273 research outputs found

    Development of a Bayesian Belief Network Runway Incursion and Excursion Model

    Get PDF
    In a previous work, a statistical analysis of runway incursion (RI) event data was conducted to ascertain the relevance of this data to the top ten Technical Challenges (TC) of the National Aeronautics and Space Administration (NASA) Aviation Safety Program (AvSP). The study revealed connections to several of the AvSP top ten TC and identified numerous primary causes and contributing factors of RI events. The statistical analysis served as the basis for developing a system-level Bayesian Belief Network (BBN) model for RI events, also previously reported. Through literature searches and data analysis, this RI event network has now been extended to also model runway excursion (RE) events. These RI and RE event networks have been further modified and vetted by a Subject Matter Expert (SME) panel. The combined system-level BBN model will allow NASA to generically model the causes of RI and RE events and to assess the effectiveness of technology products being developed under NASA funding. These products are intended to reduce the frequency of runway safety incidents/accidents, and to improve runway safety in general. The development and structure of the BBN for both RI and RE events are documented in this paper

    Methodology for Detection and Assessment of the Impact Of Informal Processes On Organizational Output

    Get PDF
    This research focuses on the detection and assessment of informal processes within an organization. Informal processes are defined as activities that are not formalized with respect to the inputs, resources, and/or controls; or an activity that deviates from a formal process. Informal processes affect all aspects of an organization's business. Informal processes cannot be eliminated (nor should they necessarily be). The question becomes how can we identify the informal processes and assess their impact on our system/s safety? The research reported in this paper is aimed at providing an answer to this question. A theoretical foundation in the area of organizational culture, structures and practices culminating in the SoTeRiA (Socio-Technical Risk Analysis) framework provides the general model for this research. A comprehensive methodology for the detection, identification and assessment of informal processes is presented which will allow an organization to benefit from positive informal processes, while resolving detrimental informal processes to preclude their use. Two detection methods have been developed - an indirect detection method (questionnaire completed by a management representative) and a direct detection method (process audit). A methodology has been developed to be utilized as a guideline in the performance of process audits that encompasses process element identification, process interactions, and the usage of document trees. A methodology for the assessment of the impact of informal processes on an organization has been developed that will enable businesses and organization's to have more accurate and complete data from which to make their decisions regarding the state of the organization. To assess the impact of informal processes, Bayesian Belief Networks were utilized to determine the probability of the process output failure with the inclusion of informal processes and then after the informal processes were brought into the formal system. The application of this methodology has proven that when either informal processes that are beneficial to an organization are brought into the formal system, or detrimental informal processes are eliminated, the probability of the output failure decreases. The methodology presented provides a comprehensive approach to the understanding, detection, and assessment of informal processes in an organization

    A model-based approach to System of Systems risk management

    Get PDF
    The failure of many System of Systems (SoS) enterprises can be attributed to the inappropriate application of traditional Systems Engineering (SE) processes within the SoS domain, because of the mistaken belief that a SoS can be regarded as a single large, or complex, system. SoS Engineering (SoSE) is a sub-discipline of SE; Risk Management and Modelling and Simulation (M&S) are key areas within SoSE, both of which also lie within the traditional SE domain. Risk Management of SoS requires a different approach to that currently taken for individual systems; if risk is managed for each component system then it cannot be assumed that the aggregated affect will be to mitigate risk at the SoS level. A literature review was undertaken examining three themes: (1) SoS Engineering (SoSE), (2) M&S and (3) Risk. Theme 1 of the literature provided insight into the activities comprising SoSE and its difference from traditional SE with risk management identified as a key activity. The second theme discussed the application of M&S to SoS, providing an output, which supported the identification of appropriate techniques and concluding that, the inherent complexity of a SoS required the use of M&S in order to support SoSE activities. Current risk management approaches were reviewed in theme 3 as well as the management of SoS risk. Although some specific examples of the management of SoS risk were found, no mature, general approach was identified, indicating a gap in current knowledge. However, it was noted most of these examples were underpinned by M&S approaches. It was therefore concluded a general approach SoS risk management utilising M&S methods would be of benefit. In order to fill the gap identified in current knowledge, this research proposed a new model based approach to Risk Management where risk identification was supported by a framework, which combined SoS system of interest dimensions with holistic risk types, where the resulting risks and contributing factors are captured in a causal network. Analysis of the causal network using a model technique selection tool, developed as part of this research, allowed the causal network to be simplified through the replacement of groups of elements within the network by appropriate supporting models. The Bayesian Belief Network (BBN) was identified as a suitable method to represent SoS risk. Supporting models run in Monte Carlo Simulations allowed data to be generated from which the risk BBNs could learn, thereby providing a more quantitative approach to SoS risk management. A method was developed which provided context to the BBN risk output through comparison with worst and best-case risk probabilities. The model based approach to Risk Management was applied to two very different case studies: Close Air Support mission planning and the Wheat Supply Chain, UK National Food Security risks, demonstrating its effectiveness and adaptability. The research established that the SoS SoI is essential for effective SoS risk identification and analysis of risk transfer, effective SoS modelling requires a range of techniques where suitability is determined by the problem context, the responsibility for SoS Risk Management is related to the overall SoS classification and the model based approach to SoS risk management was effective for both application case studies

    Identification of Causal Paths and Prediction of Runway Incursion Risk using Bayesian Belief Networks

    Get PDF
    In the U.S. and worldwide, runway incursions are widely acknowledged as a critical concern for aviation safety. However, despite widespread attempts to reduce the frequency of runway incursions, the rate at which these events occur in the U.S. has steadily risen over the past several years. Attempts to analyze runway incursion causation have been made, but these methods are often limited to investigations of discrete events and do not address the dynamic interactions that lead to breaches of runway safety. While the generally static nature of runway incursion research is understandable given that data are often sparsely available, the unmitigated rate at which runway incursions take place indicates a need for more comprehensive risk models that extend currently available research. This dissertation summarizes the existing literature, emphasizing the need for cross-domain methods of causation analysis applied to runway incursions in the U.S. and reviewing probabilistic methodologies for reasoning under uncertainty. A holistic modeling technique using Bayesian Belief Networks as a means of interpreting causation even in the presence of sparse data is outlined in three phases: causal factor identification, model development, and expert elicitation, with intended application at the systems or regulatory agency level. Further, the importance of investigating runway incursions probabilistically and incorporating information from human factors, technological, and organizational perspectives is supported. A method for structuring a Bayesian network using quantitative and qualitative event analysis in conjunction with structured expert probability estimation is outlined and results are presented for propagation of evidence through the model as well as for causal analysis. In this research, advances in the aggregation of runway incursion data are outlined, and a means of combining quantitative and qualitative information is developed. Building upon these data, a method for developing and validating a Bayesian network while maintaining operational transferability is also presented. Further, the body of knowledge is extended with respect to structured expert judgment, as operationalization is combined with elicitation of expert data to create a technique for gathering expert assessments of probability in a computationally compact manner while preserving mathematical accuracy in rank correlation and dependence structure. The model developed in this study is shown to produce accurate results within the U.S. aviation system, and to provide a dynamic, inferential platform for future evaluation of runway incursion causation. These results in part confirm what is known about runway incursion causation, but more importantly they shed more light on multifaceted causal interactions and do so in a modeling space that allows for causal inference and evaluation of changes to the system in a dynamic setting. Suggestions for future research are also discussed, most prominent of which is that this model allows for robust and flexible assessment of mitigation strategies within a holistic model of runway safety

    Sustainable Assessment in Supply Chain and Infrastructure Management

    Get PDF
    In the competitive business environment or public domain, the sustainability assessment in supply chain and infrastructure management are important for any organization. Organizations are currently striving to improve their sustainable strategies through preparedness, response, and recovery because of increasing competitiveness, community, and regulatory pressure. Thus, it is necessary to develop a meaningful and more focused understanding of sustainability in supply chain management and infrastructure management practices. In the context of a supply chain, sustainability implies that companies identify, assess, and manage impacts and risks in all the echelons of the supply chain, considering downstream and upstream activities. Similarly, the sustainable infrastructure management indicates the ability of infrastructure to meet the requirements of the present without sacrificing the ability of future generations to address their needs. The complexities regarding sustainable supply chain and infrastructure management have driven managers and professionals to seek different solutions. This Special Issue aims to provide readers with the most recent research results on the aforementioned subjects. In addition, it offers some solutions and also raises some questions for further research and development toward sustainable supply chain and infrastructure management

    AN ANALYSIS OF HOW THE U.S. GOVERNMENT CAN EFFECTIVELY TACKLE SUPPLY CHAIN BARRIERS TO SCALE UP THE LOW COST UNMANNED AERIAL VEHICLE (UAV) SWARMING TECHNOLOGY (LOCUST) PROGRAM

    Get PDF
    The LOCUST program is a scalable system of inexpensive swarming unmanned aerial vehicles to provide disruptive capability in contested environments against anti-area access denial defenses, enabling manned strike operations and localized landing site superiority with reduced cost, risk, and operator launch and workload. Our research and analysis will emphasize the challenges of moving from a U.S. Special Operations Command (USSOCOM) effort to a large program of record. Specific supply chain concerns that will be addressed include: 1) DOD organizational structure; 2) service-specific objectives and currently operating platforms; 3) requirements generation and related procurements to include production and quality challenges; 4) safety and quality assurance standards; 5) lead times, inventory plans, and throughput to include supplier base considerations and consolidations; and 6) latest evolving technologies and continuous improvement principles. Our team will utilize the Define, Measure, Analyze, Improve, Control (DMAIC) evaluative methodology that focuses on data-driven improvement cycles to better optimize process, design and results. Our results and recommendations highlighted multiple strategies that the Office of Naval Research (ONR) must focus on when developing the LOCUST supply chain. These conclusions and findings address both current supply chain development opportunities for the LOCUST program, as well as where the program must focus its efforts in the future.http://archive.org/details/ananalysisofhowt1094563516Civilian, Department of the NavyCivilian, Department of the ArmyCivilian, Department of the ArmyApproved for public release; distribution is unlimited

    Flightdeck Automation Problems (FLAP) Model for Safety Technology Portfolio Assessment

    Get PDF
    NASA's Aviation Safety Program (AvSP) develops and advances methodologies and technologies to improve air transportation safety. The Safety Analysis and Integration Team (SAIT) conducts a safety technology portfolio assessment (PA) to analyze the program content, to examine the benefits and risks of products with respect to program goals, and to support programmatic decision making. The PA process includes systematic identification of current and future safety risks as well as tracking several quantitative and qualitative metrics to ensure the program goals are addressing prominent safety risks accurately and effectively. One of the metrics within the PA process involves using quantitative aviation safety models to gauge the impact of the safety products. This paper demonstrates the role of aviation safety modeling by providing model outputs and evaluating a sample of portfolio elements using the Flightdeck Automation Problems (FLAP) model. The model enables not only ranking of the quantitative relative risk reduction impact of all portfolio elements, but also highlighting the areas with high potential impact via sensitivity and gap analyses in support of the program office. Although the model outputs are preliminary and products are notional, the process shown in this paper is essential to a comprehensive PA of NASA's safety products in the current program and future programs/projects

    Managing the Uncertainty Associated with Hydrogen Gas Hazards and Operability Issues in Nuclear Chemical Plants

    Get PDF
    The complex and diverse nature of reprocessing and decommissioning operations in existing nuclear chemical plants within the UK results in a variety of challenges. The challenges relate to the quantified risk from hydrogen explosions and how best to manage the associated uncertainties. Several knowledge gaps in terms of the Quantified Risk Assessment (QRA) of hydrogen hazards have been identified in this research work. These include radiolytic hydrogen explosions in sealed process pipes, the failure of ventilation systems used to dilute radiolytic hydrogen in process vessels, the decision uncertainty in installing additional hydrogen purge systems and the uncertainty associated with hold-up of hydrogen in radioactive sludges. The effect of a subsequent sudden release of the heldup hydrogen gas into a vessel ullage space presents a further knowledge gap. Nuclear decommissioning and reprocessing operations also result in operational risk knowledge gaps including the mixing behaviour of radioactive sludges, the performance of robotics for nuclear waste characterisation and control of nuclear fission products associated with solid wastes. Bayesian Belief Networks (BBNs) and Monte Carlo Simulation (MC) techniques have been deployed in this research work to address the identified knowledge gaps. These techniques provide a powerful means of uncertainty analysis of complex systems involving multiple interdependent variables such as those affecting nuclear decommissioning and reprocessing. Through the application of BBN and MC Simulation methodologies to a series of nuclear chemical plant case studies, new knowledge in decommissioning and reprocessing operations has been generated. This new knowledge relates to establishing a realistic quantified risk from hydrogen explosions and nuclear plant operability issues. New knowledge in terms of the key sensitivities affecting the quantified risk of hydrogen explosions and operability in nuclear environments as well as the optimum improvements necessary to mitigate such risks has also been gained
    • …
    corecore