80 research outputs found

    A multisided C-2 B-spline patch over extraordinary vertices in quadrilateral meshes

    Get PDF
    We propose a generalised B-spline construction that extends uniform bicubic B-splines to multisided regions spanned over extraordinary vertices in quadrilateral meshes. We show how the structure of the generalised Bezier patch introduced by Varady et al. can be adjusted to work with B-spline basis functions. We create ribbon surfaces based on B-splines using special basis functions. The resulting multisided surfaces are C-2 continuous internally and connect with G(2) continuity to adjacent regular and other multisided B-splines patches. We visually assess the quality of these surfaces and compare them to Catmull-Clark limit surfaces on several challenging geometrical configurations. (C) 2020 The Author(s). Published by Elsevier Ltd

    Multisided generalisations of Gregory patches

    Get PDF
    We propose two generalisations of Gregory patches to faces of any valency by using generalised barycentric coordinates in combination with two kinds of multisided BĂ©zier patches. Our first construction builds on S-patches to generalise triangular Gregory patches. The local construction of Chiyokura and Kimura providing G1 continuity between adjoining BĂ©zier patches is generalised so that the novel Gregory S-patches of any valency can be smoothly joined to one another. Our second construction makes a minor adjustment to the generalised BĂ©zier patch structure to allow for cross-boundary derivatives to be defined independently per side. We show that the corresponding blending functions have the inherent ability to blend ribbon data much like the rational blending functions of Gregory patches. Both constructions take as input a polygonal mesh with vertex normals and provide G1 surfaces interpolating the input vertices and normals. Due to the full locality of the methods, they are well suited for geometric modelling as well as computer graphics applications relying on hardware tessellation

    Arbitrary topology meshes in geometric design and vector graphics

    Get PDF
    Meshes are a powerful means to represent objects and shapes both in 2D and 3D, but the techniques based on meshes can only be used in certain regular settings and restrict their usage. Meshes with an arbitrary topology have many interesting applications in geometric design and (vector) graphics, and can give designers more freedom in designing complex objects. In the first part of the thesis we look at how these meshes can be used in computer aided design to represent objects that consist of multiple regular meshes that are constructed together. Then we extend the B-spline surface technique from the regular setting to work on extraordinary regions in meshes so that multisided B-spline patches are created. In addition, we show how to render multisided objects efficiently, through using the GPU and tessellation. In the second part of the thesis we look at how the gradient mesh vector graphics primitives can be combined with procedural noise functions to create expressive but sparsely defined vector graphic images. We also look at how the gradient mesh can be extended to arbitrary topology variants. Here, we compare existing work with two new formulations of a polygonal gradient mesh. Finally we show how we can turn any image into a vector graphics image in an efficient manner. This vectorisation process automatically extracts important image features and constructs a mesh around it. This automatic pipeline is very efficient and even facilitates interactive image vectorisation

    Range restricted positivity-preserving G1 scattered data interpolation

    Get PDF
    The construction of a range restricted bivariate G1 interpolant to scattered data is considered in which the interpolant is positive everywhere if the original data are positive. This study is motivated by earlier work in which sufficient conditions are derived on BĂ©zier points in order to ensure that surfaces comprising quartic BĂ©zier triangular patches are always positive and satisfy G1 continuity conditions. The gradients at the data sites are then calculated (and modified if necessary) to ensure that these conditions are satisfied. Its construction is local and easily extended to include as upper and lower constraints to the interpolating surfaces of the form z = C(x,y) where C is a polynomial of degree less or equal to 4. Moreover, G1 piecewise polynomial surfaces consisting of polynomial pieces of the form z = C(x,y) on the triangulation of the data sites are also admissible constraints. A number of examples are presented

    Extensions to OpenGL for CAGD.

    Get PDF
    Many computer graphic API’s, including OpenGL, emphasize modeling with rectangular patches, which are especially useful in Computer Aided Geomeric Design (CAGD). However, not all shapes are rectangular; some are triangular or more complex. This paper extends the OpenGL library to support the modeling of triangular patches, Coons patches, and Box-splines patches. Compared with the triangular patch created from degenerate rectangular Bezier patch with the existing functions provided by OpenGL, the triangular Bezier patches can be used in certain design situations and allow designers to achieve high-quality results that are less CPU intense and require less storage space. The addition of Coons patches and Box splines to the OpenGL library also give it more functionality. Both patch types give CAGD users more flexibility in designing surfaces. A library for all three patch types was developed as an addition to OpenGL

    Controlling the interpolation of NURBS curves and surfaces

    Get PDF
    The primary focus of this thesis is to determine the best methods for controlling the interpolation of NURBS curves and surfaces. The various factors that affect the quality of the interpolant are described, and existing methods for controlling them are reviewed. Improved methods are presented for calculating the parameter values, derivative magnitudes, data point spacing and twist vectors, with the aim of producing high quality interpolants with minimal data requirements. A new technique for obtaining the parameter values and derivative magnitudes is evaluated, which constructs a C1^1 cubic spline with orthogonal first and second derivatives at specified parametric locations. When this data is used to create a C2^2 spline, the resulting interpolant is superior to those constructed using existing parameterisation and derivative magnitude estimation methods. Consideration is given to the spacing of data points, which has a significant impact on the quality of the interpolant. Existing methods are shown to produce poor results with curves that are not circles. Three new methods are proposed that significantly reduce the positional error between the interpolant and original geometry. For constrained surface interpolation, twist vectors must be estimated. A method is proposed that builds on the Adini method, and is shown to have improved error characteristics. In numerical tests, the new method consistently outperforms Adini. Interpolated surfaces are often required to join together smoothly along their boundaries. The constraints for joining surfaces with parametric and geometric continuity are discussed, and the problem of joining NN patches to form an NN-sided region is considered. It is shown that regions with odd NN can be joined with G1^1 continuity, but those with even NN or requiring G2^2 continuity can only be obtained for specific geometries

    A Partially Randomized Approach to Trajectory Planning and Optimization for Mobile Robots with Flat Dynamics

    Get PDF
    Motion planning problems are characterized by huge search spaces and complex obstacle structures with no concise mathematical expression. The fixed-wing airplane application considered in this thesis adds differential constraints and point-wise bounds, i. e. an infinite number of equality and inequality constraints. An optimal trajectory planning approach is presented, based on the randomized Rapidly-exploring Random Trees framework (RRT*). The local planner relies on differential flatness of the equations of motion to obtain tree branch candidates that automatically satisfy the differential constraints. Flat output trajectories, in this case equivalent to the airplane's flight path, are designed using Bézier curves. Segment feasibility in terms of point-wise inequality constraints is tested by an indicator integral, which is evaluated alongside the segment cost functional. Although the RRT* guarantees optimality in the limit of infinite planning time, it is argued by intuition and experimentation that convergence is not approached at a practically useful rate. Therefore, the randomized planner is augmented by a deterministic variational optimization technique. To this end, the optimal planning task is formulated as a semi-infinite optimization problem, using the intermediate result of the RRT(*) as an initial guess. The proposed optimization algorithm follows the feasible flavor of the primal-dual interior point paradigm. Discretization of functional (infinite) constraints is deferred to the linear subproblems, where it is realized implicitly by numeric quadrature. An inherent numerical ill-conditioning of the method is circumvented by a reduction-like approach, which tracks active constraint locations by introducing new problem variables. Obstacle avoidance is achieved by extending the line search procedure and dynamically adding obstacle-awareness constraints to the problem formulation. Experimental evaluation confirms that the hybrid approach is practically feasible and does indeed outperform RRT*'s built-in optimization mechanism, but the computational burden is still significant.Bewegungsplanungsaufgaben sind typischerweise gekennzeichnet durch umfangreiche Suchräume, deren vollständige Exploration nicht praktikabel ist, sowie durch unstrukturierte Hindernisse, für die nur selten eine geschlossene mathematische Beschreibung existiert. Bei der in dieser Arbeit betrachteten Anwendung auf Flächenflugzeuge kommen differentielle Randbedingungen und beschränkte Systemgrößen erschwerend hinzu. Der vorgestellte Ansatz zur optimalen Trajektorienplanung basiert auf dem Rapidly-exploring Random Trees-Algorithmus (RRT*), welcher die Suchraumkomplexität durch Randomisierung beherrschbar macht. Der spezifische Beitrag ist eine Realisierung des lokalen Planers zur Generierung der Äste des Suchbaums. Dieser erfordert ein flaches Bewegungsmodell, sodass differentielle Randbedingungen automatisch erfüllt sind. Die Trajektorien des flachen Ausgangs, welche im betrachteten Beispiel der Flugbahn entsprechen, werden mittels Bézier-Kurven entworfen. Die Einhaltung der Ungleichungsnebenbedingungen wird durch ein Indikator-Integral überprüft, welches sich mit wenig Zusatzaufwand parallel zum Kostenfunktional berechnen lässt. Zwar konvergiert der RRT*-Algorithmus (im probabilistischen Sinne) zu einer optimalen Lösung, jedoch ist die Konvergenzrate aus praktischer Sicht unbrauchbar langsam. Es ist daher naheliegend, den Planer durch ein gradientenbasiertes lokales Optimierungsverfahren mit besseren Konvergenzeigenschaften zu unterstützen. Hierzu wird die aktuelle Zwischenlösung des Planers als Initialschätzung für ein kompatibles semi-infinites Optimierungsproblem verwendet. Der vorgeschlagene Optimierungsalgorithmus erweitert das verbreitete innere-Punkte-Konzept (primal dual interior point method) auf semi-infinite Probleme. Eine explizite Diskretisierung der funktionalen Ungleichungsnebenbedingungen ist nicht erforderlich, denn diese erfolgt implizit durch eine numerische Integralauswertung im Rahmen der linearen Teilprobleme. Da die Methode an Stellen aktiver Nebenbedingungen nicht wohldefiniert ist, kommt zusätzlich eine Variante des Reduktions-Ansatzes zum Einsatz, bei welcher der Vektor der Optimierungsvariablen um die (endliche) Menge der aktiven Indizes erweitert wird. Weiterhin wurde eine Kollisionsvermeidung integriert, die in den Teilschritt der Liniensuche eingreift und die Problemformulierung dynamisch um Randbedingungen zur lokalen Berücksichtigung von Hindernissen erweitert. Experimentelle Untersuchungen bestätigen, dass die Ergebnisse des hybriden Ansatzes aus RRT(*) und numerischem Optimierungsverfahren der klassischen RRT*-basierten Trajektorienoptimierung überlegen sind. Der erforderliche Rechenaufwand ist zwar beträchtlich, aber unter realistischen Bedingungen praktisch beherrschbar

    On Triangular Splines:CAD and Quadrature

    Get PDF

    On Triangular Splines:CAD and Quadrature

    Get PDF
    The standard representation of CAD (computer aided design) models is based on the boundary representation (B-reps) with trimmed and (topologically) stitched tensor-product NURBS patches. Due to trimming, this leads to gaps and overlaps in the models. While these can be made arbitrarily small for visualisation and manufacturing purposes, they still pose problems in downstream applications such as (isogeometric) analysis and 3D printing. It is therefore worthwhile to investigate conversion methods which (necessarily approximately) convert these models into water-tight or even smooth representations. After briefly surveying existing conversion methods, we will focus on techniques that convert CAD models into triangular spline surfaces of various levels of continuity. In the second part, we will investigate efficient quadrature rules for triangular spline space
    • …
    corecore