37 research outputs found

    Avoiding deontic explosion by contextually restricting aggregation

    Get PDF
    In this paper, we present an adaptive logic for deontic conflicts, called P2.1(r), that is based on Goble's logic SDLaPe-a bimodal extension of Goble's logic P that invalidates aggregation for all prima facie obligations. The logic P2.1(r) has several advantages with respect to SDLaPe. For consistent sets of obligations it yields the same results as Standard Deontic Logic and for inconsistent sets of obligations, it validates aggregation "as much as possible". It thus leads to a richer consequence set than SDLaPe. The logic P2.1(r) avoids Goble's criticisms against other non-adjunctive systems of deontic logic. Moreover, it can handle all the 'toy examples' from the literature as well as more complex ones

    Tolerating normative conflicts in deontic logic

    Get PDF

    Non-monotonic reasoning with normative conflicts in multi-agent deontic logic

    Get PDF
    We present two multi-agent deontic logics that consistently accommodate various types of normative conflicts. Its language features modal operators for obligation and permission, and for the realization of individual and collective actions. The logic is non-classical since it makes use of a paraconsistent and paracomplete negation connective. Moreover, it is non-monotonic due to its definition within the adaptive logics framework for defeasible reasoning. The logic is equipped with a defeasible proof theory and semantics

    Logic and rational requirements

    Get PDF
    In this paper, I discuss the relation between logic and rationality. I develop (formally and conceptually) a rational requirement which can respond to the classic objections by Harman (1986). On the one hand, the requirement pays attention to the relevance of the premises and the conclusion, which is formally expressed by the notion of weak relative closure. The requirement also takes care of the complexity of the inferences. This notion of complexity is formally represented by a partially ordered scale of the difficulty of inferences, which is weaker than the notion of complexity as number of steps.Fil: Tajer, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina. Instituto de Investigaciones Filosóficas - Sadaf; Argentin

    Adaptive logic characterizations of input/output logic

    Get PDF
    We translate unconstrained and constrained input/output logics as introduced by Makinson and van der Torre to modal logics, using adaptive logics for the constrained case. The resulting reformulation has some additional benefits. First, we obtain a proof-theoretic (dynamic) characterization of input/output logics. Second, we demonstrate that our framework naturally gives rise to useful variants and allows to express important notions that go beyond the expressive means of input/output logics, such as violations and sanctions

    Devising the set of abnormalities for a given defeasible rule

    Get PDF
    Devising adaptive logics usually starts with a set of abnormalities and a deductive logic. Where the adaptive logic is ampliative, the deductive logic is the lower limit logic, the rules of which are unconditionally valid. Where the adaptive logic is corrective, the deductive logic is the upper limit logic, the rules of which are valid in case the premises do not require any abnormalities to be true. In some cases, the idea for devising an adaptive logic does not relate to a set of abnormalities, but to one or more defeasible rules, and perhaps also to one of the deductive logics. Defeasible rules are not universally valid, but are valid in ‘normal situations’ or for unproblematic parts of premise set. Where the idea is such, the set of abnormalities has to be delineated in view of the rules. The way in which this task may be tackled is by no means obvious and is the main topic studied in the present paper. The outcome is an extremely simple and transparent recipe. It is shown that, except for very special cases, the recipe leads to an adequate result

    Analysis of the overall resource consumption of a Flemish dairy farm using Exergetic Life Cycle Assessment

    Get PDF
    To deal with environmental challenges such as pollution and resource depletion, the potential environmental impact of agricultural products is commonly evaluated using the Life Cycle Assessment (LCA) methodology. For livestock systems, emission-related impacts such as global warming have been frequently studied in this way. During the past decades, intensifi-cation of agricultural systems to improve yields coincided with an increased material and energy throughput. Therefore, we focus on resource consumption in this paper. We applied an exergy-based approach to quantify total resource use and to calculate resource efficien-cies, both at system level and at life cycle level. We have performed a case study of an in-tensive confinement-based dairy farm in Flanders to illustrate our approach

    Adaptive logics: a parametric approach

    Get PDF
    Adaptive logics (ALs) in standard format are defined in terms of a monotonic core logic L, a distinct set of 'abnormal' formulas Omega and a strategy, which can be either reliability or minimal abnormality. In this article we we ask under which conditions the consequence relation of two ALs that use the same strategy are identical, and when one is a proper subrelation of the other. This results in a number of sufficient (and sometimes necessary) conditions on L and Omega which apply to all ALs in standard format. In addition, we translate our results to the closely related family of default assumption consequence relations

    Adaptive logics: a parametric approach

    Full text link
    corecore