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 Abstract : The construction of a range restricted bivariate G1 interpolant to 
scattered data is considered in which the interpolant is positive everywhere if the 
original data are positive. This study is motivated by earlier work in which 
sufficient conditions are derived on Bézier points in order to ensure that surfaces 
comprising quartic Bézier triangular patches are always positive and satisfy G1 
continuity conditions. The gradients at the data sites are then calculated (and 
modified if necessary) to ensure that these conditions are satisfied. Its 
construction is local and easily extended to include as upper and lower 
constraints to the interpolating surfaces of the form z = C(x,y) where C is a 
polynomial of degree less or equal to 4. Moreover, G1 piecewise polynomial 
surfaces consisting of polynomial pieces of the form z = C(x,y) on the 
triangulation of the data sites are also admissible constraints. A number of 
examples are presented.  
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1. Introduction 
 

The properties that are most often used to quantify “shape” in shape preserving 
interpolation are positivity, convexity and monotonicity. The problem of positivity preserving 
interpolation, i.e. interpolation to positive data by a positive function, is often of interest. This 
problem could arise if one has data points on one side of a plane, and wishes to have an 
interpolating surface which is also on the same side of this plane. For instance, when the data 
from physical experiment are measured in the form of concentration or pressure or 
meteorology data such as amount of rainfall where negative values are meaningless, it is 
important for the interpolant to preserve positivity. This paper will propose sufficient 
conditions on the bivariate quartic function upon triangulation of the data in order to visualize 
the positive scattered data which may come from certain scientific phenomena. Various 
methods concerning visualization of positive data or range restricted interpolation using 
bivariate functions can be found in [1], [2], [8], [11], [12] and [13]. 

This study is motivated by previous works in [2], [13] and [15]. [2] describes the 
construction of range restricted bivariate C1 interpolants to scattered data where sufficient 
non-negativity condition on the Bézier ordinates are derived to ensure the non-negativity of a 
cubic Bézier triangular patch. 

In [2] and [13], a C1 non-parametric surface is constructed comprising of cubic Bezier 
triangular patches. Each triangular patch of the interpolating surface is formed as a convex 
combination of three cubic Bézier triangular patches. An initial value of inner Bezier 
ordinates in each triangle are computed using the cubic precision method. 

 In this paper, we will construct bivariate G1 interpolants to scattered data using similar 
approach adopted in [13] but each triangular patch of the interpolating surface is formed as a 
single quartic Bézier triangular patch.  It has been established that quartic patch is the lowest 
possible degree suitable for the construction of a composite G1 surface [14]. Initial values of  
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Bezier ordinates except  for the values determined by gradients at vertices of each triangle are 
computed using the method of minimized sum of squares of principles curvartures ([7], [9]) 
with respect to the G1 continuity conditions [5] on each non-boundary edge over the triangular 
mesh using the quadratic form of an objective function [15]. We also consider the 
construction of range restricted bivariate G1 interpolants to the scattered data. 

The sufficient conditions on Bézier ordinates which ensure the positivity of a quartic 
Bézier triangular patch using similar method as proposed in [13] will be described in section 
2. An outline of the surface construction process is given in section 3, while section 4 presents 
the implementation of range-restricted interpolation. Examples are presented in section 5. 
Finally, the conclusions will be given in Section 6.     
 
 

2.  Sufficient positivity conditions for a quartic Bézier triangular patch 
 

Consider a triangle T, with vertices V1, V2, V3, and barycentric coordinates u,v, w such 
that any point V on the  triangle can be expressed as  
      V =   uV1  + vV2 +  wV3 , where  u + v + w = 1 and u,v,w ≥ 0. 
 A quartic Bézier triangular patch P on T is defined as, 
  P(u,v,w) =  u4b400 + v4b040 + w4b004 + 4u3vb310 + 4u3wb301 + 4v3ub130 + 4v3wb031 +4w3ub103 +    
                   4w3vb013 + 6u2v2b220 + 6u2w2b202 + 6v2w2b022 + 12u2vwb211 + 
                  12v2uwb121 + 12w2uvb112             (1)                                                                                                                                                       
where bijk are the Bézier ordinates of  P as shown in figure 1. 
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 Figure 1. Relative locations of  Bezier ordinates for  P(u, v, w)
 
We assume that the Bézier ordinates at vertices are strictly positive, i.e. b400, b040, b004 > 0. 

The sufficient conditions on the remaining Bézier ordinates will be derived to  ensure the  
positivity of the entire patch.  Let A = b400, B = b040, and C = b004 where A, B, C > 0. Our 
approach is to find the lower bounds of the remaining Bézier ordinates, so that P(u,v,w) = 0. 
We also assume that, apart from the vertices, the remaining Bézier ordinates have the same 
value -r (where r > 0). Thus, (1) can be written as, 
 
P(u,v,w) = Au4 + Bv4 + Cw4 -r(4u3v+ 4u3w + 4v3u +4 v3w + 4w3u +4w3v + 
                  6u2v + 6u2w2 + 6 v2w2 + 12u2vw +  12v2uwb121 + 12w2uvb112   
               = Au4 + Bv4 + Cw4-r(1 –u4-v4-w4) 
               = (A + r)u4 + (B+ r)v4 + (C + r)w4 – r       (2) 
 

From  (2), clearly when r = 0, P(u, v, w) > 0.    We are interested to find the value   r = r0 
when the minimum value of P(u, v, w) is equal to zero. The derivatives of P in (2) with 
respect to u, v and w are given by, 
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Substituting  these u, v and w  into (2),  we obtain the minimum value of P(u, v, w),  
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We need to choose a value r = r0  so that this minimum value of P is zero. From (5) and r > 0, 
we know that, P(u, v, w) = 0 when   
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If A, B and C are strictly positive, then  s0 = 1/r0 is  the solution of  G(s) = 1.  
 
Now, let us describe the method to determine the value of s0 for each triangular patch.  

Since A, B, C > 0, it is easy to show that for s ≥ 0, G’ (s) < 0 and G’’(s) > 0. Let  M = max(A, 

B, C) and N = min (A, B, C) and it can be verified that 
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Figure 2 shows the form of G(s), s ≥ 0 with the relative location of  26/M, 26/N and  s0. 
 

To obtain the value of s0 for given values of A, B and C, we need to find the root of (7) 
and G(s) = 1  that will give us a lower bound on  the remaining Bézier ordinates, i.e. r0 = 1/s0 
using simple iterative scheme. In choosing these scheme, we must ensure of one sided 
convergence of the root. This can be achieved by the method of false-position [3] with an 
initial estimate for the root will be the value of s  for which the line joining 26/N and 26/M 
has the value 1. The following proposition prescribes the lower bounds for the Bézier 
ordinates to ensure the positivity of  Bézier patch. 
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PROPOSITION.  Consider the quartic Bézier triangular patch P(u, v, w)  with b400 = A, b040 
= B, b004 = C, where A, B, C > 0. If brst ≥ -r0 = -1/s0 , (r, s, t) ≠ (4,0,0), (0,4,0) and (0,0,4),   
where s0  is the unique solution of (7) and G(s)=1 then P(u, v, w) ≥ 0,∀ u, v, w ≥ 0,                
u+ v+ w = 1. 
 
Note that, if any of the  values of A, B or C are zero (i.e. the given data are not strictly 
positive), we will assign the value of r0  to be zero for that triangle. 
 

0 

1 

3 

G(s)

26/M 26/Ns0 s 

Figure  2. Function G(s) for s ≥ 0 

                                        
3.  Construction of positivity preserving interpolating surface 

 
Having established sufficient conditions on the Bézier points as described in section 2, we 

are now able to construct the interpolating surface. Given a positive scattered data (xi, yi ,zi ), zi 
≥ 0, i=1,2,…,N,  we want to  construct a G1 positivity-preserving surface z = F(x,y) that 
interpolate  the given data. The surface comprises of quartic Bézier triangular patches each of 
which is guaranteed to remain positive. We use Delaunay triangulation ([4]) to triangulate the 
convex hull of the data points and the estimation of the first order partial derivative of F with 
respect to x and y is obtained using the method proposed in [6]. Let Vi, i=1, 2, 3 be the 
vertices of a  triangle, such that F(Vi)= zi, and the first partial derivatives Fx(Vi) and Fy(Vi). 
Then for each triangular patch P as given by (1), the derivative along the triangle edge ejk 
joining (xj, yj) to (xk, yk) is given by   Dejk P( Vj ) = (xk – xj ) Fx(Vj)    +   (yk – yj ) Fy(Vj). 
From the given data, together with estimated derivatives at all (xi, yi) we can now determine 
all brst except of b220, b202, b022, b211, b121 and b112 . For example, we have:b400 = F(V1),          

b310 = 
3

)(
)(

112
1

VD
VF

e
+  and b301 = 

3

)(
)(

113
1

VD
VF

e
− . 

By symmetry, we can obtain the remaining 6 control points. However, the initial estimate of 
the above edge ordinates may not satisfy the positivity conditions for P. In view of  
Proposition, we shall impose upon these Bézier ordinates the conditions  b310, b301, b130, b103, 
b031, b013  ≥ -r0 . If it does not, the magnitudes of Fx, Fy at the vertices  need to be reduced so 
that the conditions are satisfied. The modification of these partial derivatives is achieved by 
multiplying each derivative at that vertex by a scaling factor 0 < α < 1. The smallest value of α 
is obtained by considering all triangles that meet at vertex V that will guarantee satisfaction of 
the positivity condition for all these triangles. For example (b310)j = 

j
je

r
VD

VF )(
3

)(
)( 0

1)12(
1 −≥+ α where subscript j represents quantities corresponding to 

triangle j. Having adjusted these derivatives, if necessary, the Bézier ordinates are 
recalculated using the above formulae. 
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Next, we shall calculate the remaining edge ordinates b220, b202, b022 and  inner Bézier 
ordinates b211, b121 b121 which need to be done in order to guarantee preservation of positivity 
and to ensure G1 continuity across patch boundaries. We adopt a similar approach presented 
in [13] which guarantee G1 continuity and has minimized sum of squares of principle 
curvartures. Two patches with a common boundary curve satisfy G1 continuity if both have 
continuously varying tangent plane along the common curve. Figure 3 shows an example of 
Bézier control points of two adjacent quartic Bézier triangular patches (denoted by R and S 
respectively), where h0 and h4 are Bézier points of the vertices, g0, f0, h1, g3 , h3 and f3 are 
obtained from the patch gradients while g1, f1, h2, g2 and f2 are points to be determined. We 
only have to consider {hi, i = 0, 1,…4} as the common boundary curve and {gi, fi, i = 0, 1…3} 
which consist of the control points in each patch. Details of derivation with regard to the G1 
conditions can be found in  [5]. Then, the conditions satisfying G1 continuity between the two 
adjacent patches can be written as 
             αg0  + (1-α)f0 = βh0 + (1-β)h1                (8) 
             αg1  + (1-α)f1 = βh1 + (1-β)h2                 (9) 
             αg2  + (1-α)f2 = βh2 + (1-β)h3                          (10) 
             αg3  + (1-α)f3 = βh3 + (1-β)h4                             (11) 
where α and β are constants. 

Since the values of  g0,  f0, h0,  h1, g3, h3 ,  h4 and  f3  are already known, α and β for each 
triangle can thus be determined from (8) and (11). We can also obtain expressions (9) and 
(10) on all non-boundary edges over the whole triangular mesh and be represented as  

Ax = b                          (12) 
where A is a l x n (l< n) coefficient matrix , x is a n x 1 unknown vector consisting of all 
remaining Bézier ordinates to be determined for the entire triangular mesh, and b is a l x 1 
constant vector.  We shall follow a similar approach as in [15] using minimized sum of 
squares of principle curvatures with respect to the constraint in (12) to obtain unknown vector 
x. Our aim is to find the function F(u,v) which will minimize the functional  I(F(u, v)) 

=∑  , where m is a number of triangles in a mesh with  u + v+ w = 1 or in the 

form of matrix-vector representation  I(F(u, v))= x
=

m

t

t wvuPI
1

)),,((

T Mx  +  ex + c,  where M is a real (n x n) 
symmetric matrix, e is a (1x n) row vector, x is a (n x1) column vector representing the 
unknown Bézier points for the entire triangular mesh and c as a real constant. 

 In order to find F(u, v) which will minimize I(F(u, v)) lead us to an optimisation 
problem, xT Mx  +  ex + c subjects to the G1 continuity constraints Ax = b (see [15] for 
further details of  the method).  An initial estimate of the edge ordinates b220, b202, b022 and  
inner Bézier ordinates b211, b121 b121  in each triangle obtained by the above method may not 
satisfy the positivity conditions for P(u, v, w) as stated in proposition. We may need to adjust 
the above coefficients in order to fulfill the proposition  and the G1 continuity conditions in 
(9) and (10). Thus, for every common edge of the two patches R and S as in Figure 3, we may 
need to adjust the coefficients of g1, f1, g2, f2 and h2. We have adopted similar approach 
previously done for C1 triangular cubic patches in [2] but with slight modification for the G1 
triangular quartic patches because more coefficients are involved. We also note that, this 
modification is local. For each patch P, when all the Bézier ordinates have been assigned, the 
final positive interpolating surface can be generated  using (1) for the barycentric coordinates 
u, v and w. 
 
 

4.  Range-restricted interpolation 
 

 In section 3, we have described the construction of G1 interpolating surface which is 
constrained to lie above the plane z = 0. We shall extend our scheme to include a larger set of 
constraint surfaces that are of the form z = C(x, y)  where C(x, y) is a constant, linear, 
quadratic, cubic or quartic polynomial, i.e. C(x, y) = ax4 + bx3y + cx2y2+ dy4+ exy3+ fx3+ 
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Figure 3. Control points of adjacent quartic Bézier triangular patches 

 
gx2y+ hy3+ ixy2 + jx2 + kxy + ly2 + mx+ ny+ o where a, b, c, d, e, f, g, h, j, k, l, m, n and 

o are real numbers.  These surfaces are considered because they can be expressed as quartic 
Bézier triangular patches on each triangle of the triangular mesh. Thus, G1 piecewise 
polynomial surfaces consisting of polynomial pieces of the form z = C(x , y)  on the 
triangulation of data sites can also be treated as  constraint surfaces.  

We would like to generate a G1 interpolating surface z = F(x, y) through the data points 
(xi, yi, zi) , i = 1, 2, . . ., N which lies either above or below the constraint surface or lie 
between both the constraint surfaces. This problem can easily be reduced to the positivity 
preserving interpolation case which we have considered earlier. Assume the data points lie 
above the constraint surface. The initial problem of constructing the interpolation surface F(x, 
y) with respect to the constraint surface C(x, y)  is similar to the construction of a function 
G(x, y) = F(x, y) – C(x, y) such that G is positive and G1 with G(xi, yi) =  where  = z*

iz *
iz i – 

C(xi, yi) is a new set of data points. The initial values of gradients of G at the data sites are 
obtained from Gx (xi, yi) = Fx (xi, yi)- Cx (xi, yi) and Gy (xi, yi) = Fy (xi, yi)- Cy (xi, yi).  The 
gradients of G are modified if necessary using the method described in section 3.  Thus,  the 
positivity-preserving interpolating surface F(x, y) is constructed piecewise as a single quartic 
triangular patch, where G(x, y) is also a single piecewise quartic triangular patch. We can use 
a similar construction method if the data points lie below the constraint surface by writing 
G(x, y) as C(x, y) – F(x, y).  The above construction method can also be extended to describe 
the interpolating surface that lie between  both the upper and lower constraint surfaces (see 
[2] for further details). 
 
 

5.   Examples 
 

In this section, we will illustrate our interpolating scheme using two test functions.  The 
first example is the function g taken from [2] where 
             f(x,y) =1.025 -  0.75exp(-(6x-1)2 - (6y-1)2 - 0.75exp(-(9x+1)2/49 – (9y+1)/10) 
                      - 0.50exp(-((9x-7)2 + (9y-3)2)/4)+-0.50exp(-(10x-4)2 – (10y-7)2 ,  
                        (x,y) ∈  [0,1]x[0,1]. 
In this example, we use 33 data points which g interpolates. A linear function C1(x,y) = 0.1xy 
+ 0.825x-0.215 and a cubic polynomial C2(x,y) = -3x3 + 5.55x2 + 0.2xy – 2.25x + 0.207 are 
used as lower constraint surfaces respectively. Figures 4(a) and 4(b) show part of the 
unconstrained interpolating surfaces cross the two constraint surfaces at two different regions 
but for the range restricted interpolant with positivity conditions imposed, its stay above the 
two lower constrained surfaces as given in figures 5(a) and 5(b). 

The second example from the well-known data set taken from [10] comprises 36 data 
points of   
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For this example, we have use z = 1.001 as the upper constraint and z = -0.001 as the 
lower constraint similar to [2]. Figure 6 show  the unconstrained interpolating surfaces cross 
the upper and lower constraints. When we imposed positivity conditions together with both 
the upper and lower constraints, the interpolating surface does not oscillate unnecessarily and 
stays in-between the two constrained surfaces as shown in figure 7. 

 

     
                         (a)                                                        (b) 
Figure 4. (a) Unconstrained interpolating surface with constraint surface C1(x, y) 
                 (b) Unconstrained interpolating surface with constraint surface C2(x, y) 
                       (Data from f ) 

           

               
          Figure 5. (a) Constrained interpolating surface with constraint surface C1(x, y) 
                           (b) Constrained interpolating surface with constraint surface C2(x, y) 
                                 (Data from f ) 

 
 

                         
               Figure 6.  Unconstrained interpolating 

surface with constraint surfaces z = 1.001 
and z=-0.001 (Data from g) 

Figure 7.  Constrained interpolating 
surface with constraint surfaces z = 1.001 
and z = -0.001 (Data from g) 
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6.  Conclusions 

 
In this study, we have considered the generation of non-parametric surfaces that interpolate 
positive scattered data.  We also imposed relaxed and simpler conditions on Bézier ordinates 
by modifying the  previous work in [13] and [15]. We also extend the problem of G1 
positivity preserving interpolants to the range restricted scattered data cases similar to those 
considered for C1 interpolants described in [2].  
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