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a b s t r a c t

We propose a generalised B-spline construction that extends uniform bicubic B-splines to multisided
regions spanned over extraordinary vertices in quadrilateral meshes. We show how the structure of
the generalised Bézier patch introduced by Várady et al. can be adjusted to work with B-spline basis
functions. We create ribbon surfaces based on B-splines using special basis functions. The resulting
multisided surfaces are C2 continuous internally and connect with G2 continuity to adjacent regular
and other multisided B-splines patches. We visually assess the quality of these surfaces and compare
them to Catmull–Clark limit surfaces on several challenging geometrical configurations.

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Constructing arbitrary topology surfaces based on B-splines
has been a long-standing challenge in geometric design and
computer graphics, and recently also in (isogeometric) analysis.
Extraordinary vertices and faces introduce problems in the defi-
nition of the basis functions which are typically only well defined
over regular control mesh regions. Many solutions have been
proposed over time that try to create smooth surfaces over these
extraordinary regions of the mesh, including subdivision surfaces.

Many of the commonly used subdivision surfaces generalise
B-spline surfaces governed by quad-dominant meshes by cre-
ating a smooth surface by an iterative mesh refinement pro-
cess. This process extends standard uniform B-spline subdivision
masks/stencils also to faces with any number of sides (extraordi-
nary faces) and vertices with valency other than four (extraordi-
nary vertices). The process reproduces B-spline surfaces in regular
regions, but there exists no such (closed-form) representation
in extraordinary regions. It is possible to evaluate the surface
at arbitrary parametric positions [1], but in many cases this is
not efficient and/or restricts the topology of the control mesh.
Moreover, subdivision surfaces are typically only G1 continuous at
extraordinary vertices and introduce other undesirable artefacts
in the surrounding area, especially over high valency regions.
Therefore, many subdivision techniques strive to increase the
(visual) continuity and fidelity at said places of the surface. How-
ever, a simple technique that preserves both good shape and
offers continuity higher than G1 has not been found yet [2].

∗ Corresponding author.
E-mail address: g.j.hettinga@rug.nl (G.J. Hettinga).

Another approach is to construct smooth tensor-product
(macro-)patches, one per quad incident with an extraordinary
vertex, that connect smoothly to the surrounding regular regions
and to each other. This includes for instance the construction
of [3] and the recent series of articles by Karčiauskas and Peters;
see e.g. [4,5] and the references cited therein. In contrast, mul-
tisided patches strive to cover extraordinary regions by a single
patch.

The generalised Bézier patch [6] is a generalisation of tensor
product Bézier patches to faces with an arbitrary number of sides.
The patches are able to interpolate positions and derivatives and
can be smoothly joined to other multisided and quadrilateral
Bézier patches. Their structure is very simple as it is a surface
defined as a combination of ribbons, partial Bézier surfaces. This
simple structure of the generalised Bézier patch motivated us to
find a way to adjust this structure to make it also applicable to the
B-spline case over quad meshes of arbitrary manifold topology.

We propose a multisided B-spline patch that generalises uni-
form bicubic B-splines to faces with an arbitrary number of sides.
The new construction is based on the generalised Bézier patch,
in that it builds on many of the same elements: ribbon sur-
faces, generalised barycentric coordinates, and suitable blending
functions.

The rest of the paper is structured as follows. In Section 2
we give an overview of related work. Then in Section 3 we
recall both generalised barycentric coordinates and generalised
Bézier patches. In Section 4 we introduce our multisided B-spline
patch construction and afterwards, in Section 5, we show several
interesting results. We discuss the proposed method in Section 6
and conclude the paper in Section 7.

https://doi.org/10.1016/j.cad.2020.102855
0010-4485/© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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2. Related work

There exist many approaches that choose to use quadrilateral
elements instead of multisided patches at extraordinary points.
Catmull–Clark limit surfaces can be approximated using Gregory
patches situated around extraordinary vertices [7] to efficiently
create a global G1 surface. For higher order continuity, there exist
several options. These options typically vary in the number of
elements, degree of the elements, and the visual quality obtained
in extraordinary regions. For example, Loop & Schaefer [8] cre-
ate n patches of degree bi-7, whereas Karčiuaskas & Peters [4]
create patches of degree bi-6. We do not consider such construc-
tions; we rather aim for a single multisided patch that smoothly
connects to adjacent regular regions.

Manifold-based constructions [9,10] generalise B-splines of
arbitrary degree to meshes with arbitrary topology based on the
theory of manifolds of Grimm & Hughes [11]. A manifold on an
irregular mesh is defined by associating a special chart to each
face (or even edge and vertex), and these overlapping charts
are combined using the partition of unity method, resulting in a
surface of theoretically arbitrary smoothness. This approach is not
suitable for completing B-spline complexes defined over regular
regions without modifying them.

Loop & DeRose [12] propose a multisided generalisation of
B-spline surfaces based on S-patches [13]. The C1 data of sur-
rounding regular regions is used to construct a G1 S-patch of high
degree that fits within bi-quadratic and bi-cubic B-spline surfaces.
The approach suffers from the large number of control points that
need to be determined for each S-patch, due to their high degree,
and it does not directly apply at extraordinary vertices.

The Gregory corner interpolator patch [14] can be fitted into a
regular B-spline mesh and can interpolate boundary curve posi-
tions and first and second derivatives by combining n bi-linearly
parametrised surfaces that lie in the corners of the patches.
The patches have been used in combination with several initial
steps of Catmull–Clark subdivision to create arbitrary topology
cubic B-spline surfaces [15], where the extraordinary regions are
filled with Gregory patches. Another, similar approach [16] uses
multisided Zheng & Ball patches [17] to create multisided patches
over extraordinary regions that fit within bi-quadratic B-spline
surfaces. However, these patches offer only a limited number of
sides.

Multisided (generalised) Bézier patches [18], which are the
most relevant construction for us, are recalled in detail in Sec-
tion 3.2.

3. Preliminaries

We introduce several preliminary topics on which our new
construction is built. As with most multisided patch approaches,
we also use generalised barycentric coordinates to parametrise
the patches, and so discuss these first.

3.1. Generalised barycentric coordinates

Generalised barycentric coordinates provide a coordinate sys-
tem in which any point p on a planar polygon can be expressed
as a weighted combination of the polygon’s vertices. There are
many types of these coordinates and an extensive overview of
generalised barycentric coordinates can be found in [19]. We
recall the main properties of the coordinates.

With a cyclic ordering of the vertices of a polygon vi, i =

1, . . . , n, the barycentric coordinate functions φi, i = 1, . . . , n
partition unity

∑n
i=1 φi = 1, are non-negative φi ≥ 0, ∀i on

the polygon, and satisfy the barycentric property
∑n

i=1 φi(p)vi =

p. Linear interpolation is achieved on the boundary for smooth

coordinates, and at the vertices the Lagrange property is satisfied
φi(vj) = δij, where δij is the Kronecker delta. For triangles the
coordinates reduce to the unique barycentric coordinates. For
higher valencies this uniqueness property no longer holds.

To parametrise a polygon in R3 we use a regular parame-
terisation domain, a regular polygon of valency n, which we
parametrise by Wachspress coordinates [20,21]. Although many
other options exist, Wachspress coordinates provide, arguably,
the simplest and most efficient choice due to their closed rational
form.

3.2. Multisided Bézier construction

The new multisided B-spline construction has a similar struc-
ture to the generalised Bézier patch [18]. The generalised Bézier
patch is a multisided combination of n Bézier ribbons, which are
partial Bézier surfaces. Each ribbon Ri has local parameters con-
structed from the generalised barycentric coordinate functions
corresponding to its end vertices vi−1 and vi. The local parameters
are defined in terms of the generalised barycentric coordinates
φ = [φ1, . . . , φn] as the side parameter si(φ) = 1 − φi − φi−1
and the distance parameter hi(φ) =

φi
φi+φi−1

. These parameters
locally behave like bi-linear coordinates. The side parameter si
increases linearly on side Γi and is 0 on Γi−1 and 1 on Γi+1.
Similarly, the distance parameter hi is 0 on the whole of Γi and
increases linearly on sides Γi−1 and Γi+1, and into the polygon.
The side and distance parameters handle the parameterisation of
the individual ribbons Ri(si, hi).

Each patch is a combination of n ribbons that need to be
blended together. For this purpose, special blending functions are
attached to the control points that are common to more than one
ribbon. We can decompose the blending functions into the left
(αd

i ) and right (βd
i ) counterpart for each ribbon:

α
q
i =

hq
i−1

hd
i + hq

i−1
, β

q
i =

hq
i+1

hd
i + hq

i+1
.

Depending on the number of derivatives that need to be repro-
duced, the degree q of the terms in the blending functions is
set accordingly. For G1 continuity for now, we set q = 1. The
blending functions assure that on each edge Γi only the relevant
basis functions of the associated ribbon contribute to the surface.
Then the full definition of the ribbons is

Rd
i (u, v) =

d∑
j=0

l∑
k=0

µi
jkb

i
jkB

d
j (u)B

d
k(v),

where

µi
jk =

⎧⎨⎩
αd−2
i j < 2;

1 2 ≤ j ≤ d − 1;
βd−2
i j > d − 1.

Here, Bd
j (u) is the jth degree d Bernstein polynomial and bi

jk are
the control points as oriented from side i. The control point layout
for one ribbon of a cubic generalised Bézier patch can be seen in
Fig. 1, left. The control points for the other ribbons are labelled
analogously. The ribbon is a bi-degree d surface, where d specifies
the number of columns and l the number of rows of control
points in each ribbon; here l = d − 2 although other values are
possible. The function µi

jk handles the distribution of the blending
functions among the control points of each ribbon.

For a G1 construction, we need to ensure that each ribbon
consists out of two rows of control points. This is also true for
the ribbons on the adjacent sides Γi−1 and Γi. Therefore, in the
corners many control points are shared between ribbons. These
blocks of control points need to be blended using the blending
functions.
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Fig. 1. Left: The control net of a pentagonal cubic generalised Bézier patch with labels of some of the control points and sides. Right: The distribution of blending
functions with respect to one of the sides is shown.

The patch is defined to be the sum of the n ribbon surfaces,
but this leads to a patch that is not necessarily affine invariant as
the basis functions multiplied by the blending functions

F (φ) =

n∑
i=1

d∑
j=0

l∑
k=0

µi
jkB

d
j (si)B

d
k(hi) (1)

do not sum to unity. To create a patch that is affine invariant,
there are two choices. Either the patch is normalised by the sum
of the basis functions

S(φ) =

∑n
i=1 R

d
i (si, hi)

F (φ)
or a central control point C is created to which the deficient (or
excess) weight is assigned

S(φ)C = C (1 − F (φ)) +

n∑
i=1

Rd
i (si, hi),

where si and hi stand for si(φ) and hi(φ), respectively, for brevity.
The control structure of the generalised Bézier patch is simple and
the number of control points increases linearly with the number
of sides (in contrast to the S-patch setting).

Although Bézier curves and surfaces have a strong relation
with B-splines, a straightforward extension of the generalised
Bézier patch to generalised B-spline patches is not easily made.
This can be attributed to the difference in basis functions, topo-
logical restrictions, and mainly to required internal smoothness.

4. Multisided B-spline construction

For the multisided B-spline construction we look for a gener-
alisation of uniform cubic B-splines to multisided regions, in our
case to the one-ring neighbourhoods of extraordinary vertices.
These extraordinary vertices must be, as in the case of most sim-
ilar constructions including [15], isolated, meaning that no two
extraordinary vertices are adjacent to each other. However, to be
able to process meshes which have extraordinary faces and (non-
isolated) vertices, we use up to two Catmull–Clark subdivision
steps until all extraordinary vertices have been correctly isolated.

For each extraordinary vertex with valency n, a single multi-
sided patch is created, covering its one-ring neighbourhood. Like
the generalised Bézier patch, each is a combination of n ribbons.
In our case, the ribbons are composite B-spline surfaces with
special basis functions. A schematic view of a multisided cubic

B-spline surface is shown in Fig. 2, left. The regular (bi-cubic)
patches defined by the regular part of the control mesh leave a
multisided hole for which each side is adjacent to two regular
regions (so not a single Bézier patch). Therefore, the multisided
face that we create must connect smoothly to both of these
patches on each of its sides, and be itself smooth. For the creation
of these special ribbons we first need to define appropriate basis
functions.

4.1. Extended cubic basis functions

Simply interchanging the Bernstein basis functions for B-
spline basis functions leads to problems. As the ribbons are now
a composite surface along the patch boundary, they must also
be extended smoothly towards the inside of the patch. If this
is not done, C2 continuity will not be preserved towards the
centre of the patch (along the spokes of the extraordinary vertex).
Moreover, unlike the Bernstein polynomials, some of the standard
B-spline basis functions have non-zero values and derivatives
at the ‘wrong’ knots, as we now need to work with two knot
intervals (over [0, 2] with three knots), and not just one interval
[0, 1] as in the Bézier setting. Therefore, we need to create special
basis functions that are C2 everywhere inside the patch and
reproduce the B-spline basis functions at certain values within
the extended interval and vanish at others, as follows.

We define the functions E3
j (u) over the interval [0, 2], to be

able to cover the extended domain of a multisided B-spline rib-
bon. Overall, they are positive and remain within the range [0, 1],
plus have to satisfy some specific conditions. First of all, on the
interval [0, 1] they should be equal to the standard uniform cubic
B-spline basis functions, i.e., E3

j (u) ≡ N3
j (u) for u ∈ [0, 1].

Here, N3
j (u) is the jth uniform cubic B-spline basis function. This

guarantees that the basis functions for each ribbon join smoothly
with the basis functions of the adjacent regular regions.

Secondly, we want to guarantee that the ribbon of side Γi will
not contribute on the distant sides Γi+2, . . . , Γi−2. This translates
into the requirement that its positional contribution should van-
ish on the ‘far side’, i.e., E3

j (2) = 0. Likewise, for G1 continuity the
first derivative should also vanish, i.e.,

(
E3
j

)′ (u)|u=2= 0. Finally,
if G2 continuity is desired, then the second derivative at u = 2
should vanish, too.

Unfortunately, merely extending the standard cubic basis
functions to have an extended support only partly satisfies the
conditions, as only some of the endpoint conditions are met. As
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Fig. 2. Left: The control net of a pentagonal cubic generalised B-spline patch with control point labels with respect to Γi . Right: The distribution of blending functions
for side Γi is shown.

Fig. 3. The extended basis functions used in the construction of the multisided B-spline patch. Both E3
0 (u) and E3

1 (u) are simply the continuation of the uniform
B-spline kernel. E3

2 (u) is a combination of a cubic and a quintic function.

the functions Ej are fine on the interval [0, 1], we only need to
find suitable extensions to [1, 2] that assure the listed conditions
for G2 continuity. However, having this piece-wise representation
of Ej adds additional constraints. As we do not want to have lower
than C2 continuity at any point on the interval, care must be taken
to create a C2 continuous join at u = 1.

We now detail the construction of each of the three basis
functions; see Fig. 3. The first and second basis functions are
simply E3

0 (u) ≡ N3
0 (u), and E3

1 (u) ≡ N3
1 (u) with u ∈ [0, 2]. As

these functions both vanish at u = 2 up to second derivative,
they satisfy all properties that we need to guarantee smoothness
of the ribbons. The third basis function is a piece-wise function,
but the second polynomial piece on the interval [1, 2] is quintic:

E3
2 (u) =

⎧⎨⎩
N3

2 (u), u ∈ [0, 1];
2
3 (2 − u)5 +

2
35(2 − u)4(u − 1)

+
17
3010(2 − u)3(u − 1)2

u ∈ [1, 2].

It is impossible to create a cubic function that reproduces up
to the second derivative that of N3

2 (u) at u = 1 and also has
vanishing derivatives up to order two at u = 2. Therefore, a
quintic function is needed to join smoothly to N3

2 (u) on [1, 2]. The
quintic function connects to the cubic B-spline function with C2

continuity and at the endpoint of the interval it vanishes along
with its first and second derivative. The coefficients for the quintic
function were obtained by solving the system

[ 1 0 0
−3 3 0
6 −12 6

][c0
c1
c2

]
=

⎡⎢⎢⎢⎢⎢⎣
N3

2 (1)

∂N3
2 (u)
∂u

⏐⏐⏐⏐
u=1

∂2N3
2 (u)

∂2u

⏐⏐⏐⏐
u=1

⎤⎥⎥⎥⎥⎥⎦ ,

where ci are the coefficients for a univariate quintic Bézier poly-
nomial over [0, 1]. We only need to determine the first three
coefficients c0, c1, c2, as the other three coefficients, c3, c4, c5, can
simply be set to 0 to let all of the necessary derivatives vanish.
Finally, the piece is shifted from the interval [0, 1] to [1, 2].

Having defined the extended basis functions, we are now
ready to define the B-spline ribbons.

4.2. B-spline ribbons and patch

The definition of the multisided B-spline patch is very similar
to that of the generalised Bézier patch. The multisided B-spline is
a combination of n B-spline ribbons. Again, the local ribbon pa-
rameters, si and hi, are constructed from generalised barycentric
coordinates and are used to parametrise each ribbon. However,
this time they are scaled so that they span the interval [0, 2],
ready to be used with the extended basis functions. Specifically,
we set s̄i(φ) = 2(1 − φi − φi−1) and h̄i(φ) =

2φi
φi+φi−1

. Along the
direction of s̄i normal cubic B-spline basis functions are used, and
along h̄i the extended basis functions E3

j are employed.
The distribution of the control point blending functions is also

similar to the generalised Bézier patch. All control points of the
ribbon require at least one blending function. The control points
in the middle row of control points require a combination of two
blending functions; see Fig. 2, right. These control points need
to be blended with respect to the adjacent B-spline ribbons on
Γi−1 and Γi+1. Both of these B-spline ribbons need at least three
rows of control points to be able to join with curvature continuity
to adjacent patches. This causes the blending functions of this
row of control points to overlap as there are only 5 columns
of control points in each ribbon. We can create suitable blend-
ing functions by simply multiplying the two respective blending
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functions together. This completes the B-spline ribbon definition:

Ri(u, v) =

{∑3
j=0

∑2
k=0 υ i

jbjkN3
j (u)E

3
k (v) u ∈ [0, 1],∑6

j=3
∑2

k=0 ωi
jbjkN3

j−3(u − 1)E3
k (v) u ∈ [1, 2],

with v ∈ [0, 2]. Here, N3
j are the uniform cubic B-spline basis

functions and E3
k are extended cubic basis functions as defined

above. The distribution of the blending functions is governed by

υ i
j =

{
α3
i j < 3;

α3
i β

3
i j = 3;

, ωi
j =

{
α3
i β

3
i j = 3;

β3
i j > 3.

The ribbon blending functions are of the familiar form, but in-
stead the functions αi and βi are cubed. This is different from the
blending functions of the (enhanced) generalised Bézier patch [6],
where squared terms provide already sufficient properties to
obtain curvature continuity.

The cubic B-spline ribbon is a piece-wise surface, but is still
C2 continuous in the parametric direction along u and also at the
join along u = 1. The blending functions introduce singularities
in the corners of the patches, due to the denominator being zero
there. The singularities can be easily removed as the evaluated
position is simply the limit position of the control vertex at this
corner. This position can be found by applying the regular limit
stencil[1 4 1
4 16 4
1 4 1

]
/36

to the one-ring of vertices around the corner vertices, for example
bi
11 and bi

31, surrounding the extraordinary vertex.
Again, the ribbons can be combined into the final surface:

S3(φ) =

n∑
i=0

Ri(s̄i, h̄i).

Similarly to the generalised Bézier patch, this patch can be made
affine invariant either by normalisation by dividing it by the sum
of basis and blending functions:

F (φ) =

n∑
i=0

ri(si, hi), where

ri(u, v) =

{∑3
j=0

∑2
k=0 µi

jN
3
j (u)E

3
k (v) u ∈ [0, 1],∑6

j=3
∑2

k=0 µi
jN

3
j−3(u − 1)E3

k (v) u ∈ [1, 2],

(2)

or by introduction of an additional point that takes care of the
excess or deficient weight in the basis functions.

The structure of the generalised B-spline patch is simple and
requires only the vertices of the B-spline control net. This is in
contrast to other methods like [16] that first need to extract the
Bézier control points. The surfaces are affine invariant, preserve
the convex hull property, and edits to the control mesh have local
influence. The internal continuity of the patch is C2 as the ribbons
themselves are piece-wise surfaces. It remains to show that the
patch joins smoothly with the surrounding bi-cubic patches in
regular regions.

4.3. Continuity

To show that our patches can maintain continuity conditions
with adjacent patches, either regular or multisided, we need to
show that on each side Γi only the ribbon Ri contributes towards
the final patch there. We do this by examining the contributions
of the basis functions attached to the control points of the rib-
bons. By construction, the basis functions of the distant sides
Ri−2, . . . ,Ri+2 do not contribute at all to Ri due to the so-designed
extended cubic basis functions. The only two ribbons that might

contribute are Ri−1 and Ri+1. Let us examine the situation of
control points in the left corner of ribbon Ri. Here, a control point
contribution is influenced by two basis functions: B3

j,k(u, v) =

N3
j (u)E

3
k (v) of Ri and C3

d−k,j(u, v) = N3
d−k(u − 1)E3

j (v) of Ri−1. For
C0 continuity at Γi, where h̄i = 0 and s̄i−1 = 2, we have

βi−1C3
d−k,j(2, h̄i−1) + αiB3

j,k(s̄i, 0) =

0 · C3
d−k,j(2, h̄i−1) + 1 · B3

j,k(s̄i, 0) =

B3
j,k(s̄i, 0)

(3)

as expected. Here, all the blending functions βi−1 associated to
all non-zero basis functions of Ri−1 are zero, and thus so is
the positional contribution of Ri−1 on Γi. This shows that only
Ri contributes to the position of the patch on Γi, proving C0

continuity.
We now show that also G1 continuity is maintained. We dif-

ferentiate the involved basis functions in an arbitrary direction
not along si; this derivative is for simplicity denoted by ∂ . For a
control point in the left corner of Ri we have

∂
(
βi−1C3

d−k,j(2, h̄i−1) + αiB3
j,k(s̄i, 0)

)
=

∂(βi−1)C3
d−k,j(2, h̄i−1) + βi−1∂

(
C3
d−k,j(s̄i−1, h̄i−1)

)
+

∂(αi)B3
j,k(s̄i, 0) + αi∂

(
B3
j,k(s̄i, 0)

)
=

0 · C3
d−k,j(2, h̄i−1) + 0 · ∂

(
C3
d−k,j(2, h̄i−1)

)
+

0 · B3
j,k(s̄i, 0) + 1 · ∂

(
B3
j,k(s̄i, 0)

)
=

∂
(
B3
j,k(s̄i, 0)

)
,

(4)

where we make use of the convention ∂(B(s, 0)) = ∂(B(s, h))|h=0.
Since we are evaluating on Γi, we have that both βi−1 and
∂(βi−1) vanish. In addition ∂(αi) = 0. Thus we are left with
∂(B3

j−1,k+1(s̄i, h̄i)), which means that the derivative across Γi is
determined solely by the derivatives of the basis functions of Ri,
as we needed to show for G1 continuity.

Finally, the curvature continuity of the patches is established
by showing that the second derivative of the patch on Γi is solely
determined by Ri. Again, the construction of the extended basis
functions allows us to say that they do not influence the curvature
on the distant sides as their second derivatives vanish there. What
remains to be shown is that only the second derivative of the
basis functions of Ri contributes to the curvature of the patch at
Γi. On this side the following conditions hold for the blending
functions: βi−1 = ∂(βi−1) = ∂2(βi−1) = 0. In addition we know
that ∂(αi) = ∂2(αi) = 0. Using this we can show for a control
point on the left side of Ri that

∂2
(
βi−1C3

d−k,j(2, h̄i−1) + αiB3
j,k(s̄i, 0)

)
=

∂2(βi−1)C3
d−k,j(2, h̄i−1) + 2∂(βi−1)∂

(
C3
d−k,j(2, h̄i−1)

)
+

βi−1∂
2
(
C3
d−k,j(2, h̄i−1)

)
+ ∂2(αi)B3

j,k(s̄i, 0)+

2∂(αi)∂
(
B3
j,k(s̄i, 0)

)
+ αi∂

2
(
B3
j,k(s̄i, 0)

)
=

0 · C3
d−k,j(2, h̄i−1) + 2 · 0 · ∂

(
C3
d−k,j(2, h̄i−1)

)
+

0 · ∂2
(
C3
d−k,j(2, h̄i−1)

)
+ 0 · B3

j,k(s̄i, 0)+

2 · 0 · ∂
(
B3
j,k(s̄i, 0)

)
+ 1 · ∂2

(
B3
j,k(s̄i, 0)

)
=

∂2
(
B3
j,k(s̄i, 0)

)

(5)

as required. This shows that also the second derivative on Γi is
solely determined by the differential terms of Ri and our patch
reproduces all derivatives of the B-spline ribbon there up to order
2. Similar derivations hold for the control points in the right
corner of the ribbon. This is also true for the centre column, where
the two blending functions are combined; the chain rule applied
to their product again ensures that the correct terms vanish at Γi.
This completes the G2 proof.
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Fig. 4. Distribution of weight F (φ), see (2), over multisided cubic B-spline patches for different valencies: 3, 5, 6, 7, and 8.

4.4. Basis functions

All basis functions of the generalised B-spline patches do not
sum to unity and either weight deficiency or weight excess occurs
towards the centre of the patch. This was also observed in the
generalised Bézier patch [6]. Although this does not compromise
the continuity and the affine invariance of the patch, as it can
be restored by either normalisation or using an additional cen-
tral control point to assign the deficient/excess weight to (see
Section 3.2), it does however influence the shape of the resulting
surface.

In these areas the surface decreases in curvature and tends to
show flat spots. This becomes especially prevalent in the triangu-
lar case and in the octagonal case. We did not investigate patches
of higher valencies as these rarely occur in practice, but as seen
in Fig. 4 it can be shown that increasing the valency will increase
the deficient weight towards the centre of the patch.

5. Results

In this section we examine the visual quality of the pro-
posed multisided construction, focusing especially on challenging
configurations.

5.1. Challenging cases

In Fig. 5, we show several challenging geometries with the
resulting multisided B-spline patches surrounded by one ring of
regular bi-cubic patches. Each one of the geometries requires a
single Catmull–Clark subdivision step to be able to generate a
multisided patch. As can be seen from the reflection line ren-
derings, the multisided patches join smoothly to the adjacent
regular patches. Internally the patches are smooth and show no
unexpected changes in the reflection lines. Naturally, when com-
paring to the Catmull–Clark limit surface there are differences in
the non-regular regions. The Catmull–Clark limit surfaces show
pinching artefacts around the extraordinary vertices.

5.2. Arbitrary topology meshes

The patches can be easily integrated into surfaces with mul-
tiple extraordinary vertices and faces. Fig. 6 shows several such
examples. Our patches span over the regions with extraordinary
vertices. As can be seen, when multisided patches are adjacent
to one another they are still able to join smoothly (with G2

continuity).

5.3. Weight deficiency

The effect of the weight deficiency/excess is particularly no-
ticeable in high valency patches oriented in a ‘parabolic’ manner.

This can be seen in the bottom row of Fig. 6, where the octagonal
patch in the centre of the surface appears to flatten off.

Also the triangular case is affected by this problem. In Fig. 7,
the effect of weight deficiency is shown on the resulting surface.
Here the normalised version of the patches SN(φ) are used. De-
spite having a nice smooth transition along the patch boundaries,
a flat spot is visible towards the centre of the patches. It is
possible to change the centre of the surface by using SC(φ), the
version of the patch which adds an additional control point to
the surface. This takes careful tuning however, and a general best
position for this central control point is not readily available,
although the Catmull–Clark limit position of the extraordinary
vertex may provide a useful hint. In the results presented in
this paper, we take the average p of the one-ring neighbourhood
of the extraordinary vertex e, and then displace the extraordi-
nary vertex along the difference. Namely, we set C := e +
3
4 (e − p).

6. Discussion

Our extended basis functions E3
i (u) present just one of the

possible choices for these functions. As mentioned in Section 4.1,
as long as the functions vanish at the end of the interval (u = 2)
and they connect with sufficient smoothness at u = 1, they
are valid functions. A piece-wise cubic representation of E3

2 cer-
tainly exists, but that would require more than two pieces and
thus introduce an extra (unwanted) knot. We have chosen for
the representation that stays the closest to the original B-spline
basis functions, because of their good shape properties. Further-
more, by tuning the functions carefully, it might be possible
to minimise the weight deficiency/excess towards the centre of
the patches, whilst still meeting the aforementioned continuity
conditions.

As shown in Section 5.3, the weight deficiency/excess creates
noticeable flat spots in high valency patches. We have not in-
vestigated means to reduce this shape defect. Varady et al. [6]
suggest to distribute the missing weight on the inner ring of
control points, but this only works properly when the inner ring
of control points does not contribute to the continuity conditions
at the boundary. In contrast, in our B-spline based construction
each control point is needed in at least two separate ribbons at a
time. Therefore, the weight can only be assigned to an additional
central control point, or potentially several of these. As shown
in Section 5.3, it is possible to influence the shape at the centre
of the patch. With this it is possible to interpolate the limit
position of the extraordinary vertex as obtained through standard
Catmull–Clark subdivision, if so desired.

We use a regular parameterisation domain to retrieve gener-
alised barycentric coordinates efficiently so that we can evaluate
the patches using GPU tessellation [22]. We do not follow the
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Fig. 5. Several different mesh geometries with an extraordinary vertex for which a multisided generalised B-spline patch is generated. From top to bottom: Control
mesh, shaded multisided B-spline patch and surrounding regular patches, shaded Catmull–Clark limit surface, reflection lines on the multisided B-spline patch and
surrounding regular patches, reflection lines on the Catmull–Clark limit surface, and mean curvature of the multisided B-spline patch (from red via green to blue).
Observe that our construction does not suffer from pinching artefacts near the extraordinary points. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 6. Left: Shading and control mesh. Middle left: Shading with patch boundaries. Middle right: Reflection lines and patch boundaries. Right: Details of reflection
lines and patch boundaries. Top to bottom: 12 triangles, 64 quadrilaterals, 12 pentagons; 8 triangles, 248 quadrilaterals, 8 hexagons; 84 triangles, 1656 quadrilaterals,
42 pentagons, 18 hexagons, 2 heptagons; 16 triangles, 64 quadrilaterals, 2 octagons.

Fig. 7. A cube control mesh rendered using cubic generalised B-splines. From left to right: Shading on SN(φ), reflection lines and patch boundaries on SN(φ), shading
on SC(φ), reflection lines and patch boundaries on SC(φ).
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exact same tessellation strategies featured in [22], but instead we
choose to subdivide the polygonal domain similarly to a Catmull–
Clark refinement step. This is because this way we can easily
match tessellation levels with adjacent regular quads to achieve
crack-free tessellation and thus artefact-free renderings. As the
multisided B-spline patches have a piece-wise ribbon represen-
tation, it is easier this way to ensure equal level of detail along
the edges of patches, avoiding creating gaps or overlaps in the
tessellation process.

This proves to be a very efficient means to evaluate the mul-
tisided patches; we can easily reach interactive rates of per-
formance. For instance the mesh featured in the third row of
Fig. 6 can be rendered in 3 milliseconds using an NVIDIA Titan
V graphics card at the maximum tessellation level of 64 × 64.
Providing equivalent level of detail using ordinary Catmull–Clark
subdivision would require 9 levels of subdivision.

Our patch currently only works in combination with Catmull–
Clark subdivision and tensor-product uniform cubic B-splines.
However, it is definitely possible to vary the degree of the patches
such that they can be used in combination with other bi-degree
tensor product B-spline surfaces, or potentially also box-splines
(such as in Loop subdivision surfaces), and also for the case of
extraordinary faces. For each degree d, special extended basis
functions Ed

j (u) need to be found, now potentially over more
knot spans, such that their properties still guarantee the desired
smoothness, typically Cd−1. With increased degree comes in-
creased separation of extraordinary vertices and also the number
of piece-wise surfaces in each B-spline ribbon. This requires a
separate and careful investigation.

7. Conclusion

We have presented a multisided B-spline construction based
on the generalised Bézier patch. The new multisided patches are
constructed out of B-spline ribbons that use mostly the regular
B-spline basis functions, but need an extra adjustment. These
special basis functions are required to be able to guarantee G2

smoothness with adjacent patches and C2 smoothness within the
patches. The proposed structure of the patches is simple and they
can be efficiently rendered using modern graphics hardware.

In our future work, we will focus on generalising our multi-
sided patches to other degrees (especially two, four and five) and
levels of continuity so that they can be used in combination with
other B-spline or box-spline based subdivision schemes other
than that of Catmull and Clark.
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