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ABSTRACT 

Researcher: Benjamin Jeffry Goodheart 

Title: IDENTIFICATION OF CAUSAL PATHS AND PREDICTION OF 

RUNWAY INCURSION RISK USING BAYESIAN BELIEF 

NETWORKS  

Institution: Embry-Riddle Aeronautical University 

Degree: Doctor of Philosophy in Aviation 

Year: 2013 

In the U.S. and worldwide, runway incursions are widely acknowledged as a critical 

concern for aviation safety.  However, despite widespread attempts to reduce the 

frequency of runway incursions, the rate at which these events occur in the U.S. has 

steadily risen over the past several years.  Attempts to analyze runway incursion 

causation have been made, but these methods are often limited to investigations of 

discrete events and do not address the dynamic interactions that lead to breaches of 

runway safety.  While the generally static nature of runway incursion research is 

understandable given that data are often sparsely available, the unmitigated rate at which 

runway incursions take place indicates a need for more comprehensive risk models that 

extend currently available research.   

This dissertation summarizes the existing literature, emphasizing the need for 

cross-domain methods of causation analysis applied to runway incursions in the U.S. and 

reviewing probabilistic methodologies for reasoning under uncertainty.  A holistic 

modeling technique using Bayesian Belief Networks as a means of interpreting causation 

even in the presence of sparse data is outlined in three phases: causal factor identification, 
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model development, and expert elicitation, with intended application at the systems or 

regulatory agency level.  Further, the importance of investigating runway incursions 

probabilistically and incorporating information from human factors, technological, and 

organizational perspectives is supported.  A method for structuring a Bayesian network 

using quantitative and qualitative event analysis in conjunction with structured expert 

probability estimation is outlined and results are presented for propagation of evidence 

through the model as well as for causal analysis.   

 In this research, advances in the aggregation of runway incursion data are 

outlined, and a means of combining quantitative and qualitative information is developed.  

Building upon these data, a method for developing and validating a Bayesian network 

while maintaining operational transferability is also presented.  Further, the body of 

knowledge is extended with respect to structured expert judgment, as operationalization 

is combined with elicitation of expert data to create a technique for gathering expert 

assessments of probability in a computationally compact manner while preserving 

mathematical accuracy in rank correlation and dependence structure. 

 The model developed in this study is shown to produce accurate results within the 

U.S. aviation system, and to provide a dynamic, inferential platform for future evaluation 

of runway incursion causation.  These results in part confirm what is known about 

runway incursion causation, but more importantly they shed more light on multifaceted 

causal interactions and do so in a modeling space that allows for causal inference and 

evaluation of changes to the system in a dynamic setting.  Suggestions for future research 

are also discussed, most prominent of which is that this model allows for robust and 

flexible assessment of mitigation strategies within a holistic model of runway safety.  
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CHAPTER 1 

INTRODUCTION 

A runway incursion (RI) is defined by the International Civil Aviation 

Organization (ICAO) as, “any occurrence at an aerodrome involving the incorrect 

presence of an aircraft, vehicle or person on the protected area of a surface designated for 

the landing and takeoff of aircraft” (EASA, 2011, p. v; ICAO, 2007, p. vii).  Effective 

October 1, 2007, the Federal Aviation Administration (FAA), also adopted the current 

ICAO definition of a runway incursion in an effort to harmonize global efforts to identify 

and reduce RI incidents.  In the U.S., RIs are classified by four severity categories as 

shown in Table 1 and by type, as shown in Table 2 (FAA, 2009). 

 

Table 1.  FAA Runway Incursion Severity Classification. 

Category D Category C Category B Category A Accident 
     

Incident that meets the 
definition of runway incursion 
such as incorrect presence of a 

single vehicle/person/aircraft on 
the protected area of a surface 
designated for the landing and 
take-off of aircraft but with no 

immediate safety consequences. 

An incident 
characterized 

by ample 
time and/or 
distance to 

avoid a 
collision. 

An incident in which 
separation decreases and 

there is a significant 
potential for collision, 
which may result in a 

time critical 
corrective/evasive 
response to avoid a 

collision. 

A serious 
incident in 

which a 
collision 

was 
narrowly 
avoided. 

An 
incursion 

that 
resulted 

in a 
collision 

Note. Adapted from http://www.faa.gov/airports/runway_safety/news/runway_incursions. 
 

 
 
Runway incursions were recently identified as one of aviation’s most critical 

challenges in the 2011 FAA NextGen Implementation Plan, the FAA National Runway 

Safety Plan for 2012-2014, and in the 2011 National Transportation Safety Board 

(NTSB) Most Wanted List of Transportation Safety Improvements (FAA, 2011a, 2011c; 

Increasing Severity 
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Table 2.  FAA Runway Incursion Factors. 

Operational Errors (OE) Pilot Deviations (PD) Vehicle/Pedestrian Deviation 
(VPD) 

 Action of an Air Traffic Controller that 
results in: Less than required minimum 
separation between 2 or more aircraft, or 
between an aircraft and obstacles, 
(vehicles, equipment, personnel on 
runways) or Clearing an aircraft to take 
off or land on a closed runway  
 

Action of a pilot that 
violates any Federal 
Aviation Regulation 
Example: a pilot crosses 
a runway without a 
clearance while enroute 
to an airport gate  
 

Pedestrians or vehicles entering 
any portion of the airport 
movement areas 
(runways/taxiways) without 
authorization from air traffic 
control 
 

Note.  Adapted from http://www.faa.gov/airports/runway_safety/ 
 
 
 
NTSB, n.d.).  Despite their explicit identification as a target for mitigation strategies, the 

rate at which RIs occur continues to escalate as shown in Figure 1 (note that while count 

decreased in FY 2009, rate increased as a function of reduced traffic volume).  Data from 

the FAA Runway Safety website (http://www.faa.gov/airports/runway_safety/) and from 

FAA Annual Runway Safety Reports describe an increase in RI rate from 12.3 to 18.9 

occurrences per million surface operations over the past six years of available data (FAA, 

2010a).   

 Although the increasing rate of RI occurrence in the U.S. is disconcerting in and 

of itself, its continued escalation in combination with the substantial growth of air traffic 

indicates an urgent need to address the rise in RI events.  In their Aerospace Forecast for 

FY2012-2032, the FAA projects annual growth of the domestic aviation sector at 

between two and three percent per year, with passenger numbers expected to rise from 

731 million in 2011 to 1.2 billion in 2032.  Extrapolation of present air operation totals 

over the next ten years results in a calculated estimate of 1,125 RI annual events in 2020, 

ten years from the last publicly available totals in 2010 (FAA, 2010a).  This assumes that 

RI rate remains static, when in fact it has increased steadily in the past several years, and 
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Figure 1.  U.S. runway incursion count and rate FY2005 to FY2010 (http://www.faa.gov/ 
airports/ runway_safety/). 
 

 
that air traffic will grow only modestly as it recovers from the current economic 

downturn.  Although these assumptions render the example given here difficult to 

generalize, the likely result of increasing or even static RI rate alongside increasing air 

traffic volume is more frequent RI occurrence.  Cognizant of this, the FAA issued a Call 

to Action in late 2007, prompting not only an internal FAA challenge to address runway 

incursions, but a focused industry response as well (FAA, 2011b).  Though the Call to 

Action prompted an initial decrease in pilot deviation type incursions, the trend reversed 

and the rate of RI events has continued its upward trend (FAA, 2011c). 

 In search of meaningful reduction of the RI rate, many strategies for RI mitigation 

have been presented, tested, and implemented.  While some of these solutions have been 

met with success, the persistently increasing rate tempers premature declarations of 

successful widespread reduction of RI events by regulators and others.  Rankin II (2008) 
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reviewed a number of these initiatives and objectives with particular focus on those 

implemented by or at the direction of the FAA.  On the whole, and as illustrated in the 

analysis by Rankin II (2008), RI reduction plans generally fall into three categories: those 

that address RI events from a human factors perspective, those that assume an 

organizational perspective, and those that identify technological or engineering solutions 

to the problem.  Within these broad categories, individual research is often limited to a 

particular domain, examples of which are embodied by organizational, psychological, 

physiological, and technological or engineering-based theories and models (FAA, 2010a, 

2011c; McLean and Monro, 2004).  Schönefeld and Möller (2012) suggest that 

effectively addressing RI occurrences relies upon removing the human from the system to 

the greatest extent possible.  Evidence shows that this approach can be effective (Dabipi, 

Burrows-McElwain, & Hartman, 2010; McLean and Monro, 2004; Torres, Metscher, & 

Smith, 2011); however, technological solutions must also be developed in conjunction 

with the fullest possible understanding of the nature of the problem (Rankin II, 2007).  

Given that the rate of RIs has not decreased in spite of these efforts is indicative that this 

level of understanding has yet to be achieved. 

 The existing research investigating RI data is important and meaningful, but it 

falls short in some respects beyond a failure to address RIs through a holistic, cross-

domain approach.  In addition, many studies of the modes by which RIs occur do not 

account for the substantial uncertainty involved in the investigation of rare events such as 

runway incursions, which is operationally evident in the lack of high-resolution RI data.  

In other areas of safety research, probabilistic risk assessment (PRA) has been 

successfully utilized in numerous applications characterized by uncertainty, such as that 
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found in investigating RIs.  PRA, pioneered in large part by the National Aeronautics and 

Space Administration (NASA) in the 1960s, seeks to provide answers to three basic 

questions: What can happen? How likely is it to occur? If it is to occur, what are the 

consequences? (Bedford & Cooke, 2001; Stolzer, Halford, & Goglia, 2008).  PRA has 

seen widespread use in the nuclear, chemical, energy, aerospace, and financial industries, 

all of which share the common trait of high consequences of failure despite relative rarity 

of events (Stolzer, Halford, & Goglia, 2008).  After the Challenger accident in 1986, 

NASA once again became a strong proponent of PRA, strengthening its position as a 

powerful tool for the prediction of risk where a system or systems are highly variable 

(NASA, 2002).  As previously discussed, PRA often involves the study of rare events for 

which data are sparsely available, and while it provides a probabilistic alternative to 

deterministic point estimation of risk, PRA also has shortcomings in the context of 

complex, rare events such as aviation accidents.  Zio (2009) argues that the complexity of 

systems such as those in which RIs occur renders event sequence-based techniques such 

as found in traditional PRA of limited utility.  To this end, complex, multidisciplinary 

systems require safety risk assessment approaches that can dynamically model the 

complex interactions of actors and events (Stroeve, Blom, & Bakker, 2013).  Even more 

advanced PRA methods such as Monte Carlo simulation in its naïve form – wherein 

simplified sampling methods do not support higher-order uncertainties – cannot capture 

the conditional or state-dependent nature of an event sequence leading to an accident or 

incident.  The distinction between causal factors and what are often referred to in this 

study as causal paths (also causal sequences) is more than a semantic argument.  Whereas 

the methods principally used to investigate RIs to date are focused on individual 
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contributors to RIs, or static sequences, this research proposes a method of evaluating and 

understanding the interactions of causal factors that result in dynamic causal interactions 

that form paths or sequences. 

 As noted previously, PRA is used to answer three basic questions with respect to 

the nature of risk.  Issues arise, however, in adequately doing so in the presence of both 

epistemic and aleatory uncertainty while relying solely on a frequentist view of 

probability estimation.  Markov chain Monte Carlo (MCMC) is a means of describing the 

successive probabilities of events in relation to the immediately preceding occurrence. As 

an extension to the classical PRA methods described previously, it offers insight into the 

conditionality inherent to a complex sequence of events (Gamerman & Lopes, 2006).  

From a practical standpoint considering the variability that almost always accompanies 

complexity, Bayesian inference exhibits more widespread utility as a risk assessment tool 

given its treatment of probability as a measure of degrees of belief and inherent 

assignment of epistemic distributions to model parameters.  This subjective view reflects 

on partial belief as a function of behavior choice and consequence.  Only the subjective 

interpretation of probability allows for the integration of epistemic uncertainty in its 

analysis.  Bayesian parameter estimation also accommodates a variety of data types, most 

notably expert elicitation in addition to classical statistical information (Siu & Kelly, 

1998). 

 The proposed method in this study capitalizes on the ability of Bayesian methods, 

specifically probabilistic graphical models, and advanced sampling techniques to allow 

evaluation of causal factors to RI events across domains.  Steadily increasing rates of RIs 

highlight the need for a more complete understanding of the complex interaction of 
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factors and systems that contribute to RIs, and Bayesian belief network models allow for 

a novel means of examining the problem.  This proposal outlines the use of Bayesian 

Belief Networks and stochastic sampling to effectively capture the interdependencies that 

characterize the chain of events that lead to an undesired state – “the incorrect presence 

of an aircraft, vehicle or person on the protected area of a surface designated for the 

landing and takeoff of aircraft” (EASA, 2011, p. v; ICAO, 2007, p. vii).  In conjunction 

with a holistic theoretical basis for discovery, this method will allow for prediction of RI 

events, evaluation of mitigation strategies, and identification of key causal paths in the 

face of substantial uncertainty and across areas of knowledge.    In the discussion to 

follow, these elements are synthesized into a method by which RI events may be 

dynamically modeled such that causal paths – the interaction of those components that 

lead to an undesired state – can be stochastically modeled and evaluated for more 

complete understanding of the problem and of how mitigation efforts are best applied to 

address it. 

Statement of the Problem 

The catastrophic collision of two Boeing 747 aircraft on the runway at Tenerife, 

Spain in 1977, which resulted in the deaths of 583 passengers and crew, elevated runway 

incursions in the public psyche (Tarrel, 1985).  As a matter of public interest in aviation 

safety, this concern remains pervasive even today.  In the U.S., runway incursions (RI) 

have been a topic of intense scrutiny by the Federal Aviation Administration (FAA) and 

National Transportation Safety Board (NTSB) for at least the past three decades.  During 

this period, each agency has addressed RIs in its strategic planning as well as through a 
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variety of initiatives designed to meaningfully reduce the frequency with which such 

incidents occur.   

At present, strategies aimed at reducing RI threats have primarily been those that 

independently implement training and engineering protection by way of proposals to 

modify airport lighting, surface markings, signage, ground-based monitoring displays, 

and cockpit display devices (FAA, 2007, 2010a, 2011b; Moertl & McGarry, 2011).  In 

contrast to the concrete engineering solutions identified by Rankin II (2008), 

comparatively little research has been conducted with a focus on understanding the covert 

errors that inform, or should at least be considered, in the design of effective mitigation 

strategies (Hendrickson, 2009).  Even fewer studies appear in the literature addressing the 

dynamic interaction of causal factors as they combine resulting in undesired events, 

especially when those factors exist across domains of knowledge such as human factors, 

mechanical systems, or organizational dynamics (Luxhøj, 2003).  This paucity of 

research is conceivably a function of the uncertainty that results from the small number of 

data points and relative infrequency of RI events acting in combination with a lack of 

cross-disciplinary research, presumably because of the complexity that often 

accompanies it.  The research that does exist is not without merit; however, its narrow 

scope often fails to capture the dynamic conditionality of the sequence of events and 

states that lead to incidents such as RI events.  In light of these apparent gaps in research 

and understanding, it is proposed here that the key to effective reduction of RI events is 

not in the application of independent solutions, but in a holistic understanding of the 

causal structure of RIs and the identification of pivotal interactions where mitigation 

strategies will be most effective. 
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Purpose Statement 

The purpose of this research is to evaluate the feasibility and effectiveness of 

Bayesian belief network models, supported by structured expert elicitation, as a tool to 

examine causal factors and dynamic causal paths to RI events (regardless of Federal 

Aviation Regulations under which an aircraft is operated) in the U.S.  This study employs 

techniques from many domains, and it is guided by the proposition that Bayesian 

inference and associated modeling techniques offer a robust and natural inferential 

platform for understanding RI events and the complex dynamics that influence them 

under the uncertainty of sparse data.  The elicitation protocol and resulting BBN are tools 

intended for implementation at the regulatory level to assist in design and evaluation of 

RI mitigation and causation.  Although probable end users are agencies such as the FAA 

or Department of Transportation, this study also provides tools for operationalizing BBNs 

at the airport level where sufficient sophistication in data availability and analysis is 

accessible. 

Research Questions 

The present research addresses two principal questions, the first of which informs 

the latter.  First, what are the interacting causal factors that lead to RIs in the U.S.?  

Second, can runway incursions in the U.S. and their dynamic causal factors and 

interactions be modeled through the use of a Bayesian belief network supported by 

expert-elicited data? 

Significance of the Study 

This study is significant in its use of a novel means to investigate dynamic causal 

interactions across many domains.  Modeling RI events in this way offers the potential 



10 
 

 
 

for insight into why RIs occur, and what events or event interactions present the most 

promising prospect for substantial reduction of incursions.  To date, the increasing rate 

and growing numbers of RIs in the US over the past several years reveals that this has not 

yet been accomplished.  The combination of methods investigated in this research 

provides a unique opportunity to eliminate this considerable knowledge gap. 

Delimitations 

This study does not attempt to address RI incidents around the globe.  Rather, it 

focuses only on RIs within the U.S. because of the infeasibility of obtaining 

homogeneous data across many countries.  Although other countries are excluded, U.S. 

data are likely representative of RIs experienced worldwide, given that ICAO standards 

are nearly universally applied. 

RI data for this study are limited to those years where the definition of RI is 

consistent with ICAO and with the definition used today.  This purposively limits data 

collection to a five-year period (2008-2012) inclusive only of the data collected under the 

presently-used RI definition and severity categorization scheme, which substantively 

changed in 2007 to align with the ICAO definition of runway incursion.  This change is 

addressed in more detail in the review of literature to follow.  Although data from years 

prior to the definition alignment may be revised to the new standard by estimation, as has 

been done in some FAA reports (FAA, 2010a), the benefit to the additional data points is 

unlikely to be so great as to outweigh the liability of approximated figures given that 

variation can be observed even in the FAA figures. 

While the model discussed and developed in the present study will have the 

capacity to support sensitivity analysis and evaluation of mitigation strategies via 
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inference algorithms, this is beyond the scope of the research.  These methods, which 

include influence diagrams, are extensions of Bayesian networks that can be used to 

evaluate strategies to achieve optimal utility and support decision making (Darwiche, 

2010).  The results of the current study will allow future researchers to extend the 

network to achieve just such results. 

Limitations and Assumptions 

As mentioned briefly in the preceding section, it is assumed, based on 

commonality of air and ground navigation procedures as well as aerodrome design in part 

because of general adherence to ICAO standards, that the findings of this study can be 

reasonably generalized to other populations.  Nevertheless, the purposely constrained 

scope of this research is a potential limitation to the application of results found therein. 

Although RIs have the capacity for catastrophic results, they do not occur in that 

mode with frequency such that large numbers of data points are available.  Small 

numbers of some data may affect the power of the study, which may also affect broad 

application of results.  This scarcity of data is frequently a limitation to studies of RI 

phenomena, but in the present research, sparse research is supplemented with expert 

elicitation.    Given the state of knowledge of RIs, and the spread of that knowledge 

across domains, expert elicitation is well-supported in its role in this study (Mosleh, Bier, 

& Apostolakis, 1988).   

Definitions of Terms 

Aleatory Uncertainty: Aleatory uncertainty is due to the natural, unpredictable 

variability of a system or a process.  With respect to Bayes’ theorem, aleatory uncertainty 
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is that about which one cannot or chooses not to learn.  Though it cannot be resolved 

through expert knowledge or judgment, it may be quantified (Bedford & Cooke, 2001). 

Bayesian: Referring to the methods of inference based on Bayes’ Theorem and 

made in terms of probability statements that are updates as additional evidence is made 

available. 

Causality: The relationship between states or events such that one is understood 

as the consequence of the other.  One implication of causality is that a model must 

demonstrate more than correlation in the classical statistics sense. 

Conditional Probability Table: A tabular representation of the conditional 

probability distributions for variable relationships. 

Decision Maker (DM): The weighted combination of expert judgments under 

Cooke’s Classical Model.  In the Classical Model, the DM is used in place of individual 

assessments, and is based on the aggregation scheme outlined by Cooke (1991). 

Deterministic: Pertaining to exactly predictable (or precise) processes, the 

outcome of which is known with certainty if the inputs are known with certainty.  This 

type of model is the antithesis of aleatory (Kelly & Smith, 2011). 

Directed Acyclic Graph: A structured flowchart with parametric relationships 

connected by line segments (edges) in order to map out the paths of priors used to 

illustrate causal structure in a Bayesian network (Gill, 2008). 

Edge: The connecting lines between nodes in a graph, which may be either 

directed or undirected. 

Emic: Assuming the viewpoint or perspective of a cultural insider. 
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Epistemic: Pertaining to the degree of knowledge about models and their 

parameters. 

Epistemic Uncertainty: The uncertainty in the model of a system or a process 

that arises through a lack of knowledge of the system.  Epistemic uncertainty relates to 

those things about a system that can be learned.  In this way, epistemic uncertainty may 

be resolved, at least conceptually, via sufficient study such as through the use of expert 

elicitation (Bedford & Cooke, 2001). 

Etic: Assuming the viewpoint or perspective of a cultural outsider. 

Frequentist: With respect to probabilistic reasoning, the long-run expected 

frequency with which a phenomenon will occur.  Frequentist refers to the inferential 

framework within which common statistical methodologies such as hypothesis testing 

and confidence intervals function. 

Informative Prior: A prior distribution function that expresses some positive 

information or knowledge, by way of the selected distribution, about an unknown 

parameter. 

Joint Distribution: A probability density function that involves more than one 

random variable (Lynch, 2012, p. 19). 

Markov Chain: A stochastic process that deals with the characterization of 

random variable sequences where given the present state, past and future states are 

independent (Gamerman & Lopes, 2006). 

Markovian: A Markov process is a stochastic process that is considered to be 

memory-less in that the future states of such a process depend only on the present state. 
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Monte Carlo: A statistical approximation technique that uses computer 

algorithms and random number generation to produce probabilistic inputs in a pre-

specified manner to solve problems and gain insight to phenomena that have some 

random component (Shonkwiler & Mendivil, 2009).   

Moral Graph: The undirected graph equivalent of a directed acyclic graph 

(Koller & Friedman, 2009). 

Naïve: As used to describe probabilistic reasoning, naïve refers to methods that 

do not account for interdependence or uncertainty.  Naïve (or standard, or crude) Monte 

Carlo methods consider a sample of n independent copies of a random variable, and 

estimate event probability based on the proportion of a rare event occurrence over the 

sample (Rubino & Tuffin, 2009). 

NP Hard: Referring to the complexity of an algorithm, NP-Hard indicates a 

problem at least as hard as the hardest problems in NP (non-deterministic, polynomial 

time).   

Node: Values and variables in the model as specified by the model builder (Gill, 

2008). 

Posterior: When data are combined with the prior, an updated probability 

distribution is mathematically computed and is called the posterior distribution or 

posterior. 

Prior: What is currently known about parameters within the model is expressed 

as a probability distribution on those parameters, called the prior distribution or simply 

the prior. 
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Probabilistic Graphical Model: A graphical declarative representation of the 

conditional dependence or independence between model variables (Koller & Friedman, 

2009). 

Probabilistic Risk Assessment: a comprehensive, structured, and logical analysis 

method aimed at identifying and assessing risks in complex technological systems for the 

purpose of cost-effectively improving their safety and performance (NASA, 2002). 

Runway Incursion: Any occurrence at an aerodrome involving the incorrect 

presence of an aircraft, vehicle or person on the protected area of a surface designated for 

the landing and take-off of aircraft (FAA, 2007, para. 2). 

Stochastic: A reference to the randomness of a system.  The opposite of 

deterministic. 

Surface Incident (Deviation): Any event where unauthorized or unapproved 

movement occurs within the movement area, or an occurrence in the movement area 

associated with the operation of an aircraft that affects or could affect the safety of flight 

(FAA, 2009a). 

List of Acronyms 

AMASS  Airport Movement Area Safety System 

ASDE-3 Airport Surface Detection Equipment Model Three 

ASDE-X Airport Surface Detection Equipment Model X 

ASIAS  Aviation Safety Information Analysis and Sharing 

ASRS  Aviation Safety Reporting System 

BBN  Bayesian Belief Network 

DAG  Directed acyclic graph 
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EASA  European Aviation Safety Agency 

ET  Event tree 

FAA  Federal Aviation Administration 

FTA  Fault tree analysis 

ICAO  International Civil Aviation Organization 

MITRE The MITRE Corporation 

MTBF  Mean time between failures 

NTSB  National Transportation Safety Board 

OE  Operational error 

PD  Pilot deviation 

RI  Runway incursion 

RITA  Research and Innovative Technology Administration 

RSO   Federal Aviation Administration Runway Safety Office 

RWSL  Runway Status Lights 

VPD  Vehicle/pedestrian deviation 
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CHAPTER II 

REVIEW OF THE RELEVANT LITERATURE 

This chapter examines the literature that informs this research, discussing not only 

the current state of RI research and mitigations in the U.S., but also the relevant practical 

and theoretical considerations of investigating RI causation through BBNs and structured 

expert judgment.  The complex systems found in aviation organizations are dynamic in 

their behavior, and the response of these systems to perturbation from a desired or 

normative state is an intricate and varied series of interactions with the environment as 

well as between the components, including humans, of the system itself.  Generally 

accepted guidance within the sphere of safety management points to a requirement for 

probabilistic risk assessment as a set of methods for predictive analysis in systems 

characterized by uncertainty and high reliability (Stolzer et al., 2008).  However, such 

methods are frequently limited to discrete event simulation and do not often behave 

dynamically.  This limitation is apparent when considering the increasing rate of runway 

incursion incidents despite concerted efforts to reverse this trend.  Bayesian Belief 

Networks (BBNs) enable probabilistic estimation that more accurately reflects the 

interaction of each state of an event sequence and the end state frequencies associated 

with the simulation of events while retaining the ability to classify risk importance as in 

classical probabilistic risk assessment (PRA) (Darwiche, 2009; Gamerman & Lopes, 

2006; Kelly & Smith, 2009; Koller & Friedman, 2009).  Bayesian Belief Networks 

(BBNs) can seamlessly incorporate expert opinion in the face of uncertainty, and they are 

flexible to systems that change over time.  In the context of runway incursions, the 

incorporation of BBNs allows a more complete inferential and predictive analysis of risk 
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and better informs choices between alternative safety interventions in a causal framework 

(Darwiche, 2009; Darwiche, 2010; Napoles, 2010; Pearl & Russell, 2003). 

Runway Incursions 

As was previously discussed, RI events remain one of aviation’s most critical 

challenges, and remain a prominent fixture in the annual plans and reports issued by 

organizations including the NTSB and FAA (FAA, 2010a, 2011c; NTSB, n.d.).  Despite 

the efforts of these groups and others, the rate at which RIs occur in the U.S. continues to 

escalate.  Records from the FAA Runway Safety website (http://www/faa.gov/airports/ 

runway_safety/), illustrated previously in Figure 1, point to an increase in RI rate from 

12.3 to 18.9 occurrences per million aircraft operations over the past six years of publicly 

available data (FAA, 2010a).  In its most recent Annual Runway Safety Report, the FAA 

cites a “drop by 50 percent over the previous year” (2010a, p. 1), a position repeated in a 

2010 press release announcing “terrific progress in the area of runway safety” (FAA, 

2010b, para. 2).  While these proclamations are encouraging, a closer look at the data 

indicates that RIs are not declining on the whole in rate or in number.  To some extent, 

this discrepancy may be attributed to constraints on the data analyzed in reports as well as 

to the evolving definition of RIs. 

Defining runway incursions.   Through its publicly available reports (FAA, 

2010a; 2010b), the FAA has in some ways defined the RI problem into success by 

constraining data to include only those incidents that fall into the most serious RI 

categories, but the risk posed by RIs has continuously trended upward over several years.  

Changing definitions of RIs affect more than the way they are represented in news 



19 
 

 
 

releases.  Prior to October 1, 2007, RIs were defined differently in the U.S. than by 

ICAO: 

Any occurrence in the airport runway environment involving an aircraft, vehicle, 

person, or object on the ground that creates a collision hazard or results in a loss 

of required separation with an aircraft taking off, intending to take off, landing, or 

intending to land (FAA, 2004, p. 9). 

With the 2007 change, the FAA aligned its definition to that adopted by ICAO in 

an effort to standardize RIs, which were previously described by “at least 20 definitions” 

(FAA, 2007, para. 7) in countries around the world.  The definition currently in use by 

the FAA and ICAO is: 

Any occurrence at an aerodrome involving the incorrect presence of an aircraft, 

vehicle or person on the protected area of a surface designated for the landing and 

take-off of aircraft (FAA, 2007, para. 2). 

This change to the definition of an RI not only aligned the U.S. to the international 

standard, it meant that events previously classified separately as surface deviations would 

be categorized as a Category C or D (refer to Table 1) runway incursion.  This change is 

evident in the FAA’s reported numbers of RIs, which increase dramatically after the 

definition alignment as illustrated in Figure 2.  Also illustrated in Figure 2 is that runway 

incursion figures were retroactively estimated in concordance with the updated definition 

for FY 2006 through 2007. 

Runway incursion data.   In spite of FAA reports (FAA, 2010a; 2010b) that 

indicate runway incursions are decreasing, Figure 3 illustrates that the opposite is true for 

all but the most serious of RIs.  Returning to Figure 2, it can be observed that the reported  
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Figure 2.  Comparison of U.S. runway incursion count FY2005 to FY2012 (Oct. 1 – 
Sept. 30) by definition (data from http://www/faa.gov/airports/runway_safety/). 
 

 
count of RIs in FY 2012 as of July 31 are nearly equal the total of RIs in the entirety of 

FY 2011 despite there being three months of unaccounted data remaining in FY 2012.  

Also shown by Figure 3 is that even those severe RI events categorized as A or B have 

begun to show a rise in rate once more.  Examined in greater detail, as in Figure 4, it is 

apparent that the trend for each category of severe runway incursions is increasing, as 

count for severe RIs has nearly doubled over the two previous years through only the 

third quarter of 2012. 

The focus on severity rating in FAA Annual Runway Safety Reports (FAA, 

2009b, 2010b) as a measure of success in mitigation of RIs is somewhat misleading as an 

indicator of the magnitude of the problem associated with RIs.  Recalling the categorical 

definitions outlined in Table 1, it becomes evident that the severity ranking schema in use 

by the FAA and by ICAO is less a function of the manner in which an RI occurs as it is a 
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Figure 3.  Trend of RI rate, 2005-2007 data estimated to reflect definition change 
definition (data from http://www/faa.gov/airports/runway_safety/). 
 

 

 
Figure 4.  Category A and B runway incursion trend by count, 2000-2007 data estimated 
to reflect definition change (data from http://www/faa.gov/airports/runway_safety/). 
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product of the time separation between aircraft, vehicles, or pedestrians occupying the 

same protected surface area.   

Considering this, gleaning causal information based solely on RI severity strata 

may be difficult if not altogether misrepresentative of the underlying structure that 

contributes to RI causation because of the artificiality of the separation-based severity 

ranking (Dr. K. Cardosi, personal communication, November 9, 2012).  Nevertheless, 

increasing rates of RIs are clear, and point to a growing need to address the problem 

utilizing dynamic analytical methods in order to account for the full depth and breadth of 

existing knowledge with respect to the safety of aircraft surface operations.  A number of 

studies have been conducted in attempts to shed light on the growing issue of RIs. 

Review of runway incursion research and study of causal factors.   The 

figures in the preceding discussion use data from the FAA Runway Safety Office (RSO), 

which is available via the Aviation Safety Information Analysis and Sharing database, the 

FAA Runway Safety Program website (http://www.faa.gov/airports/runway_safety/), or 

via the RSO directly.  As the regulatory body charged with oversight of air traffic 

operations, including those on the surface, the FAA has a keen interest in researching the 

causes of and potential solutions to RIs.  FAA research on RIs began in earnest in the late 

1980s, when the FAA Assistant Administrator was “directed to identify the causes of 

runway incursions and formulate measures for alleviating this problem” (NTSB, 1990, p. 

44).  The NTSB issued a report in 1986 that encouraged this action by the FAA and 

included 33 recommendations concerning RI prevention, many of which had previously 

been issued by the Safety Board as early as 1973 (NTSB, 1986).  Table 3 summarizes the 

relevant literature addressing RI causation. 
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Table 3.  Summary of Reviewed Runway Incursion Causal Factor Literature. 
 
Year Author(s) Summary of Factors Domain(s) 
1981 Bellantoni & 

Kodis 
No causal patterns aside from human errors Human Factors 

1985 Tarrel Communication breakdown and the 
influence of taxiing aircraft highlighted 

Human Factors 

1986 NTSB Disorientation and communication 
breakdown noted as well as ATC training 

Organizational, 
Human Factors 

1989 Bales, 
Gillian, & 
King 

An analysis of ATC-related runway 
incursions, with some potential 
technological solutions 

Technology, 
Human Factors 

1991 Steinbacher An analysis of ATC-related runway 
incursions in the national airspace 

Human Factors, 
Organizational 

1995 Koenig Cockpit procedures and unfamiliarity with 
airport layout compound pilot error 

Human Factors 

1994 Adam & 
Kelly 

Catalogued RI contributing factors based on 
pilot surveys with focus on communication 
and navigation errors 

Technological 

1996 Adam & 
Kelly 

Catalogued RI contributing factors based on 
pilot surveys with focus on procedures and 
factors affecting pilot performance 

Human Factors, 
Organizational 

2000 Knott, 
Gannon, & 
Rench 

Literature review highlighted numerous 
human factors-related contributors to RI 
causation 

Human Factors 

2001 Cardosi & 
Yost; Cardosi 

Reviewed previous data with analysis 
focused on aids to memory and situational 
awareness for pilots and air traffic 
controllers 

Human Factors 

2005 Cardosi Human factors effects on ATC Human Factors 
2008 Rankin II Review of causation and FAA mitigation 

efforts noting that ground vehicle training 
was a common causal factor to RIs 

Human Factors, 
Organizational 

2011 Torres, 
Metscher, & 
Smith 

A study of the relationship between human 
factor errors and RI occurrence identified 
loss of flight crew situational awareness and 
miscommunication as common causes 

Human Factors 

2012 Chang & 
Wong 

Summary of human factors research and 
factors associated with RI events 

Human Factors 

 
 
 
In its role as the agency responsible for runway incursion study and mitigation in 

the U.S., the FAA is a primary contributor to research that seeks to understand RI 
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phenomena.  On the basis of data analysis conducted by the FAA and through its partner 

agencies (such as MITRE, RITA, NTSB, and others), the 2002-2004 FAA Runway 

Safety Blueprint identified five points that defined the agency’s view of RI events: 

• Operational performance in the airport movement area must be further 

improved to reduce runway incursions. 

• Runway incursions are systemic, recurring events that are unintentional by-

products of NAS operations.  

• Operations must be standardized to reduce risk at a time when growth is 

challenging runway and infrastructure expansion. 

• Collision-avoidance safeguards need to be developed for the high-energy 

segment of runways, where aircraft are accelerating for take-off or 

decelerating after landing. 

• Human factors are the common denominator in every runway incursion (FAA, 

2001). 

From a research perspective, most notable of these points is that human factors are 

identified as pervasive to RIs.  As early as 1981, Bellantoni and Kodis (1981) began 

investigating RIs, noting, “there does not appear to be any pattern to the causes of 

runway/taxiway transgressions other than human errors on the part of both air traffic 

controllers and pilots” (p. v).  Some of the underlying factors identified by Bellantoni and 

Kodis (1981) as contributing to system error were: deficiencies in attention, judgment, 

and phraseology (p. 11).   Within these categories, a number of specific human errors 

were identified for pilots and controllers based on analysis of ASRS, NTSB, and ATC 

report data (Table 4).  The researchers found that within the runway and surface incidents  
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Table 4.  Errors in Factors in RI Causation. 
 

Pilot Controller 
Proceeded without clearance Directly conflicting clearances 
Failed to see and avoid Insufficient separation 
Failed to display proper lights Cleared to obstructed runway 
Lost/disoriented Provided inadequate information 
Failed to understand message Erroneous instruction 
Failed to follow instructions Faulty GC/LC coordination 

 
Failed to track aircraft 

 
Poor supervision 

Note.  Adapted from Bellantoni and Kodis (1981). 

 

studied roughly 95 percent were due to an element of human error, with the error lying 

approximately evenly-distributed between pilots and controllers.  Though it was a first 

step toward understanding RI data, Bellantoni and Kodis’ (1981) research could not 

explore the underlying nature of the errors it identified because of a lack of detailed data. 

Tarrel (1985), in one of the earliest studies of the causes of what are referred to in 

the subject study as runway transgressions, sought to “uncover patterns of behavior that 

lead to these incidents” (p. 2).  Citing work by Billings and O’Hara (1978), and utilizing 

NASA ASRS reports to obtain information through a bi-directional analysis procedure, 

Tarrel noted two critical characteristics of RI events: that the breakdown in information 

transfer between parties was an important factor, and that taxiing aircraft were a major 

contributor to RIs.  On the flight deck, this analysis showed that forgetfulness, 

distraction, disorientation, and misunderstanding of an ATC clearance were most 

commonly observed.  Tarrel noted factors quite different from those in pilot-enabled RIs 

when assessing ATC-enabled incidents.  Misjudgment of aircraft spacing, coordination 

between ground and local controllers, non-standard phraseology, and high-workload 

conditions were often indicated in instances of ATC error.  Tarrel concluded that both 
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pilot and ATC-enabled RIs carried unique risk profiles, and that the task of reducing 

them would fall to the proper identification of those operational areas where the greatest 

effects might be achieved.  This proper identification is the impetus for the use of more 

dynamic means of investigating RI events, such as through BBNs. 

The NTSB, in a 1986 Special Investigation Report, investigated 26 runway 

incursions at control tower-equipped U.S. airports in an attempt to discern their 

“underlying causes and to recommend appropriate remedial actions” (p. 1).  Failure to 

identify traffic, inconsistent supervision, memory failure, boredom, and coordination 

between controller positions were all cited as factors from an ATC standpoint.  While 

each of these factors is well-supported, the Special Investigation does not address the 

means by which these causal elements interact and manifest as an RI event. 

Koenig (1995) reviewed the results of MITRE Corporation survey studies 

sponsored by the FAA in 1993 and 1994 that gathered survey data from U.S.-based 

airline pilots.  Though the questionnaire was not structured such that it could be used for 

formal statistical analysis, a number of factors were identified as potential precursors to 

RIs, most of which fall within the definition of human error.  MITRE’s reports (Kelley & 

Steinbacher, 1993) emphasized the insight that could be gained through plain-text 

operational reports of RI events.   

An examination of human error was central to the work completed by Cardosi and 

Yost (2001) and Cardosi (2001), which noted a number of areas for improvement in 

communication and memory aids for ATC controllers.  Their research also reviewed 

previous work by MITRE analyzing operational errors in the ATC system (Bales, 

Gilligan, & King, 1989; Steinbacher, 1991) as well as the surface incident study that was 
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the subject of Kelley and Steinbacher (1993), Adam and Kelley (1994), and Adam and 

Kelley (1996).  As in a number of other studies, including those conducted by MITRE, 

NASA ASRS reports were evaluated.  In particular, Cardosi and Yost’s research 

evaluated nearly 250 reports submitted to the ASRS system by ATC controllers to 

analyze causal factors affecting controller error.  In the same study, over 75 reports 

submitted by pilots were also evaluated.  While the analysis of ASRS reports was 

undoubtedly enlightening, the reports selected for study were done so on the basis of 

recency, which may have affected the representativeness of the sample. 

Rankin II (2008) approached RI causation from the perspective of personnel and 

airport vehicle transgressions into the runway environment.  Rankin II focused on 

ranking effectiveness of FAA initiatives aimed at RI reduction using a survey instrument 

to collect operational data.  Rankin II’s survey achieved only modest responses, with a 

reported response rate of 35 percent.  As such, the responses that indicated driver training 

was a common cause and that FAA efforts should refocus on such programs may have 

been limited in their generalizability. 

Torres, Metscher, and Smith (2011) also attempted to identify common human 

factors causes of RIs with a focus similar to the present research: that a better 

understanding of causation would allow the FAA and others to gain greater success in 

mitigating RI events.  The researchers noted that in reviewing nearly 300 ASRS reports, 

the most common causal attribution in RI events was to a loss of situational awareness on 

the part of the flight crew, followed closely by miscommunication.  However, no further 

analysis of the underlying causes of these two contributing factors was conducted, with 

recommendations limited to a broad suggestion for increased focus on the human in the 
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loop (Torres, Metscher, & Smith, 2011).  The authors acknowledge this limitation, noting 

that further research is necessary so that a “positive impact on the reduction of the loss of 

situational awareness that leads to runway incursions” may be realized (Torres, Metscher, 

& Smith, 2011, p. 24).   

This closing statement points to an apparent shortcoming in the understanding of 

what were referred to previously as covert errors in the context of RI causation.  It is an 

increased focus on these errors and their complex, diverse interactions with “interrelated 

system components” that the present research suggests is critical to a fuller understanding 

of RI causation and mitigation (Luxhøj, 2003, p. 17).  Despite this gap in understanding 

on which interventive measures are based, a number of strategies directed at reduction of 

RI incidents have been developed and implemented over the past several years. 

  Review of runway incursion mitigation strategies.   Runway incursion 

mitigation efforts generally fall into categories that can be classified by the domain on 

which they focus.  For the purposes of discussion here, those domains are: 

infrastructure/organizational factors, human factors, and technological/engineering 

factors.  Certainly, some research incorporates elements of more than one of these 

domains, and those that do are discussed herein.  Because of the regulated nature of air 

transportation, a number of mitigation strategies aimed at the reduction of RIs have been 

implemented or directed by the FAA.  Table 5 provides a brief overview of the relevant 

literature addressing RI mitigations. 

As Table 5 indicates, a substantial amount of research to date has focused largely, 

and in many cases wholly, on technological improvements to reduce the contribution of 

human-in-the-loop systems to RI causation and avoidance.  Systems such as ASDE-3,  
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Table 5.  Summary of Reviewed Runway Incursion Mitigation Literature. 
 

Year Author(s) Summary of Mitigations Domain(s) 
1998 Kelly & 

Jacobs 
Recommended changes to memory tools 
for ATC as well as improvements to 
ASDE-3 and stop bar lights 

Human 
Factors, 
Technological 

2000 Knott, 
Gannon, & 
Rench 

Review of technological barriers to 
human error, including IMAGE and 
TARMAC systems 

Organizational, 
Technological, 
Human Factors 
 

2004 McLean & 
Monro 

Runway ASDE-3, ASDE-X, and 
AMASS 

Technological 

2002,2005, 
and 2006 

Jones, Jones, 
and Jones & 
Prinzel 

RIPS system and HUD symbology for 
situational awareness 

Technological 

2007 Vernaleken, 
Urvoy, & 
Klingauf 

SMASS for wrong-runway departure 
avoidance 

Technological 

2007 CAST Numerous recommended safety 
enhancements across domains 

Human 
Factors, 
Technological 

2010 Dabipi et al. Low cost alternative to FAROS and 
RWSL systems 

Technological 

2011 Moertl and 
McGarry 

Cockpit display of traffic information 
with indicators and alerts  

Technological 

2006,2011b FAA Runway Status Light technical 
requirements and use 

Technological 

2012b, 
2012c 

FAA Parts 91, 121, 125, and 135 flight crew 
procedures during taxi operations / Parts 
91 and 135 single pilot, flight school 
procedures during taxi operations 

Human 
Factors, 
Organizational 

 
 

ASDE-X, AMASS, RWSL, and others have undoubtedly been met with success (Dabipi 

et al., 2010; FAA, 2006, 2011b, 2012b, 2012c; Kelley & Jacobs, 1998; Moertl & 

McGarry,2011); however, that success is tempered by the knowledge that little 

improvement in RI rate has been realized as demonstrated in the foregoing discussion.  In 

much of the reviewed literature, mitigation strategies are approached as domain-specific, 

rather than as a cross-domain effort to combat the dynamic causation of RIs.  The 
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research proposed here is intended to address this shortcoming by providing a modeling 

environment that supports cross-domain mitigation investigation and implementation, 

which has to date been generally lacking.  Perhaps the most structured example in 

aviation using probabilistic, interdisciplinary mitigation of RI events has come from the 

Commercial Aviation Safety Team (CAST). 

CAST, which was formed in 1998 to bring together industry and FAA 

stakeholders in an attempt to reduce the air travel accident rate, has also addressed the 

issue of runway safety.  CAST is primarily responsible for identification and 

prioritization of mitigation strategies based on its consensus review of event sequences 

that lead to accidents.  Although the CAST methodology is based principally in a panel 

review of accidents, and is therefore limited by the relatively small number of RI 

occurrences, the process does include some elements of probabilistic reasoning.  Of note 

in discussing the methods used in the CAST process is that they are inherently 

deterministic, utilizing single-point estimates in all, or nearly all cases.  However, the 

methods employed in the CAST process produce several inputs critical to effective 

probabilistic risk modeling: some estimation of the severity or probability of an 

occurrence, an estimated probability of severity or probability, estimated effectiveness of 

proposed controls, and some knowledge of the cost of such controls (Stolzer, Halford, & 

Goglia, 2008).  These products of the CAST methodology make it ideally suited for 

application of more robust probabilistic and decision-making modeling than is presently 

employed, specifically through the applied use of more dynamic and flexible probabilistic 

methods as are presented here. 
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As has been previously discussed, methods such as those that utilize probabilistic 

reasoning are called for because the causation and associated mitigation strategies 

discussed here have generally failed to achieve the intended result of substantially 

reducing the incidence of RIs in the U.S (FAA, 2010a).  As the volume of U.S. air traffic 

is forecast to rise, this gap in mitigation efficacy carries with it a growing potential for 

disastrous results and the associated need for more robust analysis under uncertainty.  

Probabilistic reasoning offers the capacity for analysis and decision making under 

uncertainty, and methods such as Bayesian network modeling do so while remaining 

flexible to the dynamic interaction of factors across domains.  

Probabilistic Risk Assessment 

As the aviation industry experiences accident rates that are among the lowest in 

history, identification of threats or new approaches to mitigate consequences has become 

an increasingly difficult task (International Air Transport Association, 2011).  Risk 

assessment methods in an aviation safety context are often focused only on reactive and 

proactive efforts, and when predictive modeling is employed, it is frequently limited in 

scope by addressing only discrete event probabilities rather than viewing outcomes as a 

sequence of conditionally-dependent events.  Regulators and operators are encouraged by 

current research to implement infrastructure that fosters not only proactive, but predictive 

identification of hazards, and guidance provided by the Federal Aviation Administration 

(FAA) and International Civil Aviation Organization (ICAO) points to the need for 

robust risk assessment programs (Stolzer, Halford, & Goglia, 2008).   

Programs such as the Commercial Aviation Safety Team (CAST) have 

demonstrated the effectiveness of probabilistic risk assessment (PRA) as a tool for 
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identifying causal structures in aviation accidents and for developing and prioritizing 

mitigation strategies; however, these methods rely heavily on deterministic point 

probability estimates gained primarily through subject-matter expert (SME) consensus.  

Institutional knowledge is often the primary tool for identification of hazards and 

assignment of probability estimates (as in the CAST model discussed previously).  

Brooker (2011) points to a potential shortcoming in this regard, asking “what are the 

mechanisms by which experts ‘know’ such probabilities?” (p. 1154).  In a frequentist 

paradigm, this argument is more concerning; however, in the context of structured 

Bayesian inference for risk assessment, the model is capable of learning as additional 

information and expertise is gained, and in any event, probability remains bound by the 

fundamentals of probability theory. 

Predictive safety modeling.   In its manual on the subject, the International Civil 

Aviation Organization (ICAO) offers the following brief explanation of the purpose of 

predictive analysis, the scope of which includes probabilistic modeling such as discussed 

herein: 

Predictive safety data collection systems are essentially statistical systems, 

whereby a considerable volume of operational data, which alone are largely 

meaningless, are collected and analyzed, and combined with data from reactive 

and proactive safety data collection systems. The aggregation of data thus leads to 

the development of a most complete intelligence that allows organizations to 

navigate around obstacles and currents and position themselves optimally within 

the drift (2009, p. 3-11). 
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Modeling is one means of achieving the level of predictive analysis detailed by ICAO’s 

description.  Modeling by BBNs works with and within the concept of probabilistic risk 

assessment (PRA) to provide answers to three basic questions: what can happen? How 

likely is it to occur? If it is to occur, what are the consequences?” (Bedford & Cooke, 

2001; Stolzer et al., 2008).  PRA and its associated modeling techniques are not the sole 

means by which the pivotal task of safety management may be achieved, but as Figure 5 

illustrates, they are necessary tools as organizations seek to move beyond proactive 

management of safety risks.  PRA often involves the study of rare events for which data 

are sparsely available, and while it provides a probabilistic estimation of risk, PRA has 

shortcomings in the context of complex, comparatively rare events such as aviation 

accidents.  Rubino and Tuffin (2009) cite mean time between failure (MTBF) rates of  

10-9 as a representative example of aviation system reliability requirements.  Given this 

low probability of occurrence, traditional PRA tools such as Monte Carlo simulation 

become infeasible due to sample size requirements unless other techniques are 

introduced.  Additionally, PRA in its simpler forms is unable to accommodate evolution 

of risk estimates as a process changes or as updated information enters the system by 

investigating events as they occur.  In the discussion to follow, an approach is proposed 

that allows the effective use of probabilistic risk modeling while providing robustness to 

the dynamic uncertainty inherent to complex systems while also accommodating the 

totality of knowledge of a domain.  More importantly, this approach captures these 

elements in a truly predictive approach, providing an elegant means of addressing the 

truism cited by Stolzer et al., that “you can’t expect to meet the challenges of today with 

yesterday’s tools and expect to be in business tomorrow” (2008, p. 219). 
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Figure 5.  Safety management continuum (Stolzer et al., 2008, used with permission). 
 

 
Bayesian Reasoning 

Bayesian estimation of conditional probabilities is important in a subjective 

estimation of risk as it allows for the epistemic distributions of the aleatory model 

parameters in a model to be updated as new knowledge becomes available.  In PRA, 

where uncertainty is often supplanted by expert elicitation, Bayesian inference is 

especially appropriate given its treatment of expert judgment simply as another source of 

evidence.  Using Bayes’ theorem (given in Equation 1), discrete as well as continuous 

probability distributions are addressed. 

 
𝑃(A|B) = 𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
       (1) 

where: 

P(A) is the prior, or a priori, probability of A in that it does not account for any 

knowledge about B; 

P(A|B) is the conditional, or posterior, probability of A given that B is true; 
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P(B|A) is the conditional probability of B given A; and 

P(B) is the prior, or marginal, probability of B. 

 
Bayesian belief networks.    Bayesian Belief Networks (BBNs) illustrate composite, 

conditional probabilities in the form of directed acyclic graphs very similar to the 

illustration of a Markov chain.  In these graphs, univariate random nodes, representative 

of variables of interest, are linked by arcs representative of influences between nodes.  

The acyclic requirement of BBNs simply means that there is no directed path that returns 

to its own starting point, a logical premise given the present application of the method 

Bedford and Cooke (2001) describe.  Equation 2 specifies the joint distribution, and 

Figure 6 illustrates an example of the simplest form of a belief net. 

 
𝑝(𝑥1, 𝑥2) = 𝑝(𝑥1)𝑝(𝑥2|𝑥1)      (2) 

 
 

 
Figure 6. Simple BBN. 
 

 
In the foregoing figure and equation, the probability specification is the marginal 

distribution of x1 and the conditional distribution of x2 given x1 for every value of x1.  

This expression is in the simplest possible form, and does not account for Markovian 

properties. However, rather than discuss notation of Markov chains here, their 

representation by BBNs are addressed in the discussions that follow.  Figure 7 illustrates 
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Figure 7.  Undirected (left) and directed graphs. 
 
 

basic undirected and directed graphs, with the latter as an example of the type utilized by 

BBNs.   

The differentiation in BBNs comes from the inclusion of belief as a means of 

establishing subjective probability distributions in the dependency model.  As in a typical 

Markov Chain, each node in the BBN can assume any one of its possible states, the belief 

in which is associated directly with the preceding node state probabilities.  In a PRA 

application, BBNs serve to limit variable interaction to those nodes that have direct 

interaction, simplifying the updating process and contributing to the computational 

efficiency of the model. 

Support for Bayesian belief nets.  Though it is not necessarily unique in this 

regard, aviation, and especially aviation safety, is often regarded as a field comprised of 

varying degrees of art and science.  In this context, it is often the case that art is used as a 

euphemism for uncertainty, implying that practitioners rely on wit and experience to 

reach successful outcomes.  This paper does not fully address the particulars of expert 

opinion in comparison to strictly stochastic techniques, but worth noting is that this 

dichotomy of knowledge can lead to substantial gaps in organizational understanding.  In 

pursuit of safety improvements, the unification of knowledge toward process 
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understanding and quality management is a central tenet (see FAA, 2010c; ICAO, 2009; 

and Stolzer, Halford, & Goglia, 2008); BBNs can leverage organizational knowledge in 

qualitative and quantitative forms to support more accurate prediction and decision-

making through a single form of representation.  In representing the multifaceted 

knowledge that describes a domain, Bayesian networks amalgamate this knowledge 

consistently and completely given that the constraints of the network are satisfied by only 

one probabilistic distribution per node (Darwiche, 2010).  Because BBNs rely on both 

probabilistic and causal semantics, they are a natural platform for the representation of 

this combination of prior knowledge and new data (Nadkarni & Shenoy, 2004).  Modern 

propagation algorithms allow this unification of knowledge through BBNs to occur in a 

computationally efficient format, and even in topologically complex networks such as 

may arise in aviation, BBNs can compactly provide a robust inferential tool. 

Unifying knowledge is one matter, but communicating it is another.  In domains 

characterized by uncertainty, as in risk assessment in high reliability fields such as 

aviation, capturing and communicating the complex behaviors of a system to many and 

varied stakeholders is a daunting process when undertaken in conventional frequentist 

reasoning.  BBNs represent causal connections and dependencies while also capturing 

uncertainty to intuitively communicate the state of a domain, even in the face of a 

dynamic operating environment.  Conrady and Jouffe (2011) refer to the effectiveness of 

BBNs in this regard as creating a “portable knowledge format” that succinctly 

encapsulates the state of a domain of knowledge and the multifaceted interaction of the 

variables within that domain (p. 3).   
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As Pearl and Russell (2003) assert, the most remarkable feature of BBNs is that 

“they are direct representations of the world, not of reasoning processes” (p. 158).  It can 

be argued that human cognition follows a general pattern of solving probabilistic, rather 

than logical, inferential challenges (Oaksford & Chater 2009).  Instead of relying on 

instinctual, undefined expert opinion to perform risk analysis and subsequent mitigation 

evaluation and selection, BBNs provide a means of identifying what is already known 

and what will result from future processes and circumstances.  Dynamic networks allow 

propagation of reasoning processes to flow naturally and in closer harmony with 

perceptions of reality, as opposed to the rule-based systems one may otherwise encounter 

(Pearl & Russell, 2003).  Naïve PRA methods identify only discrete events, often outside 

their operational context, and many advanced methods operate in an operational vacuum, 

far removed from the dynamic world in which they function.  In contrast, BBNs can 

capture not only conditional probability and uncertainty over time, but can also allow for 

dynamic assessment of interventions, such as safety improvements, within the 

conditionally dependent model.   

Bayesian networks and causality.  As a means of understanding RI events, a 

chief advantage to the use of BBNs is that causal inference is possible.  Conrady and 

Jouffe (2011) note that one reason Bayesian networks have seen a rise in popularity in 

recent years is the possibility that they may allow discovery of causal structures 

otherwise hidden within raw statistical data.  BBNs construct a causal structure as a 

function of formalizing causation through identification of direct interactions from a 

given variable set, something experts and people on the whole are good at (Darwiche, 

2010).  The nature of the directed graphs central to BBNs is both a feature of and a 
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foundational element of the idea that causal structure can be revealed by these methods.  

The directed acyclic graphs (DAGs), as in Figure 7, are inherently a system of processes 

that lead to causal interpretation.  When a BBN is constructed such that the directed 

structure is consistent with causal theory, the network is capable of updating probabilities 

based on the interaction of an intervention inserted into the model (Darwiche, 2009).   

Nadkarni and Shenoy (2004) suggest a causal mapping approach to the 

construction of Bayesian networks as an intuitive and systematic means of building a 

BBN.  BBN construction is generally a function of either a data-based or a knowledge-

based approach.  The former is a function of deriving independence relationships from 

the data; however, in the context of runway incursions, the availability of data is 

questionable.  While a data-based approach alone may produce a defensible network 

structure, adding elicitation of expert judgment, especially in the present framework of 

rare events, is critical to maintaining network sensitivity toward a more complete domain 

understanding and greater effectiveness.  Causal maps provide a starting point for the 

representation of knowledge necessary to create a BBN.  As cognitive maps, causal maps 

capture causal knowledge of experts that is otherwise difficult to ascertain, and they do so 

more descriptively than regression or structural equation methods (Nadkarni & Shenoy, 

2004).  Causal maps are made up of three components: a node representing causal 

concept, a link representing the causal connection among concepts, and strength 

representing the causal value of a connection Nadkarni and Shenoy (2001).  Figure 8 

illustrates a simple causal map of expert opinion in the context of prediction of an aircraft 

runway overrun.  In the Figure 8 example, the unidirectional arrows indicate causal 

connections, with a positive or negative influence.  A high level malfunction in an aircraft  
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Figure 8.  Causal network. 
 

 
braking system, for instance, increases the likelihood that the auto-braking system will 

not function (positive relationship).  This continues along the causal path to a higher 

probability of runway overrun.  Pearl (2009) refers to the utility of causal BBNs as 

“oracles for intervention”, a reference to the distinct parent-child node relationships and 

modular characteristics of the network that facilitate the evaluation of relationships with a 

minimum of changes to the network structure (p. 22).  In essence, a causal network is a 

Bayesian network, with “the added property that the parents of each node are its direct 

causes” (Conrady & Jouffe, 2011, p. 10). 

Practical application and considerations of BBNs.  On the surface, employing 

Bayesian inference in PRA seems logical enough; and when presented in terms of a 

practical aviation example, this is even more apparent.  Before suggesting a review of an 

exemplar scenario, it is first appropriate to mention that PRA, and by virtue of 

association, MCMC and BBN, are not always the best tool in every application.  This is 

not to imply that probabilistic modeling is not a powerful means of inference, but rather 

that the time and resources involved may not be appropriate for every situation.  As an   
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Figure 9.  Continuum of PRA tools. 

 

 
example, and as illustrated in Figures 5 and 9, deterministic point estimation of risk 

remains a useful tool for relatively simple processes, and even as a first step for scenarios 

that will eventually utilize more complex methods.  In aviation, however, as previously 

discussed, the complexity of operations and rarity of failure provides ample opportunity 

for application of PRA in the Bayesian framework. 

As has been discussed, the probability estimates in many attempts to assign rare 

event probability (shown also in Tables 12 and 13 in the example scenario in Appendix 

A) are simply contrived point estimates, and as such do not account for uncertainty.  

What this example expresses is how correctly integrated random sampling can in fact 

allow for the uncertainty that characterizes rare, but high-consequence events such as 

aviation accidents.  By treating the network as a Markov chain, similar distributions and 

node correlations, either through Monte Carlo sampling or other methods such as the 

junction tree sampling algorithm (as in Borsotto et al. (2006)) or incorporation of the 

copula-vine approach (Bedford & Cooke, 2002), can be created from which an expected 
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conditional value may be approximated from the sample mean of a function of simulated 

random variables for each node. 

Whereas sampling in a naïve Monte Carlo method via importance sampling or 

rejection sampling is possible and will produce results reducing variance, both methods 

are limited in their applicability for the approximation of joint distribution.  In the context 

of the model described above, and for similar network models where the joint distribution 

is unknown but marginal probabilities are known with at least some level of certainty, the 

Gibbs sampling method is a means of sampling the posterior network distribution.  The 

Gibbs sampler is intuitive in its sequential method of sampling from a target distribution 

within MCMC algorithms (Lynch, 2007).  However, the Gibbs sampling algorithm 

applies primarily to parametric or discrete parametric models.  Alternatively, the joint 

tree or rank correlation methods of sampling are also appropriate to the model proposed 

here.  Given that interval representation is an important element of the expert elicitation 

process described in the following sections, these algorithms can be used to achieve more 

informative priors by narrowing intervals that may otherwise widen as a result of 

propagation (Borsotto et al., 2006).  Readers are directed to Borsotto et al. (2006), 

Bedford and Cooke (2002), Congdon (2003), Hanea, Kurowicka, and Cooke (2006), 

Koller and Friedman (2009), Gelman et al. (2004), and Gamerman and Lopes (2006) for 

more detailed descriptions of the sampling methodologies available for use in BBNs. 

 Examples of BBN use for probabilistic causal modeling in an aviation safety 

context are few, and the review of literature on the subject revealed only one study with 

substantial commonality to that proposed here.  Lechner and Luxhøj (2005) conducted 

case studies of three specific RI accidents using the Aviation System Risk Model 
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(ASRM) described by Luxhøj and Coit (2006) and intended to supplement fault and 

event tree models by representing interdependency and dynamic, interactive causation 

using BBN modeling.  Lechner and Luxhøj (2005) used the Human Factors Analysis and 

Classification System to map influence diagrams and the structure of a BBN for the three 

accident case studies of interest.  The authors address the rarity of events by asserting that 

the case study approach is in fact generalizable to the broader population of RI events.  

While there is demonstrated merit to the case study method of evaluating causal structure, 

it can also be construed that reliance on past events is inherently a reactive, forensic 

process.  In the case of Lechner’s and Luxhøj’s study, case studies are warranted because 

the research sought also to evaluate the impact of mitigation strategies after the fact.  In 

the present research, where it is suggested that causal structures must first be understood 

in a dynamic, holistic setting, case studies artificially restrict generalizability and limit the 

extent to which uncertainty is accounted for in determining causal interactions of future 

RI events.  It is this differentiation that supports the need for methodology described here. 

 In addition to Lechner and Luxhøj’s work, a study by Morales, Cooke, and 

Kurowicka (2008) stands out among the literature as having particular bearing on the 

present research.  In describing causal modeling methods for air transport, the authors 

utilize BBNs, building the models, as did Wang (2007), on the basis of more traditional 

PRA tools such as ET and FTA.  Their use of BBNs focused primarily on human error 

and probabilistic influence on error by a complex system of interdependent factors.  This 

is relevant not only because of the relationship of human error, but because of the 

successful use of BBNs as a tool for causal inference in an air transportation setting.  

Also focusing on causal modeling in transportation, Hanninen and Kujala (2010; 2012) 
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sought to evaluate ship-ship collision causation using BBNs.  The authors note in their 

conclusions about the success of the model that “a Bayesian network causation 

probability model also provides the means to examine how the underlying factors 

influence the collision probability” (Hanninen & Kujala, 2012, p. 32).  Although this 

study addressed ships, not aircraft, the validity of BBNs as a tool for discovering paths or 

nodes of influence among a complex web of variables and their underlying parameters is 

clear. 

Theoretical Considerations 

Perhaps the element most often overlooked or underestimated in the creation of 

probabilistic models, including BBNs, is the theoretical architecture underlying the model 

itself.  Theoretical concerns in the present research are in the form of defining the 

construct of study, identifying and codifying causal theory, and understanding the 

theoretical applications and limitations of the data generation process.  These must each 

be addressed comprehensively before a model can be developed, tested, or deployed with 

any measure of success. 

Causal theory.  Causation is revealed in the conditional interdependencies that 

characterize an underlying structure of data (Pearl, 2009).  In frequentist statistical 

analysis, covariation, not causation, is the basis upon which inference is made.  In the 

present context though, a more natural inferential model is proposed within the Bayesian 

framework.  Temporal precedence is a reasonable, if not implicit indicator of causation, 

but it is not required.  Intransitive dependencies also exist that reflect on the natural game 

of induction the researcher is often forced to play (Pearl, 2009). The directed acyclic 

graphs discussed previously serve as a foundation for discovering causal structure in this 
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way, but the acyclic structure that defines the graph must be derived somehow from 

observation, however limited.  To inform the construction of the acyclic structure of 

parent and child nodes, it is possible to employ a familiar technique from PRA, the fault 

tree. 

In FTA, an event sequence is represented based on the relationships between 

pivotal events and consequences.  In the context of fault trees (FTs), system perturbation 

is captured by initiating events (IE), pivotal events (PE), and end states.  Fault trees, as 

shown in Figure 10, can be useful in modeling complex pivotal events, but non-binary 

event outcomes make it infeasible to rely solely on FTs for modeling of dynamic system 

behavior (NASA 2002; Roelen et al., 2003).  It is not difficult to see the relationship 

between the structure of the FT and a BBN, and the FT may be used as a basis for node 

selection in a BBN, though it is by no means the only way to arrive at the structure of the 

BBN. 

Although the literature suggests that FTs may be used as a method of populating 

the BBN acyclic graph, it is worth noting that FTs quite often are very heavily focused on 

 

 
Figure 10.  Fault tree. 
 



46 
 

 
 

failure from an engineering perspective (NASA, 2002).  In and of itself, this does not 

dilute the effectiveness of an FT, but from the perspective of creating an inclusive causal 

model, multiple domains must be considered as part of the construction of causal theory.  

On the surface, this idea is simple enough, but one must bear in mind that it requires the 

merging of two models that are philosophically different ( Mosleh, Dias, Eghbali, & 

Fazen, 2004; Roelen et al., 2003).  The engineering approach described in the discussion 

on FTA is an effective structure for the identification of failure paths in a system, but it 

does not account for what Reason (1997) calls organizational accidents.   

To this end, the extension of the research by Joslin, Goodheart, and Tuccio (2011) 

is appropriate in that it addresses a “holistic understanding of the contributory elements 

of runway incursion incidents” outside of the ordinary constraints of ET and FTA (p. 2).  

This holistic perspective addresses accident causation not only from the mechanistic 

framework of discrete pathways of failure, but also from the perspective of management 

factors, such as illustrated in Rasmussen’s (1997) model of functional abstraction (Figure 

11).  Of course, as Mohaghegh-Ahmadabadi (2007) and Roelen et al. (2003) prominently 

note, the organizational and engineering approaches, which could arguably be described 

as being qualitative and quantitative, respectively, must be somehow combined in the 

model structure if it is to be truly encompassing of the explicit and latent factors that 

interact to create an accident as is the objective here.   

Wang (2007) discussed the importance of considering the total environment 

within which a system operates in a comprehensive model.  If dynamic interactions are 

evaluated for risk and causal structure separately, how is one to combine disparate  
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Figure 11.  Migration of behavior toward unacceptable performance (Rasmussen, 1997). 
 
 

methodologies?  Wang (2007) proposes a hybrid causal model that captures the complex 

interactions of a system with an environment comprised of regulatory, physical, and 

socio-economic components as shown in Figure 12.  To create such a model, Wang 

(2007) began with basic PRA tools such as event sequence diagrams and extended them 

to also interact with Bayesian networks.  Pai and Dugan also proposed a hybrid causal 

model that captured the complex interactions of a system with an environment comprised 

of regulatory, physical, and socio-economic components as shown in Figure 12.  Fault 

trees and similar methods are a graphical representation of logical semantics that allow 

reasoning about causal paths to failure, but as are many traditional PRA methodologies, 

they are often static and limited to binary probability states (Dugan, Pai, & Xu, 2007). 
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Figure 12. Interaction between systems and environment (Wang, 2007) 
 

 
Used alone, and even in interaction with BBNs, traditional tools such as event and fault 

tree analysis are not capable of analyzing causation dynamically and across domains.  As 

discussed previously and as illustrated in the literature, BBNs can accomplish this, and 

they are flexible to inclusion of traditional PRA methodologies as a means of building the 

model structure.  Once a structure has been created, the matter of populating network 

nodes with data must be addressed. 

Data generation.  Because obtaining data collected by authorities such as the 

FAA is addressed in the Joslin et al. (2011) study design, it is unnecessary to expand 

upon it in great detail here.  The emphasis of the Joslin et al. (2011) methodology is on 

reviewing data in a mixed-method framework, relying in part on expert raters to evaluate 

pilot self-reported narratives and code them (but not rank) in terms of causal contributors.  

This method is appropriate because it prioritizes qualitative information based on the 

collection method, and uses it to enhance the inferences that would ordinarily be drawn 
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only based on quantitative information.  For more information on the data available 

through the NASA Aviation Safety Reporting System (ASRS) and the methods for 

extraction of RI data from this information, readers are directed to Joslin, et al. (2011). 

While the coding scheme outlined by Joslin et al. (2011) is useful as a starting 

point for RI study in that it identifies thematic causal elements, the resolution of the data 

prove insufficient as a sole source for derivation of probability distributions as are 

required in BBNs.  As a means of achieving this level of granularity, the low frequency 

of these events requires supplementation of data, and in this case, expert elicitation is 

appropriate.  In the Bayesian context, existing data is used to establish the prior belief 

about the distribution of the unknown, and expert opinion is solicited to inform and 

update posterior probabilities as the model is deployed.  Expert opinion can of course be 

used to establish a prior in the same sense as the FAA data can, and the specifics of this 

implementation are beyond the scope of this paper.  In either event, the method 

by which expert information or opinion (purposely identified as distinct concepts, as in 

Kaplan (1992)) is collected, structured, and aggregated must be carefully considered in 

order to limit bias and propagation of erroneous data throughout the model. 

Expert Elicitation 

Insufficient or unobtainable data has led to the development and use of 

probabilistic risk and safety assessment in a variety of fields, from nuclear power 

(DeWispelare, Herren, & Clemen, 1995) to public health (Hoelzer et al., 2012; Knol, 

Slottje, van der Sluijs, & Lebret, 2010), and security (Levine, 2012).  Cooke (1991) 

references Plato’s allegory of the cave in his description of expert elicitation as somewhat 

of a contradiction in the scientific world (p. 3).  In his parable of the cave, Plato describes 



50 
 

 
 

the evolution of knowledge from its lowest orders of imagination and belief to episteme, 

the highest levels of knowledge, separating these strata with his so-called divided line, 

shown in Figure 13 (Heidegger & Sadler, 1988).  Although the process of expert 

elicitation could be supposed to deal predominantly with the visible realm of illusion of 

belief, Plato himself reasons that in discussing these abstractions often and deeply 

enough, it is possible to eventually achieve knowledge of what he often refers to as forms 

(Heidegger &Sadler, 1988).  With this in mind, this research and the body of knowledge 

suggest that thorough expert elicitation knowledge can evolve toward new solutions 

while maintaining scientific rigor. 

 

Knowledge (Episteme) Opinion (Doxa) 
Intelligible Realm (Forms) Visible Realm (Substance) 
A B C D 

Pure thought 
(gnosis) 

Reason (dianoia) Belief (pistis) Illusion (eikasia) 

Figure 13.  Plato’s divided line (adapted from Heidegger and Sadler (1988)). 
 
 

Support for expert elicitation.  The limitations in both resolution and 

availability of RI data discussed previously establish that in order to perform more 

detailed analysis of the problem, data sources outside those conventionally used in this 

regard must be explored.  When data are sparse, the literature demonstrates that a 

scientifically structured and mathematically transparent method is a robust means of 

assessing uncertainty and cumulative probability, both of which are important elements in 

the study or RI events and the causal factors and interactions that lead to them.  Because 

expert elicitation is a fundamentally “interdisciplinary” method, it is particularly well 
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suited to the investigation of complex phenomena with causal influences that extend 

across domains, such as is often the case for RIs (Knol et al., 2010, p. 27).   

Its utility and multidisciplinary applicability notwithstanding, the true scientific 

value of expert elicitation is, as it is with almost all analytical methods, dependent on 

methodological appropriateness.  Some current methodologies, such as the consensus-

based methods used in the CAST studies discussed earlier, approach this issue directly 

but remain open to scrutiny because of the somewhat black box nature by which expert 

opinion is gathered and combined.  Within the existing body of knowledge, alternative 

means for elicitation and aggregation of expert opinion exist, and the following 

discussion reviews techniques most applicable to the study of RI events in a Bayesian 

network context. 

The continuously variable structure of airspace, technology, system capacity, and 

even training paradigms makes it impractical to assess the probability of RI events in the 

frequentist sense, where probability is treated as the long-run tendencies of events that 

will eventually converge upon the true proportion of a population.  Instead, the Bayesian 

interpretation of probability as a degree of belief is a uniquely appropriate method, where 

past experiences and knowledge of the likelihood of events can be expressed in terms of a 

prior distribution function. 

In the context of the research presented here, these prior distributions are 

established as an expert-elicited informative prior.  Though some criticism has been 

leveled at this technique (e.g. Brooker, 2011) on the basis of what Gill refers to as the 

“supposedly personal-subjective nature of priors”, it is suggested that very few, if any, 

would comfortably approach any model or its related specifications without at least some 
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cursory prior understanding (Gill, 2008, p. 136).  That said, priors vary from flat, non-

informative (uniform distribution) to those that are strongly influential.  In any case, 

accounting for the existing scientific knowledge in the field is addressed in the present 

study as a matter of scientifically structured expert elicitation. 

Methodological review.  Though Brooker (2011) and others have questioned the 

mechanisms on which expert elicitation is based, the methodology has been empirically 

established over a number of independent studies at the Technical University of Delft in 

The Netherlands.  The experiences there have shown the utility of the technique, and 

have answered some of the questions that plagued the theories early on as a result of the 

rarity of available studies for review.  With the benefit of substantial experience in 

elicitation and aggregation models, the following observations have been made (Cooke, 

2004, p. 317):  

1. Experts don’t mind performance measurement.  

2. Experts are leery of ‘non-objective’ or psychologically based methods, and 

are suspicious of the ‘academic sandbox’.  

3. Experts have no problem understanding (subjective) probability and no 

problem quantifying degree of belief in terms of quantiles of a subjective 

probability distribution  

4. Experts are not uniformly overconfident, though overconfidence certainly 

does arise.   

5. It is always possible to find suitable calibration variables.  

6. In general, though not always, the performance based combination of expert  
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judgments performs better, in terms of calibration and information, than an 

equal weight combination and also better than the best expert.  

A separate problem to the elicitation of information from multiple experts is 

addressed by Wu, Apostolakis, and Okrent (1990), who note that “In PRA, an important 

issue related to knowledge representation under uncertainty is the resolution of 

conflicting information or opinions” (p. 170).  Considering that the impetus for using 

expert judgment is that substantial scientific uncertainty impacts on a modeling process, 

it is reasonable to assume that the experts themselves are not certain.  As such, agreement 

among experts is almost certainly unattainable.  However, some means by which 

differing expert opinions may be translated into a structured consensus of sorts must be 

specified if the elicited information is to be treated as data.   

The elicitation and aggregation of expert opinion generally falls into two 

methodologies: those characterized as behavioral approaches and those that rely on 

mathematical calculus, whether in non-Bayesian or Bayesian models (Clemen & 

Winkler, 1999).  While behavioral approaches are useful from a broad, common-sense 

perspective, they generally fail to satisfy the conditions of rational consensus that 

scientific, structured expert judgment requires, more specific elements of which are 

included in Appendix C and can be found in Cooke and Goossens, 2006.  It is generally 

agreed (Clemen & Winkler, 1999; Lin & Bier, 2008; Mosleh et al., 1988) that 

mathematical methods for aggregation produce better results because of this adherence to 

the principles of scientific inquiry. 

The natural question that arises in the context of this research is whether or not a 

Bayesian approach can also be used in the process of expert elicitation.  Procedures that 
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approach the problem of elicitation and aggregation from a Bayesian perspective have 

been presented (Clemen, 1986; Clemen & Winkler, 1999; Ouchi, 2004); however, 

Bayesian methods can be problematic in practice.  As one example, many Bayesian 

elicitation and aggregation models assume that experts are independent.  Furthermore, the 

use of the Bayesian paradigm in elicitation and aggregation requires that the practitioner 

formulate joint distribution over the variables of interest, the seed variables used for 

calibration, and the experts’ distributions over those seed variables and the variables of 

interest (Cooke & Goossens, 2006).  This is not an impossible task, but it is 

mathematically complex, and is subject to the difficulties of overcoming resistance to the 

group decision problems that arise because a group of rational individuals cannot be 

treated as a single rational individual (Cooke, 2009).  Though the Bayesian approach 

meshes harmoniously with the present research from a theoretical standpoint, it is 

impractical from an operational one.  Instead, Cooke’s (1991) classical model provides a 

more readily workable procedure for eliciting and combining expert opinion.  Cooke’s 

classical model has been applied in practice over dozens of studies conducted in 

conjunction with the Technical University of Delft, and its value has been established 

empirically (Cooke & Goossens, 2006). 

The classical model.  The classical model operationalizes the mathematical 

principles for combination of probabilities such as those summarized by Genest and 

Zidek (1986) and is perhaps the most widely used method by which expert judgments can 

be combined (Clemen, 2008).  Cooke (1991) borrows from Savage’s theory of Rational 

Decision as a basis for the probability calculus that describes many of the ideas 

surrounding uncertainty.  The classical model has been demonstrated in a variety of 
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applications including food safety (Brown et al., 1997), finance (Bakker, 2004; Qing, 

2002), geologic and infrastructure erosion (Brown & Aspinall, 2004), public health 

(Tyshenko et al., 2011; Winkler et al., 1995), volcanic eruption assessment (Aspinall & 

Cooke, 1998), equipment failure (Bedford, Quigley, & Walls, 2006; Akkermans, 1989), 

and nuclear risk assessment (Goossens & Harper, 1998).  In some social science contexts, 

the fact that Cooke’s model purposely does not capture consensus in its aggregation of 

results may be viewed as a disadvantage (Albert et al., 2012); however, the present 

approach fits well with the classical pooling approach that has “stood the test of time” 

(French, 2011, p. 183).  The classical model (Cooke, 1991) meets the theoretical and 

operational requirements of the research at interest in that it uses real data to evaluate 

experts and assign weights to their assessments (Clemen, 2008).  Its unique approach to 

empirical control and performance-based expert scoring lends an empirical formality to 

the elicitation process, contributing to the transparency with which a model such as the 

BBN discussed here may be developed.  The algorithms for elicitation and aggregation of 

opinion within the classical model are presented in detail as Appendix C. 

Summary 

RI occurrence in the U.S is a problem that has been well established in terms of 

severity and frequency.  While a number of mitigation strategies have been demonstrated 

with promising results, the rate at which RIs occur in the U.S. airspace system has 

increased over the past several years and continues to increase in the face of concerted 

efforts to stem this trend.  Investigation of RI causation has typically focused on 

individual factors within isolated domains of knowledge, despite a general recognition 

that these factors do not operate separately, instead interacting dynamically in the 
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sequence of events leading to an undesired event (Vernaleken, Urvoy, & Klingauf, 2007).  

As the literature demonstrates, existing studies are limited by the following gaps: 

• They generally address only one method of determination of causal factors 

rather than examining causal interaction. 

• Research of RI causation is typified by a focus on one domain, rather than by 

a holistic approach that addresses the needs of multiple stakeholders. 

• A reliance on case studies or deterministic estimates of frequency are common 

in the RI literature, and most studies lack a probabilistic approach that 

effectively captures uncertainty. 

• Many efforts at understanding RIs look at individual causal factors and map 

intervention strategies that are equally limited to discrete events rather than 

designed to work within a complex sequence of interacting factors. 

To address the dynamic nature of RI causation despite limited data, stochastic 

processes such as Monte Carlo simulation are useful.  However, such methods do not 

capture conditionality, nor do they incorporate uncertainty in the context or rare events or 

sparse data.  To this end, Bayesian belief networks are an appropriate tool for 

investigating causal pathways to RI events.  Such methods also support more robust 

decision-making through sensitivity analysis and evaluation of intervention strategies. 

Because RIs are relatively rare events from a statistical analysis standpoint, a 

structured means of data generation is necessary so that a network model can function.  

To accomplish this, expert elicitation is an appropriate methodology.  Expert elicitation 

can be used to express uncertainty in the language of probability, and it can be conducted 

such that scientific scrutability is maintained.  In combination, these methods provide a 
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means of investigation into the causal interactions that lead to RIs that is integrative, 

flexible, and dynamic, and that will allow more focused strategies to combat them 

through a fuller understanding of their structure.  
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CHAPTER III  

METHODOLOGY 

A review of the relevant literature supports the use of modeling the complex and 

dynamic interactions that lead to RI events.  However, as has also been demonstrated in 

the literature, many investigations into the causation of RIs are one-dimensional.  As a 

means of examining causal patterns across theoretical domains and in the face of 

uncertainty and sparse data, predictive, simulation-based modeling through BBNs is a 

more holistic method than what has been used to date, and it is flexible to system 

variance and technological change.  The purpose of this study is to evaluate the feasibility 

and effectiveness of Bayesian belief network models, supported by structured expert 

elicitation, as a tool to examine causal factors and dynamic causal paths to RI events in 

the U.S. 

As discussed previously, this study addresses two questions: What are the 

interacting causal factors that lead to RIs in the U.S.?  And, can runway incursions in the 

U.S. and their dynamic causal factors and interactions be modeled through the use of a 

Bayesian belief network supported by expert-elicited data?  The methodology outlined 

herein is directed at answering these questions as fully as possible. 

Research Approach  

The methods utilized here are more appropriately described as an algorithm, 

wherein three structured phases of research are undertaken toward the eventual objective 

of developing a functional predictive model.  The phased approach described here is 

iterative and additive in large part, though some elements of the research approach may 



59 
 

 
 

be accomplished concurrently.  While the following discussion addresses each phase 

independently, these phases were naturally subject to some temporal overlap.  

Phase 1: Runway Incursion Data and Causal Factors 

Although quantitative data describing occurrences of RI exist, the resolution with 

which these events are described is limited, and what information is available fails to 

capture the emic, or insider, perspective.  Whereas the more common etic perspective 

looks at RI events in the more general sense, investigation of RIs from the emic 

viewpoint provides a more specific understanding of the conditions and impact of RI 

events and the causal interactions that lead to them (Ng & Earley, 2006).  To facilitate 

this emic view and to more holistically examine the causal structure of RI events, textual 

data from open-ended narratives (ASRS reports) were evaluated by a panel of raters to 

determine causal factors for each RI within the sample.  This merging of emic and etic 

perspectives toward a fuller contextual understanding of RI events was accomplished as a 

mixed methods process, and in the context given here, was approached as an explanatory, 

sequential element of the research as a whole.  The qualitative rater data were combined 

with quantitative FAA RSO data and the literature review and examined in a multi-

modal, quan→QUAL analytical process. 

Data collection and generation.  The data collection sites for this study were 

from two sources of publically available U.S. historical data:  RI pilot deviation (PD) 

type incidents from the FAA RSO database, and pilot-reported pilot accounts of RI 

incidents from the NASA ASRS database.  Consistent with the sampling constraints 

described herein (to limit the population to the period to which the current RI definition 

applies), the data were considered only if they stemmed from an occurrence within the 
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period inclusive of calendar year 2008 through calendar year 2012.  Using basic database 

query strings, the data were subjected to a specific, targeted search string in order to limit 

the sample to PD-type RI incidents.  Using a technique similar to Joslin, Goodheart, and 

Tuccio’s (2011) expert rating of RI event causation and severity, the data were collected 

via a spreadsheet template and drop-down menus were utilized to facilitate selection 

accuracy.  As in Joslin, Goodheart, and Tuccio (2011), the following procedure was 

followed: 

a) Unique text for identification was recorded for each ASRS case.  This helped 

ensure data entry accuracy by guarding against a rater recording data in the wrong 

row. 

b) Causal Factor Taxonomy of ICAO 9870, Appendix D, Manual on the Prevention 

of Runway Incursions were used as the set of available causal factors for rater 

selection.   

c) ASRS cases were sorted using random number generation. 

d) A limited number of ASRS cases were evaluated per day to prevent expert rater 

fatigue. 

e) Raters conducted their evaluation in a "single pass" for each case without going 

back to change or re-evaluate causal factor assignment. 

f) Raters were limited to a maximum of five causal factors per report as a means of 

constraining the volume of data collected, and consistent with the pre-test results 

of the Joslin et al. study. 

g) Cases were marked as an “exception” if they did not meet the criteria 

(FAA/ICAO definition) for a runway incursion or if insufficient data exist. 
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Population/Sample. The data were drawn from the population of U.S. RI events 

(regardless of Federal Aviation Regulations under which an aircraft was operated) as 

recorded by the FAA RSO and in ASRS reports at airports within the U.S.  These data 

captured all reported RI events in the U.S. for the timeframe of interest and supplemented 

them with all available narrative reports over the same frame, respectively.  Operational 

segment or regulatory part was not differentiated on the basis that a chief objective of this 

research is to maintain a holistic perspective on RI causation, and purposive narrowing of 

operational scope could have unintentionally limited capture of important data points.  

The sampling frame, consistent with the definition of an RI at the time of this study, was 

limited to data from January 2008 up to but not including January 2013.  Within this 

frame, quantitative RSO data included 6,185 RI cases for analysis, including primarily 

ATC-reported RI events and quantitative descriptors.  ASRS data included 87 cases 

reported in qualitative, narrative form by flight crews (sufficient according to Cantor 

(1996) for evaluating rater agreement using Cohen’s kappa) describing RI events to be 

evaluated by subject matter experts for causation. 

Sources of the data/Rater selection.  Data used in this phase of the study existed 

in three forms: RSO RI data and ASRS RI reports, rater-identified causal factors, and 

expert-elicited judgments.  The first data set is publicly available via ASIAS and the RSO 

directly.  Derivation of the expert opinion data is an element of this study, though in this 

first phase it is not intended that expert data will be collected using the same structured 

elicitation process outlined in the following phases.  For this phase only, raters were 

selected using the following criteria as guidance: 

• independence (from one another and the research), 
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• diversity of operational experience, 

• interest in and availability for the project, 

• flight qualifications and experience, and 

• familiarity with RI causation and mitigation strategies in place or in 

development. 

To reduce bias in the selection of the raters, scoring criteria shown in Appendix M was 

used to evaluate potential SMEs and make rater selections based on the prospective 

raters’ submitted biographical information, curricula vitae, and peer nomination.  The 

raters, as described previously, were asked to assign causal factors based on the ICAO 

Taxonomy (ICAO, 2007) to narrative ASRS reports.  In this phase of the research, three 

raters were used as a measure against threats to reliability as experienced by Zuschlag 

(2005) in his review of ASRS reports for a similar purpose. 

Descriptive statistics. In the first phase, which involved identification of causal 

contributions to RI events based on RSO data in combination with expert opinion, 

descriptive statistical analysis was utilized in the form of a frequency count of each ICAO 

causal category used by each rater as well as basic analysis of data from the FAA RSO on 

RI events.  A sort operation of these frequency counts will be used to gain insight into the 

most common causal factors among ASRS reports examined.  Descriptive frequency 

counts also allowed for identification of causal codes not used by any rater in the ASRS 

review process. 

Interrater reliability.  In the context of this study, reliability was applicable 

insofar as it applied to the expert rating of causal contributors in the first phase of the 

research.  To establish interrater reliability, the expert-assigned causal factors were 
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recoded to a numeric value, assessed for normality, and if necessary, transformed prior to 

analysis for reliability using Cohen’s Kappa (Leech, Barrett, & Morgan, 2008).  As in 

Joslin, Goodheart, and Tuccio (2011) SMEs were used to examine the plain-language 

narrative ASRS data and re-code the reporter’s comments into nominal, quantitative data.  

Causal codes and the reliability with which they are assigned by expert reviewers were 

assessed using three methods: union of causal factors, intersection of causal factors, and 

Cohen’s Kappa as demonstrated in and for the reasons described in Joslin et al. (2011).   

Cantor (1996) suggests that assuming an a priori rater agreement of roughly 50 percent, 

and an error margin of 30 percent, 44 cases should be evaluated.  Given that 87 RI cases 

were initially considered by raters, that minimum sample size was met. 

Cohen’s Kappa interrater reliability.  Interrater reliability, the statistical measure 

of agreement, or consistency, between the raters on the same variables, was evaluated 

using a Kappa statistic.  Cohen’s kappa provides a measure of interrater reliability of two 

raters assigning one nominal code to a list of items and ranges between 0 and 1.00 with a 

value of 0.70 generally considered satisfactory (Leech, Barrett & Morgan, 2008).  

Cohen’s kappa is defined by Equation 3: 

𝜅 = 𝑝−𝑝𝑒
1−𝑝𝑒

  (3) 

where: 

 𝑝 is the proportion of units where agreement exists; and 

𝑝𝑒 is the proportion of units that would be expected to agree by chance alone. 

 
Thus, Cohen’s kappa is the agreement between observers (SMEs) adjusted for that 

proportion of agreement that would ordinarily be expected to occur by chance.  Though 
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percent absolute agreement is also commonly used as a measure of agreement among 

raters where multiple levels exist, no provision for level of disagreement or correction for 

chance is available.  Because three raters were presented with 47 possible codes to fill a 

variable response space between 0 and 5 codes per case, the use of a traditional kappa 

measure, such as Fleiss’ kappa or Cohen’s kappa, becomes computationally untenable in 

its ordinary application.  To overcome this issue, a Structured Query Language (SQL) 

query was used to compare raters pairwise for each potential level of match (i.e. 1, 2, 3, 

4, or 5 matching codes across the rater pair).  The actual SQL code used to perform this 

function is presented in Appendix G.  Given the possibility that each rater selected a 

unique set of causal codes, dummy variables were automatically inserted to meet the 

requirement of the statistic that the number of codes being compared be the same.  Using 

the general procedure from Joslin, Goodheart, and Tuccio (2011) for reach rater pair, the 

SQL operation was used to sequentially evaluate matching codes as independent 

operations, with each generating a unique but matching character string between the 

raters.  When matches were not present, a unique string per rater was inserted as a 

placeholder.  At the end of the procedure, dummy ASRS records were inserted to comply 

with Cohen’s procedural requirement of both raters using all possible codes.  While this 

method overcame some basic mathematical limitations of kappa in this application, it did 

not capture the total domain of possible codes.  It does maintain the basic tenet of kappa 

in that chance is accounted for, however limited by the inability to account for all 

possible causal factors. 

To assist in describing the interaction and agreement (or disagreement) between 

raters more accurately, SQL was also used to perform union and intersection functions 
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from the rater responses.  In this instance, union is intended as the total number of codes 

that make up a set across all raters for one case – the number of unique codes.  

Intersection describes the number of codes used by all raters across a single case. 

Union of causal factors.  Because each expert rater was asked to assign up to five 

ICAO causal ratings per ASRS report (see Joslin, Goodheart, & Tuccio, 2011), it was 

possible that many codes could be assigned – up to five codes per rater – if the codes 

were considered as the union of the set.  The union technique provided a distinct list of 

total causal codes per ASRS report as well as a count of how many union codes were 

used per ASRS report across the SME raters. 

Intersection of causal factors.  In contrast to the union operation per ASRS 

report, an intersection of ratings was also assessed for each ASRS report.  The 

intersection identified only those codes used by all raters per ASRS report.  The 

intersection technique generated a list of distinct causal codes per ASRS report used by 

all raters as well as a count of these codes. 

Merging of data streams.  To enable development of a model representative of 

RI causation in the US, the data from the RSO and ASRS reports were combined with 

results of the literature review in conjunction with SME input resulting in a pool of 

potential causal factors.  This set of causal factors of RI events is included in this study as 

Appendix F.  Descriptive quantitative statistics were weighed against review of ASRS 

reports highlighted by the SMEs and with consideration of the existing body of research. 

Phase 2: Belief Network Model Creation  

The initial belief network model structure was generated based on the causal 

contributors identified in the review of RI literature in combination with the causal 
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factors and interactions identified within ASRS reports in the preceding phase.  Once a 

list of causal factors was identified from these sources, an influence diagram as discussed 

in the literature review was developed in preparation for building the BBN.  A panel of 

three experts was utilized to iteratively validate an initial model structure by evaluating 

the model for completeness and accurate causal interaction and direction.  Because of 

their familiarity with the model and purpose of the research, the SMEs used for ASRS 

case review in phase one of the study were also used for review of the BBN model to 

ensure it accurately reflected the combined knowledge of the relevant domains. 

 Constructing the network model.  Building a BBN is a process of structuring 

the graphical model and defining the causal dependencies within the graph itself, and this 

process can be generally described as a qualitative one.  As discussed, the model structure 

began with an influence diagram.  This process was a means of identifying the “causal, 

functional, or information relations among the variables” (Kjaerulff & Madsen, 2008, p. 

117).  The variables of interest in the present research were identified from the literature 

in conjunction with the first phase of the methodology outlined here.  In the case of each 

variable set to represent a node in the BBN model, a unique set of mutually exclusive 

events was described.  Examples of such events or states are found in the causal literature 

and include items such as intersecting taxiways (yes or no), restrictions to visibility (yes 

or no), AMASS system in place (yes or no), etc.  Variables within the model were 

identified as problem variables of interest, information variables for which data may be 

known (background or outcome variables), and mediating or intervening variables, all of 

which are connected by edges that represent notions of causality, or as previously 

discussed, “the way the world works”  (Koller & Friedman, 2009, pp. 52-53).  Figure 16 
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illustrates a simple, exemplar causal network with each of these variable types 

represented in the general directionality of causation (Kjaerulff & Madsen, 2008; Pearl, 

2009).  Parenthetically noted in each node within Figure 14 are exemplar variables that 

apply to RI causation.  Special attention during the model building phase was paid to 

inclusion of variables that may not be of direct interest, but that serve an important 

mediating function and whose exclusion would adversely affect the accuracy of model 

results (Bedford & Cooke, 2001; Kjaerulff & Madsen, 2008).  Figure 14 contains an 

example of this type of variable by including visibility restriction as a mediating variable 

between rain and crew distraction and the outcome variable, the inadvertent crossing of 

the hold short line.  Where data were known for network model nodes, probability 

distribution functions were fitted to the data and integrated into the model building 

process (Bedford & Cooke, 2001; Darwiche, 2009; and Luxhøj, 2003).  The  

 

 
Figure 14.  Basic BBN causal interaction. 
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conditional probabilities that correspond to the random, unknown variables of interest in 

the network model were elicited as described in phase three; however, if the model 

structure informing the elicitation protocol is incorrect, the risk that elicited information 

is inaccurate increases.  This being the case, the model structure was finalized through the 

iterative, expert review-driven process described here prior to elicitation of expert 

opinion for model quantification (Kjaerulff & Madsen, 2008).  This process followed the 

sequential alpha-level, beta-level, and gamma-level model process described by Marcot, 

Steventon, Sutherland, and McCann (2006) and the specification of dependence structure 

described by Hanea, Kurowicka, and Cooke (2006).  As suggested by Marcot et al., the 

model was sequentially revised according to SME comments generated through formal 

review based on the principles of the Delphi Method (Landeta, 2006).  Like the Delphi 

method process, SMEs confidentially reviewed the model structure and answered a set of 

structured questions.  They were provided feedback based on the combined responses of 

other SMEs, and were given the opportunity to refine their opinions on the structure and 

content of the model.  Diverging somewhat from Kjaerulff and Madsen (2008) and 

Marcot et al. (2006), model iterations were made successively more compact to allow for 

more efficient verification and validation, as well as elicitation of probability and rank 

correlation functions, with a parsimonious variable set and structure.  Appendix H gives 

the protocol utilized during the model review sessions.  For the scope and purpose of this 

study, and to minimize measurement errors and error associated with validation 

traceability through the dependence structure, the model was condensed to its most basic 

structure.  While still maintaining adequate resolution, parsimony was achieved using 

further input from SMEs coupled with the previously discussed RSO and ASRS data.  
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This additional input was again drawn from a structured SME protocol as in the 

construction of the more granular model. 

Verification and validation of the BBN model.  Once the BBN structure was 

identified as in the preceding section, the variables were checked for conditionality and 

directionality of the edges that connect them (Bedford & Cooke, 2001).  In the present 

study, the model structure as shown in Figure 14 was initially created by the researcher as 

discussed previously, and the structure as well as the directionality of connecting edges 

(dependence and independence relationships) was evaluated by domain experts to ensure 

that posterior probabilities are correctly indicated.  Construction of the model was 

approached as a continuous process, wherein the structure underwent revision throughout 

review of the literature and the data collection processes outlined in phase one.  Structural 

issues such as unintended directed cycles were evaluated within the UNINET software 

package, though this was also a function of the progressive review process.  In the 

preceding discussion, moralization of the DAG was briefly discussed in the context of 

examining conditional independence.  In the present case, the inferential engine for 

analysis of the network model is native to the software package and graphically 

manipulating the model is unnecessary (Cowell, 1999).    The structure of the network 

model was such that domain-specific nodes in the model could be separated within 

UNINET, and the networks evaluated separately against available data and SME 

judgment.  This feature allowed for simplified error tracking across the BBN dependence 

structure.  Once the model was refined through SME input, it was tested using simple 

probability distribution functions, dummy data ranges, and consistent sampling 
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constraints (in this case, 30,000) to examine interacting nodes as well as the model output 

under controlled, artificial conditions. 

The BBN model was created in the UNINET software package, a screen shot of 

which is given in Figure 15.  UNINET has been used in a variety of modeling studies that 

involve the creation of BBNs for simulation, including aviation safety applications (Ale 

et al., 2009; Napoles, 2010).  Other software packages for BBNs, HUGIN (Handling 

Uncertainty in General Inference Network) Expert A/S and BayesiaLab, were evaluated 

and salient features are summarized in Table 6.  While Figure 15 shows the basic 

workspace available in UNINET, Figure 16 is an example of the complexity of a model 

with a large number of variables as well as fault and event trees inserted as part of the 

BBN developed within the UNINET platform. 

 

 
Figure 15.  UNINET software for Bayesian belief networks. 
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Figure 16.  Sample BBN with many nodes and edges. 
 

 
Table 6.  Software Packages Evaluated for BBN Development. 
 

Name Graph Types Inference Continuous Nodes 
BayesiaLab Undir/Directed Joint Tree, Gibbs Yes 
HUGIN Expert A/S Undir/Directed Joint Tree Yes 
SamIam Directed Recursive Conditioning Some 
UNINET Undir/Directed Vine-Copula/Gaussian Some 

 
 

The UNINET package used to facilitate this phase of the proposed research 

utilized the copula-vine approach (Hanea, Kurowicka, & Cooke, 2006; Napoles, 2010) to 

reduce the computational assessment burden ordinarily associated with large, complex 

network models and to allow for sampling and analysis through Monte Carlo algorithms, 

drawing 32,000 samples by default or as specified by the user (Lighttwist Software, n.d.).  

The copula-vine approach was appropriate in this context because it generalizes the 

Markov chains often used in high-dimensional problems, and it relies on rank correlation 

(as discussed in phase three) as a dependence measure of the copula between two 
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variables (Bedford & Cooke, 2002).  In addition to simplifying the sampling process, this 

removes assumptions of normality often associated with discrete BBNs, and more closely 

follows the distributions found in factors associated with RI causation.  The sampling 

process generates an output from the network model, and though this falls within the 

broad scope of the phase of research methodology described here, the sampling and 

analysis of the BBN was not possible until the elicitation process was completed and 

expert data was processed and populated in UNINET to quantify the model.   

Phase 3: Expert Elicitation and Aggregation  

Representing the third phase of the research is the selection and elicitation of data 

from a group of experts.  To enable this approach, Cooke’s classical model guided the 

process of expert elicitation (Cooke, 1991).  This model structures the elicitation process 

such that expert judgment is treated as scientific data and is thus formalized in the 

decision-making process through rational consensus.  The Classical model is “essentially 

a formal method for deriving the requisite weights for a linear pool in which…these 

weights are expressed as the product of an individual’s calibration and information 

scores” (Aspinall, 2011, p. 3).  The aggregation process rewards performance, rather than 

consensus, and through the application of a strictly proper scoring rule avoids the pitfalls 

of experts who may intentionally or unintentionally attempt to game the system.  This 

formalization of the elicitation process is advantageous in its transparency, and Appendix 

C details the mathematics that underlie the algorithm for combining the sometimes 

dissimilar opinions of experts to derive a rationally-derived decision maker.  

Data generation and sources. The first step in Cooke’s classical algorithm is the 

selection of experts who, through the structured elicitation process of the classical model, 
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provide probability-based estimates of uncertainty to quantify the BBN.  For the purposes 

of this research and as suggested by Cooke and Goossens (1999) and Renooij (2001), 

experts were solicited for the study on the basis of the literature review and based on 

cumulative experience in the field of aviation as well as on operational and theoretical 

knowledge of the relevant domains that affect RIs.  This initial identification of an expert 

pool was supplemented as outlined in the following process description.  Experts were 

also expected to be conversant in basic probability calculus such that they are 

comfortable expressing their opinions in terms of probability distributions by way of 

quantile assessments.   

Expert selection.  While the meaning of the term expert may be subject to 

interpretation, in the present context, Wood and Ford’s (1993) observations about the 

differentiation in problem solving between so-called experts and amateurs offered some 

guidance in this regard.  In particular, Wood and Ford’s assertion that experts base their 

opinions less on declarative knowledge than on perceived relationships was important 

given that elicitation is presented here as an alternative or supplement to scarce data.  

Cooke and Goossens (1999) suggested that an expert is “a person whose present or past 

field contains the subject in question, and who is regarded by others as being one of the 

more knowledgeable about the subject” (pp. 29-30).  Expert selection was based on the 

following general criteria suggested in the EU Procedures Guide for Structured Expert 

Judgment: 

• reputation in the field of interest, 

• experimental experience in the field of interest, 

• number and quality of publications in the field of interest, 
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• diversity in background, 

• awards received, 

• balance of views, and 

• interest in and availability for the project (Cooke & Goossens, 1999, p. 30). 

Though it is mentioned here, the nature of the expertise required for this study did 

not lend itself to experts having a number of publications or experimental experience, and 

thus these criteria were approached as guidelines, but not requirements.  Once potential 

experts were identified they were contacted by electronic mail and phone to gauge 

interest in participation in the elicitation process.  Experts for consideration in this 

research consisted of both general practitioners of aviation and aviation safety and 

specialists in RI causation and mitigation.  During the recruitment process, expert 

candidates were interviewed with respect to their own area of expertise as well as for 

recommendations of other potential experts (James et al., 2010; O'Hagan et al., 2006).  

Where it was not possible to achieve complete impartiality among experts, all practical 

efforts were made to clarify any potential conflicts of interest.  Cooke and Goossens 

(1999) suggest that a minimum of four experts be chosen for any subject area, and that a 

good rule of thumb for expert panel size is at least eight members with a representative 

diversity among participants.  Three domains were identified previously as primary to the 

subject of RI research: infrastructure/organizational factors, human factors, and 

technological or engineering factors.  Consistent with Cooke and Goossens (1999) 

recommendations, at least two experts with specific knowledge in each domain were 

engaged for the expert judgment process.  That three general domains emerged in the 

literature review is misleading to an extent, at least as it effects selection of SMEs.  



75 
 

 
 

Appendix D provides general biographical information for the experts used in this phase.  

Review of this background information reveals that the panel of experts had extensive 

and varied experience from the flight crew, aviation safety, airport operations, and air 

traffic perspective.  Though Cooke and Goossens (1999) suggest that a larger number of 

experts is desirable, O'Hagan and Oakley (2010) caution against groups larger than five 

because of the unnecessarily lengthy discussions that may result.  In any event, the 

minimum size of the expert panel identified herein was bound by the need for appropriate 

diversity across relevant domains, and was the subject of evaluation by the researcher in 

conjunction with other experts.   

Once a pool of potential experts was identified, each was informed of the general 

processes, procedures, and expected outcomes of the study, and a curriculum vitae (CV) 

for each SME was obtained and retained by the expert as confidential, but available in de-

identified format for review as necessary.  Expert CVs were reviewed based on the 

aforementioned criteria to determine a final list of potential panel members.  Because 

human subjects were involved in the elicitation process, Institutional Review Board 

(IRB) approval was sought concurrently, and each potential expert was advised of the 

conditions and risks of participation, including: 

• the subject areas for elicitation, 

• compensation structure, 

• confidentiality, 

• intended distribution of study results, and  

• feedback of elicitation results. 
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IRB board approval was obtained in accordance with the most recently adopted 

guidelines for Embry-Riddle Aeronautical University and in accordance with the IRB 

Human Subject Protocol Application Form included as Appendix A to this dissertation.  

Appendix B is an unsigned copy of the informed consent form used in the recruitment of 

raters and experts.   

 Upon agreement to participate, each expert was asked to execute a consent form 

in accordance with IRB guidelines, and executed forms were retained by the researcher.  

Related to the issue of confidentiality is the use of experts’ names within the study results 

and associated material.  Protection of experts’ reputations is a legitimate concern, and 

the use of names and affiliations in the present research must be carefully weighed as a 

balance between protection of identity and transparency of the elicitation process.  To this 

end, Cooke and Goossens (1999) propose the following in the EU Procedures Guide for 

Structured Expert Judgment, which were, with the exception of publication of names and 

affiliations due to privacy concerns, adopted in this study and communicated to SMEs: 

• Expert names and affiliations are published in the study. 

• All information, including expert names and assessments, is available for 

competent peer review, but is not available for unrestricted distribution. 

• Individual assessments are available for unrestricted distribution, assessments 

are not associated with names but identified as “expert A, B, C,…” etc. 

• Expert rationales are available for unrestricted distribution. 

• Each individual expert receives feedback on his/her own performance 

assessment. 
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• Any further published use of the expert’s name requires the expert’s approval 

(p. 31). 

The EXCALIBUR software program, which was developed in conjunction with 

and with support from the European Union, was used to facilitate the classical model of 

elicitation and aggregation (Cooke & Probst, 2006; Ouchi, 2004).  EXCALIBUR 

processes parametric and quantile uncertainty estimates and calculates expert weights via 

the classical elicitation technique.  The software has been used extensively for high-level 

elicitation studies, including such critical risk assessment exercises such as the evaluation 

of eruption risk at Mount Vesuvius, a volcano with the potential to impact millions of 

people (Neri et al., 2008).  Tyshenko et al. (2011) also successfully used the 

EXCALIBUR package in their investigation of the risk of iatrogenic prion transmission, 

as did Dawotola, van Gelder, and Vrijling (2011) with respect to risk assessment for 

crude oil pipelines.  Other elicitation packages exist and were evaluated, including 

SHELF (O'Hagan & Oakley, 2010), ELICITOR (Kynn, 2006), and Elicitator (James, 

Low Choy, & Mengersen, 2010); however, EXCALIBUR provides the most direct 

interface with the classical elicitation method and has seen long-term use in large, 

complex, and varied risk assessment studies (Goossens et al., 2008). 

Structured expert judgment.  Next, each expert was elicited independently to 

express their knowledge and degree of uncertainty regarding potential observations.  It is 

this process, structured as discussed in the preceding section, which allows a joint 

probability distribution to be formulated on the basis of a person’s knowledge and beliefs.  

After selection, experts were trained on basic probability calculus and logic so that they 

were able to express opinions relative to the RI model via probabilistic estimation.  
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Training familiarized experts with the expected format of elicited responses.  Pre-

elicitation training of experts also included expert completion of estimation training 

questions, in which panel members were asked to provide probability estimates in a 

variety of formats to prepare for the formal elicitation process.  This training was crucial 

to the effectiveness and reliability of the elicitation process, and was conducted as a 

formal meeting between the researcher and selected experts either in person or through 

the combined use of telephone and computer-based video conference (DeWispelare et al., 

1995; Mosleh et al., 1988).   

Following training in the basic process of elicitation and in expressing uncertainty 

in the form of probabilistic assessments, a facilitator, in this case the author, ascertained 

explicit distributions for the selected elements of the model based on answers to specific 

questions in the elicitation protocol attached here as Appendix E.  In the classical model, 

questions are based upon target variables, query variables, and seed variables.  In this 

study, target variables and query variables generally coincided, and they represented the 

variables whose values were elicited for inclusion in the network model.  In developing 

these variables for elicitation, dependencies were evaluated and prepared for further 

assessment by domain experts so that probabilistic dependence between variables could 

be identified and accounted for.  Seed variables were those for which values are known to 

the researcher but not the expert, and that were used in the calibration and aggregation of 

expert opinion (Cooke, 1991), and are included in the elicitation protocol in Appendix E.   

Bias is a topic of considerable weight in the expert elicitation literature, beginning 

largely with the seminal work of (Tversky & Kahneman, 1974), which investigated the 

implications of common heuristics employed in the judgment of probability and the 
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biases to which they lead.  Bias is certainly a topic of concern, but (Kynn, 2008) argues 

that much of the statistical research on elicitation since Tversky and Kahneman published 

their research has failed to address new knowledge in psychology that has refuted many 

of the original heuristic-based concerns.  This lapse in collaboration between the 

statistical and psychological communities creates a form of bias in itself wherein 

elicitation researchers may not adequately address the importance of framing elicitation 

questions such that bias is systematically avoided ( Clemen & Lichtendahl, 2002; 

Garthwaite et al., 2005).  After providing quantile estimates for each question, experts 

were allowed to evaluate the implied frequencies and distributions of their responses.  No 

attempt was made to encourage experts to change their estimates, but in some cases, 

experts did alter their responses after they were presented with a distribution or after 

reviewing frequency of events on various scales.  Aside from providing process feedback 

during elicitation to reduce bias, elicitation questions were framed to: 

• encourage rule-based approaches, 

• focus on an expert’s specific domain, 

• incorporate assigned confidence, 

• avoid extreme probabilities, 

• require repetitive sampling of knowledge, and 

• allow for deliberate practice (Kynn, 2008; Martin et al., 2012; O'Hagan et al., 

2006; Renooij, 2001; Renooij and Witteman, 1999; Speirs-Bridge et al.,2010) 

Since probability distributions are the desired outcome of the elicitation process, and 

direct elicitation of rare event probabilities has been shown to increase bias through 

overconfidence (Tversky & Kahneman, 1974; Kynn, 2008), questioning focused instead 
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on interval elicitation.  These intervals were elicited as a four-step procedure as outlined 

by Speirs-Bridge et al. (2010), the defining feature of which is that experts were asked to 

estimate their level of confidence that the interval captures the true value along with 

assessing the lower bound, upper bound, and most likely values.  This questioning format 

was merged with the basic procedures suggested by Cooke (1991) and Cooke & 

Goossens (1999), to maintain the integrity of the classical model. 

 Unique to the study here was the method by which rank correlation and 

dependence information was elicited from SMEs.  Ordinarily, the Classical model 

specifies that rank and dependence information is gathered through questions that closely 

follow the probabilistic calculus used to interpret it.  While this has been demonstrated in 

the literature (Cooke & Goossens, 2006; Morales, Kurowicka, & Roelen 2008), it is also 

the case that experts in more operationally-focused research are uncomfortable answering 

such questions or find the process cumbersome, potentially affecting the quality of 

results.  In this study, experts were first asked to address questions that conformed to the 

typical, Classical format, as in Morales, Kurowicka, and Roelen (2008).  These questions 

took the general form of: What is the probability that w is above its qwth quantile given 

that x is above its qxth quantile, y is above its qyth quantile and z is above its qzth 

quantile? Their responses suggested that a more intuitive elicitation format might 

improve expert understanding of the dependence structure under question, and the 

protocol was modified to ask experts questions based to some extent on the format 

suggested by Roelen, van Baren, Morales, and Krugla (2008) in their development of a 

model for aviation maintenance behavior.  Merging SME feedback with ideas from the 

Roelen et al study, a new questioning format was developed and tested for elicitation of 
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rank correlation information.  The validity of the questioning protocol was assured 

through the literature review, by consultation with researchers in the field (Dr. R. Cooke, 

Dr. M. Wittmann, personal communication, 2013), and through comparison with the 

body of research in structured expert judgment (see Goossens, et al., 2008).  These 

questions asked experts to rank variables by assigning an order to each variable 

indicating influence in descending order.  The most influential variable was then inserted 

into a rank correlation question typical of the Classical model.  Experts were then asked 

to quantify the influence of the remaining variables as a percentage of the influence of the 

highest weighted variable.  Rank correlation values were then calculated based on these 

responses using UNINET.  Appendix E details the questions presented to SMEs. 

On the basis that the overarching purpose of the elicitation process is to obtain a 

prior distribution, distributions were fitted to the elicited intervals and available for 

feedback to experts (Garthwaite et al., 2005).  The EXCALIBUR software package was 

used for this function along with MS Excel in real-time during the elicitation as well as 

for post-elicitation analyses.  The four-step process of obtaining intervals minimized the 

possibility of overly-simplistic intervals by eliminating the untenable belief that the 

parameter of interest lies at or close to the limits as may be suggested by only specifying 

a range.  This process of over-fitting allowed more accurate evaluation of elicitation data 

once the collection and fitting of opinions was complete.  Once elicitation was 

accomplished and fit to a minimally informative distribution, the adequacy of the elicited 

data was evaluated as an extension of the feedback process, by highlighting and 

reframing to experts the implications of the elicited values and confirming for each 

elicited value that these are satisfactory representations of the experts’ beliefs.  (O'Hagan  
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Figure 17.  Expert elicitation process overview. 
 

 
et al., 2006).  Figure 17 illustrates the recursive process of elicitation as described here.   

Assessment of the adequacy of elicited data has been mentioned briefly in 

previous discussions of feedback and over-fitting, both of which serve as tools for 

evaluation of expert- derived data.  Feedback was presented to expert panelists to confirm 

that the assumed distribution form is a reasonable representation of each expert’s ideas 

(Garthwaite, Kadane, & O'Hagan, 2005; Kynn, 2008).  When distributions were 

inaccurate representations of an expert’s beliefs, he or she was given the opportunity to 

revise earlier estimates.  Humans are generally poor judges of probability by distribution 

alone (O'Hagan et al., 2006), so while feedback was utilized, the concept of over-fitting 

was used to expose inconsistent answers during the elicitation process.  The four-step 

elicitation procedure discussed previously allowed this opportunity by asking for more 

information than is necessary to establish a parametric probability distribution.  This not 

only reduced expert overconfidence, it permitted testing for coherence and refinement of 

the best-fit distribution to the elicited data (Garthwaite et al., 2005; Speirs-Bridge et al., 

2010). 

Using the basic format described by Figure 17, reliability and validity were 

continuously assessed.  From the perspective of face and construct validity, iterative 

review of the protocol for elicitation with outside experts in structured expert judgment 

Design Elicitation Fit 
Distribution 

Adequacy/ 
Accuracy 
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ensured that the content and structure of the questions was sound.  The four-step 

procedure for elicitation and provision of feedback served as a means of assuring 

reliability, and bias was also controlled in this way as previously discussed.  Though in 

the context of structured expert judgment, it is implausible to quantify these measures, 

the steps outlined here were carefully constructed to limit threats to reliability and 

validity, and the elicited data were found to be acceptable for further analysis. 

Aggregation of elicited data.  The literature review segment of this research and 

supplemental information in Appendix C covers in detail the elements of Cooke’s 

classical model for elicitation and aggregation of expert opinion.  As was described, the 

experts’ data was subjected to the classical model weighting scheme based on the seed 

variable answers, and the weighted answers from all experts were pooled to provide a 

rational consensus judgment (Cooke, 1991; Cooke, 2009).  The key feature of the 

Classical model is the performance-based aggregation of experts’ uncertainty 

assessments, rewarding expert performance as opposed to consensus.  As a measure of 

both calibration and information, which are related to the concepts of precision and 

accuracy, the Classical model prevents gaming the system through strictly proper scoring 

and rewards only an expert whose assessments perform well, are informative, and are in 

accordance with his or her true beliefs.  Robustness analysis of calibration questions and 

of expert influence on the decision maker was also performed using the remove one-at-a-

time method detailed by Cooke (1991).  The elicitation and aggregation processes were 

managed in the EXCALIBUR (Goossens et al., 2008) software package using the 

Classical method algorithms discussed in more detail in Appendix C.  The results section 
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of this study presents in greater detail the aggregation of expert judgment using decision 

maker (DM) optimization as well as equal weighting for comparison (Cooke, 1991). 

Once expert data were obtained through the structured elicitation process, 

minimally informative distributions fitted to the data, and aggregation of expert 

judgments completed, the data were inputted into UNINET for quantification of the 

model.  Where data existed, as in the case of mechanical failure or some weather-related 

nodes, those data were also fitted to a distribution and entered into UNINET.  Once the 

model was quantified within the software platform, sampling and subsequent analytic 

conditioning was performed.  In the case of UNINET, real-time analytic sampling was 

conducted on a single value across probabilistic nodes, and sample-based conditioning 

was also used to conditionalize on specific points or intervals as appropriate (Lighttwist 

Software, n.d.). 

Quantification and Interpretation of the Model   

After completion of the first three methodological phases of the study, it was 

necessary to combine the information collected through the structured expert judgment 

process with the model structure developed in the second phase and informed by the first.  

This process was accomplished using the UNINET software package described 

previously, and expert-elicited uncertainty distributions and rank correlation information 

were entered into the model created and iteratively validated in phase two of this 

research.  Following elicitation of uncertainty distributions and derivation of the DM for 

model target variables, UNINET was once again used to input model quantification 

parameters.  Using the uncertainty analysis platform UNICORN (Kurowicka & Cooke, 

2006) and Oracle Crystal Ball to analyze the output from EXCALIBUR following the 
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structured expert judgment sessions allowed distributions shapes and parameters to be 

evaluated and verified for entry in the BBN model.  This allowed confirmation of 

minimally informative distribution properties prior to entry in UNINET, and independent 

samples from the distributions were compared between platforms to ensure accuracy in 

data entry.  Figure 18 shows a partial view of the distribution specification function 

within the UNINET software package.  Each variable was quantified using a similar 

process within the program, with expected differences based on the type of distribution 

and whether the variable was to be quantified by existing data or expert-elicited data.   

Rank correlation scores were calculated separately and entered into UNINET to 

support the model dependence structure.  Figure 19 illustrates an example screen showing 

the entry of rank and correlation information into the model.  Readers should note that the 

probabilities elicited from SMEs in the preceding phase differ from rank correlation, 

which is calculated separately.  Recalling that experts were asked to characterize  

 

 
Figure 18.  Partial screen capture of UNINET variable distribution entry. 
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Figure 19.  Entry window for rank and correlation information. 

 

 

 
Figure 20.  Probability of exceedance (y-axis) versus rank correlation (x-axis). 
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dependent relationships in the form of probabilities of exceedance, rank correlations were 

required to be calculated based on the relationship with the normal copula as shown in 

Figure 20.  Because the conditional probability is transformed to rank correlation such 

that for any q in the exceedance probability equation (Equation 4),  the probability is 

reflected as P1 = q-1, any value other than 0.5 for q limits P and makes the choice of 

copula more impactful on conditional probability (Morales, Kurowicka, & Roelen, 2008).  

Because elicited probabilities were in the interval (0,1), and only values above 0.5 (given 

the choice of 0.5 for q) reflect as positively correlated, the absolute values given by 

SMEs were converted to the scale imposed by the rank correlation transformation rather 

than burdening experts with additional restrictions on their responses.  In this process, 

intentional negative correlation values were converted to the interval (0, 0.5) and positive 

values were transformed to the interval (0.5, 1).  This was confirmed with the SMEs to 

maintain integrity of the probability assignment task and the relative values intended by 

the experts.  These values were then entered into UNINET as discussed here. 

Figure 20 addresses only the issue of rank correlation when it is not conditioned 

by additional parents.  In the case of multiple parent nodes as were present in the model 

in this study, conditional rank correlation must also be calculated from the exceedance 

probabilities elicited from experts.  In the present case, the highest rank correlation 

identified in the elicitation was formulated as an exceedance probability question as a 

means of determining: 

 𝑅1
𝑒𝑖 = 𝑃�𝑋5 ≥ 𝑥5,𝑞50

𝑒𝑖 |𝑋1 ≥ 𝑥1,𝑞50
𝑒𝑖 � (4) 

The relationship between Equation 4 and rank correlation as plotted in Figure 20 was 

computed by integrating the bivariate normal density over the quantile’s exceedance 
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region, using Equation 5 to first determine product moment correlation, and then 

transforming product moment correlation to rank correlation via Equation 6 (see also 

Cooke, 1991; Cooke and Goossens, 1999; Kurowicka and Cooke, 2006; Morales, 

Kurowicka, and Roelen, 2008; and Morales, Cooke, and Kurowicka, 2008): 

1
1−𝑞

 ∫ ∫ 𝜙(𝑥1,∞
Φ−1(𝑞)

∞
Φ−1(𝑞) 𝑥2,𝜌1,2)𝑑𝑥1𝑑𝑥2 (5) 

where: 

Φ−1 is the inverse normal cumulative density function; 

𝜙(𝑥1𝑥2, 𝜌1,2) is the bivariate normal density;  

𝜌 is the product moment correlation; and 

𝑞 is the selected quantile for exceedance. 
 

𝜌 = 2 sin �𝜋
6
𝑟� (6) 

where: 

𝑟 is the rank correlation. 

 
The remaining rank correlations for each ratio exceedance question set in the elicitation 

session were calculated as a function of their ratio with the next assessment in the rank 

hierarchy, as in: 

𝑅2
𝑒𝑖 =

𝑟2,5
𝑒𝑖

𝑟1,5
𝑒𝑖  (7) 

where: 

 𝑅2
𝑒𝑖  is the elicited exceedance probability; and 

𝑟1,5
𝑒𝑖  is the rank correlation calculated in Equations 4 through 6. 

 
which was bounded by the next higher ranked estimate. 
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The primary goal of the three fundamental phases of this research was to create 

and analyze a quantified Bayesian belief network model representative of the dynamic 

interaction of causal factors that lead to RIs.  Essentially then, the desired outcome was a 

model that supports sensitivity analysis, including that of the model parameters, though 

such analysis was not completed in substantial depth here.  In the scope of the present 

research, the desire for sensitivity analysis is purposely constrained to identification of 

those causal interactions, or paths, and factors that contribute most to the undesired 

outcome, in this case an RI event.  The software UNIGRAPH and UNISENS (both 

developed in conjunction with UNINET and cooperatively with the Technical University 

of Delft) supports evaluation of the BBN simulation via graphical analysis using cobweb 

plots and through sensitivity measures including product moment correlation, rank 

correlation, regression coefficient, correlation ratio, and partial regression coefficient in 

conjunction with scatterplots (Lighttwist Software, n.d.).  UNINET also allows 

conditioning of models on specific values or intervals, and the model was conditioned to 

evaluate causation in the ordinary sense, but also from the perspective of reverse 

propagation, the results of which are presented in the following chapter.  Using these 

tools, the mechanics of the BBN model were evaluated to ensure that the model 

adequately supported further research, which may include evaluation of mitigation 

strategies or updating based on technological or infrastructural changes. 

Methodological Validation 

Several methods were used in an iterative process to develop the model described 

here, and as such, validation followed a similarly iterative progression.  In cases where 

data were available, the population was used, and establishing the validity of the data was 
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less concerning.  However, where probabilistic data were used, it was generally infeasible 

to separate the data into sets to allow testing and evaluation.  Instead, each phase of the 

modeling approach relied on several sources, including expert review and opinion, to 

triangulate the structure of the model and the elicitation of data.  As detailed in the 

respective phases of the methodology, accepted mathematical algorithms exist for 

evaluating the structure and quality of the BBN as well as the expert opinion.  These 

performance measures were carefully considered for each phase, and modeling processes 

and rationale that extended beyond a single phase were continuously evaluated for fitness 

of purpose and methodological transparency in cooperation with the expert panels used 

throughout.  Where within-phase processes could not be verified using the techniques 

described, the phased approach was discontinued until such concerns were resolved and 

documented.  The results presented in the following section present these processes in 

more detail for each phase of the study.  



91 
 

 
 

CHAPTER IV  

RESULTS 

This study addressed the understanding of causal factors and interactions leading 

to RI events in the U.S.  In particular, attention was given to the lack of detailed data on 

many identified causal elements and relationships.  A BBN model was formulated to 

combine sparse available data with data obtained through structured expert judgment and 

allow updating as new knowledge becomes available.  This research was conducted 

through a mixed-method process of data acquisition, an iterative model building method, 

and a structured approach to model quantification through expert elicitation.  Based on 

the phased methodological approach to this study and the differing outcomes of interest, 

results are presented separately for each phase. 

Phase 1: Runway Incursion Data and Causal Factors 

Phase one of this study sought to triangulate data from multiple sources with 

information gained through systematic literature review.  As discussed previously, RI 

event data were collected from ASRS and RSO sources to supplement findings from the 

literature review.  Table 7 summarizes the RSO data used by type of operation, including 

breakdown by Federal Aviation Regulation (FAR) Part.  RSO data included 6,185 

records for RI events after basic data screening operations.  By contrast, using a search 

string structured as shown in Table 8 yielded 81 ASRS valid records for SME review.  

Seventy-one ASRS cases were retained after removal of reports where two or more raters 

agreed the case was an exception and should be removed from further review.  ASRS 

reports were categorized according to type of operation as shown in Table 9. 
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Table 7.  RSO Data Summary of Operation Type. 

Type Operation Count Percentage 
91 2918 47.2 
N/A 1592 25.7 
121 1095 17.7 
135 232 3.8 
129 106 1.7 
Vehicle 97 1.6 
Military 79 1.3 
Maintenance 41 .7 
Pedestrian 18 .3 
125 6 .1 
Total 6185 100.0 

 

Table 8.  ASRS Search String Criteria. 

Search Field Search Criteria 
Date/Report 
Number: 

January 1, 2008 through December 31, 2012 

Event Type: Ground Incursion: Runway or Taxiway 
Reporter Function: Flight Crew: Captain or Check Pilot or First Officer or Flight 

Engineer / Second Officer or Instructor or Other / Unknown or 
Pilot Flying or Pilot Not Flying or Relief Pilot or Single Pilot or 
Trainee 

Text Contains: “incursion” in ASRS narrative 
 
 

Table 9.  ASRS Reports Summary of Operation Type 

Type Operation Count Percentage 
121 32 39.5% 
91 30 37.0% 
Other 8 9.9% 
91K 5 6.2% 
Military 3 3.7% 
135 3 3.7% 
Total 81 100.0% 
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Over the study period, 2,918 Part 91 aircraft were involved in reported RI 

incidents as opposed to 1,095 and 232 aircraft operating under Parts 121 and 135, 

respectively.  However, ASRS records indicated that these operation types were reversed 

in their frequency of RI involvement, with 43.2 percent of cases involving Part 121 or 

135 aircraft versus 37 percent attributed to Part 91 operators.  In part, the literature and 

SME input indicated that there is a higher incidence of self-reporting via ASRS reports 

among commercial operators than for those involved in Part 91 operations.  This is 

confirmed through searching the entire ASRS database, which shows reports by Part 121 

and 135 operators outnumber those by Part 91 operators by more than two to one.  This 

apparent underreporting by noncommercial operators was not unexpected, and was one 

reason multiple streams of data were evaluated. 

One such stream of data came in the form of SME identification of causal factors 

in ASRS-reported RI events.  SMEs were tasked with review of 71 ASRS cases after data 

cleaning, and agreement between raters was evaluated by a modified application of 

Cohen’s kappa as well as through union and intersection operations.  Interrater reliability 

remained higher than the widely accepted (Leech, Barrett, & Morgan, 2008) minimum of 

0.70 (shown in Figure 21) for matches of one and two ICAO causal codes; however, 

kappa decreased rapidly for cases of three, four, or five matching codes.  This decreased 

convergence between rater pairs was likely a function of the possible combinations 

available to each SME for each ASRS case: up to 1,533,939 assuming five causal factors 

were used in a case.  Reliability measures were supplemented with intersection and union 

operations to further understand rater responses.  If all raters had used different, unique 

codes across a single case, the union should have reflected the maximum number of 15. 
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Figure 21.  Interrater agreement (kappa). 
 
 

Instead, union most frequently ranged from three to five unique codes for a given case, 

which indicated some level of consolidation of causation, even if not in perfect agreement 

across raters as shown in Figures 22 and 23.   

Among the raters, certain codes were used more than others, and in some cases 

were not used at all.  Whereas the code describing a failure to obtain Automatic Terminal 

Information System (ATIS) details was used infrequently, crew failure to adhere to hold 

short instructions from ATC was the most commonly appearing code.  Table 10 lists 

causal codes and gives count and percentage figures for each.  A complete list of 

available codes is provided in Appendix F. 

 

1 2 3 4 5
Rater 1 to Rater 2 0.914 0.716 0.386 0.152 0.054
Rater 1 to Rater 3 0.927 0.778 0.477 0.269 0.072
Rater 2 to Rater 3 1.000 0.667 0.366 0.060 -0.049
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Figure 22.  Union count by case. 
 

 

 
Figure 23.  Intersected code frequency. 
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Table 10.  Use Count by Causal Code. 

Code Count Cum. Count % Cum. % 
2.2.15 49 49 10.04 10.04 
2.4.5 45 94 9.22 19.26 
2.2.5 38 132 7.79 27.05 
2.2.10 34 166 6.97 34.02 
2.4.1 33 199 6.76 40.78 
2.3.4 30 229 6.15 46.93 
2.2.1 22 251 4.51 51.43 
2.2.6 20 271 4.10 55.53 
2.4.11 18 289 3.69 59.22 
2.5.1 18 307 3.69 62.91 
2.1.11 17 324 3.48 66.39 
2.3.7 15 339 3.07 69.47 
2.4.2 14 353 2.87 72.34 
2.2.2 13 366 2.66 75.00 
2.3.6 13 379 2.66 77.66 
2.1.9 11 390 2.25 79.92 
2.2.13 9 399 1.84 81.76 
2.2.7 8 407 1.64 83.40 
2.1.3 7 414 1.43 84.84 
2.3.3 7 421 1.43 86.27 
2.2.9 6 427 1.23 87.50 
2.2.14 6 433 1.23 88.73 
2.3.2 6 439 1.23 89.96 
2.3.8 6 445 1.23 91.19 
2.4.6 6 451 1.23 92.42 
2.2.4 5 456 1.02 93.44 
2.4.4 5 461 1.02 94.47 
2.4.9 5 466 1.02 95.49 
2.1.4 4 470 0.82 96.31 
2.1.7 4 474 0.82 97.13 
2.3.1 4 478 0.82 97.95 
2.2.3 2 480 0.41 98.36 
2.2.11 2 482 0.41 98.77 
2.4.3 2 484 0.41 99.18 
2.4.10 2 486 0.41 99.59 
2.1.2 1 487 0.20 99.80 
2.3.5 1 488 0.20 100.00 
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In addition to assigning ICAO causal codes to ASRS reports, SMEs provided 

comments on a many reports.  These comments also added depth of understanding to 

cases where raters agreed or disagreed, and as shown in ASRS report 939675, where 

raters agreed on assignment of the 2.4.5 causal code, other themes were also apparent: 

We were cleared to taxi via Taxiway D1, D, and A3, hold short of Runway 3/21 by 

Ground Control and told to contact Tower upon reaching the hold markings on 

Taxiway A3 at Runway 3/21.  Upon contacting Tower we were instructed to hold 

short of Runway 11L. Upon receiving this instruction I assumed there was a 

separate hold line for Runway 11L and began taxiing across the hold line for 

Runway 3/21 at Taxiway A3.  When crossing this hold line I realized that there 

was not a separate hold line for Runway 11L.  I promptly turned right onto 

Runway 3/21 to leave the extended centerline for Runway 11L. An aircraft on 

final was asked to go-around.  We had the airport diagram out as we were 

taxiing, but it was unclear as to whether there was a hold line for Runway 11L at 

Taxiway A3.  Construction was occurring on Taxiway A, closing many of the exit 

taxiways off of Runway 11L.  Aircraft were having to back taxi on the active 

runway to exit the runway at Taxiway D and Runway 11L thereby causing 

confusion and crowded conditions at the intersections around where Runways 

11L/29R and 3/21 intersected.   

This particular report not only represented an example of agreement across experts on a 

causal code, it also highlighted the complex causation that characterized RI events by 

identifying lost situational awareness, airport unfamiliarity, construction, back-taxi, and 

intersection complexity as contributing factors.  Beyond the emic perspective of 
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causation, reports also offered an insider perspective on how flight crews identified 

avoidance procedures for the future, as in ASRS report 974660: 

The corrective actions I need to take: Minimize distractions while in critical 

phase of flight/taxi-only monitor one frequency at a time. If any doubt exists, 

bring aircraft to an immediate stop and clarify instruction. Ensure both crew 

members have their heads up looking outside during all critical phases. 

SMEs also used the 2.2.5 causal code for unfamiliar airport layout with frequency, as in 

ASRS report 969670, where all SMEs agreed on the code’s use: 

Upon exiting Runway 15 at DCA, we were instructed by Tower to hold short of 

Runway 19 at Taxiway M.  The First Officer read back the instructions which I 

then repeated to him.  The hold short line for 15 and 19 are extremely close 

together (there is insufficient room for larger aircraft to exit 15 fully and still 

remain short of 19 on Taxiway M).  By the time I had acknowledged the hold 

short instructions we had cleared the first hold short line (exiting Runway 15), 

and about to cross the hold short line for Runway 19.  I had confused this hold 

short line for the 15 hold short line, and passed the Runway 19 hold short line 

before realizing my error.  ATC repeated the hold short instructions.  Once clear 

of conflicting traffic, ATC cleared us to cross Runway 19 and taxi to the gate.  My 

limited familiarity with DCA airport and high workload caused the momentary 

confusion which led to the incursion.  The approach and runway exiting plan was 

briefed thoroughly during the approach briefing.  We had the airport diagram to 

refer to and knew our taxi route, which included the 'Hot Spots' (one happens to 

be at taxiway M on the other side of Runway 19 (the terminal side)).  We still 
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nevertheless managed to miss the hold short line, meaning that additional 

vigilance was needed. I would suggest A 'Hot Spot' or a note on the 10-9 airport 

diagram at Taxiway M between Runway 15/33 and 1/19 could provide an 

additional safety measure.  Additionally, it should be noted that there is 

insufficient room for larger aircraft to exit 15 fully and still remain short of 19 on 

Taxiway M. 

As in the previous examples, the emic view of the event addressed important interactions 

leading to the RI, and reviewing cases with universal SME agreement or comments 

allowed for a more complete understanding of RSO data and findings of previous 

research and a more intuitive approach to development of the model. 

The frequency of code use was interesting in that it suggested certain 

combinations of codes that grouped together thematically.  Unused codes were also 

telling in this way.  Figure 24 illustrates the relative proportion with which codes were 

assigned by raters.  Figure 25 graphically presents some of the most commonly emerging 

themes based on causal code assignment and rater comments, with word size within the 

figure indicating the relative frequency with which certain words or phrases were 

identified by the SME panel.  The literature initially suggested that human factors, 

organizational, and technological domains existed to describe RI causation. These 

domains were confirmed by the emerging themes from ASRS review, and they were 

expanded to include weather and the operational environment. 
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Figure 24.  Proportional ASRS causal code assignment by SMEs. 

 

 

 
Figure 25.  Word cloud of SME causal codes and comments. 
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Phase 2: Belief Network Model  

Review of the literature on RI occurrence and prevention provided a list of 

domains, concepts, and factors relative to causation of incursion-type incidents.  Analysis 

of RSO data alongside the ASRS data and SME-coded, casewise causal factors and 

comments allowed for a database of causal factors to be created on which to base the 

influence diagram and network model.  Using this set of variables, an initial model 

structure was constructed from 58 variables within the organizational, operational, human 

factors, weather, and technological domains, and after iterative review by SMEs, the 

model was arranged as shown in Figure 26.  This SME review was conducted 

individually, with feedback and a structured series of questions following the general 

principles of the Delphi method as outlined in the previous chapter.  The parsimonious 

representation of the model, which was derived from expert consensus and supported by 

the literature and data reviewed in phase one, includes 27 nodes and is shown in Figure 

27.  This model retained the same basic dependence structure and thematic elements as 

the complete model, and is compatible with the results from phase one while easing the 

computational burden of verification and validation of what is demonstrably a new 

representation of RI causation and dependence.  Furthermore, this approach supports the 

additive philosophy of this study in that verification and validation of the parsimonious 

model leads naturally to expansion of such efforts into the more granular, detailed model.  

Aggregating nodes within each domain were connected by converging directed edges to a 

central, probabilistic node that addresses the requirement of the RI definition for the 

“incorrect presence of an aircraft, vehicle or person” (EASA, 2011, p. v; ICAO, 2007, p.  
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Figure 26.  Full BBN model structure after SME review. 
 
 
 
vii).  Inter-domain edges connect related factors, illustrating the conditioning of one or 

more nodes on the variable state of another node or nodes. 

 Aside from nodes capturing airport construction, 14 CFR Part 139, non-towered 

airfields, darkness, visibility, precipitation, and mechanical failure, the model was 

quantified with data generated through expert judgment, as outlined in the following 

section.  A complete list of variables and their definitions is included in the elicitation 

protocol and in Appendix J.  Appendix K includes more detailed figures of the domain 

segments for each model.  As discussed previously, the model was initially qualified with 

artificial distributions and dummy rank coefficients to test for function and correctness of 

dependence relationships.  In this context, the model functioned as expected. 
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Figure 27.  Parsimonious BBN structure after SME review. 
 
 

Phase 3: Structured Elicitation  

Structured expert elicitation was conducted to determine marginal distributions 

for variables where data were sparse or unavailable, to verify and validate model 

structure, and to quantify dependencies among interacting variables.  Experts were 

presented with questions to which answers were known with certainty, and their 

responses were used to calibrate expert performance weights, as described in detail in 

Cooke (1991) and Cooke and Goossens (2000).  Global and equal weight decision maker 

(DM) performance and information scores for the six experts across the 10 calibration 
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questions used for this study are given in Table 11.  These weights were applied to the 

marginal distribution and rank correlation elicitations within the scoring rules of the 

Classical model to achieve rational consensus among the expert judgments and calculate 

a DM based on the composite of expert performance and information.  Decision maker 

responses to the seed variable (calibration) questions are given as range graphs in Figure 

28 with the realization for each question indicated by the red hash mark and the DM 

range bounded by the 5th and 95th percentiles and the most likely value shown as the 

asterisk within the range.  Range graphs for all experts over all questions are shown in 

Appendix I.  Robustness analysis on seed items as well as on experts was completed, the 

results of which are reported as Figures 29 and 30, respectively. 

Of note, and discussed in greater detail in the following chapter, is that a single 

expert was used in the derivation of the global-weight DM.  Equal weighting, as the name 

implies, treats all experts’ responses equally in calculating the DM.  The results in Table 

11 indicate that the Classical model global weighting and scoring method resulted in a 

higher calibration score, which can be interpreted similarly to p-value, though it is 

relative to 1 rather than 0 (values closer to 1 indicate better performance).  In this way, 

calibration score is a reflection of an expert’s assessments as compared to seed variable 

realizations.  It is a means of expressing the degree to which the data supports the 

hypothesis that an expert’s probability estimates are accurate (Aspinall, 2011).  In this 

study, one expert (Expert B) was found to exhibit a relatively higher likelihood of 

uncertainty distributions reflecting true values, as shown in the calibration score column 

of Table 11.  This result is discussed in more detail in the following chapter.  The higher 

calibration score of the global-weight DM compared to the equal-weight DM indicated 
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Table 11.  Results of Scoring Experts. 

Expert 
ID 

Calibration 
Score 

Mean 
Rel. 
Total 

Mean. Rel. 
Realization 

Un-Norm. 
Weight 

Norm. 
Weight w/o 

DM 

Norm. 
Weight w/ 

DM 
A .0750 1.8684 1.1045 0 0 0 
B .7069 1.0943 .9585 .6776 1 .5 
C .0471 1.8177 1.2731 0 0 0 
D .0008 .8648 1.2680 0 0 0 
E .0063 1.8577 1.9258 0 0 0 
F .0471 1.7909 1.0974 0 0 0 

Global .7069 1.0943 .9585 .6776 -- .5 
Equal .5503 .3595 .2771 .1525 -- .1469 

 
 
 

 
Figure 28.  Range graph of Global DM assessments of seed variables (calibration 
questions). 
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Figure 29.  Item-wise robustness analysis. 
 
 

 
Figure 30.  Expert-wise robustness analysis. 
 
 
 
that the global-weight DM performed best, and should be used in favor of an equal-

weight DM (or other methods of consensus) to quantify the BBN model.  Though the 

individual calibration scores are included in Table 11, they provide detail on the DM only 

and were not used individually to quantify the model. 
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On the basis of the global-weight pooling of the Classical model, a DM was 

derived, and the uncertainty assessments of the DM are shown in Figure 28 with respect 

to the true values, or realizations, of the seed variables.  Readers will note that in two 

cases, the DM failed to capture the true value of the calibration variables.  This was 

expected based on the responses of the most highly-weighted expert, as presented in 

Appendix I, which also includes DM uncertainty distributions across the set of target 

variables.  Although this is the case, the DM correctly captures the seed variable value in 

80 percent of the calibration questions. 

Robustness analysis was performed on a case-wise and on an item-wise basis to 

evaluate the impact of each question and expert on the global-weight DM.  As shown in 

Figure 29, removal of seed variable questions influences the DM calibration score.  As an 

example, removal of CQ3 from the 10-question seed variable pool reduced the calibration 

score of the global-weight DM to 0.4792 from 0.7069.  As higher calibration scores 

(closer to 1.0) are more desirable, this was an indicator of the relative importance of CQ3 

to the derivation of the DM.  Figure 28 illustrates the results of a similar method of 

analysis with focus on the influence of individual experts.  The DM was based on the 

assessments of Expert B as shown in Table 11, and the relative influence of this expert is 

confirmed in Figure 30.  Removal of Expert B from the analysis would have resulted in a 

lowered calibration score for the global-weight DM from 0.7069 to 0.4735. 

Model Quantification 

Quantification of the model consisted in part of calculation and entry of rank 

correlation data as well as evaluation, validation, and input of DM uncertainty 

distributions into the model.  A complete correlation matrix, which shows all correlation  
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Figure 31.  Organizational /regulatory subnet with rank correlation coefficients. 
 

 
Table 12.  Dependence Information.
 

Probability   Rank Correlation 
P1 0.65 

 
r4,1 0.84 

P2 0.55 
 

r4,2| 1 0.46 
P3 0.46   r4,3 | 1, 2 0.38 

 
 

 
pairs and rank correlation values, is included as Appendix L.  Illustrating the premise of 

the rank correlation and the difference in coefficients are Figure 29 and Table 12, which 

focus on the results of a single domain subnet. 

Field data and data from the structured expert judgment phase were also entered 

into the model as described previously.  Figure 32 shows a high level overview of how 

the model treats the uncertainty distributions and functions as a continuous, dynamic 

network.  Appendix M includes more detailed information on the quantified nodes and 

rank correlation for each domain subnet.   In Figure 32, the central nodes (child nodes) of 

each domain, the node representing incorrect position, and the RI probability node are 

represented as histograms.  The baseline probability of the model for RI occurrence was 

(1) 

(2) 

(3) 

(4) 
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0.000525, or roughly 525 RI occurrences per million flight operations.  Relative to the RI 

rate per million operations figures reported by the FAA, which was nearly 19 in the most 

recent Runway Safety Report (see Figure 1), the model performance appears to 

overestimate the occurrence of RI events by a substantial margin.  However, a key feature 

of the model is that it aims to predict occurrences at all airports and inclusive of all 

operations types within the US, not solely those with an ATC facility, and thus this result 

is not altogether unexpected or unusual.  Given this, the model was acceptable in its base-

rate prediction, and was validated for the purposes of further analysis. 

 
 

 
Figure 32.  Final, quantified model with domain nodes, improper position, and runway 
incursion as histograms. 
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Figure 33 is a closer view of the central part of the model as shown in Figure 27, 

though in Figure 33 the model has been conditionalized (analyzed based on a manually 

selected point sample for one or more variables in the model) on the RI variable to 

examine the effect of reverse propagation of RI occurrence on the causal, dependent 

model structure.  The updated histograms based on the conditioning show black while the 

original, unconditionalized distributions are displayed as grey.  The model was also 

conditionalized to propagate evidence as it would normally occur.  Based on the data and 

SME input from earlier phases, complex intersections and task saturation were identified 

as having strong correlation directly to RI events or to other causal factors.  In Figure 34, 

the results of conditionalizing on these two variables at values substantially above 

  

 
Figure 33.  Final model conditionalized on RI occurrence. 
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Figure 34.  Propagation of evidence through the model. 
  
 

median are shown.  At the extreme values entered for the variables of interest, the 

probability of RI increased from 0.0005 to 0.0107.  This attribute of propagating evidence 

through the network is one of the defining characteristics of a BBN, as discussed earlier, 

and allows both diagnostic and predictive reasoning.  Some of the more telling results of  

back propagating on the occurrence of an RI are illustrated in Table 13, which shows 

selected relative increases from baseline resulting from conditionalizing on RI occurrence  

for variables exhibiting high rank correlation within their domain.  When an RI is forced 

in the model, the variables in Table 13 increase as shown, indicating to some extent the 

strength of association with an RI event. 

 Using UNISENS and UNIGRAPH, sensitivity analysis was performed to assess 

the prominent interactions between model variables, with particular attention paid to 

those interfaces that occurred across domains.  Analysis of the entire model was 
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Table 13.  Effect on Selected Variables of RI Occurrence. 
 

Variable Approx. % Increase from Baseline 
Inadequate Supervision/Climate 92% 
Complex Intersection 28% 
Airport Construction Present 62% 
Task Saturation 57% 
Failure to Hold Short 164% 
Sun Glare 251% 
 

 
consistent with data obtained during the literature review and in phases one and three of 

this study, showing that human-centric errors such as lost situational awareness and task 

saturation were influential individual factors.  By looking at each domain in terms of 

sensitivity analysis and identifying associations, however, causal paths became clearer.  

Within the organizational and regulatory domain, procedural deviation was most 

predictive of abnormal factors in that area.  Procedural deviation was joined to task 

saturation by a directed arc in the model, as were several other variables, indicating these 

connections may warrant further investigation.  Table 14 gives the most influential single 

variable within each domain and presents linear least squares fitted regression coefficient 

and correlation ratio, the squared product moment correlation that maximizes the 

correlation value, for each.  Correlation ratio was used here to interpret the ratio of 

variance of variable Y given X and the variance of Y.  As indicated in Table 14, 

mechanical failure has an unusually high relative regression coefficient, though this is 

explained by the combined effects that a failure in a braking or steering system may have, 

combined with the rarity of these events. 

To look at these interactions in more detail, and bearing in mind that human 

factors were shown to have the strongest causal influence on RI events, additional  
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Table 14.  Regression and Correlation Coefficients for Selected Variables. 
 

Predicted  
Variable 

Base  
Variable 

Correlation 
Ratio 

Regression 
Coefficient 

Org_RegulatoryFactors ProceduralDev 0.5529 0.6636 
OperationalEnvironmentFactors AirportConst 0.7906 0.8590 
HumanFactors FailedHoldShort 0.5495 2.1218 
WeatherFactors SunGlare 0.5747 0.7735 
Tech_EngineeringFactor MechFail 0.5765 14679.6211 

 
 

sensitivity analysis was performed on all other random variables as predictors of 

abnormal human factors conditions.  Mechanical failures ranked highest from a 

regression standpoint, a result that was not surprising given the disruptive nature of 

systems failures on operator performance noted in the literature and by SMEs.  Somewhat 

unanticipated however was that restrictions to visibility, including sun glare, had even 

more strength of influence than factors and constructs such as airport construction or high 

workload.  Arguably, weather related factors are less variable and known with greater 

certainty that the organizational and operational environment factors that follow them in 

magnitude of association, and thus illustrate that sensitivity analysis alone does not 

explain the model completely, which must instead be evaluated on the basis of many 

factors within the model.  It was used, however, to further validate the model by allowing 

variable sensitivity and covariance to be evaluated once again for dependence and 

retention in the model structure to verify that parsimony was achieved as intended. 

UNIGRAPH output lent further illumination to the results discussed previously by 

graphically presenting selected dependence information.  In Figure 35, the left most 

variable is runway incursion, with high values of runway incursion selected (above 0.75) 

and the resultant values for additional model variables shown.  Quite logically, the figure 
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illustrates that for high values of RI occurrence, failure to hold short and incorrect 

position are also high.  Also worth noting in Figure 33 is that procedural deviation and 

task saturation are also quite high.  To a lesser extent, airport construction and 

conflicting vehicle traffic are also elevated above median.  However, darkness/twilight 

and ATC equipment failure are both generally lower values (centered about the median) 

when compared to high RI occurrence.  Returning to the model with this information, 

additional evidence propagation was implemented and is shown in Figure 34.  For the 

final round of evidence propagation, variables identified in the previous results were 

 

Figure 35.  Cobweb plot of selected model variables. 
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conditionalized at their 95th percentile values, indicating that the SMEs would be 

surprised if the true value was in excess of this number.  Figure 36 shows the model with 

conditionalized variables as grey blocks, and the target variable, runway incursion, as a 

histogram.  Conditionalizing on these variables showed the combined result of their 

interaction, and represented what has been often referred to as a causal path in this study 

 The model and high-level sensitivity analysis completed in this study indicated 

that the variables conditionalized in Figure 36 had the greatest impact in combination of  

 

 
Figure 36.  Model conditionalized on indicated variables to propagate evidence. 
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those variables for which direct intervention is possible (as compared to weather or 

construction, as examples of conditions that are not inherently controllable to the same 

extent).  By propagating 95th percentile values for these variables, the rate of occurrence 

for RI events was observed to increase to approximately 99,000 per million operations.  

This number was alarmingly high, and is a forced manipulation of the model.  However, 

the resultant probability provided some indication as to the strength of influence of the 

variables in the parsimonious model acting in dynamic collaboration. 

One of the most important points to be considered when evaluating the model was 

that identification of causal paths and interactions between variables was not a static or 

single-point process.  Instead, assessing the model on the basis of rank correlation, 

sensitivity analysis, and both forward and reverse propagation of evidence was a 

requirement to achieve a holistic view of model performance and to evaluate the model 

against what is known.  By approaching the model in this way, validity was also 

addressed, in that many results were evaluated in the course of drawing conclusions about 

causal interactions.  
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CHAPTER V  

DISCUSSION, CONCLUSIONS, AND RECOMMENDATIONS 

The primary focus of this study was to develop and validate a holistic, system-

level model for U.S. RI event causation that could serve as the basis for future model 

development and evaluation of RI reduction proposals, particularly by agencies such as 

the FAA.  Two research questions refined this purpose, asking: What are the interacting 

causal factors that lead to RIs in the U.S.; and, can runway incursions in the U.S. and 

their dynamic causal factors and interactions be modeled through the use of a Bayesian 

belief network supported by expert-elicited data? To that end, this research introduces a 

mixed-method approach for informing the model content and structure, develops a BBN 

representation of RI causation in an iterative, operationally-oriented process, and builds 

upon established methodology for structured expert judgment to create an intuitive 

protocol for quantifying the model.  The following discussion addresses some of the 

theoretical and practical implications of this study, and then presents conclusions and 

recommendations for further research. 

Discussion 

Results of this study are reported in Chapter 3, and the following discussion offers 

further interpretation of the results, with a focus on practical implications of the outcome 

of the study. 

Phase 1: Runway incursion data and causal factors.  It is demonstrated that 

some discrepancies between RSO and ASRS data exist, and these differences are largely 

accounted for within the literature.  As an example, RSO data indicates clearly that a 

preponderance of RI events involved aircraft operating under 14 CFR Part 91as compared 
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with commercial (14 CFR Parts 135 and 121) operations.  Within the ASRS data, this 

trend is reversed.  The use of SMEs to review ASRS reports provides depth of 

understanding when reviewing these differences, and reinforces the need to consider the 

underlying sources and motivations that affect RI data.  In the context of incorporating 

emic, thematic perspectives from pilot-reported RI events, the model benefited as 

domains were explored and expanded from an initial three (human factors, technology, 

and environment) to five.  Remembering that the number of possible causal factor 

iterations per case was potentially over one million, achieving acceptable interrater 

reliability for one and two causal matches across rater pairs (and relatively strong results 

for three matches) is rather notable, and indicates consistency in interpretation of 

causation.  This agreement among raters leads to confidence in the identified causal 

themes, and allows domains to be expanded and further specified to include human 

factors, operational and regulatory elements, weather factors, technological and 

engineering influences, and operational environment factors that may act independently 

or in dynamic interaction to contribute to RI occurrence.  

Phase 2: Belief network model.  A secondary research question to the matter of 

RI causation was whether or not RIs could be modeled using a continuous BBN 

supported by structured expert judgment.  The matter of expert judgment is addressed in 

the following section, but the results presented here demonstrate that in fact, RI events 

can be modeled for causal interpretation using BBNs.  The review of literature clearly 

reveals that RIs are not isolated or static events, but are instead the result of a complex 

series of dynamic interactions.  BBNs were proposed as an appropriate methodology for 

investigating RI causation, not only because they support dynamic probabilistic 
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reasoning, but because quantifying them with expert-elicited data is a natural feature.  

The results of the study shows that this was indeed a critical component for 

consideration, given that many of the constructs or factors that were identified in the first 

phase were not supported through available and sufficiently detailed data, requiring 

expert opinion for insertion into the model.  An unstated, but important consideration of 

this study is the operationalization of methods so that use of modeling methods such as 

BBNs can be made more accessible to a greater number of users.  From a practical 

standpoint, the precision of the model is sufficiently accurate to reflect what is known 

about RI events, and it achieves this accuracy over a broader scope of causation than 

previous studies.  Additionally, the model structure uncovers more detailed information 

about the dynamic causation of such events, revealed through sensitivity analysis of the 

BBN.   

Phase 3: Structured expert judgment.  Structured expert elicitation played a 

pivotal role in the quantification of the BBN model, and the results achieved here do 

more than validate the use of the Classical model in the context of RI causation.  The 

format used to elicit the rank correlation and conditional probability information from 

experts appears to be the first use of such a technique to quantify a continuous BBN.  

Confirming Cooke and Goossens (1999) assertion that experts are not opposed to 

performance measurement and in fact react quite well to answering questions in a format 

that captures uncertainty, the SMEs in the study unanimously commented that the 

structured elicitation methods were productive, insightful, and generally supported 

intuitive reasoning.  In training exercises using probability assessment in lieu of 

describing influence as a ratio, all six experts agreed that the ratio method allowed them 
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to express the same ideas regarding rank correlation and conditionality, but in a more 

natural way.  As a result of this more instinctual assessment, the process was also 

completed more quickly than when the more common, probabilistic elicitation of the 

Classical model was used.  Further extending the work of Roelen et al. (2008), which 

used a single expert, probability assessments in the elicitation process were made in the 

ordinary manner, but were normalized to function with the constraints of the normal 

copula.  By approaching the SMEs in this way, the need to provide feedback in terms of 

rank correlation is reduced, which was helpful given the difficulty for experts to translate 

the transformed numbers. 

As noted in the earlier presentation of results, the DM derived from the structured 

expert judgment sessions utilized only one of the six experts who took part in the 

elicitation.  Although in the context of a consensus-based method this may be considered 

unacceptable, in this study, the scientific derivation of the DM provides support for the 

identification of a single SME for inclusion in the DM, and this is not altogether unusual.   

Van Der Fels-Klerx, Cooke, Nauta, Goossens, and Havelaar (2005), experienced a 

similar outcome, and such results, though possibly underreported, are not problematic 

(Dr. R. Cooke, personal communication, January 15, 2013).  The purpose of the Classical 

model is to provide a structured methodology for weighting experts based on accuracy 

and precision.  Just as a medical testing laboratory may only have a single instrument for 

testing DNA, the resultant DM from this study contains only one SME.  Like the lab, 

which almost certainly would ensure a machine’s accuracy through careful testing and 

calibration, the DM in the Classical model is also tested and calibrated to ensure accuracy 

and optimal performance (Dr. M. Wittmann, personal communication, July 23, 2013).  
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Essentially, when a DM is based on a single, or few, experts, it is often less an indication 

that the other experts’ performance was subpar, but that their accurate responses are in 

fact contained within the responses of the expert whose assessments form the DM. 

Model completion, testing, and evaluation.  The model developed in this study 

represents the first known attempt to characterize RI causation in the US across all 

domains using a BBN.  From the perspective of causation, reverse propagation is 

revealing in showing the adverse effects of interference with operator (flight crew of 

vehicle operator) visibility.  This is interesting, but not necessarily unexpected.  The 

effect of inadequate supervision and safety climate also exercised substantial influence in 

the model, and affected procedural deviation probability as well as the occurrence of task 

saturation because of interconnected edges, illustrating the multifaceted causation of RI 

events.  When examining the combination of variables that most affected RI occurrence, 

human factors and organizational factors dominated, followed by the effects of abnormal 

operational environment conditions.  From a practical perspective, operational issues are 

superficially easier to address, but treating the root causes of organizational and human 

factors is a more complex and layered problem.  The model supports investigation into 

efforts to do so, however; and it allows end users to evaluate changing organizational 

environments or training efforts to improve latent human factors inadequacies.  At an 

operational level, this model translates to a useful tool for evaluation of future mitigation 

efforts by regulators or even operators with the requisite sophistication and data to do so. 

Conclusions 

Consistent with recommendations that RI research include pilot, ATC, and airport 

influences (Torres, Metscher, & Smith, 2011), the model developed as a result of this 
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study demonstrates that it is possible to gain important insight into causation of RI events 

through holistic, dynamic modeling methodologies such as BBNs.  As Hendrickson 

(2009) suggests, a greater understanding of aviation accident factors, especially those that 

are principally rooted in human error, can be uncovered through text analysis of operator 

reports.  The mixed-method approach to deriving cross-domain variables for inclusion in 

the model presented in this study is shown to be effective, and is acceptable to experts 

who evaluated the data through an incremental review process.  This methodology 

expands the current body of knowledge with respect to both RI investigation and model 

building by enhancing current methods that often focus solely on quantitative 

information.  The specific methods presented here for review of ASRS narratives and 

evaluation of rater responses creates a more refined and systematic process, improving 

upon some of the more loosely-defined text analysis that appears in the literature.  In 

deriving supporting data for the model from varied sources that included ASRS pilot 

reports, the emic and etic perspectives were combined to create a more inclusive picture 

of RI causation than has been developed in past studies, especially considering the more 

detailed model shown in Figure 21.  From the perspective of addressing RIs as a complex 

and interdisciplinary problem, the combining of quantitative and qualitative data here 

enables a fuller understanding of the dynamic interactions and dependencies of complex 

operational incidents such as RIs (Stroeve, Blom, & Bakker, 2013). 

Developing the content and structure of the model iteratively allowed for the 

model to be made sequentially more compact (as in Figure 25), easing the process of 

verification and validation, quantification, and assignment of rank correlation for a 

preliminary model.  The general procedural guidance from Marcot, et al. (2006) formed a 
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foundation for the construction of the model structure and refinement of content, but 

certain liberty was taken given the lack of available data and a fundamental desire to 

make creating such a model more operationally accessible.  This development method 

also resulted in a more comprehensive model (Figure 21), which was intended as a next 

step in the quantification process and which allows a more detailed assessment of 

variable interaction from the perspective of sensitivity analysis or what-if scenarios.  The 

ability to work with a more compact model in the initial stages of development makes 

this study less theoretical in nature, and more translational, in that the iterative model 

building is somewhat less resource-intensive than ordinarily academic BBNs and is 

therefore more apt to be extended beyond systems-level application to the operator level.  

The model developed in this study showed that human factors, as expected, play a pivotal 

role in RI causation.  Differentiating it from previous work in this area, however, is that 

this research shows more intuitively and dynamically than previous studies how causal 

factors within and across domains interact to affect the probability of an RI event. 

The elicitation of marginal distributions showed that more specific, objective 

variables are preferable whenever possible.  Though it is clear that empirical data should 

be used when they are available, it is the case in this study that many of the factors 

identified as causal to RI events are constructs for which achieving objectivity is difficult 

and some subjectivity must be accepted in the course of inquiry.  As has been shown in 

other studies (e.g. Roelen, van Baren, Smeltink, Lin, and Morales, 2007), a lack of 

objectivity manifests itself in difficulty among experts in estimating the combined 

influence of variables as in the present case.  In this study, the method by which 

marginal, rank, direction and strength of correlation were elicited was shown to alleviate 
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this issue.  In addition, this method of elicitation allowed for structured expert judgment 

to be completed in less time and more intuitively while maintaining accuracy.  Structured 

expert judgment is an established methodology, but its use here is refined and extended, 

and it shows that such methods lend more scientific scrutability to otherwise inaccessible 

data, most notably in the organizational and human factors domains. 

This research is purposely constrained to include only U.S. aviation operations 

with respect to RI event analysis and prediction.  The resultant model and expert 

judgment information are both useful and clearly generalizable to that population.  

Beyond aviation operations in the U.S., however, the methodology presented here for 

structuring the model and for eliciting expert judgment is applicable to construction and 

quantification of any continuous, nonparametric BBN that uses structured expert 

elicitation.  The particular protocol for expert judgment is relevant to a broad audience, 

and even to applications outside aviation.  Given the difficulty in quantifying 

organizational and human factors data, expert knowledge plays an important role in 

furthering study of these concepts through modeling.  While previous studies have often 

identified human factors as a critical causal element to RI events, this study extends these 

observations by developing and validating a platform for causal inference across 

domains, and with consideration of interacting causal components.  Specifically, the 

interactions between human factors, organizational influences, and factors within the 

operational environment are evaluated in dynamic interaction to show the increased 

threat of RI occurrence when these elements functioned in combination.  Reverse 

propagation of RI occurrence through the model also illustrates the effects of causal 

factors such as sun glare and supervisory issued on RI causation.  Most notably, the 
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model stands as a basis for future investigation of RI mitigation efforts.  This expansion 

of the relevant knowledge of RI causation and reduction is accomplished while also 

reducing the elicitation and model structuring burden to make the methods detailed here 

more operationally relevant. 

Recommendations 

The scope of this study necessarily limited the extent to which the model 

presented was analyzed, expanded, and revised.  As such, extensions to this research 

logically converge on a continuation of this study involving the complete model 

presented here, or a variation of the models in this research.  Validation of the complete, 

detailed BBN model as respects frequency of occurrence and evaluation of causal 

interactions of increased complexity would contribute meaningfully to the body of RI 

knowledge, as suggested by Biernbaum and Hagemann (2012). 

Extensions to the present study may also focus on more complete validation of the 

elicitation methodology used here, with attention paid most closely to the question 

structure used to obtain expert opinion of rank correlation and the mathematics involved 

in assuring a positive definite correlation matrix as well as some of the other limitations 

that arise in quantifying a continuous, nonparametric model through structured elicitation.  

Verifying the information in the model presented here is tenuous in many cases because 

insufficient data exists for many of the causal factors that make up the model.  In part, 

this points to the scarce availability of data describing the detailed factors that combine to 

cause RIs and to a demand for availability of more specific causal data so that 

subjectivity may be reduced to the greatest extent possible. 
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Future research may also be directed toward converging frequency data with 

severity, considering that the present study concerns itself only with the occurrence of an 

RI, not to the extent with which a conflict manifests as an incident or accident.  Research 

may also be extended toward further testing of this methodology with the aim of reducing 

subjectivity to the greatest extent possible.  Primarily, efforts should be focused on 

further development of the rank correlation elicitation methods and on quantifying the 

complete model, or some variation of it, presented here.  This need again underscores the 

lack of data describing the detailed factors that combine to cause RIs (GAO, 2011) and to 

a demand for availability of more specific causal data, a problem partially addressed by 

this study, but a persistent issue to which further research should be focused. 

Finally, additional work to validate potential factors for inclusion in the model is 

warranted, as is evaluation of RI mitigation programs and technology.  Given thorough 

verification and validation of a more complete model, what-if analysis can be explored to 

test the effectiveness of various strategies for RI reduction, reducing the need for testing 

mitigation efforts in real time within the national airspace system. 

This study has illustrated in a dynamic, intuitive platform the interconnected 

nature of RI causation, and has validated a model for evaluating RI events across a 

number of causal domains.  BBN models are shown to be an appropriate means of 

investigating RI causation, and structured expert judgment is demonstrated as a natural 

and informative methodology in the presence of uncertainty and sparse data.  Future 

research should address causation in more detail, and should extend models to include 

insertion of mitigation efforts to evaluate effectiveness in stemming the growing potential 

for RI events in the U.S.  
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APPENDIX A 

Operational Example of a Bayesian Belief Network 

Suppose we wish to evaluate the probability of an unintentional runway overrun 

in a particular type of aircraft utilized frequently by a theoretical flight department.  In 

traditional PRA, a series of contributing factors to runway overruns may be identified 

through the study of past accidents, hazard reports and through elicitation of expert 

opinion.  Considering these pieces of information, an estimate of the risk of overrun may 

be made.  However, this estimate is first deterministic, and second addresses the risk of 

an undesired event only as a point estimate with no accommodation for uncertainty.  

Furthermore, this method, which has arguably been oversimplified for the purpose of 

discussion here, ignores the inherent suitability of the problem to Bayesian methods.  

This is evident in the monotonic behavior of deductive reasoning as is generally used in 

the formulation of estimation of risk.  In a deductive logic-based system, there is no 

provision for dynamically asserting or retracting assumptions as knowledge of the 

domain changes.  The conditional nature of contributing factors and their interaction is 

generally acknowledged, but is ignored in simplified computations of risk.  In a Bayesian 

model-based system, revisable degrees of belief account for the ever-changing state of 

domain knowledge and allow a much more commonsense approach to reasoning about 

the outcome of a postulated risk.  It is beyond the scope of this example to create a full 

model, much less one that has been populated with probabilistic distributions or that 

addresses the full range of contributing factors.  Instead, the following discussion 

addresses the basic process of model creation as an example of the power of Bayesian 

models for probabilistic inference.  As in traditional PRA, contributing factors to an  
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Table 15.  Example Contributing Factors to Runway Overrun. 
 

Contributing Factors 
Raining 
Snowing 
Low visibility 
Brake system malfunction 
Auto braking disengaged 
Brake over-temp 
A/C over weight 
Wildlife on runway 

 
 

undesired event must be identified.  For the purpose of this discussion, an abbreviated list 

of such factors is provided as Table 15. 

After identifying contributing or causal factors, conditional probability tables 

must be created for each node in the network.  It is helpful to first create a directed 

acyclic graph of the network in order to identify child-parent dependencies.  One may 

find that it is useful to begin with the node being assessed and work backward to develop 

parent nodes and dependencies as appropriate.  In Figure 37, a simple Bayesian network 

is presented for selected factors identified in Table 15.  Generally, useful BBNs will have 

many more nodes and may have multiple-level parent-child dependencies; however, the 

model in Figure 19 is sufficient for demonstrating the basic principles of the analysis.  

Worth noting here is that if the entire sequence of potential contributing factors to the 

example event were to be modeled in any other way, the result would likely be a 

computationally impossible problem.  However, as was previously discussed, BBNs 

circumvent this issue and can model the problem compactly through the assumption that 

each variable becomes independent of its non-descendants once the value of the parent 

node is known (Darwiche, 2010).  
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Figure 37.  BBN assessing the probability of a runway overrun. 
 
 
 

This network graph, as would any well-advised risk assessment, relies on 

verification of the model, generally via domain experts who can verify that the 

conditional independencies and influence paths in the diagram are valid assumptions.  

Where no consensus on node relationship or interdependency can be reached, the graph 

and conditional interdependencies must be revised.  It is beyond the scope of this 

literature review to discuss the mechanics of this procedure beyond describing the broad 

idea that implicit dependencies can be assessed by creating a moral graph, as shown in 

 

 
Figure 38.  BBN (a) and its associated moral graph (b) (Jensen, 2009). 
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Figure 38, to accompany the belief net, and adjustments may be made for the imperfect 

way influence paths represent conditional independence.  For more detailed descriptions 

of this process, readers may consult the Methodology section to follow as well as 

Darwiche (2009), Bedford and Cooke (2001), Kelly and Smith (2011), or Jensen (2009). 

Returning to the network graph in Figure 37, the computational advantage of the 

BBN approach to the model becomes clearer upon examination of the joint distribution, 

which is specified in full as: 

𝑃(𝑥1, … , 𝑥𝑛) =  ∏ 𝑃𝑖 (𝑥1|𝑝𝑎1)    (8) 

where: 

𝑃 is probability; 

(𝑥1, … , 𝑥𝑛) is the values for some variables X1 to Xn; 

∏ 𝑃𝑖  is the product notation for the conditional distribution; and 

𝑝𝑎1 is the set of values for the parents of X1. 

And as specified in the Figure 37 example as: 

𝑃(𝑥1,𝑥2, 𝑥3,𝑥4,𝑥5, 𝑥6) = 𝑃(𝑥1) 𝑃(𝑥2|𝑥1) 𝑃(𝑥3|𝑥1) 𝑃(𝑥6|𝑥2,𝑥3) 𝑃(𝑥6|𝑥4) 𝑃(𝑥6|𝑥5) (9) 

 
In this example, the computational compactness previously discussed becomes apparent, 

as the number of parameters required increases in a linear fashion, whereas the joint 

distribution grows exponentially (Pearl & Russell, 2003).  Also discussed earlier is the 

property of Bayesian network graphs such that independence is maintained only for 

parent nodes as nondescendants are eliminated as in Equation 10: 

𝑃(𝑥6|𝑥1, 𝑥2, 𝑥3) = 𝑃(𝑥6|𝑥2, 𝑥3)      (10) 

 Assuming creation of a network structure and appropriate validation is complete; 

a practitioner must assign probabilistic values to each node.  This may be accomplished 
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by way of conditional probability tables where some value of prior probability is known, 

or by a probability distribution function from which values can be sampled in the case of 

uncertainty.  Each method is reviewed briefly here to illustrate the basic principles, and 

readers are directed to Gamerman and Lopes (2006), Kelly and Smith (2011), Bedford 

and Cooke (2001), and Darwiche (2009) for more detailed information. 

 In the model presently discussed, there are six nodes.  For each node, the states 

must be defined, and conditional probability given parent nodes must be established.  As 

an example, in Node 1, brake malfunction takes the states yes and no.  Node 2 has the 

states yes or no as does Node 3, and so on.  Tables 16 and 17 illustrate how conditional 

probability may be presented as a conditional probability table (CPT).  It is important to 

note that the probability estimates in these tables appear as point estimates; however, a 

probability distribution accounting for uncertainty could be framed similarly.  Figure 39 

appropriately presents a visualization of the probability distribution of runway stopping 

location.   

 

Table 16.  Conditional Probability of Brake Over-temp Given Brake Malfunction. 
 

Brake Malfunction Brake Over-temp ΘX2|X1 
Yes Yes .50 
No Yes .01 

Note: Θx2|x1 is CPT for variable X2 and its parent,X1 in this and following CPTs. 
 
 

Table 17.  Conditional Probability of Runway Overrun given x2, x3. 
 

Brake Over-temp Auto-braking Off Runway Overrun Θx6|x2, x3 
Yes Yes Yes .1200 
Yes No Yes .0010 
No Yes Yes .0004 
No No Yes 1*10-6 
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Figure 39.  Probability distribution of runway stopping distance (Valdes et al., 2011). 
 
 

Though the example suggested here is brief by necessity, it illustrates the intuitive 

design of BBNs in aviation PRA settings, where the development of event sequences and 

fault trees is commonplace.  From a practitioner’s point of view, the process must be 

undertaken in much the same way as the building of a database or even the design of an 

SMS.  That is, the bulk of the effort is confined to the design phases of the model, and 

with modern software and hardware developments, the model can be run and evaluated 

with relative ease once the necessary framework has been laid.  
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APPENDIX B 

Human Subject Protocol Application Form 
 

INSTRUCTIONS 
 
 

Please answer the 10 questions on the Human Subject Protocol Application Form as 
completely and thoroughly as possible. Include more lines where necessary. Upon 
completion, email to hollerat@erau.edu at the Pre-Award office. 
 
Include any supporting documentation along with a complete copy of your Informed-
Consent Form, any other tests, instruments, or surveys, as well as any proposal for 
funding. It is incumbent upon the researcher to demonstrate that the Principal Investigator 
is qualified to perform the study, every possible step has been taken to reduce risk to the 
participants, and that adequate benefit will come from the study to offset the risks. 
 
The answers to the questions need not be long, but they should be sufficiently detailed so 
that the reviewer can accurately assess the risks and benefits associated with your study. 

 

mailto:hollerat@erau.edu
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Embry-Riddle Aeronautical University 
Human Subject Protocol Application Form 

 
 

Project Title: 
__________________________________________________________________  
 
Principal Investigator:  
_________________________________________________________ 
(If student, list advisor’s name as investigator) 
 
List all Other Investigators: 
 
________________________________________________________________________ 
 
________________________________________________________________________ 
 
________________________________________________________________________ 
 
Submission Date: _______________________ 
 
Beginning Date:  _____________________  Expected End Date: ________________ 
 
Type of Project:  
_____________________________________________________________ 
 
Type of Funding Support (if any):  
_______________________________________________ 

 
 

Please answer the following questions and provide a brief explanation of the answer for 
each.  Include more lines where necessary. 
 
 

1. Briefly describe the background and purpose of the research. 
 
__________________________________________________________________ 

 
2. Describe in detail each condition or manipulation to be included with the study. 

 
__________________________________________________________________ 
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3. What measures or observations will be taken in the study? If any questionnaires, 

tests, or other instruments are used, provide a brief description and include a copy 
for review (computer programs may require demonstration at the request of the 
IRB).  

 
__________________________________________________________________ 

 
 

4. Describe the possible risks and benefits (if any) to the subjects and describe how 
the experimental design will limit risks. 

 
__________________________________________________________________ 

 
5. Describe the methods to be used in securing the informed consent of the subjects. 

If an informed consent form is to be used, attach to this form. See Informed 
Consent information sheet for more information on Informed Consent 
requirements. 

 
__________________________________________________________________ 

 
6. Will participant information be anonymous (not even the researcher can match 

data with names), confidential (names or any other identifying demographics can 
be matched, but only members of the research team will have access to that 
information. Publication of the data will not include any identifying information), 
or public (names and data will be matched and individuals outside of the research 
team will have either direct or indirect access. Publication of the data will allow 
either directly or indirectly, identification of the participants). Justify the 
classification and describe how privacy will be ensured/protected. 

 
__________________________________________________________________ 

 
7. If video/audio recordings are part of the research, please describe how that data 

will be stored or destroyed. 
 

__________________________________________________________________ 
 

8. Are students being required to participate in this research as part of a class project 
or as a class assignment? What are the alternatives to be offered in the event that a 
student(s) choose not to participate? If so, please list the class(es) and faculty 
members involved and justify this situation in light of APA ethical guidelines of 
the APA Publication Manual. 

 
__________________________________________________________________ 
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9. Are participants going to be paid for their participation? If yes, describe your 
policy for dealing with participants who 1) Show up for research, but refuse 
informed consent; 2) Start but fail to complete research.   
 
__________________________________________________________________ 
 

10. Approximately how much time will be required of each participant? 
 

__________________________________________________________________ 
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APPENDIX C 

Cooke’s Classical Model: Elicitation and Aggregation 

Within the classical model, two quantitative measures of expert performance 

exist: information and calibration.  Whereas information is a measure of the 

concentration of the distributed expert opinions, calibration is a measure of the likelihood 

that s set of experimental results would correspond to those assessed by the experts 

(Cooke & Goossens, 2006).  In determining calibration, Cooke (2009) suggests that each 

expert be asked to provide 5%, 50%, and 95% values.  The range for each quantity is 

divided into four inter-quartile intervals such that p1 = 0.05: less than or equal to the 5% 

value,  p2 = 0.45: greater than the 5% value and less than or equal to the 50% value, p3 = 

0.45: greater than the 50% value and less than or equal to the 95% value, and p4 = 0.5: 

greater than the 95% value and less than or equal to the 100% value: 

p= (0.05, 0.45, 0.45, 0.05) 

s1(e) = #{ i  |  xi  ≤ 5% quantile}/N  
s2(e) = #{ i  | 5% quantile < xi ≤  50% quantile}/N 
s3(e) = #{ i  | 50% quantile < xi ≤  95% quantile}/N 
s4(e) = #{ i  | 95% quantile < xi }/N 
s(e) = (s1,…s4) 

 

Cooke (1991) notes that the sample distribution depends on expert e and assuming 

independent draws from a distribution with the quantiles described previously by the 

expert is a chi-square test statistic for goodness of fit with three degrees of freedom as in 

the following, in which I(s(e)|p) denotes relative information of distribution s with 

respect to pfor expert e: 

  2NI(s(e)|p) = 2N ∑i=1..4 si ln(si/pi)           (6) 
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where: 

 e is the expert; 

s is the distribution; 

p is probability of concurrence 

The decision maker in the classical model scores each expert e as the likelihood of the 

hypothesis, “the inter-quantile interval containing the true value for each variable is 

drawn independently from probability vector p” (Cooke, 2009).  The calibration score is 

calculated by: 

Calibration score(e) =  p-value = Prob{2NI(s(e)|p) ≥ r | He} 

where: 

r is the value from (6) based on the observed values of x1...xN; 

He is the hypothesis that a deviation at least as large as r is observed on 

N realizations id the hypothesis is true; and 

s is the sample distribution. 

 The information element of the expert score weighting requires a density be 

associated with each of the quantile assessments gained from the experts (and discussed 

in the preceding section).  The classical model offered by Cooke (2009) uses the k% 

overshoot rule: “for each item we consider the smallest interval I = [L, U] containing all 

the assessed quantiles of all experts and the realization, if known” (p. 265).  Cooke 

extends this interval to: 

I* = [L*, U*]; L* = L – k(U-L)/100;  U* = U + k(U-L)/100.  (7) 
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where: 

I is the interval; 

U is the upper interval limit;  

L is the lower limit;  

k is the overshoot value chosen by the researcher. 

In the discussion that follows, mention is made of the role that analyst experience 

plays in the quality of the weighting process.  In Equation 7, the value of k is chosen by 

the researcher, and Cooke notes that a large value tends to “suppress the relative 

differences in information scores” (2009, p. 265).  With this in mind, the process 

continues, with the information score calculated for each rater as by: 

Inf (e) =average relative information with respect to background = (1/N) ∑i = 1..NI(fe,i|gi) 

where: 

gi is the background density for I and fe,i is expert e’s density function for item i. 

The combination of the information and calibration scores serves as a weighting 

mechanism for each expert and is dependent upon the value of α, as shown in Equation 8 

(Cooke, 1991, 2009).   

wα(e) = Cal (e) × Inf (e) × 1α(Cal(e) ≥ α)   (8) 

The classical model, and the evaluation of the quality of expertise is essentially a 

function of linear pooling and the derivation of weights as a product of information and 

calibration.  To avoid what Cooke and Goossens (2006) refer to as “haphazard” influence 

on the decision maker by an individual expert, a set of scoring rules is also imposed 
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within the classical model (p. 7).  Performance of the weighting scheme (more 

information on the details of which can be found in Cooke (2004 & 2009) and Cooke & 

Goosens (2006)) is largely dependent on the experience of the researcher in practical use 

(Cooke & Goossens, 2006).  As such, the research proposed herein must account for bias 

and performance issues in this regard, and it is likely that this limitation will propagate 

through the model results, creating a limitation to the generalizability of the data.  To 

attempt to limit this potential shortcoming, the software package EXCALIBUR, which 

accomodates the elements of the classical model and will calculate information and 

calibration scores to assign weights after the elicitation results are inserted, can be used. 

Structured expert judgment requires:  

• Scrutability/accountability: All data, including experts' names and assessments, 

and all processing tools are open to peer review and results must be reproducible 

by competent reviewers. 

• Empirical control: Quantitative expert assessments are subjected to empirical 

quality controls. 

• Neutrality: The method for combining/evaluating expert opinion should 

encourage experts to state their true opinions, and must not bias results. 

• Fairness: Experts are not pre-judged, prior to processing the results of their 

assessments (Cooke & Goossens, 2006, p. 3). 
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APPENDIX D 

Structured Expert Judgment Subject Matter Expert Profiles 

Expert A is a Captain for a 14 CFR Part 121 regional airline operator. He has extensive 

line pilot experience in airline operations at large primary commercial airports. He has 

over 7700 hours of flight time and 18 years of aviation experience. His aviation 

background includes 14 CFR Part 135 cargo operations and 14 CFR Part 141 flight 

instruction. He also holds a bachelor’s degree in Aviation Science and a minor in 

Aviation Safety. 

 
Expert B Is a Designated Pilot Examiner in Northern California.  He conducts check rides 

for Private, Instrument, Commercial, ATP, and instructor licenses and certificates.  He is 

also a Chief Pilot for an International Charter Operator and has extensive background in 

developing and writing manuals and training courses.  He has 20 years of aviation 

experience with over 5500 flight hours.  He instructs actively as well as currently flies 

multiple types of aircraft in 14 CFR Part 91 and 14 CFR Part 135 operations.  His 

background also includes intensive operations in 14CFR91 Subpart K.   

 
Expert C is the Operations Training Supervisor for a large hub airport where one of his 

duties is overseeing the 14 CFR Part 139.329 driver certification program at the airport. 

He has worked in airport operations for the last 7 years and in aviation training for the 

last 12. He has participated in a number of Runway Safety Action Teams and has been a 

Subject Matter Expert in FAA SRM panels on airfield safety. He also has been the lead 

airport representative in Airport/FAA study focusing on the airfield driver human factors. 
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He has presented on Runway Safety both in the US and Internationally. He is a CFI/CFII 

and holds a MEL pilot certificate.  

 
Expert D is an airline captain for a large regional carrier in the United States. He is also 

the Safety Management System (SMS) Program Manager tasked with development and 

implementation of the SMS within his organization. He has an extensive background in 

safety management, incident/accident investigation, and human factors. He has over 

4,300 hours of flight experience and was previously a training center evaluator (TCE ) for 

a major flight university conducting practical tests for Private, Instrument, Commercial, 

and instructor certificates. 

 
Expert E has been involved in military and civilian aviation for 45 years, serving as a 

pilot and engineer prior to joining the FAA in 1985.  He acted within the FAA as an 

airport engineer, program and technical manager, and as a Region Runway Safety 

Manager as well as the Acting Director for Runway Safety at the national level. 

 

Expert F has been working in the Air Traffic Control and Airport Management field since 

1984. During the past 28 years, he has managed the research, development, and 

implementation of several national aviation projects for the FAA.  He is the inventor of 

several new tools for pilots, airports and aircraft worldwide.  He has instructed 

internationally on aviation related materials and is in high demand for this field.  He has 

been instrumental in designing and redesigning airport layout plans.  Many new 

enhancements to the XXXXX International Airport can be attributed to his fuel 

savings/efficiency modifications.     
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Experts, 
 
 Thank you for your participation in this study, which attempts to probabilistically 
model the factors that contribute to runway incursions in the U.S. 
 
 In quantifying the probability distribution of the variables in the network model 
developed in this study, structured expert judgment is used, following the Classical 
Model developed by Cooke (1991). 
 
   The questions that follow relate to aviation operations in the United States, and 
are intended to include ground, ATC, and flight operations as appropriate.  U.S. aviation 
metrics are generally expressed per 100,000 operations, and unless otherwise noted, 
this rate may be assumed throughout. 
 
   Throughout the following exercise, you will be asked to provide our estimate of 
the 5th, 50th, and 95th percentile of a particular measure.  As a brief review, these 
percentiles correspond to a probability density function as in the figure below, and 
describe the bounds of a distribution (not necessarily normally distributed as shown 
below) using the basic concepts of: 

• The 50th percentile (median) of the distribution, i.e. given 100 samples of a 
variable value, 50 would be expected to fall below and 50 would fall above the 
median value. 

• The 5th percentile value, which can be interpreted as: it would surprise you if 
more than 5 out of 100 samples have a value lower than this value. 

• The 95th percentile value, which can be interpreted as: it would surprise you if 
more than 5 out of 100 samples have a value higher than this value. 

 

 
Figure 1.  Normal distribution with percentiles. 

 
 
Included in the elicitation are variables whose actual values are known.  These variables 
are used to assist in measurement and validation of expert performance in quantifying 
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uncertainty.  A good assessment of uncertainty is statistically accurate and informative, 
two characteristics that are evaluated relative to the known variables and expert 
responses. 
 
   Use the accompanying spreadsheet, which describes the model variables and 
provides additional information, to support your responses to the following questions. 
 
 To understand how probabilities and dependencies will be assessed from your 
responses, consider the following example.  If we assume a population of airline flight 
crew employees having a median age is 45 years old, a median gross salary of $90,000, 
and a median experience on three different aircraft within the current fleet, we can 
perform some basic estimates.  If we look at the portion of the population that lies 
below the median, that is younger than 45, we can reasonably expect their mean salary 
to reflect a value lower than the median for the whole population.  An appropriate 
question might be: Suppose we have 1,000 employees who are younger than 45 years 
old, how many of those would have an annual salary of less than $90,000.  If your 
answer is 700, then the probability is expressed as: 
 

P(annual salary≤x50=$90,000|pilot age≤y50=45) = 0.70 
 

Investigating further, we may want to look at the probability that the crewmember’s 
salary is less than the median value given that the pilot is younger than 45 and has 
experience on fewer than three aircraft types, the median experience level given above.  
We would now express that probability as (where X, Y, and Z represent flight crew 
salary, age, and experience, respectively): 

 
P(X≤x50|Y≤y50, Z≤z50) 

 
 As part of the process of ranking variable interaction, you will be asked to 
express your opinion in terms of correlation.  Recall that correlation can be positive or 
negative, and can vary in strength of association, as shown here: 
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Expert Profiles 
 
Expert A is a Captain for a 14CFR121 regional airline operator. He has extensive line pilot 
experience in airline operations at large primary commercial airports. He has over 7700 hours of 
flight time and 18 years of aviation experience. His aviation background includes 14CFR135 
cargo operations and 14CFR141 flight instruction. He also holds a bachelor’s degree in Aviation 
Science and a minor in Aviation Safety. 
 
Expert B Is a Designated Pilot Examiner in Northern California.  He conducts check rides for 
Private, Instrument, Commercial, ATP, and instructor licenses and certificates.  He is also a Chief 
Pilot for an International Charter Operator and has extensive background in developing and 
writing manuals and training courses.  He has 20 years of aviation experience with over 5500 
flight hours.  He instructs actively as well as currently flies multiple types of aircraft in 14CFR91 
and 14CFR135 operations.  His background also includes intensive operations in 14CFR91 
Subpart K.   
 
Expert C is the Operations Training Supervisor for a large hub airport where one of his duties is 
overseeing the Part 139.329 driver certification program at the airport. He has worked in airport 
operations for the last 7 years and in aviation training for the last 12. He has participated in a 
number of Runway Safety Action Teams and has been a Subject Matter Expert in FAA SRM 
panels on airfield safety. He also has been the lead airport representative in Airport/FAA study 
focusing on the airfield driver human factors. He has presented on Runway Safety both in the US 
and Internationally. He is a CFI/CFII and holds a MEL pilot certificate.  
 
Expert D is an airline captain for a large regional carrier in the United States. He is also the Safety 
Management System (SMS) Program Manager tasked with development and implementation of 
the SMS within his organization. He has an extensive background in safety management, 
incident/accident investigation, and human factors. He has over 4,300 hours of flight experience 
and was previously a training center evaluator (TCE ) for a major flight university conducting 
practical tests for Private, Instrument, Commercial, and instructor certificates. 
 
Expert E has been involved in military and civilian aviation for 45 years, serving as a pilot and 
engineer prior to joining the FAA in 1985.  He acted within the FAA as an airport engineer, 
program and technical manager, and as a Region Runway Safety Manager as well as the Acting 
Director for Runway Safety at the national level. 
 
Expert F has been working in the Air Traffic Control and Airport Management field since 1984. 
During the past 28 years, he has managed the research, development, and implementation of 
several national aviation projects for the FAA.  He is the inventor of several new tools for pilots, 
airports and aircraft worldwide.  He has instructed internationally on aviation related materials 
and is in high demand for this field.  He has been instrumental in designing and redesigning 
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airport layout plans.  Many new enhancements to the XXXXX International Airport can be 
attributed to his fuel savings/efficiency modifications.    
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Calibration Questions 
 

CQ1 General 
During the period between 1988 and 1999, the total number of runway incursions 
reported in the U.S. increased by what percent? (Not limited to 100% maximum) 
Answer: 171% 
Source: NASA ASRS Callback Summary Issue No. 263 
(http://asrs.arc.nasa.gov/publications/ callback/cb_253.htm) 
5th percentile 50th percentile 95th percentile 
   
 
CQ2 General 
During the period between 1988 and 1999, the number of U.S. runway incursions 
resulting from pilot deviations (PD) increased by what percent? (Not limited to 100% 
maximum) 
Answer: 267% 
Source: NASA ASRS Callback Summary Issue No. 263 
(http://asrs.arc.nasa.gov/publications/ callback/cb_253.htm) 
5th percentile 50th percentile 95th percentile 
   
 
CQ3 General 
How many airline departures per year occurred in the U.S. during the period from April 
1, 2012 through March 31, 2013? 
Answer: 8,796,000 
Source: Bureau of Transportation Statistics (http://www.transtats.bts.gov/) 
5th percentile 50th percentile 95th percentile 
   
 
CQ4 General 
What was the reported General Aviation accident rate for FAA FY2011 expressed as 
accidents per 100,000 flight hours? 
Answer: 6.51 
Source: NTSB 2011 Annual Aviation Safety Statistics (http://www.ntsb.gov/news/ 
2012/120427.html) 
5th percentile 50th percentile 95th percentile 
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CQ5 General 
For the same period in CQ4, what was the reported Part 121 airline accident rate 
expressed as accidents per 100,000 flight hours? 
Answer: 0.175 
Source: NTSB (http://www.ntsb.gov/data/table5_2012.html) 
5th percentile 50th percentile 95th percentile 
   
 
CQ6 General 
The FAA identifies airport “hot spots” as “a location on an airport movement area with a 
history of potential risk of collision or runway incursion, and where heightened 
attention by pilots and drivers is necessary.”  Considering there are approximately 5,170 
public-use airports (503 with Part 121 airline service), how many hot spots have been 
identified  
Answer: 601 
Source: FAA (http://www.faa.gov/airports/runway_safety/hotspots/hotspots_list/) 
5th percentile 50th percentile 95th percentile 
   
 
CQ7 General 
How many Runway Incursions were reported in the U.S in the period from January 1, 
2013 through June 30, 2013? 
Answer: 569 
Source: FAA Office of Runway Safety (http://www.faa.gov/airports/runway_safety/ 
statistics/year/?fy1=2013&fy2=2012) 
5th percentile 50th percentile 95th percentile 
   
 
CQ8 General 
Of the Runway Incursions reported in CQ7, what percentage of these were pilot 
deviation events? 
Answer: 62% 
Source: FAA Office of Runway Safety (http://www.faa.gov/airports/runway_safety/ 
statistics/year/?fy1=2013&fy2=2012) 
5th percentile 50th percentile 95th percentile 
   
 
 
 
 
 
 
 



171 
 

 
 

CQ9 General 
Of the Runway Incursions reported in CQ7, what percentage of these were 
vehicle/pedestrian deviation events? 
Answer: 20% 
Source: FAA Office of Runway Safety (http://www.faa.gov/airports/runway_safety/ 
statistics/year/?fy1=2013&fy2=2012) 
5th percentile 50th percentile 95th percentile 
   
 
CQ10 General 
What percentage of aviation accidents may be attributed, at least in part, to human 
error? 
Answer: 70% 
Source: Shappell, et al, 2005 (http://www.hf.faa.gov/docs/508/docs/gaHFACS2005.pdf) 
5th percentile 50th percentile 95th percentile 
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Elicitation Questions 
 

Q1 Procedural Deviation 
Consider 100,000 randomly chosen flights within the U.S. under the general model 
conditions.  On how many of these flights will a DEVIATION FROM PROCEDURE be 
committed by the flight crew?  Express your uncertainty by providing a 5th, 50th, and 
95th percentile of your estimated distribution. 
5th percentile 50th percentile 95th percentile 
   

 
Q2 Inadequate Supervision 
Consider 100,000 randomly chosen flight operations within the U.S. under the general 
model conditions.  In what proportion these operations might INADEQUATE 
SUPERVISION, as defined in the materials provided, be observed?  Express your 
uncertainty by providing a 5th, 50th, and 95th percentile of your estimated distribution. 
5th percentile 50th percentile 95th percentile 
   
 
Q3 High Workload 
Consider 100,000 randomly chosen flight operations within the U.S. under the general 
model conditions.  What percentage of these operations involves HIGH WORKLOAD as 
defined in the materials provided?  Express your uncertainty by providing a 5th, 50th, 
and 95th percentile of your estimate. 
5th percentile 50th percentile 95th percentile 
   
 
Q4 Organizational/Regulatory Factor 
Consider 100,000 randomly chosen flight operations within the U.S. under the general 
model conditions.  What percentage of these operations will experience an abnormal 
ORGANIZATIONAL/REGULATORY FACTOR as defined in the materials provided?  Express 
your uncertainty by providing a 5th, 50th, and 95th percentile of your estimate. 
5th percentile 50th percentile 95th percentile 
   
 
Q5 Complex Intersection 
Consider 100,000 randomly chosen flight operations within the U.S. under the general 
model conditions.  What proportion of these operations involves navigating an airport 
intersection defined as a COMPLEX INTERSECTION?  Express your uncertainty by 
providing a 5th, 50th, and 95th percentile of your estimated distribution. 
5th percentile 50th percentile 95th percentile 
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Q6 Irregular or Noncompliant Signs or Markings 
Consider 100,000 randomly chosen operations within the U.S. under the general model 
conditions.  What proportion of these operations experiences IRREGULAR OR 
NONCOMPLIANT SIGNS OR MARKINGS during movement to or from the runway area? 
Express your uncertainty by providing a 5th, 50th, and 95th percentile of your estimated 
distribution. 
5th percentile 50th percentile 95th percentile 
   
 
Q7 Airport Construction 
Consider 100,000 randomly chosen flight operations within the U.S. under the general 
model conditions.  On how many of these operations might an operator encounter 
AIRFIELD CONSTRUCTION IN PROGRESS, as defined in the materials provided?  Express 
your uncertainty by providing a 5th, 50th, and 95th percentile of your estimated 
distribution. 
5th percentile 50th percentile 95th percentile 
   
 
Q8 Part 139 
Consider 100,000 randomly chosen flight operations within the U.S. under the general 
model conditions.  How many of these operations might utilize a 14CFR PART 139 
AIRFIELD?  Express your uncertainty by providing a 5th, 50th, and 95th percentile of 
your estimated distribution. 
5th percentile 50th percentile 95th percentile 
   
 
Q9 Non-Towered Airfield 
Consider 100,000 randomly chosen flight operations within the U.S. under the general 
model conditions.  How many of these operations might utilize an NON-TOWERED 
AIRFIELD?  Express your uncertainty by providing a 5th, 50th, and 95th percentile of 
your estimated distribution. 
5th percentile 50th percentile 95th percentile 
   
 
Q10 Conflicting Vehicle Traffic 
Consider 100,000 randomly chosen flight operations within the U.S. under the general 
model conditions.  What proportion of these operations might experience CONFLICTING 
VEHICLE TRAFFIC, as defined in the materials provided?  Express your uncertainty by 
providing a 5th, 50th, and 95th percentile of your estimated distribution. 
5th percentile 50th percentile 95th percentile 
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Q11 Operational Environment Factor 
Consider 100,000 randomly chosen flight operations within the U.S. under the general 
model conditions.  What percentage of these operations will experience an abnormal 
OPERATIONAL ENVIRONMENT FACTOR as defined in the materials provided?  Express 
your uncertainty by providing a 5th, 50th, and 95th percentile of your estimate. 
5th percentile 50th percentile 95th percentile 
   

 
Q12 Task Saturation 
Consider 100,000 randomly chosen aviation operations within the U.S. under the 
general model conditions.  On how many of these operations might TASK SATURATION, 
as defined in the materials provided, be observed?  Express your uncertainty by 
providing a 5th, 50th, and 95th percentile of your estimated distribution. 
5th percentile 50th percentile 95th percentile 
   
 
Q13 Failure to Hold Short 
Consider 100,000 randomly chosen flight/airport vehicle operations within the U.S. 
under the general model conditions.  On how many of these operations might a FAILURE 
TO HOLD SHORT, as defined in the materials provided, be observed?  Express your 
uncertainty by providing a 5th, 50th, and 95th percentile of your estimated distribution. 
5th percentile 50th percentile 95th percentile 
   
 
Q14 Lost Situational Awareness 
Consider 100,000 randomly chosen operations within the U.S. under the general model 
conditions.  On how many of these operations might a LOSS OF SITUATIONAL 
AWARENESS, as defined in the materials provided, be observed?  Express your 
uncertainty by providing a 5th, 50th, and 95th percentile of your estimated distribution. 
5th percentile 50th percentile 95th percentile 
   
 
Q15 Human Factors 
Consider 100,000 randomly chosen flight operations within the U.S. under the general 
model conditions.  What percentage of these operations will experience an abnormal 
HUMAN FACTOR as defined in the materials provided?  Express your uncertainty by 
providing a 5th, 50th, and 95th percentile of your estimate. 
5th percentile 50th percentile 95th percentile 
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Q16 Sun Glare 
Consider 100,000 randomly chosen operations within the U.S. under the general model 
conditions.  On how many of these operations might SUN GLARE, as defined in the 
materials provided, affect the operator(s)?  Express your uncertainty by providing a 5th, 
50th, and 95th percentile of your estimated distribution. 
5th percentile 50th percentile 95th percentile 
   
 
Q17 Weather Factors 
Consider 100,000 randomly chosen flight operations within the U.S. under the general 
model conditions.  What percentage of these operations will experience an abnormal 
WEATHER FACTOR as defined in the materials provided?  Express your uncertainty by 
providing a 5th, 50th, and 95th percentile of your estimate. 
5th percentile 50th percentile 95th percentile 
   
Q18 ATC Equipment Failure 
Consider 100,000 randomly chosen operations within the U.S. under the general model 
conditions.  On how many of these operations might an ATC EQUIPMENT FAILURE, as 
defined in the materials provided, occur?  Express your uncertainty by providing a 5th, 
50th, and 95th percentile of your estimated distribution. 
5th percentile 50th percentile 95th percentile 
   
 
Q19 In-Vehicle Display 
Consider 100,000 randomly chosen operations within the U.S. under the general model 
conditions.  On how many of these operations might an IN-VEHICLE DISPLAY, as defined 
in the materials provided, be used by an operator(s)?  Express your uncertainty by 
providing a 5th, 50th, and 95th percentile of your estimated distribution. 
5th percentile 50th percentile 95th percentile 
   
 
Q20 Radio Congestion 
Consider 100,000 randomly chosen operations within the U.S. under the general model 
conditions.  On how many of these operations might RADIO CONGESTION, as defined in 
the materials provided, occur?  Express your uncertainty by providing a 5th, 50th, and 
95th percentile of your estimated distribution. 
5th percentile 50th percentile 95th percentile 
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Q21 Technical/Engineering Factors 
Consider 100,000 randomly chosen flight operations within the U.S. under the general 
model conditions.  What percentage of these operations will experience an abnormal 
TECHNICAL/ENGINEERING FACTOR as defined in the materials provided?  Express your 
uncertainty by providing a 5th, 50th, and 95th percentile of your estimate. 
5th percentile 50th percentile 95th percentile 
   
 
Q22 Incorrect Presence 
Consider 100,000 randomly chosen airport surface operations within the U.S. under the 
general model conditions.  What percentage of these operations will, during movement 
on the airfield surface, occupy an INCORRECT PRESENCE as defined in the materials 
provided?  Express your uncertainty by providing a 5th, 50th, and 95th percentile of 
your estimate. 
5th percentile 50th percentile 95th percentile 
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Rank Correlation Questions 
 

Incorrect Presence Factor Rank 
Variable Relative Rank 
Organizational/Regulatory  
Operational Environment  
Human Factors  
Weather  
Technological/Engineering  
 
RQ1 Incorrect Presence Rank Correlation 
If 50,000 flight operations from the sample in Question 22 are randomly chosen, then 
the number of those operations where an INCORRECT PRESENCE occurs should be 
approximately half the median value from Question 22.  Instead of randomly selecting 
these operations, suppose that only flights where XXXXXX is above its median value are 
chosen (Question X).  Given this situation, what is the probability that instances of 
INCORRECT PRESENCE will be above half the 50th percentile estimate from Question 22?  
Given these conditions, what portion of these 50,000 will experience more than the 
median number of instances of INCORRECT PRESENCE in Question 2? 
Probability Portion (Count) 
  
 
Incorrect Presence Factor Influence 
Variable Rank Influence as a % of highest 

ranked variable 
(Does not need to add up to 
100%) 

Direction of correlation 
(positive/negative) 

Organizational/Regulatory    
Operational Environment    
Human Factors    
Weather    
Technological/Engineering    
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RQ2 Procedural Deviation Rank Correlation 
If 50,000 flight operations from the sample in Question 1 are randomly chosen, then the 
number of those operations where a DEVIATION FROM PROCEDURE occurs should be 
approximately half the median value from Question 1. Instead of randomly selecting these 
operations, suppose that only operations where INADEQUATE SUPERVISION is above its 
median value are chosen (Question 2). Given this situation, what is the probability that the 
number of DEVIATIONS FROM PROCEDURE will be above half the 50th percentile estimate 
from Question 1? Given these conditions, what portion of these 50,000 will commit more 
than the median number of DEVIATIONS FROM PROCEDURE in Question 1?  
Probability Portion (Count) 
  

 
Organizational/Regulatory Factor Rank 
Variable Relative Rank 
High Workload  
Inadequate Supervision/Climate  
Procedural Deviation  
 
RQ3 Organization/Regulatory Factors Rank Correlation 
If 50,000 flight operations from the sample in Question 4 are randomly chosen, then the 
number of those operations where an ORGANIZATIONAL/REGULATORY error occurs should 
be approximately half the median value from Question 4. Instead of randomly selecting 
these operations, suppose that 50,000 operations where XXXXXXX is at or above its median 
value are chosen (Question X). Given this situation, what is the probability that the number 
of ORGANIZATIONAL/ REGULATORY errors will be above half the 50th percentile estimate 
from Question 4? Given these conditions, what portion of these 50,000 will commit more 
than the median number of ORGANIZATIONAL/REGULATORY errors in Question 4?  
Probability Portion (Count) 
  
 
Organizational/Regulatory Factor Influence 
Variable Rank Influence as a % of highest 

ranked variable 
(Does not need to add up to 
100%) 

Direction of 
correlation 
(positive/negative) 

High Workload    
Inadequate 
Supervision/Climate 

   

Procedural Deviation    
  



180 
 

 
 

 
 

RQ4 Complex Intersection Rank Correlation 
If 50,000 flight operations from the sample in Question 5 are randomly chosen, then the 
number of those operations where a COMPLEX INTERSECTION is encountered should be 
approximately half the median value from Question 5. Instead of randomly selecting these 
operations, suppose that 50,000 operations where AIRFIELD CONSTRUCTION is above its 
median value are chosen (Question 7). Given this situation, what is the probability that the 
number of COMPLEX INTERSECTION encounters will be above half the 50th percentile 
estimate from Question 5? Given these conditions, what portion of these 50,000 will be 
required to navigate more than the median number of COMPLEX INTERSECTIONS in 
Question 5?  
Probability Portion (Count) 
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RQ5 Non-Towered Airfield Rank Correlation 
If 50,000 flight operations from the sample in Question 9 are randomly chosen, then the 
number of those operations at an NON-TOWERED AIRFIELDS airfield should be 
approximately half the median value from Question 9. Instead of randomly selecting these 
operations, suppose that 50,000 operations where PART 139 is below its median value are 
chosen (Question 8). Given this situation, what is the probability that the number of 
operations at NON-TOWERED AIRFIELDS will be above half the median value from Question 
9? Given these conditions, what portion of these 50,000 will be at more than the median 
number of NON-TOWERED AIRFIELDS in Question 9?  
Probability Portion (Count) 
  

 
RQ6 Vehicle Traffic (I) Rank Correlation 
If 50,000 flight operations from the sample in Question 10 are randomly chosen, then the 
number of those operations where CONFLICTING VEHICLE TRAFFIC is encountered should be 
approximately half the median value from Question 10. Instead of randomly selecting these 
operations, suppose that 50,000 operations where NON-TOWERED AIRFIELDS are 
encountered at above the median value are chosen (Question 9). Given this situation, what 
is the probability that the number of CONFLICTING VEHICLE TRAFFIC encounters will be 
above half the 50th percentile estimate from Question 10? Given these conditions, what 
portion of these 50,000 will be required to navigate more than the median number of 
CONFLICTING VEHICLE TRAFFIC interactions in Question 10?  
Probability Portion (Count) 
  

 
RQ7 Vehicle Traffic (II) Rank Correlation  
If 50,000 flight operations from the sample in Question 10 are randomly chosen, then the 
number of those operations where CONFLICTING VEHICLE TRAFFIC is encountered should be 
approximately half the median value from Question 10. Instead of randomly selecting these 
operations, suppose that 50,000 operations below the median value of PART 139 airfields 
are chosen (Question 8). Given this situation, what is the probability that the number of 
CONFLICTING VEHICLE TRAFFIC encounters will be above half the 50th percentile estimate 
from Question 10? Given these conditions, what portion of these 50,000 will be required to 
navigate more than the median number of CONFLICTING VEHICLE TRAFFIC interactions in 
Question 10?  
Probability Portion (Count) 
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Operational Environment Factor Rank 
Variable Relative Rank 

Complex Intersections  

Irregular Signs/Markings  
Non-towered Airfield  
Airport Construction  
Conflicting Vehicle Traffic  
 
RQ8 Operating Environment Rank Correlation 
If 50,000 operations from the sample in Question 11 are randomly chosen, then the number of 
those operations where an OPERATING ENVIRONMENT factor is present should be 
approximately half the median value from Question 11.  Instead of randomly selecting these 
operations, suppose that only flights where XXXXX is above its median value are chosen 
(Question X).  Given this situation, what is the probability that OPERATING ENVIRONMENT 
factors are above half the 50th percentile estimate from Question 11?  Given these conditions, 
what portion of these 50,000 will be above the median from Question 11? 
Probability Portion (Count) 
  
 
Operational Environment Factor Influence 
Variable Rank Influence as a % of highest ranked 

variable 
(Does not need to add up to 100%) 

Direction of 
correlation 
(positive/negative) 

Complex Intersections    
Irregular Signs/Markings    
Non-Towered Airfield    
Airport Construction    
Conflicting Vehicle 
Traffic 
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Task Saturation Factor Rank 
Variable Relative Rank 
High Workload  
Procedural Deviation  
ATC Equipment Failure  
Radio Congested  
Conflicting Vehicle Traffic  
 
RQ9 Human Factors Rank Correlation 
If 50,000 flight operations from the sample in Question 12 are randomly chosen, then 
the number of those operations where TASK SATURATION occurs should be 
approximately half the median value from Question 15.  Instead of randomly selecting 
these operations, suppose that only flights where a XXXXX is above its median value are 
chosen (Question X).  Given this situation, what is the probability that instances of TASK 
SATURATION will be above half the 50th percentile estimate from Question 1?  Given 
these conditions, what portion of these 50,000 will experience more than the median 
number of instances of TASK SATURATION in Question 12? 
Probability Portion (Count) 
  
 
Task Saturation Factor Influence 
Variable Rank Influence as a % of highest 

ranked variable 
(Does not need to add up to 
100%) 

Direction of correlation 
(positive/negative) 

High Workload    
Procedural Deviation    
ATC Equipment Failure    
Radio Congested    
Conflicting Vehicle 
Traffic 
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Lost Situational Awareness Rank 
Variable Relative Rank 
Weather  
Complex Intersections  
Irregular Signs/Markings  
 
RQ10 Lost Situational Awareness Rank Correlation 
If 50,000 flight operations from the sample in Question 14 are randomly chosen, then 
the number of those operations where LOST S/A occurs should be approximately half 
the median value from Question 14.  Instead of randomly selecting these operations, 
suppose that only flights where a XXXXXX is above its median value are chosen 
(Question X).  Given this situation, what is the probability that instances of LOST S/A will 
be above half the 50th percentile estimate from Question 14?  Given these conditions, 
what portion of these 50,000 will experience more than the median number of 
instances of LOST S/A in Question 14? 
Probability Portion (Count) 
  
 
Lost Situational Awareness Influence 
Variable Rank Influence as a % of highest 

ranked variable 
(Does not need to add up to 
100%) 

Direction of correlation 
(positive/negative) 

Weather    
Complex Intersections    
Irregular Signs/Markings    
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RQ11 Failure to Hold Short Rank Correlation (I) 
If 50,000 flight operations from the sample in Question 13 are randomly chosen, then 
the number of those operations where a FAILURE TO HOLD SHORT occurs should be 
approximately half the median value from Question 13.  Instead of randomly selecting 
these operations, suppose that only flights where LOST S/A is above its median value are 
chosen (Question 14).  Given this situation, what is the probability that FAILURE TO 
HOLD SHORT will be above half the 50th percentile estimate from Question 13?  Given 
these conditions, what portion of these 50,000 will experience more than the median 
number of instances of FAILURE TO HOLD SHORT in Question 13? 
Probability Portion (Count) 
  
  
RQ12 Failure to Hold Short Rank Correlation (II) 
If 50,000 flight operations from the sample in Question 13 are randomly chosen, then 
the number of those operations where a FAILURE TO HOLD SHORT occurs should be 
approximately half the median value from Question 13.  Instead of randomly selecting 
these operations, suppose that only flights where MECHANICAL FAILURE is above its 
median value are chosen.  Given this situation, what is the probability that FAILURE TO 
HOLD SHORT will be above half the 50th percentile estimate from Question 13?  Given 
these conditions, what portion of these 50,000 will experience more than the median 
number of instances of FAILURE TO HOLD SHORT in Question 13? 
Probability Portion (Count) 
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Human Factors Rank 
Variable Relative Rank 
Task Saturation  
Failed to Hold Short  
Lost Situational Awareness  
 
RQ13 Human Factors Rank Correlation 
If 50,000 flight operations from the sample in Question 15 are randomly chosen, then 
the number of those operations where a HUMAN FACTORS error occurs should be 
approximately half the median value from Question 15.  Instead of randomly selecting 
these operations, suppose that only flights where a XXXXX is above its median value are 
chosen (Question X).  Given this situation, what is the probability that instances of 
HUMAN FACTORS error will be above half the 50th percentile estimate from Question 
15?  Given these conditions, what portion of these 50,000 will experience more than the 
median number of instances of HUMAN FACTORS error in Question 15? 
Probability Portion (Count) 
  
 
Human Factors Influence 
Variable Rank Influence as a % of highest 

ranked variable 
(Does not need to add up to 
100%) 

Direction of correlation 
(positive/negative) 

Task Saturation    
Failed to Hold Short    
Lost Situational 
Awareness 
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Weather Factor Rank 
Variable Relative Rank 
Darkness/Twilight  
Sun Glare  
Visibility Restriction  
Precipitation  
 
RQ14 Weather Rank Correlation 
If 50,000 operations from the sample in Question 17 are randomly chosen, then the 
number of those operations where a WEATHER FACTOR occurs should be approximately 
half the median value from Question 17.  Instead of randomly selecting these 
operations, suppose that only flights where XXXXXX occurs at above median value are 
chosen.  Given this situation, what is the probability that instances of WEATHER FACTOR 
will be above half the 50th percentile estimate from Question 17?  Given these 
conditions, what portion of these 50,000 will experience more than the median number 
of WEATHER FACTORS in Question 17? 
Probability Portion (Count) 
  
 
Organizational/Regulatory Factor Influence 
Variable Rank Influence as a % of highest 

ranked variable 
(Does not need to add up to 
100%) 

Direction of correlation 
(positive/negative) 

Darkness/Twilight    
Sun Glare    
Visibility Restriction    
Precipitation    
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RQ15 Visibility Rank Correlation (I) 
If 50,000 operations from the sample for RESTRICTIONS TO VISIBILITY are randomly 
chosen, then the number of those operations where a RESTRICTED VISIBILITY occurs 
should be approximately half the median value.  Instead of randomly selecting these 
operations, suppose that only flights where SUN GLARE occurs at above median value 
are chosen (Question 16).  Given this situation, what is the probability that instances of 
RESTRICTED VISIBILITY will be above half the 50th percentile value?  Given these 
conditions, what portion of these 50,000 will experience more than the median 
RESTRICTED VISIBILITY? 
Probability Portion (Count) 
  

 
RQ16 Visibility Rank Correlation (II) 
If 50,000 operations from the sample for RESTRICTIONS TO VISIBILITY are randomly 
chosen, then the number of those operations where a RESTRICTED VISIBILITY occurs 
should be approximately half the median value.  Instead of randomly selecting these 
operations, suppose that only flights where PRECIPITATION occurs at above median 
value are chosen (Question 16).  Given this situation, what is the probability that 
instances of RESTRICTED VISIBILITY will be above half the 50th percentile value?  Given 
these conditions, what portion of these 50,000 will experience more than the median 
RESTRICTED VISIBILITY? 
Probability Portion (Count) 
  

 
RQ17 Radio Congestion Rank Correlation 
If 50,000 operations from the sample for RADIO CONGESTION are randomly chosen, 
then the number of those operations where RADIO CONGESTION occurs should be 
approximately half the median value.  Instead of randomly selecting these operations, 
suppose that only flights where an ATC EQUIPMENT FAILURE occurs at above median 
value are chosen (Question 18).  Given this situation, what is the probability that 
instances of RADIO CONGESTION will be above half the 50th percentile value?  Given 
these conditions, what portion of these 50,000 will experience more than the median 
RADIO CONGESTION? 
Probability Portion (Count) 
  
 
Technical/Engineering Factor Rank 
Variable Relative Rank 
ATC Equipment Failure  
Radio Congestion  
In-Vehicle Display  
Mechanical Failure  
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RQ18 Technical/Engineering Rank Correlation 
If 50,000 flight operations from the sample in Question 21 are randomly chosen, then 
the number of those operations where a TECHNICAL/ENGINEERING FACTOR occurs 
should be approximately half the median value from Question 21.  Instead of randomly 
selecting these operations, suppose that only flights where XXXXX is above its median 
value are chosen.  Given this situation, what is the probability that 
TECHNICAL/ENGINEERING FACTORS will be above half the 50th percentile estimate from 
Question 21?  Given these conditions, what portion of these 50,000 will experience 
more than the median number of TECHNICAL/ ENGINEERING FACTORS in Question 21? 
Probability Portion (Count) 
  
 
Technical/Engineering Factor Influence 
Variable Rank Influence as a % of highest 

ranked variable 
(Does not need to add up to 
100%) 

Direction of correlation 
(positive/negative) 

ATC Equipment Failure    
Radio Congestion    
In-Vehicle Display    
Mechanical Failure    
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Domain Causal/Contributory Factors Description 
Organizational/Regulatory Procedural Deviation Describes deviation from 

established corporate, 
organizational, or regulatory 
procedures by an operator 

 Inadequate Supervision (Climate) Describes absence of 
supervisory input or pressure 
from the supervisory or 
organizational level to perform 
tasks motivated by factors 
inconsistent with a climate of 
compliance and safety 

 High Workload Describes workload levels that 
affect individual performance 
negatively by amplifying 
inattention or lack of focus 

   Operational Environment Complex Intersections Describes the probability that 
an airport has complex 
intersections - those taxiway 
or runway intersections where 
number of intersecting 
surfaces, signage, lighting, or 
aircraft geometry may 
combine to create unusually 
high confusion for operators 

 Irregular Signs/Markings Describes irregular or non 
ICAO-compliant signs and 
markings on an airport surface 

 Construction Describes the presence of 
construction in the airport 
movement area 

 Conflicting Vehicle Traffic Describes the presence of 
conflicting vehicle traffic in the 
airport movement area 

   Human Factors Lost S/A Describes a loss of flight crew 
or vehicle operator situational 
awareness, meaning that 
inappropriate mental 
representations are activated 
in spite of real world evidence. 
People then act “in the wrong 
scene,” and seek cues 
confirming their expectations, 
a behavior known as 
confirmation bias. 
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 Failed to Hold Short Describes an aircraft or vehicle 
failure to remain in place 
behind a hold short line 
despite instructions by a 
controlling authority or 
regulatory requirement to do 
so 

 Task Saturation Describes an operational 
condition of no awareness of 
input from various sources, so 
decisions might be made with 
incomplete information and 
the possibility of error 
increases 

   Weather Sun Glare Describes the presence of sun 
glare that interferes with 
vision of ATC, flight crew, or 
ground vehicle operator 

   Technical Radio Congestion Describes occurrence of radio 
congestion that requires 
operators to initiate multiple 
calls or wait to call or respond 
to ATC instruction 

 In-Cockpit Technology (Moving 
Map w/ Ownship. Etc.) 

Describes the presence of 
technology in a flight deck or 
vehicle that displays the 
airport layout or combination 
of layout and vehicle or 
aircraft position in real time 
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APPENDIX F 

Causal Codes Available for SME Review of ASRS Narratives 
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Appendix F (Continued) 

Causal Codes Available for SME Review of ASRS Narratives 

 

 

2.5  Expert Rater-Developed Codes 

2.5.1 Crew Coordination 
2.5.2 Failure to Readback Clearance 
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APPENDIX G 

SQL Code for Interrater Computations 

Note to readers: The following code does not represent the complete SQL input for the 
interrater reliability, union, and intersection functions.  Rather, based on space 
limitations and the repetitive nature of the code, it shows the input for one of the five 
iterations necessary to complete the function. 
 

set nocount on 
 
declare @icao table (id int identity(1,1),rating varchar(50)) 
 
declare @BG table(asr varchar(30), apt varchar(30),r1 varchar(30),r2 varchar(30), 
 r3 varchar(30), r4 varchar(30), r5 varchar(30), dq varchar(255), comment 

varchar(255), 
 exc varchar(30), sev varchar(20)) 
  
declare @GJ table(asr varchar(30), apt varchar(30),r1 varchar(30),r2 varchar(30), 
 r3 varchar(30), r4 varchar(30), r5 varchar(30), dq varchar(255), comment 

varchar(255), 
 exc varchar(30), sev varchar(20))  
  
declare @JT table(asr varchar(30), apt varchar(30),r1 varchar(30),r2 varchar(30), 
 r3 varchar(30), r4 varchar(30), r5 varchar(30), dq varchar(255), comment 

varchar(255), 
 exc varchar(30), sev varchar(20)) 
  
declare @asrs table (asr varchar(30)) 
 
declare @interR table (asr varchar(30), who varchar(30), rating varchar(30), 

codedRating int) 
 
 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '836163','2.3.6','2.3.3','','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '836163','2.3.3','2.3.4','2.3.6','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '836163','2.3.4','','','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '789540','','','','','','Yes' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '789540','2.5.1','','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '789540','2.2.15','2.5.1','','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '817153','2.4.5','2.4.1','','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '817153','2.1.4','2.2.5','2.3.2','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '817153','2.3.4','2.2.5','2.4.1','','','Yes' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select 

'824311','2.4.5','2.4.2','2.2.7','2.2.1','2.4.1','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '824311','2.2.1','2.1.9','2.2.7','','','' 
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insert @JT(asr,r1,r2,r3,r4,r5,exc) select '824311','2.2.7','2.1.9','2.4.5','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '856792','2.4.5','2.4.1','','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '856792','2.4.1','2.2.7','2.4.5','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '856792','2.4.1','2.4.5','','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select 

'812538','2.4.5','2.2.5','2.2.2','2.2.1','2.1.9','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '812538','2.2.2','2.2.15','2.5.1','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '812538','2.2.2','2.2.15','','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select 

'942802','2.4.5','2.4.1','2.4.2','2.1.7','2.1.4','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '942802','2.1.7','2.4.1','2.4.5','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '942802','2.4.1','2.1.4','2.1.7','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '979222','2.4.2','2.4.6','2.4.1','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '979222','2.1.9','2.2.1','2.4.1','2.4.2','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '979222','2.4.2','','','','','Yes' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '785382','2.4.5','2.3.7','2.2.1','2.2.5','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '785382','2.2.5','2.2.10','2.3.3','2.5.1','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '785382','2.2.5','2.3.4','2.3.7','2.2.15','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '792763','2.4.5','2.2.1','2.2.2','2.2.7','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '792763','2.1.9','2.2.1','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '792763','2.1.9','2.2.2','2.2.7','2.4.5','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '784979','2.4.5','2.2.2','','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '784979','2.2.15','','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '784979','2.2.15','','','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '856457','2.3.4','2.3.6','2.2.10','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '856457','2.2.6','2.3.4','2.3.6','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '856457','2.3.4','','','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '776226','2.2.5','2.3.3','','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '776226','2.2.1','2.2.13','2.3.4','2.4.2','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '776226','2.3.4','2.2.1','2.2.13','2.4.2','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '884378','2.2.5','2.3.7','2.3.1','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '884378','2.2.13','2.3.8','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '884378','2.3.4','2.3.7','','','','Yes' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select 

'867483','2.2.6','2.2.1','2.2.2','2.2.10','2.2.15','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '867483','2.2.1','2.2.9','2.4.5','2.5.1','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '867483','2.2.1','2.2.9','2.2.15','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '792259','2.4.11','','','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '792259','2.2.11','2.5.1','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '792259','2.2.11','2.4.11','2.5.1','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '837821','2.4.11','2.2.15','','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '837821','2.4.11','','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '837821','2.1.9','2.1.11','','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '793916','2.4.5','2.4.3','','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '793916','2.2.9','2.2.15','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '793916','2.2.9','2.2.15','','','','No' 
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insert @BG(asr,r1,r2,r3,r4,r5,exc) select '831760','2.3.2','2.2.10','2.2.5','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '831760','2.3.2','2.3.6','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '831760','2.3.4','2.3.8','','','','Yes' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '840502','2.2.15','2.4.11','','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '840502','2.2.15','','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '840502','2.2.15','','','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '858253','2.3.1','2.2.10','2.2.2','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '858253','2.3.6','2.2.5','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '858253','2.3.6','2.2.2','','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '859637','','','','','','Yes' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '859637','2.2.10','2.2.5','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '859637','2.2.6','2.2.1','2.2.10','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '829659','','','','','','Yes' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '829659','2.2.13','','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '829659','2.4.1','2.3.4','','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '969670','2.4.5','2.2.5','','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '969670','2.2.5','','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '969670','2.1.9','2.2.5','2.3.4','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '978488','2.4.5','2.2.5','2.4.1','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '978488','2.3.4','2.2.5','2.1.9','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '978488','2.2.5','2.3.4','','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '790954','2.2.15','2.1.11','','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '790954','2.1.11','2.2.3','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '790954','2.1.11','2.2.15','','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select 

'974660','2.4.1','2.4.2','2.4.4','2.1.9','2.2.1','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '974660','2.2.1','2.2.4','2.4.1','2.5.1','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '974660','2.2.4','2.2.1','2.2.15','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '882759','2.4.1','2.4.5','2.4.6','2.2.1','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '882759','2.2.1','2.4.6','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '882759','2.2.1','2.4.6','2.2.15','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '847101','2.4.11','','','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '847101','2.2.15','','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '847101','','','','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '939675','2.4.5','2.4.1','2.2.10','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '939675','2.2.5','2.2.10','2.4.2','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '939675','2.2.5','2.2.15','2.4.5','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '782334','2.2.15','2.3.2','','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '782334','2.2.15','','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '782334','2.2.15','2.3.1','','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '839671','2.4.1','2.1.3','2.1.11','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '839671','2.1.3','','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '839671','2.4.1','','','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '790028','2.2.10','2.2.15','','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '790028','2.2.10','2.4.11','2.5.1','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '790028','2.4.4','2.5.1','','','','No' 
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insert @BG(asr,r1,r2,r3,r4,r5,exc) select '895524','2.4.5','','','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '895524','2.4.5','','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '895524','','','','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '979457','2.1.2','2.2.15','','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '979457','2.4.11','','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '979457','2.4.11','','','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '808374','2.2.15','2.1.11','','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '808374','2.2.4','','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '808374','2.2.4','','','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '796225','2.4.5','2.3.6','2.2.15','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '796225','2.2.13','2.3.7','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '796225','2.3.4','2.3.8','','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '964667','2.3.4','2.4.11','2.4.5','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '964667','2.3.2','2.4.5','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '964667','2.3.2','2.2.15','','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '796451','2.4.9','2.2.6','','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '796451','2.4.1','','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '796451','2.4.9','2.2.15','2.4.11','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '885530','2.4.1','2.4.6','2.4.5','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '885530','2.4.5','2.4.1','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '885530','2.4.1','2.4.5','','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '924416','2.4.5','2.4.1','2.2.14','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '924416','2.4.1','2.4.6','2.1.11','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '924416','2.4.5','2.5.1','','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select 

'963731','2.4.4','2.4.5','2.2.10','2.2.14','2.2.5','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '963731','2.2.5','2.2.10','2.2.14','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select 

'963731','2.2.14','2.2.10','2.4.4','2.4.5','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '785071','2.3.6','2.3.5','2.4.5','2.2.5','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '785071','2.3.3','2.3.4','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '785071','2.3.4','2.2.5','','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select 

'792103','2.4.1','2.4.5','2.2.13','2.3.4','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '792103','2.4.5','2.2.6','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '792103','2.2.5','2.2.15','','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '773565','2.2.6','2.2.10','2.3.8','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '773565','2.2.5','2.3.7','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '773565','2.3.8','','','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '902776','2.3.4','2.3.7','','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '902776','2.3.6','2.3.4','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '902776','2.3.4','2.3.7','','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '848283','2.1.11','2.2.15','','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '848283','2.1.11','','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '848283','2.1.11','2.2.15','','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '809047','2.2.6','2.2.14','2.2.5','','','No' 
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insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '809047','2.2.14','','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '809047','2.5.1','2.2.1','','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select 

'781972','2.4.5','2.4.1','2.2.9','2.2.10','2.2.5','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '781972','2.4.5','','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '781972','2.2.6','2.4.2','2.5.1','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '808596','2.2.6','2.2.5','2.4.2','2.5.1','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '808596','2.2.6','2.5.1','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '808596','2.5.1','2.2.15','2.2.6','2.4.2','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select 

'848426','2.2.6','2.2.5','2.4.2','2.4.5','2.2.15','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '848426','2.2.6','2.2.15','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '848426','2.2.15','2.2.5','','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '926377','2.4.11','','','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '926377','2.4.11','','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '926377','2.2.15','2.4.3','','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select 

'891040','2.1.3','2.4.5','2.2.7','2.2.15','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '891040','2.4.1','','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '891040','2.1.3','2.2.15','','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select 

'917147','2.3.6','2.2.10','2.2.2','2.2.15','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '917147','2.2.10','','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '917147','2.2.2','2.1.9','2.3.8','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '846943','2.4.1','2.1.11','2.2.15','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '846943','2.4.11','','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '846943','2.4.11','','','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select 

'873641','2.3.6','2.2.10','2.4.5','2.2.5','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '873641','2.3.7','2.2.10','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '873641','2.3.7','2.2.5','2.2.10','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '1001233','2.4.10','2.2.6','2.2.10','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '1001233','2.2.10','','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '1001233','2.4.10','2.2.5','2.2.10','','','Yes' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '840082','2.2.15','2.2.13','','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '840082','2.2.15','','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '840082','2.2.15','2.3.1','2.1.11','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '998522','2.4.9','2.2.6','2.2.5','2.3.4','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '998522','2.3.4','','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '998522','2.3.4','2.2.6','2.2.10','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '823433','2.4.11','2.4.2','','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '823433','2.4.11','','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '823433','2.4.11','','','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '840535','2.1.11','2.2.13','','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '840535','2.2.3','','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '840535','2.2.15','2.2.13','','','','No' 
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insert @BG(asr,r1,r2,r3,r4,r5,exc) select '949123','2.2.15','2.1.11','','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '949123','2.1.11','','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '949123','2.1.11','2.2.15','','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '813384','2.1.11','2.2.4','','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '813384','2.4.1','','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '813384','','','','','','Yes' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '845126','2.3.4','2.4.5','','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '845126','2.3.4','2.3.6','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '845126','2.3.4','','','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select 

'818774','2.4.5','2.2.10','2.3.7','2.3.3','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '818774','2.2.9','2.2.10','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '818774','2.2.5','2.2.2','2.3.7','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '906346','2.3.3','2.4.1','','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '906346','2.1.4','','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '906346','2.3.4','2.4.1','','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '955078','2.2.6','2.2.10','2.4.4','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '955078','2.1.7','','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '955078','2.2.10','2.2.15','','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '971495','2.4.5','2.2.6','2.4.5','2.3.7','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '971495','2.3.7','2.2.5','2.4.5','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '971495','2.3.7','2.2.10','2.2.6','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select 

'844690','2.4.9','2.2.10','2.2.5','2.2.15','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '844690','2.2.10','','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '844690','2.2.6','2.4.9','','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select 

'1019890','2.2.1','2.2.5','2.2.7','2.2.10','2.5.1','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '1019890','2.2.10','2.4.1','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '1019890','2.2.1','2.2.2','2.5.1','','','No' 
insert @BG(asr,r1,r2,r3,r4,r5,exc) select '838570','2.1.3','','','','','No' 
insert @GJ(asr,r1,r2,r3,r4,r5,exc) select '838570','2.1.3','','','','','' 
insert @JT(asr,r1,r2,r3,r4,r5,exc) select '838570','2.1.3','','','','','No' 
 
 
insert @icao(rating) select '2.1.1' 
insert @icao(rating) select '2.1.10' 
insert @icao(rating) select '2.1.11' 
insert @icao(rating) select '2.1.2' 
insert @icao(rating) select '2.1.3' 
insert @icao(rating) select '2.1.4' 
insert @icao(rating) select '2.1.5' 
insert @icao(rating) select '2.1.6' 
insert @icao(rating) select '2.1.7' 
insert @icao(rating) select '2.1.8' 
insert @icao(rating) select '2.1.9' 



203 
 

 
 

insert @icao(rating) select '2.2.1' 
insert @icao(rating) select '2.2.10' 
insert @icao(rating) select '2.2.11' 
insert @icao(rating) select '2.2.12' 
insert @icao(rating) select '2.2.13' 
insert @icao(rating) select '2.2.14' 
insert @icao(rating) select '2.2.15' 
insert @icao(rating) select '2.2.2' 
insert @icao(rating) select '2.2.3' 
insert @icao(rating) select '2.2.4' 
insert @icao(rating) select '2.2.5' 
insert @icao(rating) select '2.2.6' 
insert @icao(rating) select '2.2.7' 
insert @icao(rating) select '2.2.8' 
insert @icao(rating) select '2.2.9' 
insert @icao(rating) select '2.3.1' 
insert @icao(rating) select '2.3.2' 
insert @icao(rating) select '2.3.3' 
insert @icao(rating) select '2.3.4' 
insert @icao(rating) select '2.3.5' 
insert @icao(rating) select '2.3.6' 
insert @icao(rating) select '2.3.7' 
insert @icao(rating) select '2.3.8' 
insert @icao(rating) select '2.4.1' 
insert @icao(rating) select '2.4.10' 
insert @icao(rating) select '2.4.11' 
insert @icao(rating) select '2.4.2' 
insert @icao(rating) select '2.4.3' 
insert @icao(rating) select '2.4.4' 
insert @icao(rating) select '2.4.5' 
insert @icao(rating) select '2.4.6' 
insert @icao(rating) select '2.4.7' 
insert @icao(rating) select '2.4.8' 
insert @icao(rating) select '2.4.9' 
insert @icao(rating) select '2.5.1' 
insert @icao(rating) select '2.5.2' 
 
--cleanup 
set nocount off 
delete @BG where rtrim(ltrim(asr))='' 
delete @JT where rtrim(ltrim(asr))='' 
delete @GJ where rtrim(ltrim(asr))='' 
set nocount on 
 
update @BG set exc='No' where exc='' 
update @JT set exc='No' where exc='' 
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update @GJ set exc='No' where exc='' 
 
 
 
 
insert @asrs(asr) select distinct asr from @BG 
 
 
 
 
insert @interR (who, asr, rating) select 'GJ',asr,r1 from @GJ 
insert @interR (who, asr, rating) select 'GJ',asr,r2 from @GJ 
insert @interR (who, asr, rating) select 'GJ',asr,r3 from @GJ 
insert @interR (who, asr, rating) select 'GJ',asr,r4 from @GJ 
insert @interR (who, asr, rating) select 'GJ',asr,r5 from @GJ 
 
insert @interR (who, asr, rating) select 'JT',asr,r1 from @JT 
insert @interR (who, asr, rating) select 'JT',asr,r2 from @JT 
insert @interR (who, asr, rating) select 'JT',asr,r3 from @JT 
insert @interR (who, asr, rating) select 'JT',asr,r4 from @JT 
insert @interR (who, asr, rating) select 'JT',asr,r5 from @JT 
 
insert @interR (who, asr, rating) select 'BG',asr,r1 from @BG 
insert @interR (who, asr, rating) select 'BG',asr,r2 from @BG 
insert @interR (who, asr, rating) select 'BG',asr,r3 from @BG 
insert @interR (who, asr, rating) select 'BG',asr,r4 from @BG 
insert @interR (who, asr, rating) select 'BG',asr,r5 from @BG 
 
update @interR set codedRating=i.ID from 
 @interR r inner join @icao i 
  on r.rating=i.rating 
 
 
--looking at rating congruence 
 
--select * from @interR order by asr,who 
 
--unique rating counts 
/* 
select unqratings=count(distinct rating),totratings=count(*),asr 
 from @interR where rating!='' 
  group by asr 
  order by count(distinct rating) desc 
*/ 
 
/*  
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APPENDIX H 

SME Structural Model Review Protocol 
 
Your (SMEs) input, data from ASRS and RSO records, and a systematic review of the literature 
shaped the development of the model shown here.  While data exist for some of the nodes, 
others will be populated with conditional, probabilistic estimates based on input from SMEs. 
 
For this phase of the research, I will ask you to review the structure of the models below.  This 
structure is important because it attempts to capture how and why RIs occur in a dynamic 
setting.  The arrows between nodes, called directed edges, indicate a causal connection 
between variables called parent and child nodes.  In subsequent sessions, you may be asked to 
identify the strength of association between nodes or the probability of a certain node state; 
however, in this phase, you need only focus on the direction of causality and the connections 
between nodes both within and across domains (identified by color coding). 
 
Please take a few moments to review the model below, asking questions as they arise.  
Remember, this model is a mode detailed “landscape view” of the problem space.  Once you 
have familiarized yourself with this model, we will move on to a more parsimonious version for 
your review. 
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Note that the model below is not fundamentally different from the first model.  Instead, it is a 
more compact version.  On this basis, we will begin the exercise of evaluating structure here, 
expanding our review to the more granular model next.  As we work through this exercise, keep 
in mind the definition of a runway incursion (RI) is: “Any occurrence at an aerodrome involving 
the incorrect presence of an aircraft, vehicle, or person on the protected area of a surface 
designated for the landing and take-off of aircraft” (FAA, 2007, para. 2). 
 
Let’s review the model below beginning with the node labeled “Incorrect Position”.  This node is 
intended to capture the requirement that an aircraft or vehicle arrives at a position on an 
airfield, specifically in the runway protected zone, in an incorrect or unintended manner.  The 
radiating nodes are essentially conditions that necessarily lead to this incorrect presence, but 
may not be sufficient to create the incorrect presence. 
 

 
 
Now that we have discussed the interaction between domain-specific causal factors and the 
instance of an improper position combining to create an RI event, let’s look at the causal 
relationships indicated by directed edges, starting with the unconditioned nodes (nodes without 
parent nodes) in the Organizational/Regulatory domain, and then moving inward before moving 
counter-clockwise to the next domain, and so on. 
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In this process, it may be helpful to refer back to the more granular model to gain a better 
understanding of the factors leading to the more general nodes. 
 
Questions for SMEs: 
 
• In your opinion/experience, does the node capture the relevant construct? 
 
• What are the possible states of the node? 

• Yes/No 
• Correct/Incorrect 

 
• Is the node sequenced properly? 
 
• Is the node necessary to a complete causal sequence? 
 
• Does the node have true, causal influence on its child nodes? 
 
• Are the data to populate the node available? 

• If so, what is your assessment of the quality of the data? 
 
• What causal factors have not been accounted for? 

• Why do you believe their inclusion is supported? 
 
• Are the inter-domain links (directed edges) appropriate and necessary? 
 
• Do you have any other comments/input? 
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APPENDIX I 

Range Graphs by Question/Expert with Equal/Global Weights 
 

0.5                                                                 
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APPENDIX J 

Variable Names and Definitions 

Causal/Contributory Factors Description 
Procedural Deviation Describes deviation from corporate, organizational, 

or regulatory procedures by an operator 
Inadequate Supervision (Climate) Describes absence of supervisory input or pressure 

from the supervisory or organizational level to 
perform tasks motivated by factors inconsistent with 
a climate of compliance or safety. 

High Workload Describes workload levels that affect individual 
performance negatively by amplifying inattention or 
lack of focus 

Organizational/Regulatory Factors Describes abnormal factors in the organizational or 
regulatory domain such as those included in the 
model that are of sufficient influence so as not to be 
discounted as a potential contributing factor if an 
accident or incident were to occur 

  Complex Intersections Describes the probability that an airport has 
complex intersections - those taxiway or runway 
intersections where number of intersecting surfaces, 
signage, lighting, or aircraft geometry may combine 
to create unusually high confusion for operators 

Irregular Signs/Markings Describes irregular or non ICAO-compliant signs 
and markings on an airport surface 

Construction Describes the presence of construction in the airport 
movement area 

Non-Towered Airport Describes whether an airport has an operational 
ground control or not 

Part 139 Describes whether an airport is subject to 
compliance with 14CFR Part 139 regulatory 
compliance or not; 14 CFR Part 139 requires FAA 
to issue airport operating certificates to airports that-
-- Serve scheduled and unscheduled air carrier 
aircraft with more than 30 seats;  Server scheduled 
air carrier operations in aircraft with more than 9 
seats but less than 31 seats; and The FAA 
Administrator requires to have a certificate. 

Conflicting Vehicle Traffic Describes the presence of conflicting vehicle traffic 
in the airport movement area 

Operational Environment Factors Describes abnormal factors in the operational 
environment domain such as those included in the 
model that are of sufficient influence so as not to be 
discounted as a potential contributing factor if an 
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accident or incident were to occur 

  Lost S/A Describes a loss of flight crew or vehicle operator 
situational awareness, meaning that inappropriate 
mental representations are activated in spite of real 
world evidence. People then act “in the wrong 
scene,” and seek cues confirming their expectations, 
a behavior known as confirmation bias. 

Failed to Hold Short Describes an aircraft or vehicle failure to remain in 
place behind a hold short line despite instructions by 
a controlling authority or regulatory requirement to 
do so 

Task Saturation Describes an operational condition of no awareness 
of input from various sources, so decisions might be 
made with incomplete information and the 
possibility of error increases 

Human Factors Describes abnormal factors in the human factors 
domain such as those included in the model that are 
of sufficient influence so as not to be discounted as 
a potential contributing factor if an accident or 
incident were to occur 

  Precipitation Describes presence of precipitation at the airport 
surface 

Sun Glare Describes the presence of sun glare that interferes 
with vision of ATC, flight crew, or ground vehicle 
operator 

Darkness/Twilight Describes probability of operation during darkness 
or twilight 

Restrictions to Visibility Describes reduction in visibility at the airport 
surface by smoke, haze, fog, mist, or other 
phenomena that reduces visibility to under 1500 
RVR 

Weather Factors Describes abnormal factors in the weather domain 
such as those included in the model that are of 
sufficient influence so as not to be discounted as a 
potential contributing factor if an accident or 
incident were to occur 

  Radio Congestion Describes occurrence of radio congestion that 
requires operators to initiate multiple calls or wait to 
call or respond to ATC instruction 

In-Cockpit Technology (Moving 
Map w/ Ownship. Etc.) 

Describes the presence of technology in a flight 
deck or vehicle that displays the airport layout or 
combination of layout and vehicle or aircraft 
position in real time 
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ATC Equipment Failure Describes the operational failure of ATC equipment 
such that normal communications or direction is 
interrupted 

Mechanical Failure Describes aircraft mechanical systems failure 
Engineering/Technological 
Factors 

Describes abnormal factors in the engineering or 
technological domain such as those included in the 
model that are of sufficient influence so as not to be 
discounted as a potential contributing factor if an 
accident or incident were to occur 
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APPENDIX K 

BBN Model Details 
 

 

 
Figure 40.  Compact model, organizational and regulatory domain. 
 

 

 
Figure 41.  Compact model, operational environment domain. 
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Figure 42.  Compact model, human factors domain. 
 

 

 
Figure 43.  Compact model, weather domain. 
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Figure 44.  Compact model, technological and engineering domain. 
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APPENDIX L 

BBN Rank Correlation Matrix 

 

RI
Org/ 

Regulatory
Tech/ 

Engineering
Weather Human

Ops. 
Environment

Radio 
Congestion

Irregular 
Signs

A/P 
Construction

Darkness Visibility Precip Part 139

RI 1.000 0.181 0.209 0.577 0.705 0.225 0.038 0.076 0.193 0.129 0.467 -0.017 -0.021
Org/Regulatory 0.181 1.000 0 0 0.187 0 0 0 0 0 0 0 0

Tech/Engineering 0.209 0 1.000 0 0.389 0 0.382 0 0 0 0 0 0
Weather 0.577 0 0 1.000 0.349 0 0 0 0 0.218 0.800 -0.029 0

Human 0.705 0.187 0.389 0.349 1.000 0.167 0.069 0.096 0.128 0.079 0.283 -0.011 -0.017
Ops. Environment 0.225 0 0 0 0.167 1.000 0 0.177 0.910 0 0 0 -0.086
Radio Congestion 0.038 0 0.382 0 0.069 0 1.000 0 0 0 0 0 0

Irregular Signs 0.076 0 0 0 0.096 0.177 0 1.000 0 0 0 0 0
A/P Construction 0.193 0 0 0 0.128 0.910 0 0 1.000 0 0 0 0

Darkness 0.129 0 0 0.218 0.079 0 0 0 0 1.000 0 0 0
Visibility 0.467 0 0 0.800 0.283 0 0 0 0 0 1.000 0.191 0

Precip -0.017 0 0 -0.029 -0.011 0 0 0 0 0 0.191 1.000 0
Part 139 -0.021 0 0 0 -0.017 -0.086 0 0 0 0 0 0 1.000

Nontowered 0.021 0 0 0 0.015 0.093 0 0 0 0 0 0 -0.850
Complex Int. 0.210 0 0 0 0.157 0.924 0 0 0.800 0 0 0 0.000

Conf. Vehicle Traffic 0.031 0 0 0 0.036 0.084 0 0 0 0 0 0 -0.462
Mechanical Failure 0.249 0 0.750 0 0.467 0 0 0 0 0 0 0 0
In-Vehicle Display -0.001 0 -0.190 0 0 0 0 0 0 0 0 0 0
ATC Equip Failure 0.037 0 0.465 0 0.066 0 0.800 0 0 0 0 0 0

Sun Glare 0.520 0 0 0.896 0.315 0 0 0 0 0 0.950 0 0
Inad. Supervision 0.131 0.840 0 0 0.115 0 0 0 0 0 0 0 0

Procedural Deviation 0.141 0.927 0 0 0.121 0 0 0 0 0 0 0 0
High Workload 0.195 0.213 0 0 0.333 0 0 0 0 0 0 0 0

Lost S/A 0.585 0 0 0.650 0.527 0.302 0 0.177 0.235 0.145 0.525 -0.020 0
Fail to Hold Short 0.488 0 0.605 0.248 0.700 0.117 0 0.069 0.091 0.056 0.202 -0.008 0

Task Saturation 0.247 0.468 0.080 0 0.388 0.008 0.171 0 0 0 0 0 -0.043
Incorrect Position 0.900 0.200 0.231 0.638 0.780 0.248 0.042 0.084 0.212 0.143 0.515 -0.019 -0.024

Parent-Child Corr.

5 Highest Non Parent-
Child Correlations

Nontowered
Complex 

Int.
Conflicting 

Vehicle Traffic
Mechanical 

Failure
In-Vehicle 

Display
ATC Equip 

Failure
Sun 

Glare
Inadequate 
Supervision

Procedural 
Deviation

High 
Workload

Lost 
S/A

Fail to 
Hold Short

Task Sat.
Incorr. 

Pos.
RI 0.021 0.210 0.031 0.249 -0.001 0.037 0.520 0.131 0.141 0.195 0.585 0.488 0.247 0.900

Org/Regulatory 0 0 0 0 0 0 0 0.840 0.927 0.213 0 0 0.468 0.200
Tech/Engineering 0 0 0 0.750 -0.190 0.465 0 0 0 0 0 0.605 0.080 0.231

Weather 0 0 0 0 0 0 0.896 0 0 0 0.650 0.248 0 0.638
Human 0.015 0.157 0.036 0.467 0 0.066 0.315 0.115 0.121 0.333 0.527 0.700 0.388 0.780

Ops. Environment 0.093 0.924 0.084 0 0 0 0 0 0 0 0.302 0.117 0.008 0.248
Radio Congestion 0 0 0 0 0 0.800 0 0 0 0 0.000 0 0.171 0.042

Irregular Signs 0 0 0 0 0 0 0 0 0 0 0.177 0.069 0 0.084
A/P Construction 0 0.800 0 0 0 0 0 0 0 0 0.235 0.091 0 0.212

Darkness 0 0 0 0 0 0 0 0 0 0 0.145 0.056 0 0.143
Visibility 0 0 0 0 0 0 0.950 0 0 0 0.525 0.202 0 0.515

Precip 0 0 0 0 0 0 0 0 0 0 -0.020 -0.008 0 -0.019
Part 139 -0.850 0 -0.462 0 0 0 0 0 0 0 0 0 -0.043 -0.024

Nontowered 1.000 0 0.400 0 0 0 0 0 0 0 0 0 0.037 0.023
Complex Int. 0 1.000 0 0 0 0 0 0 0 0 0.289 0.112 0 0.232

Conf. Vehicle Traffic 0.400 0 1.000 0 0 0 0 0 0 0 0 0 0.089 0.034
Mechanical Failure 0 0 0 1.000 0 0 0 0 0 0 0 0.800 0 0.275
In-Vehicle Display 0 0 0 0 1.000 0 0 0 0 0 0 0 0 -0.001
ATC Equip Failure 0 0 0 0 0 1.000 0 0 0 0 0 0 0.165 0.041

Sun Glare 0 0 0 0 0 0 1.000 0 0 0 0.586 0.224 0 0.575
Inad. Supervision 0 0 0 0 0 0 0 1.000 0.945 0 0 0 0.286 0.144

Procedural Deviation 0 0 0 0 0 0 0 0.945 1.000 0 0 0 0.301 0.155
High Workload 0 0 0 0 0 0 0 0 0 1.000 0 0 0.850 0.215

Lost S/A 0 0.289 0 0 0 0 0.586 0 0 0 1.000 0.373 0 0.646
Fail to Hold Short 0 0.112 0 0.800 0 0 0.224 0 0 0 0.373 1.000 0 0.538

Task Saturation 0.037 0 0.089 0 0 0.165 0 0.286 0.301 0.850 0 0 1.000 0.272
Incorrect Position 0.023 0.232 0.034 0.275 -0.001 0.041 0.575 0.144 0.155 0.215 0.646 0.538 0.272 1.000

Parent-Child Corr.
5 Highest Non Parent-

Child Correlations



223 
 

APPENDIX M 

ASRS Reviewer Selection Criteria 

Expert Initials: ______      Date: _____________ 
Resume or CV:  
Contact Information:  
Signed Consent Form:  
 
1. Independence 

1 2 3 4 5 6 7 8 9 10 
Notes:__________________________________________________________________
________________________________________________________________________
________________________________________________________________________ 
 
2. Diversity of Experience 

1 2 3 4 5 6 7 8 9 10 
Notes:__________________________________________________________________
________________________________________________________________________
________________________________________________________________________ 
 
3. Interest 

1 2 3 4 5 6 7 8 9 10 
Notes:__________________________________________________________________
________________________________________________________________________
________________________________________________________________________ 
 
4. Flight Experience 

1 2 3 4 5 6 7 8 9 10 
Notes:__________________________________________________________________
________________________________________________________________________
________________________________________________________________________ 
 
5. Familiarity with Current RI Mitigations 

1 2 3 4 5 6 7 8 9 10 
Notes:__________________________________________________________________
________________________________________________________________________
________________________________________________________________________ 
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