to 

the other frequency band or condition prior to calculating cosine similarity. For 

variance comparison testing, we generated a permutation distribution by randomly 
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reassigning condition dependent variance of overall strongly and weakly phase locked 

neurons (see Network-level cluster-based permutation test, Figure 7A) and 

calculated the difference between the group averages. In all cases, 100000 partitions 

were generated. Finally, the p-value of all comparisons was calculated under the 

corresponding random distribution and compared to a critical alpha-level of 0.05. In 

the case of the cosine similarity comparison between all conditions, we additionally 

applied Bonferroni correction for the number of condition pairs. 
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Supplementary Figures 

 

Figure S1: Example spectra and the spatial, temporal and task condition specific differences in LFP 

population averages. Related to Figure 3. (A) PPC spectra during movement epoch of a representative neuron 

recorded from area F5 with spatially distributed LFP signals recorded from F5 and AIP in monkey Z. (B) 

Population average phase locking in PPC spectra of LFPs recorded from areas F5 and AIP with all neurons. Line  

shadings indicate standard error across recording sessions. (C) Percentage of significant phase locking (identified 

using cluster-based surrogate tests, see STAR methods) of LFPs recorded from F5 and AIP with all neurons. Line  

shadings show standard error across recording sessions. (D) PPC spectrograms of LFPs recorded from F5 and AIP 

with neurons from both areas. In the PPC spectrograms, data were clipped at 95 th percentile for visualization 

purposes.  (in (B), (C) and (D) results are shown for monkeys S and Z separately). (E) PPC spectrograms of neurons 

recorded from F5 and AIP with LFP signals from both areas illustrating condition resolved phase locking.  
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Figure S2: Low frequency and beta networks for an exemplar recording session from monkey Z.  

Related to Figures 4, 5 and 6. (A) PPCs averaged over all task conditions and time windows shown in the format 

of a connectivity matrix. (B) Network representation over time with connectivity matrices corresponding to the 

labelled trial epochs arranged from left to right with a temporal separation of 200ms. (C) Low frequency networks 

during the cue epoch (800ms time windows centered from 100ms after cue onset to 500ms after cue onset) and 

the movement epoch (800ms time windows centered from 300ms before movement onset to 100ms after movement 

onset) and beta frequency networks during memory epoch (800ms time windows centered from 600ms after cue 

onset to 1200ms after cue onset) shown for the four task conditions. PPC values in each of the network illustratio ns 

in this figure were clipped at 99th percentile for visualization purposes. 
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Figure S3: Groups of LFPs participating in low frequency and beta networks and their temporal 

dynamics. Related to Figures 4 and 5. (A) Comparison of average low frequency and beta PPC values 

corresponding to LFPs from all recording sessions. (B) Comparison of average low frequency and beta PPC values 

corresponding to LFPs at different time windows from all recording sessions. (C) Grip, context and grip-context 

interaction effects observed at the level of LFPs in the network in the low frequency band during the cue and 

movement epochs and in the beta frequency band during the memory epoch. Results shown for monkeys S and Z 

separately in (A), (B) and (C). 
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Figure S4: Differences in networks underlying task conditions illustrated in anatomical 

representations for a representative recording session from monkey S.  Related to Figure 6. Low 

frequency and beta networks underlying instructed power, free power, instructed precision and free precision task  

conditions. Black circles drawn around select neurons to highlight the strong differences in the average PPC 

values they exhibit between the four task conditions. 
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Figure S5: Strongly connected LFPs in the network exhibit higher variance in PPC over task 

conditions. Related to Figure 7. (A) Distribution of PPC values over LFPs in the network compared against 

the average of 1000 surrogate distributions generated by distance dependent shuffling that preserves the 

average PPC values corresponding to within array, within cortical area and across cortical areas phase locking. 

(B) PPC per LFP for all four conditions sorted by overall PPC for exemplar recording sessions from monkeys S  

and Z. PPC values for the cue epoch (800ms duration windows centered from 100ms after cue onset to 500ms 

after cue onset) and the movement epoch (800ms duration windows centered from 300ms before movement 

onset to 100ms after movement onset) are from low frequency networks and the PPC values shown for the 

memory epoch (800ms duration windows centered from 600ms after cue onset to 1200ms after cue onset) are 

from beta frequency networks. (C) Variance across the average PPC per LFP for the four task conditions shown 

in (B) averaged over all recording sessions separately for monkeys S and Z. Line shadings indicate standard 

error across recording sessions. 
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Abstract 

While there are many articulated hand tracking systems, a majority of them 

fail in the presence of object interactions due to occlusion. However, object 

interactions are an integral part of studies investigating the cortical control of 

grasping movements. We leverage some of the state-of-the-art markerless tracking 

techniques (Simon et al., 2017; Mathis et al., 2018; Bala et al., 2020) to track 

unrestricted hand articulations with object interactions. In contrast to the markerless 

tracking of whole body, absence of large-scale training datasets and occlusions during 

object interactions pose severe challenges to hand tracking. A previous solution that 

addressed these challenges required a large number of cameras (n > 30) mounted in 

specialized studios (Simon et al., 2017). Our solution, on the other hand, is designed 

to work with as few as 5 cameras that were strategically positioned in a well-lit 

experimental setup to acquire behavioral videos of high signal to noise ratio. 

Importantly, we employ accurately annotated keypoints not only in unoccluded views 

but also in occluded views to train networks in DeepLabCut (DLC) (Mathis et al., 

2018). To this end, we 3D-reconstruct keypoints that were manually annotated in 

unoccluded views and reproject them onto occluded views. In addition to training 

networks to track occluded keypoints, this approach improves the quality of training 

data by exploiting geometric consistencies across multiple captured views of the same 

behavior. Furthermore, we incorporated a frame selection procedure based on 

reprojection error that allowed training networks on successively larger training 

datasets, which were generated automatically. We demonstrated the tracking 

accuracy of our system during a human grasping experiment involving fast, complex 

articulations with a wide range of object interactions. This solution is adaptable to 

macaques during grasping tasks and is a promising approach to capture natural and 

unconstrained hand movements. 
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Introduction 

Our interactions with the environment largely rely on our ability to move. 

Hand movements in particular are crucial for object interactions that are essential to 

fulfil our everyday needs. Researchers have continued to address different aspects of 

hand movements such as sensorimotor transformations, sensori-feedback and 

specialized single digit movements (Schieber and Hibbard, 1993; Vargas-Irwin et al., 

2010; Schaffelhofer and Scherberger, 2016; Sundaram et al., 2019). For the 

investigation of cortical control of grasping movements, it is crucial to record hand 

kinematic data simultaneously with neuronal recordings.  To this end, the hand 

tracking solution must be applicable to human as well as non-human primates since 

insights on the neural control of movements have been predominantly acquired from 

the macaque animal model (Schieber and Hibbard, 1993; Lemon, 2008; Vargas-Irwin 

et al., 2010; Dann et al., 2016; Schaffelhofer and Scherberger, 2016; Michaels and 

Scherberger, 2018). 

In macaques, hand kinematics during object interactions have been recorded 

using optical markers tracked by multiple cameras (Vargas-Irwin et al., 2010) or 

sensored glove systems (Schaffelhofer and Scherberger, 2012). Optical marker 

systems provide accurate tracking, but face problems with occlusions. Therefore, 

experiments have to be designed to suit such tracking systems. This restricts the 

tasks being studied and makes them more unnatural such as fetching objects 

suspended on a swinging cable to minimize occlusions. In addition, optical marker 

systems require the experimenter to pre-determine the parts to be tracked and do not 

allow any flexibility post data acquisition. Kinematic data glove solutions based on 

electro-magnetic sensors solve the problem of occlusions and have been used 

successfully in non-human primates (Schaffelhofer and Scherberger, 2016). However, 

the solution requires intense animal training particularly to get them to tolerate the 

glove.  

Markerless tracking makes tasks easier on experimental animals and 

facilitates faster training. Recently, with advances in deep learning, remarkable 
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solutions for markerless tracking such as OpenPose (Cao et al., 2017), DeeperCut 

(Insafutdinov et al., 2016), DeepLabCut (DLC) (Mathis et al., 2018) and 

OpenMonkeyStudio (Bala et al., 2020) have been developed. Among these solutions, 

OpenPose and DeeperCut have been employed for whole-body tracking in humans, 

whereas whole body tracking in monkeys has been achieved using DLC and 

OpenMonkeyStudio (Bala et al., 2020; Berger, Agha and Gail, 2020). However, the 

tracked kinematics had lesser degrees of freedom than the primate hand, and did not 

suffer from heavy occlusions in contrast to what can be expected during real-life hand-

object interactions.  

Here, we propose a 5-camera markerless tracking solution that estimates hand 

pose during a grasping task involving reaching, grasping and a wide range of 

interactions carried out on a variety of objects. The cameras of the experimental setup 

were mounted in strategically selected locations to increase the coverage of the 

experimental workspace and to reduce the chances of the same keypoint being 

occluded in multiple camera views. From the videos acquired from the 5 cameras, we 

trained a ResNet (He et al., 2016) based deep convolutional neural network using 

DLC to track 22 keypoints of the hand including finger joints, finger tips, palm and 

wrist. To this end, a training dataset with 1000 manual annotations was prepared. 

Given that the five cameras provide multiple perspectives of the same visual scene, 

we developed a GUI to help the human annotator make geometrically consistent 

annotations across all the perspectives. The GUI allowed visual inspection of images 

captured from the perspectives of the 5 cameras. After examining the five images, the 

annotator manually selected and annotated only the clearly visible keypoints in each 

of the images. After the first round of manual annotations, the keypoints that were 

manually annotated in atleast two images were 3D reconstructed and projected back 

to all the image planes, which were then displayed on the GUI. By making use of this 

information the annotator completed the annotations of all keypoints. With this 

technique, we reduced the possibility of making blind guesses of occluded keypoint 

locations and made use of geometrical constraints applicable to the multiple captured 

views of the same behavioral scene (Hartley and Zisserman, 2003).  
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Using the 1000 manual annotations, we developed an iterative network 

training procedure similar to techniques such as multiview bootstrapping (Simon et 

al., 2017) and cross-view data augmentation (Bala et al., 2020). Briefly, the idea is to 

train a network first only on manual annotations, and then automatically generate 

more training data from the inferences made by the trained network on behavioral 

videos. This procedure again exploits geometric constraints that exist across the 

multiple views of the same visual scene, to define a selection criterion for frames 

annotated by the network based on reprojection error. Frames that satisfy this 

criterion are added to the original training dataset with manual annotations, thereby 

increasing the number of examples in the training data.  

By incorporating the above procedure with DLC, we selected and trained a 

ResNet-50 (He et al., 2016) to infer unoccluded as well as occluded keypoints, thereby 

facilitating robust hand tracking during grasping behavior. The network had an 

average training error of 2.35 pixels and a testing error of 3.19 pixels. Running 

decoding analysis on the tracked hand kinematics revealed highly accurate (>95% on 

average) decoding of objects from the tracked kinematics. Furthermore, pilot 

experiments of 2D tracking carried out in non-human primates also revealed 

promising 2D tracking results. Together, these results demonstrate a hand tracking 

solution capable of capturing natural, unrestricted hand movements for potential 

applications in human as well as non-human primates. 

Results 

Behavioral task and video recordings  

To evaluate markerless tracking, we carried out an unrestrained hand-object 

interaction task. The behavior consisted of a series of hand movements that included 

reaching, grasping, interacting with the object, and returning to a resting position 

(Figure 1A). Notably, the subject was completely free in choosing how to interact with 

the objects while staying within the experimental workspace (see Methods).  
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Figure 1: Unrestrained hand-object interaction task and object set. A. The trial started with 
the resting state of the hand (1 - 2s). Exemplar resting state is captured in the left-most photo. Hand 
movement to reach and grasp the object (1 – 1.2 s) followed next. Photo representative of reach-to-
grasp is shown in the central illustration. Interactions with the object (10 – 15 s) was the behavioral 
state that lasted the longest in each trial. Exemplar object interaction behavioral state is captured 
in the right-most photo. At the end, following a short inter-trial interval a different object was 
presented in the next trial. B. Object set employed for the task consisting of ten different objects 
including a mix of everyday objects: hand cream, lip balm, marker, highlighter, nail and mug. The 
object set also included three geometric shapes: Rubik’s cube, two cuboids of different sizes and an 
abstract shape.   

However, to test the tracking solution on a challenging range of behaviors, she was 
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encouraged to employ a variety of different grasps during the interactions.  10 

different objects (Figure 1B) that required different grip apertures and grip types 

were included in the test recording and 1 trial was carried out per object. The object 

set included a mix of everyday objects and geometric shapes. Hand cream tube, lip 

balm, marker, highlighter, nail and mug were the everyday objects that were 

employed for the task. Rubik’s cube, cuboids of two different sizes and an abstract 

shape were the geometric shapes that were employed.  

To track the grasping behavioral task, we built a markerless tracking system 

(see Methods) that included 5 cameras (Figure 2A). During the task, the participant 

sat in a chair facing the large aperture. The experimenter sat in front of the 

participant behind the large aperture and presented the objects sequentially through 

the aperture. Given the heavy occlusions introduced due to object interactions in the 

grasping task, to track the hand pose accurately from as few as 5 cameras, it is 

important to acquire videos that have high signal to noise ratio. Furthermore, 

blurring due to fast movements, saturation due to unevenly distributed light and 

other image artefacts must be avoided. To this end, we sufficiently lit the 

experimental setup with 24 LED panels that were distributed around the 

experimental setup, recorded behavior at high frame rate (100 Hz) and set low 

exposure time (1ms).  In addition, the lens that we selected offered low distortion 

(<0.4%) even at short working distances thus largely reducing distance-dependent 

uneven magnification of different parts of the image. With this camera/lens 

configuration, even when the hand was at one of its farthest distances from the 

recording cameras, we could clearly resolve the features of the hand to be tracked. 

For example, during resting state of the hand the index finger of length ~8cm 

occupied ~90 pixels in the image recorded from the top-view camera.  From the 5 

cameras in the experimental setup, we simultaneously recorded videos lasting 2.95 

minutes (17720 frames per camera) during the unrestrained grasping behavior 

described above. 
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Figure 2: Experimental setup details. A. Recording setup built for markerless tracking 
indicating the position of the top-view, four side-view cameras, aperture for object presentation, and 
the participant’s chair. The workspace area within the recording setup was designed to be 
approximately 50x50x40 cm. Five cameras positioned around the recording workspace are 
embedded in the white clothed frame. The top-view camera was placed at the ceiling of the frame 
and the side-view cameras were positioned across the walls. 24 panels of LED light were placed 
behind the white clothing. B. Chameleon camera model CM3-U3-13Y3C-CS3 from FLIR and the 3.5 
mm focal length, wide angle, low distortion lens from Edmund Optics. Note that a 5 mm C-mount 
adapter is additionally required to connect this camera-lens pair.  

 To estimate hand pose during this grasping behavior we selected 22 keypoints 

of the hand (Figure 3). As depicted in the illustration, on each finger we tracked the 

tip, proximal, middle and distal joints starting from the little finger, followed by the 

ring, middle, index and thumb. In addition the center of the palm and the wrist were 

also included. To generate a deep network to learn to infer these keypoint locations 

in input images, a training dataset with manual annotations of the keypoints has to 

be created.  
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Figure 3: 22 hand keypoints for tracking. The keypoints of the hand that were tracked during 
the grasping task are depicted along with the corresponding label names listed on the right. In the 
label names T indicates tip; D indicates distal; M indicates middle; P indicates proximal; R indicates 
right hand. 

Multiview geometry constrained annotation tool 

Tracking the 22 keypoints of the hand during object interactions is not only 

challenging for neural networks to learn but it is also challenging for human 

annotators due to the presence of heavy occlusions. This makes creation of high 

quality training data difficult to acquire.  In case of occluded keypoints, the annotator 

has to guess the position of occluded keypoints, thereby increasing the amount of time 

required for annotation and also reducing the quality of training data. Importantly, 

having inconsistent manual labelling across multiple views of the same keypoint can 

result in the network output across multiple views being inconsistent, thereby 

increasing the error in the 3D reconstructed (see Methods) keypoint location. To avoid 

this, it is crucial to enforce constraints based on multiview geometry already at the 

time of annotations. To this end, we developed a custom GUI that assisted the 

annotator in annotating occluded keypoints. The GUI visualized all five perspectives 

of the hand at once, allowing the annotator to visually inspect different views and 
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manually annotate only the clearly visible keypoints first. After the annotator 

provided this first set of annotations, the keypoints that were manually annotated in 

atleast two perspectives were 3D reconstructed and reprojected across the images 

displayed on the GUI. The annotator can make use of this information to complete 

the annotations of all keypoints across different perspectives. With this approach we 

not only increased the speed at which the annotations were created but also 

generated geometrically consistent annotations across multiple captured views of the 

same behavior. In relatively rare cases where a keypoint was occluded in all views, 

the human annotator still had to guess its location on the image based on the other 

visible keypoint locations. Using this GUI, we manually annotated 200 video frames 

from each of the five camera recordings, which added up to a total of 1000 manually 

annotations for network training. The 200 frames were selected by sampling 

uniformly from the 17720 frames from the videos recorded from each camera over the 

entire duration (2.95 minutes) of the behavioral task.   

Iterative training and keypoints inference 

For a dexterous hand movement task involving object interactions, 1000 

frames may not sufficiently capture the wide variety of hand behaviors captured from 

multiple camera views. To improve tracking accuracy by training on a larger dataset, 

which better captures the diversity of data in the acquired video recordings, we 

adopted a procedure similar to multiview bootstrapping (Simon et al., 2017) and 

cross-view data augmentation (Bala et al., 2020). The idea exploited by these 

approaches is to increase the quantity of training data by including some of the 

inferred annotations to iteratively train deep convolutional neural networks on larger 

datasets. Importantly, the machine generated annotations were selected based on 

their conformity to the constraints of multiview geometry, thereby ensuring the 

quality of machine annotations (see Methods).   

To infer hand keypoints in the behavioral videos, we selected a resnet-50 

pretrained on ImageNet database in DLC. This network was retrained using the 
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above described 1000 human annotations for ~1M iterations of stochastic gradient 

descent (SGD). We monitored the progress in learning during the training process 

and stopped training when the reduction in error obtained over successive iterations 

was negligible. Then, the trained network was applied to infer keypoints in 2D from 

the video frames of the entire behavioral video recorded from the 5 cameras. For each 

keypoint location inferred in the 2D images, DLC additionally provides a likelihood 

value as output. We used the likelihood values given by DLC to select the 2D tracked 

coordinates to triangulate during 3D reconstruction. Only the 2D tracked coordinates 

associated with likelihood values exceeding a fixed threshold value of 0.9 were 

employed and keypoints were 3D reconstructed. Then, the 3D reconstructed data 

were reprojected onto the image planes of the five cameras. Following this, a subset 

of video frames with low reprojection error values were selected to be used as training 

data to train another network (see Methods). Thereby, a larger training dataset that 

included 7500 automatically generated training examples which were added to the 

initial 1000 manually created training examples was employed to train a network in 

DLC. Given the larger number of training examples, this network was trained for 

~2M iterations of SGD. The network trained on this larger training set had an 

average training error of 2.35 pixels and a testing error of 3.19 pixels. In contrast, the 

network trained only on manually annotated frames had higher training and testing 

errors of 2.48 and 13.23 pixels, respectively. Therefore, the average test errors 

reduced by 10.04 pixels, implying a reduction of overfitting in the network trained on 

the combination of manually and automatically annotated images. 

We used the inferences made by the network trained on the combination of 

manual and automatic annotations for further analysis. Exemplar annotations made 

by the trained network are shown for images acquired from the top-view camera 

(Figure 4B) and for images acquired from side-view cameras (Figure 4A). Similar to 

the procedure carried out in the previous iteration, only the 2D tracked coordinates 

associated with likelihood values exceeding 0.9 were employed for 3D reconstruction. 

Across the 22 keypoints that were tracked during 17720 time points of the behavioral 

recording, this criterion resulted in a few rare cases (386 out of 389840 keypoint 3D 
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reconstructions; 0.00099 %) where likelihood criterion was satisfied in less than two 

camera images. In such cases, we estimated 3D coordinates of the keypoints by 

linearly interpolating from temporally adjacent data points.  

 

 

Figure 4: 3-dimesional hand pose estimation. A.  Inferred positions of keypoints in 2D in video 
frames acquired from the four side-view cameras. B. Inferred positions of keypoints in 2D in video 
frames acquired from the top-view camera. C. Exemplar 3D hand-pose estimation obtained by 
triangulating 2D coordinates tracked on video frames recorded from five different cameras (shown 
in B and C). The different types of behaviors that were included during the task such as resting 
behavior (top), reach to grasp behavior (middle), and hand-object interactions (bottom) are shown. 
In A, B and C, annotations of the little finger is depicted in cool colors (shades of blue) and 
increasingly warmer colors are used as annotations progress through the other digits and finally 
the thumb is annotated in warm colors (shades of orange). 

Exemplar 3D hand poses obtained by triangulating inferred 2D coordinates from the 
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5 camera images are illustrated (Figure 4C, also accessible in video format for the 

entire recording2). The occlusion handling capability of the proposed solution is also 

visible from these examples. Particularly, in the example illustrating interactions 

with the mug it can be clearly seen that from the perspective of the top-view camera 

the finger joints and the tips of almost all the fingers is occluded, yet DLC is able to 

infer the 2D coordinates of these keypoints.  

Evaluation of grasp kinematics 

For a more detailed analysis of grasp kinematics including the quantification 

of tracking accuracy, we employed the 3D coordinates of the hand keypoints. The 

keypoint coordinates tracked over the entire duration (2.95 minutes) of the behavioral 

recording were split into 11 time segments corresponding to the 10 grasped objects, 

and the resting state of the hand. First, we identified the time at which the object 

was grasped by visually inspecting the frames of the video recordings. Then, we used 

the identified time as a trigger to separate the different behavioral states in the task. 

1.2 seconds of data (120 frames) preceding the object grasp time were selected as the 

reach to grasp behavioral state. We examined the trajectories of the 3D coordinates 

of the keypoints during the reach to grasp phase of the task (Figure 5).  In case of 

poor tracking, discontinuities in the reach to grasp trajectories would be observed. 

Overall we obtained very smooth trajectories for the keypoints across all the ten 

trials, which is an indicator of well-tracked hand kinematics. To evaluate kinematic 

data corresponding to hand-object interactions, 10s (1000 frames) of data starting 

from the time the object was grasped were selected as the object interaction 

behavioral state. In addition, we separated 10s of resting state by combining 1s data 

segments sampled prior to the onset of reach to grasp corresponding to each object. 

To visualize and interpret the hand kinematic data during object interactions in 

relation of resting state, we reduced the dimensionality of the kinematic data 

(including 10s of interactions behavioral state per object and 10s of resting state) 

 
2 https://www.dropbox.com/s/qas2p45k2ug6m5b/2D_3Dmovie_10Objs_Exp.avi?dl=0 

https://www.dropbox.com/s/qas2p45k2ug6m5b/2D_3Dmovie_10Objs_Exp.avi?dl=0
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using PCA (see Methods). Prior to calculating PCA, we subtracted the 3D coordinates 

of the keypoint corresponding to the proximal joint of the thumb from the 3D 

coordinates of the other keypoints. This step was carried out to ensure PCA and 

decoding analysis are not dominated by the reach and positional differences of the 

hand. 

 

 

Figure 5: Single trial hand pose estimations during reach to grasp. A. Illustration of single 
trial trajectories of the hand keypoints during the reach and grasp behavioral states for the objects 
included in the object set. For each object the trial started with the resting state of the hand (bottom 
right in each panel) and was followed by hand movement to reach and grasp the object (~1 – 1.2 
seconds) (top left in each panel). 

We illustrate the projection of hand kinematic data on all possible pairs of the 

first six principal components (PCs) (Figure 6A). Since each object was manipulated 

using a large number of different grasps, we expected a strong overlap across objects 

in the kinematic space. In agreement with this, across the first six dominant PCs a 

large extent of overlap was observed in hand poses employed to grasp different 

objects. Interestingly, resting behavioral state that was also included in this analysis 

formed a distinct cluster in the low dimensional representations obtained using the 

first 4 PCs. Since the hand pose during the resting state is behaviorally very distinct 

from the hand poses employed for object interactions, these results suggest accurate 

tracking of hand kinematics. Furthermore, the variance across datapoints 
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corresponding to resting state is much smaller than that of other object interactions, 

highlighting the diversity of hand poses that were employed when interacting with 

each of the individual objects.  

Next, we examined the variance captured by the PCs and found that 6 PCs 

were sufficient to capture 95% of hand pose variance during the entire task (Figure 

6B).  Lower dimensionality in hand kinematics is expected due to physiological 

constraints such as biomechanical coupling between some of the DOFs of the hand, 

which decreases the extent of independent finger movements (Buchholz, Armstrong 

and Goldstein, 1992; Fish and Soechting, 1992).  However, to our knowledge, this is 

the first experiment to examine and quantify the hand kinematic dimensionality 

during a grasping task involving a wide-range of unconstrained hand-object 

interactions. Here, it is noteworthy that our object set consisted of a relatively smaller 

set of 10 objects and will be extended to a much larger set in future studies.  

 

Figure 6: Low dimensional representation of hand kinematics during object interactions. 
A. Projection of 22 keypoints of the hand onto lower dimensions that capture variance in the 
decreasing order from PC1 (highest) to PC6.  B. Cumulative variance explained by the principal 
components.  
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Grasp decoding from hand kinematics 

We employed decoding analysis to examine whether object identity can be 

predicted from the tracked hand poses during object manipulation. For classification 

analysis, 1000 examples per object of 3D hand poses and 1000 examples 

corresponding to resting state were employed. First, we trained a linear discriminant 

analysis (LDA) classifier (see Methods) with 10-fold cross-validation. This classifier 

identifies linear boundaries separating the different classes of behavior. Given the 

high degree of overlap that was observed in the PC space, we expected some confusion 

between the classes of behaviors. In agreement with this, the LDA classifier 

performed at an average accuracy of 67.23  12.35 % in classifying the 10 objects. 

However, as observed earlier the resting state formed a clearly separate class in the 

PC space and was also classified correctly with 100 percent accuracy using LDA. 

Interesting, in the confusion matrix (Figure 7A), it can be seen that the objects that 

were grasped similarly were often confused by the decoder. For example, when the 

true object class was marker, the decoder wrongly classified it as the highlighter in 

11.4% of the cases. Similarly, when the true object class was the highlighter it was 

confused to be the marker frequently (24.7%).  In the same way, the Rubik’s cube was 

frequently (8.1%) confused to be the cuboid and vice-versa (10%). While the hand 

poses might be similar across objects, we still expected small differences to exist in 

the hand aperture and the overall hand articulation employed to manipulate different 

objects. To extract these small differences that might be missed by LDA, we employed 

quadratic discriminant analysis (QDA), which identifies non-linear boundaries of 

separation between different classes.  The accuracy of classification improved with 

the QDA classifier reaching average accuracies of 95.6  2.49 over the ten object 

classes. Similar to the LDA classifier, QDA classifier had very high accuracies in 

decoding the resting state (98.5%) and was found to most frequently confuse similarly 

grasped objects such as highlighter and marker (2.7% of the cases highlighter 

wrongly classified as marker, 1.6% vice versa), and Rubik’s cube and cuboid (1.5% of 

the cases Rubik’s cube wrongly classified as cuboid and 1.7% vice versa). 
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Figure 7: Decoding grasped objects. A. Confusion matrix illustrating the percentage of correct 
(green shades) and wrong classifications (red shades) for each object obtained using LDA. The rows 
correspond to the true class and the columns correspond to the predicted class of the objects. Entries 
on the principal diagonal depict correct classifications and off-diagonal entries depict incorrect 
classifications. B. Same as A but for classifications made using QDA. 

Adaptability of the proposed solution to macaques 

We tested the 2D tracking component of our markerless tracking solution that 

relies on DLC in macaques during a turntable task (Figure 8). For this pilot 

experiment behavioral videos were captured from a single camera (GoPro Hero4).  

During the task, a macaque monkey was presented objects on a turn table one by one 

and was rewarded with fruits for successfully reaching, grasping and lifting the 

presented object. We trained the resnet-50 based architecture in DLC using 200 

manually labelled examples. We used the same set of keypoints for the study as was 

used in the human experiment (Figure 3). However, additionally the elbow and 

shoulder was tracked in this experiment. By training over 300000 iterations of 

stochastic gradient descent algorithm, the average training error reduced to 1.35 

pixels and testing error to 5.93 pixels, which is smaller than the diameter of the filled 

markers used to annotate the keypoints (see Figure 8). These preliminary results 

demonstrate the scalability of the proposed DLC based solutions to macaques.  
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Figure 8: Example keypoint inferences made by DLC-trained network on macaque hand. 
Example inferences made by a DLC-trained network illustrating markerless tracking of the proximal, 
middle and distal joints, and tips of each finger, back of the palm, wrist and elbow joints of right hand 
of a macaque while the macaque grasped objects presented on a turn table.  

Overall, we demonstrated accurate tracking of hand kinematics during 

natural, unrestricted hand movements involving a wide range of object interactions, 

which was implemented while employing a relatively economical experimental setup.  

Discussion 

Summary 

In this paper, we presented the developmental and algorithmic details of a 

markerless grasp tracking paradigm. The system is capable of tracking hand 

keypoints from video frames of unconstrained hand movements with object 

interactions acquired simultaneously from 5 cameras. One of the main challenges for 

hand tracking, especially during object interactions, is the problem of occlusions. We 
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addressed this by generating geometrically consistent manual annotations of the 

unoccluded as well as occluded keypoints that were then used to train a deep 

convolutional neural network to track hand kinematics. The other main challenge for 

hand tracking is the absence of large-scale training datasets. To address this, we 

programmed a technique that automatically added machine-generated annotations 

to the set of annotations generated by the human annotator.  First, the network 

trained on manual annotations was employed to predict keypoints on the acquired 

behavioral videos. Then, by exploiting geometric constraints existing across the 

captured multiple views of the visual scene, the machine generated annotations were 

validated. In this process, a subset of machine annotated frames that had low 

reprojection errors for all keypoints were selected and added to the training dataset.   

The solution proposed here was validated by tracking hand kinematics during 

a grasping task with many degrees of freedom and high levels of object interactions. 

The results from the validation experiment clearly demonstrated the technical 

capabilities of the solution. Importantly, the proposed markerless tracking system 

allows recording natural and unconstrained hand kinematics. This makes it  a 

preferable approach in lab experiments aimed to understand how grasping 

movements are encoded by the brain.  

Advantages of the proposed markerless tracking system 

There are several advantages of markerless tracking of which some are 

generally applicable to most vision-based tracking systems and some are specific to 

the solution proposed here. First, markerless tracking systems are completely 

contactless and do not interfere with hand movements thereby capturing natural 

hand movements. Second, the camera-based systems do not interfere with other 

signals such as electrophysiological signals that might be simultaneously acquired 

during the experiments. Third, depending on experimental requirements, the frame 

rate, magnification and resolution can be scaled up or down easily by selecting the 

cameras and lens that meet the technical requirements. Fourth, the keypoints to be 
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tracked can also be altered post data acquisition, in contrast to other instrumented 

gloves (Schaffelhofer and Scherberger, 2012) and vision-based systems requiring 

sensor locations or markers to be pre-determined before data acquisition (Vargas-

Irwin et al., 2010). Fifth, in contrast to vision based systems that fail in the presence 

of occlusions, here we take advantage of the multiple captured views to estimate 

keypoints in occluded views from unoccluded views of the same keypoint.  

Improving automatic annotation augmentation technique 

Using the multiview annotation augmentation method described in this paper, 

we gained 7500 automatically annotated frames from a total of 88600 frames recorded 

from all 5 cameras. Interestingly, the number of network annotated frames that we 

gained were unevenly distributed across the five cameras. We obtained 2193 

additionally annotated frames from the top-view camera, 152, 1511, 138 and 3506 

frames from side-view cameras numbered 2, 3, 4, and 5, respectively. It is surprising 

that from two of the cameras, we have much lower number of frames that were 

selected for training than the other three. One of the reasons for this could be because 

they exhibit poor 2D tracking for a small subset of keypoints. This implies that there 

might still be some keypoints in these camera perspectives that are useful for training 

purposes. Furthermore, there still exists the possibility of estimating the poorly 

predicted keypoints in an individual camera’s perspective from the other cameras. 

This has already been implemented in the GUI-based manual annotation tool 

described earlier in the paper and can be applied during the process of automatic 

augmentation of annotations as well. To detect and remove outliers prior to 3D 

reconstruction, we are developing a keypoint-wise outlier rejection criterion to 

exclude camera perspectives that poorly track a particular keypoint. The idea is to 

perform keypoint-wise 3D reconstruction from all possible pairs of cameras and 

examine the distances between the 3D reconstructed points. In case the keypoint is 

tracked relatively poorly in any one of the perspectives, then the 3D reconstructions 

that were made using this camera will form a separate and distant cluster. Therefore, 
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the distances between the 3D reconstructed keypoint coordinates can be employed to 

identify outlier camera views for each keypoint. The poorly tracked keypoint can then 

be replaced by reprojecting the 3D reconstructed keypoint estimate obtained from the 

other perspectives. This improves not only the quality of 3D reconstruction but also 

allows an automatic reannotation of 2D coordinates in the rejected camera 

perspective. By including this in our future implementations, we expect not only a 

more evenly distributed training dataset across camera perspectives but also an 

overall increase in the number of selected frames that can be used for network 

training. 

Adding musculoskeletal model 

The keypoints (in the context of OpenSim models referred to as markers) that 

have been selected and tracked in this study can further be employed to estimate 

muscle-tendon and skeletal kinematics by fitting an OpenSim model (Delp et al., 

2007). To this end, we plan to use a primate-specific model of the upper arm and hand, 

that provides joint angles of 27 degrees of freedom and the muscle lengths of 50 

musculotendon units (Schaffelhofer and Scherberger, 2012). While the generic model 

includes a set of predefined markers, the model must be adapted for use across 

different hands to accurately run simulations. The generic model can be adapted to 

fit different hands by using the scaling tool, which is available in the OpenSim 

software platform. The scaling tool requires the experimental markers to be tracked 

during the static pose of the hand. Using this data, anatomical segments of the 

generic model are updated ensuring a close match between the experimental markers 

and the markers defined in the model. After scaling the model, experimental marker 

kinematics tracked during the entire behavioral task can be imported to OpenSim. 

Following this, using the ‘run inverse kinematics’ tool, the marker positions can be 

converted to joint angles and muscle length vectors. In addition to transforming data 

from marker position-domain to joint-angles and muscle-length domains, this model 

fitting procedure might also refine tracking further by imposing physiological 
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constraints, thereby resulting in biologically feasible hand poses.  

Computationally more efficient training 

The solution proposed here requires multiple network training iterations and 

is therefore computationally expensive. To improve the computational efficiency of 

the proposed solution, the following pre-processing step can be adapted. Prior to 

training networks to detect keypoints of the hand, the video frames can be cropped to 

retain only the part of the image containing the hand. Faster region based 

convolutional neural networks (R-CNNs) (Ren et al., 2015), RetinaNet (Lin et al., 

2017) are among the leading solutions that are existing to identify region of interest 

in images. These solutions employ ConvNets, such as MobileNet (Howard et al., 2017) 

and ResNet (He et al., 2016) that take images as inputs, identify bounding boxes that 

capture the objects in the input images and then classify the objects in the images. 

From the bounding box outputs generated by these networks, the bounding box that 

captures the hand can be extracted.  Adding such a region of interest detector prior 

to feature tracking can substantially boost the computational speed our the solution 

we proposed. However, to accurately infer hand region on images captured from 

specific experimental setups, the networks might require additional retraining on 

images captured during the experiment.  

Methods 

Hand movement video acquisition system 

We designed a five-camera system (Figure 2A) to acquire video data for hand 

pose estimation during the unrestrained hand-object interaction task. The cameras 

were mounted onto an external frame that was built using carbon fiber tubes. 

Adjustable arms were used to select and stabilize the height and orientation of the 

cameras to effectively cover the workspace, which spanned a volume of 50x50x40 cm 



 2.2 Markerless hand tracking during object interactions 

   

 

125 

around the center of the clothed frame.  24 LED light panels (LM8 100BI bi-color on-

camera LED lamp) were fixed around the frame and placed behind the white cloth to 

sufficiently and uniformly light the workspace while avoiding undesirable saturation 

effects in the recorded videos. Apertures were created in the cloth for the recording 

cameras and for object presentation during the experiment. Machine vision cameras 

(Chameleon, FLIR) were employed in combination with a 3.5 mm focal length, low 

distortion (<0.4%) lens (Edmund optics) (Figure 2B). The cameras were equipped with 

a ½” CMOS sensor, 4.8m pixel size, and a global shutter. The sensors operated at a 

quantum efficiency of >40% (for all three color streams), making them acceptable for 

use even under low lighting conditions and/or low exposure times that were employed 

in our experiment to avoid blurring due to fast movements. Furthermore, the 

availability of Spinnaker SDK, which is an API built to support machine vision 

cameras from FLIR, made the customization of camera settings programmable. We 

programmed the cameras to stream videos with a resolution of 1,280 x 1,024 pixels, 

in BayerRG format (12 bits per pixel), at 100 frames per second. To accurately 

reconstruct hand pose in 3D, it is essential that the cameras are synchronized and 

capture the same static scene from different perspectives. To this end, we employed 

a 3.3 V TTL pulse generated from an external microcontroller (Arduino Uno). This 

pulse was supplied to the cameras via the General Purpose Input/Output (GPIO) 

ports and triggered the shutters of the cameras to capture images of the scene from 

different camera perspectives simultaneously. Each camera streamed videos (~195 

MB per second, JPEG lossless compression) to a recording computer (Precision 3930 

Rack XCTO Intel Core i7-9700, 8 Core, 12MB Cache, 3.0Ghz, 4.8 GHz Turbo w/UHD 

Graphics 630) via USB port. One of the five recording computers was designated as 

the master, and it received video data from the remaining computers via a network 

connection and saved the behavioral videos to a local disk. 

DeepLabCut network training 

All data analysis was performed using DeepLabCut (DLC), pose3d, customized 
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Matlab (The Mathworks Inc., Natick, MA) and python codes. We used Lambda Quad 

RTX (Lambda Labs) workstation with four NVIDIA GeForce RTX 2080 Ti to train 

deep neural networks to track keypoints on the hand (Figure 3). DLC with Resnet-50 

pretrained on the ImageNet database (Deng et al., 2009) was used for training. DLC 

uses an adapted version of ResNet architecture that was also employed in DeeperCut 

(Insafutdinov et al., 2016). In the adapted architecture, the softmax output layer 

employed in ResNet is replaced by deconvolutional layers. The number of 

deconvolutional layers matches the number of keypoints to be tracked. The network 

output is given by the activation of each deconvolutional layer, which is a heatmap 

that represents the likelihood of the position of the corresponding keypoint across all 

pixels of the image. The peak of the heat map corresponds to the position of the 

keypoint with the highest likelihood value. To train the network on the hand tracking 

task, we selected a training dataset that was selected uniformly over time. The 

keypoints were then manually annotated in all the images of the training dataset 

using a customized annotation GUI tool. Then, the dataset was randomly split into 

training (90%) and testing (10%) datasets. On the training dataset, stochastic 

gradient descent (SGD) optimization procedure with a batch size of 1 and cross-

entropy loss function was employed for training. Following network training, testing 

and training errors were quantified using the Euclidean distance measure between 

the human-annotated and network-inferred annotations. The Euclidean distances 

were computed for each keypoint separately and averaged over all keypoints and 

image frames. 

3D reconstruction 

To reconstruct the 3-dimensional coordinates of the keypoints tracked in 2D 

across multiple cameras, we employed pose3d (Sheshadri et al., 2019). The first step 

in pose3d is camera calibration. For this, we first recorded videos of a checkerboard 

of known square size from the five cameras. Checkboard videos were captured 

simultaneously from the top-view (primary) and each of the side-view (secondary) 
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cameras sequentially (stereo camera calibration). From the checkerboard recordings, 

the extrinsic and intrinsic parameters of the camera, including the focal length, the 

distortion in the camera image and the location of the cameras (mounted around the 

side-walls of the setup) with respect to the top-view camera were estimated. Using 

the calibrated camera parameters, pose3d carried out triangulation to estimate the 

3D coordinates of the keypoints. For 3D reconstruction, only those 2D coordinates 

that were inferred by the trained network with likelihood values exceeding 0.9 were 

employed. 2D coordinates of the keypoint from a minimum of 2 cameras are required 

for triangulation. When more than 2 cameras captured the keypoint a least-squares 

estimate of the keypoint was calculated.  

Automatic annotation augmentation  

From the first iteration of training carried out using human-made annotations, 

we automatically generated more training data to improve the accuracy of hand pose 

estimation as follows. First, the predicted 2D keypoints across the 5 cameras that 

exceeded the likelihood threshold (0.9) were triangulated to estimate 3D coordinates 

of the keypoints. Second, the 3D reconstructed data were reprojected onto the image 

planes of the 5 cameras. Third, the frames in which the differences between the 

reprojected and DLC predicted keypoints were less than 10 pixels for each keypoint 

were selected as additional frames. In other words, the selected frames had all 

keypoints annotated with a likelihood value > 0.9 and had reprojection errors < 10 

pixel per keypoint. Fourth, the network training procedure in DLC was carried out 

again using the combination of manual and automatically generated keypoint 

annotations.  

Principal component analysis 

We used principal component analysis (PCA) to reduce the dimensionality of 

the hand kinematic data (keypoints x timepoints) and to quantify the number of 
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dimensions required to capture large variance components in the data (Figure 6). For 

PCA, keypoints were set as variables and time points corresponding to the ten 

grasped objects and the resting position of the hand were used as examples. PCA 

identifies orthogonal dimensions that explain most of the covariance in the hand 

kinematic data. The PCs are numbered in accordance with the amount of variance 

captured by them, with the first PC capturing the highest amount of variance.  

Decoding analysis 

To decode objects from kinematic data, we used discriminant analysis. 

Discriminant analysis is a supervised classification procedure that maximizes the 

between-class variance in relation to the within-class variance. While linear 

discriminant analysis (LDA) allows linear separation of data belonging to different 

classes, quadratic discriminant analysis (QDA) allows non-linear separation of data. 

Decoding accuracy of discriminant analysis was quantified by 10-fold cross validation 

procedure as follows. First, we randomly created 10 subsets of data. Second, for each 

subset of data, the remaining 9 subsets were used to train the model for discriminant 

analysis on the ten objects, rest classification task. The held-out subset, referred to 

as the test subset, was then employed to calculate classification accuracy.  
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3 General Discussion 

3.1 Summary 

In the first part (Chapter 2.1) of this thesis, neuron-resolved dynamics of 

oscillatory network structure was examined over time and across different conditions. 

To this end, spikes and LFPs were recorded simultaneously from macaques 

performing a delayed grasping task. The task included different context-, grip-types 

as well as different behavioral epochs, which enabled the investigation of dynamic 

changes of the oscillatory network structure during flexible sensorimotor 

transformations. To make the comparison of network structure across conditions with 

different firing rates possible, pairwise phase consistency, a rate unbiased measure 

of spike-field phase locking was used. Separate groups of neurons oscillatory 

synchronized in the beta and low frequencies resulting in separate subnetworks. 

These frequency specific subnetworks were active during different behavioral epochs, 

suggesting the frequencies to be mutually exclusive at the level of neurons. 

Importantly, both frequency subnetworks reconfigured for different task conditions, 

which was captured predominantly at the level of single neurons. Together, these 

findings suggest that the oscillatory network structure might provide a coordinative 

framework for flexible sensory-motor transformations.  

In Chapter 2.2 of this thesis, the developmental and implementational details 

of a markerless paradigm to track unconstrained grasping behavior in primates were 

described. Although there exist other hand tracking solutions (Zhang et al., 2020), 

they did not include object interactions as they focused on tracking hand gestures for 

applications such as sign language decoding. To understand cortical control of 

grasping movements, it is crucial to track hand kinematics during hand-object 

interactions. A recent development allows precise markerless hand tracking during 

object interactions (Simon et al., 2017). However, it requires over 30 cameras 

mounted in a specially designed pan-optic studio. The solution proposed in this thesis 

enables tracking 22 keypoints of the hand from behavioral videos acquired 
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simultaneously from as few as 5 cameras. Video frames that had a high signal to 

noise ratio were acquired by sufficiently and uniformly lighting the experimental 

setup. Frame rate, resolution, and exposure settings of the camera, as well as lens 

properties such as magnification and distortion, were chosen to ensure unblurred 

images with resolvable hand keypoints. In addition, a technique to estimate 

keypoints in occluded views by reprojecting 3D reconstructed keypoints from 

unoccluded views was developed. This improved the quality of manual annotations, 

which was then used to train a convolutional neural network in DeepLabCut (Mathis 

et al., 2018).  The network training was repeated on successively larger training 

datasets, which were generated automatically by selecting frames annotated by the 

network trained in the previous iteration. A reprojection error based criterion was 

used to ensure the quality of the network annotated frames that were selected for 

training. Using this technique, we demonstrated precise hand tracking during an 

unconstrained human grasping task, which involved a wide variety of object 

interactions. A pilot study was also carried out in macaques to demonstrate the 

adaptability of the markerless hand tracking system to this animal model. The 

results of these validation experiments clearly demonstrated the technical 

capabilities of the proposed solution. Notably, the ability to accurately capture 

unconstrained hand kinematics opens up the possibility to carry out a wider range of 

more natural lab experiments.  

In Chapter 2.3, a Matlab toolbox called pose3d was described. To date, DLC 

allows 3D reconstruction of feature coordinates tracked in 2D from pairs of cameras 

only (Nath et al., 2019). Therefore, it is not sufficient when behavior is tracked with 

multiple (n>2) cameras. Multiple cameras are necessary to track keypoints in 3-

dimensional coordinates, particularly during complex behaviors involving high 

degrees of freedom such as the grasping movements of the hand. Pose3d was 

developed to address this gap and provides a user-friendly, semi-automated graphical 

user interface that facilitates camera calibration, distortion reduction, and 

triangulation of keypoints tracked in 2D. Furthermore, some post-processing filtering 

and annotated movie generation tools are included in pose3d. This toolbox integrates 
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well with DLC and will help make 3D reconstruction of tracked behavior easier to 

implement. 

3.2 Outlook 

Complex behaviors require information to be coordinated within and between 

brain areas. A global coordinative role has been thought to be played by oscillatory 

synchrony, facilitating selective and flexible routing of information in the brain 

(Buzsaki, 2006; Fries, 2015). However, the exact mechanism by which oscillations 

achieve flexible information processing remains highly debated. Some insights have 

been gained from gamma oscillations observed in the visual cortex in which selective 

modulation of attention has been linked to gamma synchronization (Fries, 2001). In 

this context, the theory of communication through coherence (CTC) proposed effective 

information transmission between pre- and post-synaptic neuronal groups that 

rhythmically synchronized with an appropriate phase-relationship (Figure 13A). 

Guided by the theory of CTC, selective communication between brain areas was 

examined by studying coherence between field potentials (Bosman et al., 2012). 

However, CTC has recently been questioned by researchers who argued that the 

LFPs include local as well as afferent synaptic potentials (Pesaran et al., 2018; 

Schneider et al., 2020) making field-field coherence difficult to interpret. That is, 

when two brain areas are anatomically connected, the sending area will, by default, 

be coherent with the part of the LFP signal in the receiving area to which it 

contributes. Thereby, any mechanism such as attention that increases 

communication between two areas would also increase coherence as a byproduct. This 

synaptic mixing effect was demonstrated to result in narrow peaks in the coherence 

spectrum, despite no true oscillatory coupling (Schneider et al., 2020). Furthermore, 

CTC requires a mechanism to generate reliable phase synchronization between 

neuronal signals, which has so far remained elusive for neocortical rhythms 

(Schneider et al., 2020).   

Alternatively, a relatively simpler proposal was made suggesting oscillations 



 3 General Discussion 

   

 

147 

as a selection mechanism to enable different subnetworks of neurons in a task-

dependent manner (Canolty, Ganguly and Carmena, 2012; Womelsdorf, Westendorff 

and Ardid, 2013). Canolty and others found a reliable mapping referred to as cross-

level coupling between beta oscillations and firing rate of neurons (Figure 13B).  

 

 

Figure 13: Comparing two schemes of selective and flexible information processing. A. 
Communication through coherence scheme highlighting the aligned case (bottom), where the pre- 
(blue) and post-synaptic (green) populations have an appropriate phase relationship. In such a case 
the efficacy of communication between the two populations is enhanced. The misaligned case, which 
weakens communication is also shown (top). B. Cross-level coupling scheme in which the firing rate 
of neurons is linked to the amplitude of beta band LFP oscillations. When the amplitude of the beta 
oscillations is higher (left), cells 1 and 2 have higher firing rates, when the amplitude of beta 
oscillations is lower, cells 3 and 4 have higher firing rate. A adapted from Kohn et al., (2020) and B 
from Womelsdorf et al., (2013) 

The strength of oscillatory synchrony at the area-level was directly related to the 

firing rate of individual neurons in the same area. Interestingly, the firing rate of one 

group of neurons was higher during phases of strong oscillatory synchrony, and the 
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firing rate of another group of neurons was higher during phases of weak oscillatory 

synchrony. While different coordinative schemes have been proposed, it is noteworthy 

that they are not mutually exclusive (Kohn et al., 2020). The above-discussed scheme 

for the selection of subnetworks by cross-level coupling is compatible with the theory 

of cell assemblies (Buzsáki, 2010). Importantly, modelling studies that simulate 

networks of inter-connected neurons are required to compare the different 

coordinative schemes and verify their biological plausibility. However, empirical 

evidence on the dynamics of oscillatory network structure to support such modelling 

studies is still largely lacking at the level of single neurons.  

Filling this gap, in Chapter 2.1 of this thesis, subnetworks of neurons 

oscillating in specific frequencies during different behavioral states were identified. 

Furthermore, the identified subnetworks reconfigured for different types of 

sensorimotor transformations. These findings suggest oscillatory synchrony not only 

as a mechanism for the selection of neurons but also as a flexible routing mechanism 

for context-dependent behavior. 

One major criticism against oscillations is that it reduces the information 

capacity of the system (Shadlen and Newsome, 1998). While this was perhaps a valid 

criticism in the past, emerging evidence has demonstrated low dimensional task-

relevant manifolds in the brain (Churchland et al., 2010; Kaufman et al., 2014; 

Gallego et al., 2017). However, it can be argued that the tasks that have identified 

low dimensional manifolds were rather simple, thereby explaining the observed low 

dimensional neural control (Gao et al., 2017). To rule out the possibility of the 

observed low dimensionality merely reflecting task simplicity, the range of studied 

behaviors has to be expanded.  

In this thesis (Chapter 2.1), to examine the role of oscillatory synchrony during 

sensorimotor transformations, a delayed grasping task with two context- and two 

grip-type variants was studied. This represents only a small subset of all the grasps 

that the primate uses during its everyday interactions with the environment. One 

potential way to expand the range of studied grasps would be to study free behaviors 

such as unconstrained object interactions and self-feeding in primates. If oscillatory 
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synchrony is indeed facilitating the coordination of visuomotor transformations, then 

the results presented in this thesis must continue to be valid in a task that explores 

a larger variety of hand movements.  

An important technical requirement to study unconstrained grasping 

movements and object interactions is the precise tracking of hand kinematics. 

Sensors built into the grasping setup were sufficient to determine the executed grip 

type during the delayed grasping task studied here. However, to track free grasping 

movements and object interactions, a more advanced tracking solution is required. 

The tracked hand kinematics would then allow the identification of elementary grasp 

components during free grasping and object interaction activity. Furthermore, the 

relationship between the wide range of free grasping movements and the 

simultaneously acquired neuronal signals can be studied. However, the tracking 

solution must meet a number of requirements to be applicable for such a task. First, 

hand kinematics must be tracked reliably during the experiment. Second, the 

acquisition of hand kinematics must not interfere with neural recordings. Third, hand 

kinematics must allow the acquisition of unconstrained natural behaviors. Although 

a kinematic data glove (Schaffelhofer and Scherberger, 2012) provides reliable hand 

tracking, it restricts the range of hand movements. Furthermore, there is a very high 

chance for the sensors to get destroyed during object interactions or self-feeding 

movements, which are both parts of unconstrained grasping movements. The 

markerless tracking solution developed as a part of this thesis (Chapters 2.2, 2.3) 

satisfies the requirements to enable precise tracking of unconstrained grasping 

behavior. 

Overall, by combining the neuron-resolved network analysis with precise hand 

tracking during a task consisting of a larger repertoire of grasping movements, 

further insights about the underlying grasping network can be drawn. Empirical 

findings gained from such studies provide the basis of biological plausibility for future 

modelling studies investigating potential mechanisms of flexible information 

processing in the brain. 
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6 Appendix B : supplementary tables 

Tables listed in this appendix serve as supplementary material and are referenced in 

the General Introduction section of this thesis. 

Table 1: List of some studies demonstrating oscillatory synchronization between spikes and LFPs 
during movement behaviors. 

Subject and 

task details 

Recording 

details 

Modulations in oscillatory 

synchrony 

 

Interpretation 

(Murthy and 
Fetz, 1996)  
3 macaques; 
reaching 
movements to 
retrieve food 
pieces 

Sequential 
recordings from 
134 unilateral and 
42 bilateral pairs 
from sensorimotor 
cortices using 
tungsten 
electrodes  

Activity of many task-
related as well as task-
unrelated neurons found to 
be synchronized to LFP 
oscillations (20-40 Hz) 

Synchronization reflects 
mechanisms related to 
arousal/attention  

(Scherberger, 
Jarvis and 
Andersen, 
2005) 
2 macaques; 
delayed  

reaching and 
saccade task 

Sequential 
recordings from 
137 sites in the 
parietal reach 
region using 
tungsten 

electrodes 

Enhanced population-level 
spike-field beta (20-40 Hz) 
and reduced low (0-10 Hz) 
frequency coherence during 
planning epoch for reaches 
compared to saccades 

Movement intention 
might be encoded in 
spike-field beta 
synchrony  

(Pesaran, 
Nelson and 
Andersen, 
2008)  
2 macaques; 
free and 
instructed 
search tasks 
with a reach 
component 

Sequential 
recordings from 
dorsal premotor 
area and parietal 
reach region using 
Pt/Ir elec- trodes 
(314 PMd spike–
PRR field and 187 
PRR spike–PMd 
field) 

Increased SFC (15 Hz) 
during decision making 
task than during simple 
center-out reach task;  
Higher spike-field 
coherence when monkeys 
made free-choices than 
when they followed 
instructions 

Decision making 
requires exchange of 
information between 
sub-populations of 
frontal and parietal 
neurons, which might be 
reflected by synchrony 
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(Wong et al., 
2016) 
2 macaques 
trained to 
perform 
multiple tasks 
involving 
reach and 
saccade 
components 

Recordings from 4 
tungsten 
electrodes per 
session from the 
medial and the 
lateral banks of 
the intraparietal 
sulcus in the 
Posterior Parietal 
Cortex (144 unique 
spike-LFP pairs) 

Three distant categories of 
neurons identified based on 
whether they were beta 
(15-25 Hz) coherent with 
LFPs recorded on the same 
bank, on the other bank, or 
both (dual coherent);  
The firing rate of dual 
coherent neurons predicted 
movement choices faster 
than the other neurons 

Interactions of dual 
coherent neurons 
important in the 
decision circuitry; 
Coherence between the 
reach (medial bank) and 
saccade (lateral bank) 
systems associated with 
choice-predictive firing 
supports models of 
interacting selection 

Table 2: List of some studies demonstrating oscillatory synchronization between spikes and LFPs 
during visual tasks. Some of these studies also evaluated spike-spike interactions. 

Subject and 
task details 

Recording 
details 

Modulations in 
oscillatory synchrony 
 

Interpretation 

(Gray and 
Singer, 1989) 
15 adult cats 
anaesthetized 
and presented 
visual stimuli 

Recordings from 
thalamus and 
areas 17 and 18 of 
visual cortex (or 
V1 and V2) using 
one to five Teflon-
coated platinum-
iridium electrodes  

Firing of neurons in the 
visual cortex found to be 
oscillatory in the gamma 
band (~25 to 65 Hz) and 
coupled to the phase and 
amplitude of LFP signals; 
Neurons recorded from 
thalamus exhibited non- 
oscillatory firing patterns 

Stimulus specific intra-
cortical oscillations as a 
mechanism to 
temporally coordinate 
activity from spatially 
distributed regions  

(Fries, 2001) 
2 monkeys; 
a selective 
visual 
attention task 

Simultaneous 
recordings from 
four extracellular 
electrodes in visual 
area V4  
 

Enhanced gamma (35-90 
Hz) band synchronization 
with a simultaneous 
reduction in low-frequency 
(< 17 Hz) synchronization 
in neurons activated by 
attended stimulus 
compared to neurons 
activated by distractors in 
the same area 

Changes  in 
synchronization might 
amplify behaviorally 
relevant signals 

(Womelsdorf et 
al., 2006) 
2 monkeys; 
change 
detection of 
visual stimuli 
 

Simultaneous 
recordings from 4-
8 electrodes in V4 
(multi-units from 
61 and LFPs from 
64 sites, both 
monkeys) 

Higher spike-field gamma 
(40 – 70 Hz) 
synchronization before and 
after change in relevant 
stimulus in neurons 
activated by attended 
stimulus related to shorter 
neuronal response latency 
and faster reaction times  

Gamma synchrony 
might reflect early 
neuronal correlate of 
visuo-motor integration 
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(Gregoriou et 
al., 2009) 
2 macaques; 
selective 
attention task 

Four tungsten 
microelectrodes 
each in frontal eye 
field (FEF) and V4 
per session. (448 
FEF spike–V4 
field and 647 V4 
spike–FEF field) 
 

Attention enhanced 
oscillatory coupling in the 
gamma band (40-60 Hz), 
whereas decreased 
oscillatory coupling in the 
low frequency range (5-20 
Hz) between areas FEF and 
V4 when the stimulus was 
presented in their joint 
receptive field  

FEF might be a 
source of the attentional 
effects on gamma 
synchrony in V4 and 
ventral visual areas; 
Oscillatory synchrony 
might be regulating 
communication across 
brain structures  

(Vinck et al., 
2013) 
2 monkeys 
trained to 
perform 

selective visual 
attention task 

Recordings from 4-
8 tungsten 
electrodes 
advanced 
separately in V4 to 

analyze 
 

Cell-type as well as task 
epoch specific changes in 
gamma synchronization 
(30–70 Hz); Firing rate 
effect observed: attention 

increased gamma locking in 
strongly activated cells and 
vice-versa for weakly 
activated cells 

Cell-type specific 
dynamics of gamma 
cycle in V4 might 
provide insights into 
potential mechanisms 

underlying gamma 
synchrony 

(Onorato et al., 
2020) 
3 different 
animal models 
(2 macaques, 
one capuchin 
monkey, mice); 
fixation task 

Recordings made 
from V1 using 2 to 
10 microelectrodes 
in monkeys; two-
shank 32-channel 
silicon probes in 
mice 

A distinct neuron class 
identified based on 
waveform shape and burst 
firing propensity in V1 of 
monkeys and not in mice; 
These neurons exhibited 
early onset as well as 
stronger gamma synchrony 
(30–80 Hz) and had higher 
stimulus selectivity 

This new class of 
excitatory neurons 
(putative chattering 
cells) in interaction with 
inhibitory inter-neurons 
might play a key role in 
generating strong 
gamma phase-locking 
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Table 3: List of some studies demonstrating oscillatory synchronization between spikes and LFPs 
during memory and other cognitive tasks. Some of these studies also evaluated spike-spike 
interactions. 

Subject and 
task details 

Recording 
details 

Modulations in 
oscillatory synchrony 
 

Interpretation 

(Siapas, 
Lubenov and 
Wilson, 2005) 
4 rats 
performing 
freely moving 
behavior in 
familiar 
environments 

Recordings made 
using 18 
individual tetrodes 
from medial pre-
frontal cortex and 
hippocampus  

Neurons in the medial pre-
frontal cortex identified to 
be phase-locked to the 
hippocampal theta rhythm 
of LFPs with a delay of 
~50ms, whereas they 
correlated with the 
hippocampal neurons with 
a delays < 150ms  

Delayed correlations 
suggest that direct 
hippocampal input is 
important for prefrontal 
theta phase-locking; 
Theta synchronization 
might facilitate selective 
information flow and 
plastic changes in the 
circuitry for information 
storage 

(Sirota et al., 
2008)  
Multiple 
experiments 
conducted 
across 28 rats 
and 11 mice 

Multiple types of 
electrodes used to 
record from the 
hippocampus, pre-
frontal, parietal 
and primary 
somatosensory 
cortex 

Different groups of 
neocortical neurons 
oscillating at different 
frequencies in the gamma 
band phase-locked with the 
hippocampal theta rhythm 

Timing of the neocortical 
gamma oscillators might 
be coordinated by the 
hippocampal theta and 
their information might 
be synchronously 
transferred to the 
hippocampus 

(Siegel, 
Warden and 
Miller, 2009) 
Two macaque 
monkeys 
trained on two 
object visual 
short term 
memory task 

Recording from 
140 sites in pre-
frontal cortex 
across sessions 
using arrays of 8 
independently 
movable tungsten 
microelectrodes  

During memory epoch, 
neurons were synchronized 
at 32 and 3 Hz; Spikes 
occurring during the earlier 
(later) phase of the 32 Hz 
oscillation carried more 
information on the identity 
of the object presented first 
(second) 

Oscillatory 
synchronization 
facilitates phase-
dependent encoding of 
objects in short term 
memory 
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Behavior dependent antagonistic synchronization of beta and low frequency hub 

neurons in the macaque fronto-parietal grasping network, 47th Annual Meeting of 

the Society for Neuroscience, Washington DC, 2017 (travel grant awarded) 

 

Condition-specific functional connectivity of the fronto-parietal grasping network, 

10th Annual Primate Neurobiology Meeting, Goettingen, 2017 

 

Behavior-dependent functional connectivity of beta and low-frequency hub units in 

the macaque fronto-parietal grasp network, Bernstein Conference, Goettingen, 2017 

 

Condition-specific functional connectivity of the fronto-parietal grasping network, 

Primate Neurobiology Meeting, Goettingen, 2017 

 

Decoding of motor information in non-human primates using a chronic implantable 

system, Symposium on Grand Challenges in Neural Technology, Singapore, 2013 

 

 

Teaching Experience 

 
Teaching Assistant 

- Scherberger lab rotation (Lecture and Programming lab), 2019 

- Course Instructor: Benjamin Dann 

 

Teaching Assistant 

- Motor systems (Lecture and Seminar), 2017 

- Course Instructor: Hansjoerg Scherberger 
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Student Supervision 

 
Master Thesis 

• Viktorija Schek, 2020 

Performance optimization of a markerless 3D tracking system for grasping 

tasks with Object Interactions 

 

Lab rotation 

• Selene Lickfett, 2019 

Coding and decoding of hand grasping movements 

• Viktorija Schek, 2018 

Evaluation of a markerless tracking system for grasp tracking with three -

camera system 

• Michael Lutz, 2016 

Creation of a graphical user interface for visual control of neuronal data quality  

 

 

Work Experience 

 
Internship, German Primate Center, 2015-2016 

Comparison of spike-field coherence methods, learnt about non-human primate 

training techniques 

 

Research Assistant, Singapore Institute of Neurotechnology, 2014-2015 

Electroneurographic (ENG) and electromyographic (EMG) data acquisition and 

analysis from non-human primates and rodents including signal denoising, 

characterization and classification 

 

Business Technology Analyst, Deloitte Consulting, 2011-2013 

Technology consulting with advanced business application programming 

 

 

Other Relevant Specializations and Skills 

 
Deep learning Coursera specialization: Topics studied include hyperparameter 

tuning, regularization and optimization in neural networks, convolutional neural 

networks, sequence models 

Programming ability: Matlab and Python 

Language ability: Fluent in English, Intermediate (B1) in German  

Organizing member: DPZ colloquium (2017-present), Women Career Networking 

Symposium, 2019, Goettingen 

 


