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Abstract

Devising adaptive logics usually starts with a set of abnormalities and
a deductive logic. Where the adaptive logic is ampliative, the deductive
logic is the lower limit logic, the rules of which are unconditionally valid.
Where the adaptive logic is corrective, the deductive logic is the upper
limit logic, the rules of which are valid in case the premises do not require
any abnormalities to be true. In some cases, the idea for devising an
adaptive logic does not relate to a set of abnormalities, but to one or more
defeasible rules, and perhaps also to one of the deductive logics. Defeasible
rules are not universally valid, but are valid in ‘normal situations’ or for
unproblematic parts of premise set. Where the idea is such, the set of
abnormalities has to be delineated in view of the rules. The way in which
this task may be tackled is by no means obvious and is the main topic
studied in the present paper. The outcome is an extremely simple and
transparent recipe. It is shown that, except for very special cases, the
recipe leads to an adequate result.

Keywords: Adaptive Logics, Defeasible Reasoning, Defeasible Rules, Condi-
tional Derivation, Dynamic Proofs, Abnormalities, Falsehood, Content Guid-
ance.

Envoi

This paper is dedicated to the memory of Alexander Karpenko. We got to know
each other better when Alexander was responsible for three Moscow institutes
in a European project ran by me on behalf of my home university, Ghent,
and Salzburg and Brussels (VUB). I still treasure a booklet with poems by
Bielo Cardinal—the White Cardinal, an allusion on Alexander’s home country
Belarus. I cannot read the poems, let alone understand them. Yet, at a dinner
party in his home, the poet read some of them to me, and I associated them with
the poems of one of my favourite writers in my home tongue, Willem Elsschot,
who, apart from a fat volume of novels, left us some twenty impressive poems.

While Sasha declaimed his poems, he became for me the symbol of man
reaching for what cannot be attained. That we reach anyway may, more than
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anything else, make our lives meaningful. It incites and motivates us to stand
by our fellow humans, to build a better world and to create beauty.

1 Aim Of This Paper

When awake, humans are in a conscious or semi-conscious state. In that state,
their brain activity leads to results of many sorts: perceptions, observations,
goals, plans, decisions, etc. Philosophers try to explicate most of that brain
activity in terms of reasoning. The bulk of this reasoning is defeasible, not
deductive.

Allow me to list1 some reasoning forms that are unavoidably defeasible.
One first thinks of all kinds of inductive reasoning [10, 11, 16, 23, 38], includ-
ing inductive generalization as well as all predictions derived from the obtained
generalizations. There is also abductive reasoning, with its ties to explanations
of sorts [20, 26, 35, 39, 40, 41, 45, 32]; but just as well approaches to expla-
nation that do not rely on abduction [12, 25, 62, 63]. A very different topic is
compatibility, including inconsistent compatibility. Even finding out whether,
in general, a predicative set of statements is inconsistent or not, or whether
two predicative sets are incompatible with each other or not requires defeasible
reasoning [24, 37, 44]. Further examples concern the logic of questions [31, 36],
handling deontic conflicts [27, 28, 33, 42, 43, 52, 53, 54, 55] and many more. A
whole different family are corrective adaptive logics, like the one for handling in-
consistency, started in the 1980s [5, 6, 7] and having resulted in too many papers
to refer to in the present context, and those handling ambiguity [9, 56, 57, 58, 59].

The adaptive logics programme is one of the attempts to unify all sensible
and useful defeasible reasoning. It is rather easy to devise a manifold of model-
theoretic, procedural, and other systems that define defeasible reasoning forms
that no one could possibly unify. All those systems may prove to be interesting
and even useful mathematical structures in some more or less distant future.
They may also turn out idle tea table talk. So I propose to spend a reasonable
part of our efforts to defeasible reasoning forms that are known to be sensible
and useful.

Adaptive logics in standard format—see Section 2—form a unifying structure
that is simple and formal. This requires some comments. The relation between
the premises and the conclusion of defeasible reasoning is known to be com-
plex. If the explication in terms of adaptive logics is right, as present insights
suggest, the complexity of the consequence relation if up to Π1

1-complex [22,
34, 46, 47, 60]. Yet the ideas behind the semantics are transparent and unso-
phisticated. Moreover, there are dynamic proofs. In some cases, the proofs only
stabilize at an infinite point—an unavoidable effect of the complexity of the con-
sequence relation. Yet the finite proof stages offer arguably a sensible estimate,
in view of the information revealed by the stage, of the result obtained when
the proof stabilizes—this is called final derivability. And indeed, proof stages
are constructed by simple means. All rules are finitary—unlike for, for example,
second order logic. And which lines are IN or OUT in the any given stage of
the dynamic proof is decidable. So this basically reflects the human condition:

1The interspersed references are incomplete, even with respect to adaptive logics proposed
for handling the topics.
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drawing conclusions from the available information is rather unproblematic, but
we know this information to be partial and presumably misguided.

I stated that adaptive logics form a formal unifying structure. This means
what it always meant: that inferences are correct in view of their form. This
does not entail, as some simpletons actually expect, that Uniform Substitu-
tion (US) holds. US does not even work for full Classical Logic, CL.2 But a
different formal criterion strictly obtains; my preferred name for it is bijective
uniformity. Technicalities aside, two inference statements Γ ` A and ∆ ` B
have the same characteristic form iff each of them can be obtained from the
other by systematically replacing a referring term by another referring term of
the same sort—an individual constant by an individual constant, a predicate of
rank r by a predicate of rank r, etc. The result is that, for example, even the
propositional inference statements ¬p ∧ q, p ∨ r ` r and ¬p ∧ p, p ∨ r ` r do not
have the same characteristic form because the former cannot be obtained from
the latter by any such systematic replacement.

Given the importance of defeasible reasoning, and hence of adaptive logics
in standard format as candidates for the unification, it is essential to delineate
ways to devise adaptive logics. A general feature about defeasible reasoning is
that it capitalizes on the fact that a certain feature or situation is normal in
the sense of frequently occurring, whereas abnormal features or situations are
exceptional. This leads to the idea to consider certain conclusions are justified
in view of the presumed absence of abnormality. Most studied adaptive logics
were obtained by first delineating the set of abnormalities, which is characterized
by a certain logical form. Thus, even if it turns out that a theory (or data set)
requires ∃x(Px ∧ Qx) ∧ ∃x(Px ∧ ¬Qx) to be true, one may still presume that
∃x(Px ∧Rx) ∧ ∃x(Px ∧ ¬Rx) is false.

Next, one studies which inferences are defeasibly correct, that is correct
in view of the presumed falsehood of certain abnormalities. Clearly, ∃x(Px ∧
Rx) `CL ∀x(Px ⊃ Rx)∨(∃x(Px∧Rx)∧∃x(Px∧¬Rx)). So if one may, reasoning
systematically, consider ∃x(Px∧¬Rx) as false, and one knows that ∃x(Px∧Rx)
is true, one may conditionally derive ∀x(Px ⊃ Rx). The justification will go as
follows. From the true ∃x(Px ∧ Rx) follows ∀x(Px ⊃ Rx) ∨ (∃x(Px ∧ Rx) ∧
∃x(Px∧¬Rx)). The second disjunct of the conclusion is an abnormality, which
we presume to be false and this presumption can be upheld. So, in the light
of present insights, ∀x(Px ⊃ Rx) is true. Needless to say, this is merely an
intuitive description. The matter will be phrased precisely in Section 2 and
references to proofs will be given there.

So the traditional approach was to start from a set of abnormalities and next
to study which defeasible inferences are correct if certain abnormalities may be
presumed to be false. As becomes clear in the next section, once we know what
the abnormalities are, the relevant adaptive logic is easily defined. Adaptive
logics consider abnormalities as false in ‘normal’ situations; as false until and
unless proven otherwise.

Often, however, in devising an adaptive logic, one does not know from the
beginning which are the abnormalities. Rather, one knows that the reasoning
step A/B3 is correct when ‘nothing is wrong ’, when the situation is normal.

2The closest that comes to it is, to the best of my knowledge, still reported by Witold
Pogorzelski and Tadeusz Prucnal [48]; enjoy.

3Rules are phrased in metalinguistic terms. So I use meta-metalinguistic variables for
formulas to describe a rule.
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Here “normal” points to a further unknown situation, the situation in which
the rule A/B is valid.

Concrete examples follow in subsequent sections, but the problem is to collect
general insights on the relation between the abnormalities and such a defeasible
rule. Does the rule determine the set of abnormalities? Do several sets of
abnormalities make the rule valid as a defeasible rule? If so, what are the
effects of different choices?

2 Preliminaries

Many introductions to adaptive logics are available—the most recent one is
always the best [18]. So I shall be very brief here. Moreover, the reader may
skip this section and look up things in it as she or he needs them to understand
subsequent sections.

An adaptive logic, AL, in standard format is a triple:
(i) a lower limit logic LLL: a logic that has static proofs and has a nice

semantics4

(ii) a set of abnormalities Ω : a decidable set of formulas characterized by a
(possibly restricted) logical form F; or a union of such sets;5

(iii) an adaptive strategy : Reliability or Minimal Abnormality.6

The upper limit logic ULL is obtained by extending the lower limit logic LLL
with an axiom stating that all abnormalities cause triviality. Where a premise
set Γ does not require any abnormalities to be true, the AL-consequences of
Γ provably coincide with its ULL-consequences. One of the effects is that the
inconsistency-adaptive consequences of a consistent premise set coincide with
the set’s CL-consequences.

In a ‘Dab-formula’ Dab(∆), ∆ is a finite subset of Ω and Dab(∆) denotes
the classical disjunction of the members of ∆. So classical disjunction needs to
be present in the language or has to be added.7

Dab(∆) is a minimal Dab-consequence of Γ iff Γ `LLL Dab(∆) whereas
Γ 0LLL Dab(∆′) for any ∆′ ⊂ ∆. A choice set of Σ = {∆1,∆2, . . .} is a set
that contains an element out of each member of Σ. A minimal choice set of
Σ is a choice set of Σ of which no proper subset is a choice set of Σ. Where
Dab(∆1),Dab(∆2), . . . are the minimal Dab-consequences of Γ, U(Γ) = ∆1 ∪
∆2 ∪ . . . and Φ(Γ) is the set of minimal choice sets of Σ = {∆1,∆2, . . .}.

Definition 1 A LLL-model M of Γ is reliable iff Ab(M) ⊆ U(Γ).

Definition 2 Γ �ALr A iff A is verified by all reliable models of Γ.

Definition 3 A LLL-model M of Γ is minimally abnormal iff there is no LLL-
model M ′ of Γ such that Ab(M ′) ⊂ Ab(M).

4Read this as a compact Tarski logic with a characteristic semantics. The idea of a nice
semantics [61] is more sophisticated than that of a characteristic semantics and is fascinating
in view of its implications for embedding. Unfortunately, explaining it here would require too
long a digression.

5Where Fa is the set of atomic formulas (those containing no logical symbols other than
=), {A ∧ ¬A | A ∈ Fa} is an example of a restricted logical form.

6There are the most important strategies.
7As Sergei Odintsov and Stanislav Speranski first pointed out [47], an alternative is to

phrase adaptive logics in multiple conclusion terms.
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Definition 4 Γ �ALm A iff A is verified by all minimally abnormal models of
Γ.

It can be shown that a LLL-model M of Γ is minimally abnormal iff
Ab(M) ∈ Φ(Γ).

Although I started with their semantics, adaptive logics were discovered
by reflecting on dynamic proofs—see for example [15] for some (much later)
theorizing on dynamic proof theories. An annotated AL-proof consists of lines
that have four elements: a line number, a formula, a justification (at most
referring to preceding lines) and a condition. Where

A ∆

abbreviates that A occurs in the proof as the formula of a line that has ∆ as its
condition, the (generic) inference rules are—∨̌ is a classical disjunction:

PREM If A ∈ Γ: . . . . . .
A ∅

RU If A1, . . . , An `LLL B: A1 ∆1

. . . . . .
An ∆n

B ∆1 ∪ . . . ∪∆n

RC If A1, . . . , An `LLL B∨̌Dab(Θ) A1 ∆1

. . . . . .
An ∆n

B ∆1 ∪ . . . ∪∆n ∪Θ

A proof stage is a list of lines obtained by applications of the generic rules
PREM, RU and RC. Let the empty list be stage 0. Where s is a stage, s′ is
an extension of s iff all lines that occur in s occur in the same order in s′. A
(dynamic) proof is a chain of stages. That A is derivable on the condition ∆
may be interpreted as: it follows from the premise set that A or one of the
members of ∆ is true. Because the members of ∆, which are abnormalities, are
presumed to be false, A is considered as derived, unless and until it shows that
the presumption cannot be upheld. The precise meaning of “cannot be upheld”
depends on the strategy, which determines the marking definition (see below)
and hence determines which lines are marked at a stage. If a line is marked at
a stage, its formula is considered as not derived at that stage.

Dab(∆) is a minimal Dab-formula at stage s of an AL-proof iff Dab(∆) was
derived at s on the condition ∅ whereas for no ∆′ ⊂ ∆ was Dab(∆′) derived on
the condition ∅. Where Dab(∆1), . . . ,Dab(∆n) are the minimal Dab-formulas
at stage s of a proof from Γ, Us(Γ) = ∆1 ∪ . . . ∪ ∆n and Φs(Γ) is the set of
minimal choice sets of {∆1, . . . ,∆n}.

Definition 5 Marking for Reliability: Line l is marked at stage s iff, where ∆
is its condition, ∆ ∩ Us(Γ) 6= ∅.

Definition 6 Marking for Minimal Abnormality: Line l is marked at stage s
iff, where A is derived on the condition ∆ on line l, (i) there is no ϕ ∈ Φs(Γ)
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such that ϕ∩∆ = ∅, or (ii) for some ϕ ∈ Φs(Γ), there is no line on which A is
derived on a condition Θ for which ϕ ∩Θ = ∅.

Let me rephrase this: where A is derived on the condition ∆ on line l, line
l is unmarked at stage s iff (i) there is a ϕ ∈ Φs(Γ) for which ϕ ∩ ∆ = ∅ and
(ii) for every ϕ ∈ Φs(Γ), there is a line at which A is derived on a condition Θ
for which ϕ ∩Θ = ∅.

A formula A is derived at stage s from Γ iff it is the formula of a line that is
unmarked in s. Marks may come and go as the proof proceeds. Yet there also
is a stable notion of derivability, called final derivability.

Definition 7 A is finally derived from Γ on line l of stage s iff (i) A is the
second element of line l, (ii) line l is not marked at stage s, and (iii) every
extension of the stage in which line l is marked may be further extended in such
a way that line l is unmarked.

Definition 8 Γ `AL A (A is finally AL-derivable from Γ) iff A is finally
derived on a line of a proof stage from Γ.

There are three comments in conclusion of the preliminaries. First, adaptive
logics are not competitors of deductive logics, but means to arrive at formal
characterizations of methods. Next, one typically needs adaptive logics (and,
more generally, defeasible reasoning) when a positive test is absent. Consider
any of the examples mentioned before. At the predicative level, the consequence
set of the adaptive logics is not semi-recursive. The final comment is that
adaptive logics have an impressive metatheory which required the development
of novel proof methods. The metatheory includes Soundness and Completeness
proofs, but also the proofs of many features that are entirely foreign to deductive
logics. I refer to [14] for the metatheory and to [18] for a revised formulation of
the theorems, often leaving the straightforward reformulation of the proofs to
the reader.

3 The Problem

Consider a defeasible rule A1, . . . ,An/B that we consider as valid in normal
situations. In rather exceptional cases we have no precise idea of the lower limit
logic LLL, but let us neglect that problem and suppose that the strategy as well
as LLL are given.8 The task is to find the form of a formula C that may serve
as the abnormality for the rule, viz. such that A1, . . . ,An `LLL B∨̌C. Once this
C is found, the corresponding conditional rule CR will be: “from A1, . . . ,An on
the condition ∆ to derive B on the condition ∆ ∪ {C}”.

The reader may wonder whether a single abnormality C is introduced rather
than a Dab-formula, as was suggested by the way the generic rule RC was
phrased in the previous section. This is an interesting point. Let us leave open
whether C will be the form of the abnormalities or whether C may indeed be
itself a disjunction of abnormalities. Let us also leave open whether the problem
is to find a unique C or several—the latter case refers to the second alternative in

8When we are after an ampliative adaptive logic, LLL will be the deductive logic we
consider suitable in the given context. For many this will be CL when the context concerns
empirical or classical mathematical theories.
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the description of the set of abnormalities Ω: “or a union of such sets”. The first
sentence of the present paragraph moreover reminds us of an important matter.
We want to delineate Ω in function of the defeasible rule A1, . . . ,An/B. Yet,
we are after an adaptive logic in standard format. In other words, the generic
rule RC will by no means be restricted to the defeasible rule A1, . . . ,An/B. The
generic rule RC will solely depend on LLL and Ω as is obvious from Section 2.
We shall see that this consideration will play an important role in subsequent
pages.

Consider some examples of defeasible rules in the domain of inductive gen-
eralization. There are many adaptive logics in that domain. Each of them
characterizes a way to defeasibly infer generalizations. A generalization is a
formula ∀xA(x) in which A(x) is a truth function of literals in which no individ-
ual constants occur.9 One of the logics allows one to introduce generalizations
as Popperian hypotheses, the defeasible rule then becoming −/∀xA(x)—given
whatever, one may conditionally introduce a generalization. Other such logics
require an instance and hence need a defeasible rule A(α)/∀xA(x), in which α
may be any individual constant. Still other logics require a ‘positive instance’
as in B(α) ∧ C(α)/∀x(B(x) ⊃ C(x)). In all of these A and C are disjunctions
of one or more literals and B is a conjunction of literals—conjunctions of two
generalizations are derived by RU from generalizations derived by RC. So, for
each such defeasible rule, the task is to pinpoint an abnormality, which then
will determine the set of abnormalities Ω for that logic.

The sets of abnormalities for those inductive generalization rules were de-
lineated a long time ago by tinkering. This was not difficult and they agree
nicely with the recipe that will be presented in the present paper. This is a
good reason to consider a different type of adaptive logics.

It is desirable to refer to a case where the matter becomes slightly more
difficult as well as slightly more interesting. While working on adaptive set
theories [4], I came about a case that I never met before. That we are dealing
with a corrective adaptive logic is a difference with the logics from the previous
paragraphs. Yet, something is more important. The lower limit logic of the
set theories is the paraconsistent CLuNs, which is specified below, and the
strategy is Minimal Abnormality. The well-studied inconsistency-adaptive logic
CLuNsm is obtained by specifying the set of abnormalities as {Q(A ∧ ¬A) |
A ∈ Fa}, in which Fa is the set of (open and closed) atomic formulas and Q(A)
is (A) preceded by a quantifier over every formula free in A. I give this set a
specific name for future reference. It turns out that certain premise sets require
a different adaptive logic, one that has a more embracing set of abnormalities
and hence assigns a richer consequence set to the premise sets.

While adaptive logics were originally devised as ways to formally characterize
methods, it turned out that they may also be profitably invoked to characterize
complex theories—viz. theories that are not semi-recursive. Partly relying on
work by others, I made attempts to devise adaptive theories for Peano Arith-
metic and for Frege’s notion of a set. It is the latter that led to the case I now
shall outline. I’ll just mention some ideas, as the paper will soon be available
in print. However, there are some details I have to report explicitly in order to
clarify the problem. Readers who are in a hurry may skip to the beginning of

9The precise formulation was published elsewhere [16], but is not terribly important in the
present context.
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Section 4 and return here later if they get interested in the significant example.
As Frege’s notion of a set makes inconsistent sets unavoidable, the lower

limit logic of the adaptive logic needs to be paraconsistent. For reasons not
discussed here, I choose the (very popular) paraconsistent logic (which I prefer
to call) CLuNs [21]. Apart from negation, all logical symbols are exactly as in
CL and RoI (Replacement of Identicals) holds unrestrictedly.10 The negation
¬ is strictly paraconsistent11 and reduces complex negations to simpler ones in
the usual way: ¬¬A ≡ A, ¬(A ∧B) ≡ (¬A ∨ ¬B), . . . and ¬∃xA ≡ ∀x¬A.

The set theory obtained by CLuNs from (a version of) the Fregean ax-
iom schema Abs and axiom Ext will be called PFS (paraconsistent Fregean set
theory).12 Obviously, one wants to move from the paraconsistent theory to an
adaptive one, call it AFS. While one has unavoidably to allow for some in-
consistent sets—sets of which some members are also non-members—one wants
that sets are only inconsistent when this is unavoidable, and one wants even
inconsistent sets to behave as consistently as possible. For example, one wants
∅ to be consistent and, while the Russell set R is unavoidably inconsistent, one
wants ∅ /∈ R in view of ∅ /∈ ∅ and one does not want ∅ ∈ R.

Just like the language of most mathematical theories, the language of set
theory is extremely simple. Apart from the logical symbols and the variables
of the standard predicative language, it has one binary predicate ∈ and often
abstracting terms of the form {α | A(α)}. Where the underlying logic is CLuNs,
some formulas of this language express triviality,13 for example ∀x∀y(x = y∧x 6=
y ∧ x ∈ y ∧ x /∈ y), which I shall abbreviate as ⊥.14 Literally every formula
of the set theoretical language is CLuNs-derivable from this (as well as from
some other formulas).15 Given that material implication is present with all its
CL-properties, classical negation can be defined: ¬̌A =df A ⊃ ⊥.

The presence of classical negation has the unexpected consequence that the
Abs axiom requires the existence of R∗ =df {x | ¬̌x ∈ x}. While inconsistency
results, R∗ ∈ R∗ ∧ R∗ /∈ R∗, it is provable that R∗ ∈ R∗ ∧ ¬̌R∗ ∈ R∗ is
not derivable and that the inconsistency-adaptive theory is non-trivial, just like
the paraconsistent theory. Yet, the fact that R∗ ∈ R∗ is a theorem of the
paraconsistent theory, and hence also of the adaptive one, reveals a perhaps
unpleasant but interesting phenomenon: R∗ has members that do not fulfil
the touchstone of R∗. Indeed, R∗ ∈ R∗ is a theorem of the paraconsistent
theory, but R∗ does not fulfil the touchstone, which is ¬̌R∗ ∈ R∗; and it cannot
fulfil the touchstone—the theory is non-trivial. I shall say that R∗ is clean iff

10RoI: a = b ⊃ (A ≡ Aa/b) in which Aa/b is the result of replacing in A an occurrence of
a by b or vice versa. In some paraconsistent logics, RoI does not hold within the scope of a
negation.

11A negation ¬ is paraconsistent iff A,¬A ` B does not hold for all A and B; it is strictly
paraconsistent iff there is no A such that A,¬A ` B holds for all B.

12Within CLuNs there are three different implications that coincide in CL: A ⊃ B is
detachable but not contraposable, A A B =df ¬A ∨ B is not detachable but contraposable,
A→ B =df (A ⊃ B) ∧ (¬B ⊃ ¬A) is both detachable and contraposable; similarly, there are
16 different equivalences that coincide in CL. So choices have to be made as one moves from
Frege’s trivial theory to the provably non-trivial CLuNs-theory PFS.

13Several other paraconsistent logics have the same property.
14The abbreviations t1 6= t2 =df ¬t1 = t2 and t1 /∈ t2 =df ¬t1 ∈ t2 occur for readability.
15The formula does not express triviality in some extensions of the language of set theory.

So it is a remarkable case of expressing local triviality, a feature that also occurs in other
mathematical theories—I shall soon publish a brief study of the remarkable phenomenon and
its epistemic potential.
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∀y(y ∈ {x | A(x)} ↔ A(y)), in which A ↔ B =df (A ≡ B) ∧ (¬B ≡ ¬A). It
turns out that both ∀y(A(y) ⊃ y ∈ {x | A(x)}) and ∀y(¬A(y) ⊃ y /∈ {x | A(x)})
can be required to hold, but not their converses, precisely because some sets,
for example R∗ are unavoidably unclean. The converses have to read ∀y(y ∈
{x | A(x)} A A(y)) and ∀y(y /∈ {x | A(x)} A ¬A(y))—remember that A is not
detachable.16

This situation reveals a problem that requires a solution. Indeed, R =df

{x | x /∈ x} is inconsistent but there is no need for it to be unclean. Let
Ω1 =df {Q(A ∧ ¬A) | A ∈ Fa}, in which Fa is the set of (open and closed)
atomic formulas and Q(A) is (A) preceded by a quantifier over every formula
free in A. Consider a PFS-model M that is minimally abnormal with respect to
Ω1. Obviously, the domain D of M is uncountable17 whence some elements of D
have no name—are not named by an abstracting term. It turns out that some
sets are clean in some PFS-models that are minimally abnormal with respect to
Ω1, but are unclean in other PFS-models that are also minimally abnormal with
respect to Ω1. A typical example is precisely R. Consider a minimally abnormal
PFS-model M1 in which R is clean and consider an element o ∈ D that stands in
the ∈-relation to R and not also in the /∈-relation to R—technically this will be
expressed for example by 〈o, v(R)〉 ∈ vT (∈).18 Next consider a model M2 that
is exactly like M1 except in that o is not only a member but also a non-member
of R. So, in M2, the set R is unclean as well as inconsistent. Yet, given that
no individual constant of the language refers to o, the inconsistency can only be
stated as ∃x(x ∈ R ∧ x /∈ R). But this formula is also verified by M1, because
all PFS-models verify R ∈ R ∧ R /∈ R. So R is clean in M1 and is unclean in
M2, but both are minimally abnormal and actually Ab(M1) = Ab(M2). This is
not as we want it. The axioms do not require R to be unclean. They do not
even require that R is a member of a minimal set of sets one of which is bound
to be unclean. So R should be clean.19

What does this come to? We want the non-detachable ∀y(y ∈ {x | A(x)} A
A(y)) to have the strength of the detachable ∀y(y ∈ {x | A(x)} ⊃ A(y)) as
much as possible; and similarly for upgrading ∀y(y /∈ {x | A(x)} A ¬A(y))
to ∀y(y /∈ {x | A(x)} ⊃ ¬A(y)). Obviously, we do not want to interpret all
expressions A A B as much as possible as A ⊃ B. We only want instances
of schema Abs to be as much as possible detachable in all directions. Abs
was intended originally as detachable in all directions. This cannot be realized
completely because Frege’s notion of the extension of a predicate turned out
inconsistent. Nevertheless, the original intention can be realized as much as
possible. But this cannot be done by minimizing inconsistencies: remember
that M1 and M2 verify the same members of Ω1. We have a case where, for
ordered pairs 〈A,B〉 of certain forms, we want to derive A ⊃ B from A A B on

16It is not really essential to this paper, but Abs comes to the conjunction of the four
implications mentioned in the text, two detachable ones and two non-detachable ones.

17Many uncountable ZF-hierarchies can be defined in exactly the same way in PFS and
if their members were countable in PFS, then they would be inconsistent. It can be argued
that they are consistent in minimally abnormal models of PFS if they are consistent in ZF.

18In this semantic style, the extension of a predicate π of rank n is a triple 〈Σ1,Σ2,Σ3〉 with
Σ1,Σ2,Σ3 ⊇ Dn and Σ1 ∪ Σ2 ∪ Σ3 = Dn. Next, for convenience, the assignment function
v(π) is seen as three functions: vT (π) = Σ1, vB(π) = Σ2 and vF (π) = Σ3.

19The difference between M1 and M2 cannot be expressed in the language by a formula
stating a contradiction, whether plain or quantified. Does this mean that the difference
between M1 and M2 cannot be expressed? By no means. We just need different abnormalities.
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a certain condition. The task is to find the condition.

4 Solving the Problem

Let us concentrate first on rules with one local premise. The task then is,
starting from the defeasible rule A/B, to find a condition or conditions C such
that the three following hold:

A `LLL B∨̌C and A 0LLL B and A 0LLL C . (1)

If A `LLL B, then A/B is LLL-valid and not a defeasible rule. If A `LLL C, then
the condition C causes the rule A/B to have no sensible applications. Remember
indeed that, as stated in Section 3, the idea is to obtain the following particular
conditional rule: “from A on the condition ∆ to derive B on the condition
∆ ∪ {C}”. If the defeasible rule A/B is to have sensible applications, there
must be a premise set Γ and a (empty or non-empty) ∆ ⊂ Ω such that (i) A is
finally derivable from Γ on the condition ∆ and (ii) B is finally derivable from
Γ on the condition ∆ ∪ {C}. In view of (i), Γ `LLL A∨̌Dab(∆) and there is
a ϕ ∈ Φ(Γ) such that ∆ ∩ ϕ = ∅. In view of (ii), Γ `LLL B∨̌Dab(∆ ∪ {C})
and there is a ϕ ∈ Φ(Γ) such that (∆ ∪ {C}) ∩ ϕ = ∅. The latter is impossible
because, if A `LLL C, then Γ `LLL A∨̌Dab(∆) is a sufficient condition for
Γ `LLL C∨̌Dab(∆), which is Γ `LLL Dab(∆ ∪ {C}). Whether Dab(∆ ∪ {C}) is
a minimal Dab-consequence of Γ or not, every ϕ ∈ Φ(Γ) contains at least one
member of Dab(∆ ∪ {C}). But then the line at which B is derived by A/B is
always marked. This ends the justification of the requirements in (1).20

Let us move to a concrete case, viz. the defeasible rule

A A B/A ⊃ B . (2)

We are looking for one or more conditions such that the three derivability state-
ments in (1) are fulfilled. I shall first consider the problem in the context of
the lower limit logic CLuNs, with the classical negation ¬̌ present or added,
and the Minimal Abnormality strategy, but neglecting for the moment that the
problem arose in connection with the set theory AFS.

In the previous section, (2) was considered in a situation in which the abnor-
malities were contradictions, as is usual for inconsistency-adaptive logics. Some
people will keep repeating that abnormalities of the form A ∧ ¬A justify the
defeasible rule (2). Indeed,

A A B `CLuNs (A ⊃ B)∨̌(A ∧ ¬A)

holds. Or, even more explicitly in view of CLuNs-equivalences,

¬A ∨B `CLuNs (¬̌A ∨B)∨̌(A ∧ ¬A) .

However, and as already explained in Section 3, this is not the point.21 The
point is that, for specific ordered pairs 〈A,B〉, we want (2) to be applied even
if A ∧ ¬A is true.22

20The justification considers only Minimal Abnormality. Where Reliability is the strategy,
the justification is much simpler and left to the reader.

21Moreover and concerning AFS, every unclean set is unavoidably inconsistent: if t ∈ {x |
A(x)} but ¬A(t), then t /∈ {x | A(x)}. However, this too is not the point.

22In AFS we want all sets to be as clean as possible, even inconsistent sets.
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We are in search of conditions C that fulfill (1) and, by their forms, deter-
mine a set Ω that, together with the lower limit logic CLuNs and the Min-
imal Abnormality strategy, defines an adequate adaptive logic. We need a C
such that A `CLuNs B∨̌C. Given that CLuNs has a nice semantics and given
Soundness and Completeness, A `CLuNs B∨̌C is equivalent to A∧̌¬̌B `CLuNs C.
The strongest such C is obviously A∧̌¬̌B itself and every such C is a CLuNs-
consequence of A∧̌¬̌B.

Let us apply this at once to the defeasible rule (2). The strongest condition
C is (A A B) ∧ ¬̌(A ⊃ B), which is CLuNs-equivalent to (A ∧ ¬A ∧ ¬̌B)—
as the conjunction is classical in CLuNs, there is no need to write ∧̌. So
the defeasible rule phrased with its strongest condition reads: “from A on the
condition ∆ to derive B on the condition ∆ ∪ {A ∧ ¬A ∧ ¬̌B}”. Actually, the
logic CLuNs requires23 that the set of abnormalities contains all formulas of
the form A ∧ ¬A ∧ ¬̌B in which A is an atomic formula and B is a literal.24

Next, consider weaker conditions C for the defeasible rule (2). Let us have
a systematic look at ‘parts’ of A∧¬A∧ ¬̌B. The idea is not to find a C that in
itself gives us all we want, but to find conditions C that are acceptable, possibly
in the presence of other conditions. I neglect the fact that the local premise may
come on a condition itself; by now, the reader will have understood the resulting
complication. To the left is the CLuNs-inference, to the right the effect on a
dynamic proof.

A A B
(A ⊃ B) ∨ C

A A B
A ⊃ B {C}

Let us consider the possibilities systematically.
(i) We know already that the strongest C is A ∧ ¬A ∧ ¬̌B.
(ii) That C is A ∧ ¬A is all right provided one also wants all conditional

inferences that then are correct in view of the standard format, specifically RC.
An example is the effect of A ⊃ B,¬B `CLuNs ¬A ∨ (B ∧ ¬B): from A ⊃ B
and ¬B to derive ¬A on the condition {B ∧¬B}. So what this comes to is that
the choice A ∧ ¬A is all right in case one agrees that ¬A has actually the force
of ¬̌A whenever A ∧ ¬A can be taken to be false.

(iii) That C is A ∧ ¬̌B is not acceptable. Indeed, this condition is simply
the classical negation of the conclusion of the defeasible rule. Once ¬̌ is added
to CLuNs, (A ⊃ B) ∨ (A ∧ ¬̌B) is a CLuNs-theorem. So if A ∧ ¬̌B is an
abnormality, possibly with A restricted to atomic formulas and B to literals,
then A ⊃ B is derivable on the condition {A∧¬̌B} from any premise set. Unlike
what the reader might expect, this would not cause premise sets to have trivial
consequence sets; most conditional lines would be marked. Yet, there is no
sensible idea behind this choice of an abnormality and the choice does not seem
to lead to anything sensible. Nevertheless, I shall return to this choice below.

(iv) Somewhat unexpectedly, it seems all right at first sight to choose ¬A ∧
¬̌B as C. Indeed, when one concentrates on the defeasible rule we are considering
here, the choice seems unobjectionable, both in case ¬A ∧ ¬̌B is true and in

23The requirement is related to the avoidance of so-called flip-flop adaptive logics, which
are only desirable for specific applications [14]. The point need not further concern us here.

24The set of literals is the set of non-equivalent formulas in which occurs an atomic formula
preceded by at most unary connectives. Where two negations, ¬ and ¬̌, are present in the
language of CLuNs, the notion of a literal is a trifle more sophisticated than in CL. While
this set is {A,¬A} (A a sentential letter) in CL, it is {A,¬A, ¬̌A, ¬̌¬A, ¬̌¬̌A, ¬̌¬̌¬A} (A a
sentential letter) in CLuNs.
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case it is false. In the latter case, for example, we obtain: if ¬A is false, the
premise warrants that B is true; if ¬̌B is false, then B is also true. As B is
true, so is A ⊃ B. And yet this choice has consequences we do not want. As
¬A `CLuNs B ∨ (¬A ∧ ¬̌B), the choice would justify that one would derive an
arbitrary B from ¬A on the sole condition that ¬A ∧ ¬̌B can be taken to be
false. As in the previous case, triviality would not result25 but there is no idea
behind this way of proceeding and nothing sensible is expected to result.

(v) To choose A or ¬A or B as C is obviously unacceptable. That literals
would be abnormalities, would result in all kinds of turmoil, but in nothing
sensible.

(vi) I promised to return to (iii). Choosing (A A B)∧(A∧¬̌B) as C prevents
one to introduce detachable implications from the blue. Moreover, these abnor-
malities nicely express that the premise is true and the desired conclusion false.
However, nothing new is arrived at along this road. The chosen abnormality is
CLuNs-equivalent to A∧¬A∧ ¬̌B, which is the abnormality considered in (i).

No other choices are worth commenting upon. Yet it is still interesting
to consider combinations, viz. that formulas of different forms are counted as
abnormalities, for example A∧¬A and A∧¬A∧ ¬̌B. Neglecting some compli-
cations, a line is unmarked and its formula is not considered as derived iff its
condition can be considered to be false. Suppose that A∧¬A cannot be consid-
ered as false. Then it is nevertheless possible that A∧¬A∧¬̌B can be considered
as false: if A and ¬A are both true, but ¬̌B is false, then the conjunction of
the three formulas is false.26 So allowing for abnormalities of both forms has
the following effect—I keep restricting attention to crucial insights. On the one
hand, including formulas A ∧ ¬A in the set of abnormalities has the effect that
a lot of further conditional inferences become valid, as was explained in (ii).
On the other hand, even if A ⊃ B cannot be seen as derived on the condition
A ∧ ¬A because this condition cannot be considered as false, it is possible that
A ⊃ B can be seen as derived on the condition A ∧ ¬A ∧ ¬̌B because ¬̌B can
still be considered as false.

The matter seems clarified, but there are still two little problems. I comment
on them in order to illustrate the complications involved in the systematisation
of defeasible reasoning. The easier problem is this: A ∧ ¬A ∧ ¬̌A obviously has
the form of A ∧ ¬A ∧ ¬̌B and is always false.27 That looks frightening. As the
line will never be marked, such an adaptive logic seems to extend the lower limit
logic with non-defeasible steps. However, this is a pseudo-problem. Whenever
A `CLuNs B ∨ C and C ∈ Ω is logically false, then A `CLuNs B. So logically
impossible abnormalities are harmless; they are obviously also useless.

The second problem is more interesting: if formulas of the form A∧¬A∧¬̌B
are abnormalities, does it then even make a difference whether formulas of the
form A ∧ ¬A are also abnormalities? While ¬A 0CLuNs ¬̌A ∨ (A ∧ ¬A ∧ ¬̌B),
it holds that ¬A, ¬̌B 0CLuNs ¬̌A ∨ (A ∧ ¬A ∧ ¬̌B). So, if any formula of the
form ¬̌B is derivable, even if only conditionally, an unexpected effect seems to

25Adaptive logics in standard format have the Strong Reassurance property (also called
Stopperedness or Smoothness): if a premise set has LLL-models, then it has minimally ab-
normal models. Proofs were published long ago [8, 14].

26Spelling the matter out in a precise way for Reliability and (especially) for Minimal
Abnormality is much more complicated, but the crucial insight is the one stated in the text.

27Many will not care about the detail, but it is more correct to say that A ∧ ¬A ∧ ¬̌A has
no non-trivial models—in some semantic styles no models, in others only the trivial model.
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follow. Let me show this by presenting a little proof.

...
...

...
...

51 ¬̌s . . . ∆
52 ¬p PREM ∅
53 ¬̌p 51, 52; RC ∆ ∪ {p ∧ ¬p ∧ ¬̌s}

Supposing that line 51 is unmarked, line 53 will be unmarked just in case p ∧
¬p can be held to be false. If a formula of the form ¬̌B is derivable, even
conditionally, from the premises, then abnormalities of the form A ∧ ¬A are
redundant.

The matter becomes less surprising if one realizes that conditional transition
from ¬p to ¬̌p may be realized in a way that seems unobjectionable. Recall that
A A B abbreviates ¬A ∨B.

...
...

...
...

51 ¬̌s . . . ∆
52 ¬p PREM ∅
53 p A s 52; RU ∅
54 p ⊃ s 53; RC {p ∧ ¬p ∧ ¬̌s}
55 ¬̌p 51, 54; RU ∆ ∪ {p ∧ ¬p ∧ ¬̌s}

What happens here is that we apply the defeasible rule (2) at line 54 and
next apply Modus Tollens—this is correct as ⊃ is detachable and ¬̌ is classical
negation.

If a bottom constant ⊥ is present in the applied version of CLuNs, the
matter is even easier.

1 ¬p PREM ∅
2 ¬̌p 1; RC {p ∧ ¬p ∧ ¬̌⊥}

Here `CLuNs ¬̌⊥ whence p ∧ ¬p ∧ ¬̌⊥ is CLuNs-equivalent to p ∧ ¬p.
After discussing (2) independently of the set theoretical context, let us now

return to the problem in AFS. Two insights are important. (i) If, reasoning
systematically, it is possible to consider A ∧ ¬A as false, then it is possible to
consider A ∧ ¬A ∧ ¬̌B as false, but not conversely. So, given a premise set Γ,
the more complex condition allows for final consequences of Γ that are not final
consequences if all abnormalities have the form A∧¬A. (ii) As noted in Section
3, the aim is not to upgrade expressions A A B as much as possible to A ⊃ B,
but to do so only for specific formulas that are implicative parts of Abs, viz.
∀y(y ∈ {x | A(x)} A A(y)) and ∀y(y /∈ {x | A(x)} A ¬A(y)). Consider the
formulas

Q(t ∈ {x | A(x)} ∧ ¬̌A(t)) and Q(t /∈ {x | A(x)} ∧ ¬̌¬A(t)) (3)

in which t is a set theoretical term and, if it is a variable, Q is a quantifier over
that variable. In view of Abs, the left formula PFS-entails Q(t /∈ {x | A(x)} ∧
t ∈ {x | A(x)}∧¬̌A(t)) and the right formula PFS-entails Q(t ∈ {x | A(x)}∧t /∈
{x | A(x)} ∧ ¬̌¬A(t)). So a bit of calculation shows that formulas of the forms
in (3) may be safely taken as abnormalities. Proceeding thus, we obtain an
adaptive logic that minimizes inconsistencies in view of abnormalities of the
form A ∧ ¬A and minimizes uncleanness in view of the abnormalities from (3).
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The conclusion then is as follows. First, unless there are very special reasons
to refrain from applying the defeasible rule in its full generality, the recipe leads
to the following schema, considering multiple local premises (but still restricting
to the lower limit CLuNs).

A1 ∆1

...
...

An ∆n

B ∆1 ∪ . . . ∪∆n ∪ {A1 ∧ . . . ∧ An ∧ ∗B}

(4)

Where ∗¬̌B = B and ∗B = ¬̌B in case the first symbol in B is not ¬̌. Call
A1 ∧ . . .∧An ∧ ∗B the typical abnormality for the defeasible rule A1, . . . ,An/B.
There is no reason to prefer abnormalities obtained by dropping one or more
conjuncts of A1∧. . .∧An∧∗B because if the shorter formula can be considered as
false, then so can the longer one. When one wants to introduce several defeasible
rules, each of them may be given its typical abnormality. Two points of attention
then are: (i) one should check which rules need to hold in their formal generality
and which should be restricted to specific formulas—the AFS case illustrates
this candidly— and (ii) one should study the effect of the typical abnormality
of a rule on other rules in view of the logical and conceptual context—see the
example discussed above.

The occurrence of the classical negation ¬̌ in the typical abnormality may
look like causing trouble in paraconsistent contexts, especially for dialetheists.
The matter will be discussed in Section 5.

When the lower limit logic is not CLuNs, the typical abnormality is easily
adjusted. Two adjustments may be required. (i) Sometimes restrictions on
the subformulas of abnormalities need to be modified or removed. Thus the
restriction A ∈ Fa needs sometimes to be replaced, for example by A ∈ F ,
in which F is the set of (open and closed) formulas of standard predicative
languages. (ii) Sometimes logical symbols are classical within the considered
lower limit logic, whence we do not need ¬̌ and ∗—I actually applied this already
within the present paper. I do not enter this any further as the matter is mainly
technical.

Let us consider some typical abnormalities for other rules. I mentioned
three defeasible rules of inductive generalization. In each of them A, B and C
are disjunctions of literals and there are some further restrictions. The typical
abnormalities for each of the rules can be read off below in somewhat simplified
form—as the lower limit is CL, the standard negation is classical:

–
∀xA(x) {∃x¬A(x)}

∃xA(x) ∆
∀xA(x) ∆ ∪ {∃xA(x) ∧ ∃x¬A(x)}

∃x(B(x) ∧ C(x)) ∆
∀x(B(x) ⊃ C(x)) ∆ ∪ {∃x(B(x) ∧ C(x)) ∧ ∃x¬(B(x) ∧ ¬C(x))}

An inconsistency can be seen as a negation glut: that vM (A) = 1 justifies
vM (¬A) = 0 on the CL-semantics, but actually vM (¬A) = 1. A negation
gap is where vM (A) = 0, which justifies vM (¬A) = 1 on the CL-semantics,
and nevertheless vM (¬A) = 0. Along this line, one may consider gluts and
gaps for every logical symbol of the standard predicative language. Adaptive
logics minimizing gaps and gluts were studied [19]. Suppose that 99K is a glutty
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implication, whereas ⊃ is the classical implication. A glutty implication is
obviously not detachable, as there are models in which vM (A 99K B) = 1 =
vM (A) and vM (B) = 0. This brings us to something very close to (2). In order
to minimize implication gluts, we want the following rule and abnormality:

A 99K B ∆
A ⊃ B ∆ ∪ {(A 99K B) ∧A ∧ ¬B}

If glutty implications are combined with glutty negations (and possibly more
oddities), the negation needs to be replaced by ¬̌. All glutty and gappy logical
symbols may be given defeasible rules to minimize them and the insight gained
in this section will provide the rules with typical abnormalities.

5 A Puzzle In Inconsistency-Adaptive Logics

Classical negation occurs in the typical abnormalities from the previous section.
Some will see this as problematic in paraconsistent contexts. Of course, if
classical negation is not definable in a paraconsistent logic, one may add it,
possibly forbidding its occurrence in premises and conclusion. Yet especially
dialetheists will have objections to such move as they consider classical negation
as a tonk-like operator. This conclusion is related to the dialetheist view that
all true knowledge should form a single body, phrased within a single language
and organized by The True Logic and that this body is necessarily inconsistent
in view of the Liar paradox, paradoxes of set theory, etc. I shall not discuss
the dialetheist position here, but rather argue that, for two reasons, the typical
abnormalities do not lead to a situation that is at odds with dialetheism.

The first reason is that, due to the structural properties and functioning of
negation, the typical abnormalities do not require that classical negation ever
occurs either in them or elsewhere in a proof. First of all, look at two basic
defeasible rules for negation:28

¬A ∆
¬̌A ∆ ∪ {A ∧ ¬A}

A ∆
¬̌¬A ∆ ∪ {A ∧ ¬A} (5)

However, once the adaptive logic is characterized in terms of the Standard For-
mat, these rules need not be mentioned. Applications of the generic conditional
rule RC may be phrased completely in the standard language, without ever writ-
ing a classical negation. Here are two examples, an application of Disjunctive
Syllogism and one of Modus Tollens.

A ∨B ∆
¬A Θ
B ∆ ∪Θ ∪ {A ∧ ¬A}

A ⊃ B ∆
¬B Θ
¬A ∆ ∪Θ ∪ {B ∧ ¬B}

The classical negation in (5) signifies that, provided the abnormality intro-
duced by the condition can be held to be false, A, respectively ¬A, can be
considered as consistently false; spelled out, ¬̌A signifies that A is consistently

28Sometimes the A in the abnormality is restricted, for example to atomic formulas, as is
required when CLuNs is the lower limit logic. Sometimes several defeasible rules are required
as in AFS.
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false and ¬̌¬A that A is consistently true. In the application of Disjunctive Syl-
logism, if the local premises are true and A is consistent, then B is bound to be
true. That A is consistent is nowhere stated. The fact that the conclusion line is
unmarked indicates that (the members of ∆∪Θ as well as) A∧¬A can be held
to be false, which means that A is consistent and in that case B is bound to be
true if the local premises are true.29 The reasoning is similar for the application
of Modus Tollens, except that here the consistency of B matters. The situation
is analogous for all applications of the generic conditional rule RC in CLuNsm

and similar inconsistency-adaptive logics.
There is a second reason why the dialetheist should not eschew adaptive

logics. The typical abnormality as defined in Section 4 works not only with
classical negation, but works equally well with a paraconsistent negation. So
where the symbol ¬̌ (defining ∗) in (4) is a negation that is paraconsistent and
not also paracomplete, (4) still works fine: if all members of the condition can
be held to be false, the conclusion follows from the premises.

This comment does not concern (5), the basic rule for negation. This rule, or
rather both of them, are still unacceptable for the dialetheist because in it the
symbol ¬̌ in the conclusion needs to be classical. As explained, however, there is
no need for ¬̌ to occur anywhere in inconsistency-adaptive logics. Yet there still
is a catch. Suppose that the dialetheist position gets generally recognized, that
the methodology of the sciences is spelled out in terms of, say, the LP-negation
[49], and that scientists would actually apply LP rather than requiring, pre-
supposing and sometimes pretending that their theories be consistent, then the
dialetheist might phrase the whole scientific methodology in terms of adaptive
logics based on LP. If the condition is false, the local conclusion will follow from
the local premises. A hindrance for dialetheists will be that, in the preceding
sentence, “false” needs to have the meaning with which I use it: consistently
false, not false as meant by Graham Priest [49]. The latter meaning is that A
is false iff ¬A is true; this entails that A and ¬A are both false in case they
are both true, as may happen in paraconsistent contexts. The situation seems
rather crucial. All instances of A ∧ ¬A and all instances of A ∧ ¬A ∧ ¬̌B are
false in the sense of Priest. There is no point in asking whether they can be
held to be false in view of the premises. They are false in Priest’s sense, now,
yesterday, tomorrow and always because their negation is true, even logically
true: ¬(A ∧ ¬A) is an LP-theorem; it is LP-equivalent to ¬A ∨ A. From here
on I return to my use of false.

Just for the record, a comment on two related negation-like entities. A para-
complete negation, according to which A and its negation may be jointly false, is
insufficient for adaptive logics to work decently. If the ¬̌ in (4) is paracomplete,
the falsehood of the condition is insufficient for the local conclusion to follow
from the local premises. The second negation-like entity is the arrow-bottom
construction, A → ⊥, in which → is a detachable implication and ⊥ a bottom
operator.30 This is obviously a kind of negation of A. Dialetheists have argued
that A → ⊥, for → a relevant implication,31 allows them, just as much as the
classical logician or intuitionist, to commit themselves to the falsehood of a

29Obviously, from ¬A ∨B and A follows B on the condition A ∧ ¬A.
30A bottom operator is characterized by the rule “from ⊥ to derive A”.
31The intended relevant implications are not those from the well-known and very rich sys-

tems devised by Ackermann [1], Church [30] and especially Anderson and Belnap [2, 3] but of
much weaker systems surveyed by Routley [50] and Brady [29].

16



certain statement A in that A→ ⊥ connects the truth of A to triviality.
Some paragraphs ago, I argued that there is a problem for dialetheists to

apply adaptive logics. Quite unexpectedly, however, there seems to be a way out.
I am not a dialetheist, recently I even got doubts on the viability of dialetheism.
Yet, these doubts are not related to what follows. Consider the following rules
and their typical abnormalities:

¬A ∆
A→ ⊥ ∆ ∪ {¬A ∧ ¬(A→ ⊥)}

A ∆
¬A→ ⊥ ∆ ∪ {A ∧ ¬(¬A→ ⊥)} (6)

Dialetheists claim that true inconsistencies are exceptional. So, in non-exceptional
situations, that ¬A is given justifies one to defeasibly connect A to triviality
and that A is given justifies one to defeasibly connect ¬A to triviality.

The typical abnormality may look problematic, but it is not. For most rele-
vant implications, ¬(A→ B) is derivable from A ∧ ¬B. Where this is the case,
A∧¬A is sufficient to derive both ¬A∧¬(A→ ⊥) and A∧¬(¬A→ ⊥) because
¬⊥ is a theorem of LP. To prevent readers from getting overoptimistic, let me
point out that the ‘negation’ 	, defined by 	A =df A → ⊥, is a paracomplete
negation. Clearly, A∨	A is not a theorem unless the relevant→ is downgraded
to a detachable material implication.

It seems to me that the rules and abnormalities in (6) look extremely inter-
esting from a dialetheist point of view. They allow dialetheists to express their
commitment to the falsehood of a statement in the sense that the falsehood
of A connects the truth of A to triviality. Moreover, they may do so with-
out ever using classical negation—dialetheist may continue to catalogue that
as a tonk-like operator. So (6) seems to provide a means for dialetheists to
apply an inconsistency-adaptive logic without committing themselves to clas-
sical negation. Exploring the consequences of this insight obviously deserves
a careful study, but that goes beyond the present paper. Moreover, adaptive
consequences derived on a condition ∆, remain to be justified in terms of the
joint falsehood, in the dialetheist sense, of the members of ∆.

6 In Conclusion

The problem I set out to solve concerned cases where one has an idea for devising
an adaptive logic in terms of a defeasible rule. The easier case was where the
set of abnormalities was given together with the lower limit logic for ampliative
adaptive logics or together with the upper limit logic for corrective adaptive
logics. If the idea for the adaptive logic comes in terms of a rule, the set
of abnormalities has to be delineated. I presented an extremely simple and
transparent recipe for doing so and argued that, except for very special cases,
the recipe leads to an adequate result.

A further important point deserves to be mentioned. I have shown that there
is a number of formerly unsolved difficulties for dialetheists who try to invoke
inconsistency-adaptive logics. For me logics are instruments. Instruments may
be independent of the philosophical and ideological views of those who use them.
So it seems an important feature that adaptive logics as well as the proposed
recipe work fine for dialetheists. Disagreements with dialetheists is not an excuse
for hiding that, unlike what one might expect, adaptive logics turn out sensible
and useful instruments for them.
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A very different conclusion is not about generality but about specificity.
There is a huge number of different adaptive logics of inductive generalization.
This is not only required because of the many disagreements between philoso-
phers of science on inductive methods. It is also necessary in view of the very
different domains of application. To give just one example, the non-logical terms
of one language may be well entrenched technical terms and those of another
language may be taken straight from natural language. Further differences will
depend on the underlying conceptual framework, on the presence of articulated
observational criteria, and so on. Such differences may have an effect on the
suitability of a specific inductive method. The situation for other ampliative
adaptive logics is analogous.

Similar comments apply to corrective adaptive logics. The upper limit logic
is known beforehand, but there are many ways to approach it: different strate-
gies, different lower limit logics, and for each combination of a strategy and
lower limit logic, different sets of abnormalities. Of course, not every specific
circumstance determines a single adaptive logic. Nevertheless, the choice of a
suitable adaptive logic will be largely determined by properties of the theory
or domain to which it is applied. Mathematical theories have generally con-
ceptual structures that are much simpler that most empirical theories. So they
usually require a stronger lower limit logic, validating full Replacement of Iden-
ticals and reducing all statements to truth-functions of literals—truth-functions
in the broad sense including quantifiers. But apart from such rough classifica-
tions, both mathematical and empirical theories will require careful analysis in
order to select the specific non-logical axioms in view of the lower limit logic.
Adaptive mathematical theories [17, 4] are a case in point.

Part of the importance of the present paper and of the recipe is related
to insights that have grown over the years. In the early days, adaptive logics
seemed to present an attractive approach to handle certain problems. Examples
were (i) inconsistencies coming up unexpectedly in a theory that was intended
as consistent or (ii) devising a precise formulation of a given method. By and
large, the impression was that adaptive logics were very general tools that could
be efficiently applied in nearly all circumstances. Only over the years did it
become clear that especially the choice of corrective adaptive logics depends
heavily on the context. When a problem is located, adaptive logics do not
provide one with a tool that in itself warrants success. One has to carefully
choose a language in which to formulate the problem. One has to carefully
select the way in which the theory or the data, in which the problem arises, are
phrased. Recently, especially with the application to Fregean set theories (sic),
it turned out that sometimes one even has to tailor the adaptive logic in view
of its application. On the one hand, this shows to what extend Dudley Shapere
was right in propagating content guidance and learning how to learn [51]. On
the other hand, it made necessary the search for the present recipe: content
guidance provokes more frequently the need for adaptive logics devised in view
of defeasible rules.
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