2,675 research outputs found

    Assurance Benefits of ISO 26262 compliant Microcontrollers for safety-critical Avionics

    Full text link
    The usage of complex Microcontroller Units (MCUs) in avionic systems constitutes a challenge in assuring their safety. They are not developed according to the development requirements accepted by the aerospace industry. These Commercial off-the-shelf (COTS) hardware components usually target other domains like the telecommunication branch. In the last years MCUs developed in compliance to the ISO 26262 have been released on the market for safety-related automotive applications. The avionic assurance process could profit from these safety MCUs. In this paper we present evaluation results based on the current assurance practice that demonstrates expected assurance activities benefit from ISO 26262 compliant MCUs.Comment: Submitted to SafeComp 2018: http://www.es.mdh.se/safecomp2018

    An overview of the demonstration advanced avionics system guest pilot evaluation conducted at Ames Research Center

    Get PDF
    The guest pilot flight evaluation of the Demonstration Advanced Avionics System (DAAS) is discussed. The results are based on the fifty-nine questionnaires that were completed by the participants. The primary purpose of the pilot evaluation was to expose the Demonstration Advanced Avionics System to the various segments of the general aviation community and solicit comments in order to determine the effectiveness of integrated avionics for general aviation. Segments of the community that were represented in the evaluation are listed. A total of sixty-four (64) flights were conducted in which one hundred and seventeen (117) pilots and observers participated. It was felt that the exposure each subject had with the DAAS was too short to adequately assess the training requirements, pilot workload, and the reconfiguration concept of the DAAS. It is recommended that an operational evaluation of the DAAS be made to assess: the training requirements or varying experience levels, the pilot workload in the ATC environment with unplanned route changes, and the viability of the reconfiguration concept for failures

    Centralized vs distributed communication scheme on switched ethernet for embedded military applications

    Get PDF
    Current military communication network is a generation old and is no longer effective in meeting the emerging requirements imposed by the future embedded military applications. Therefore, a new interconnection system is needed to overcome these limitations. Two new communication networks based upon Full Duplex Switched Ethernet are presented herein in this aim. The first one uses a distributed communication scheme where equipments can emit their data simultaneously, which clearly improves system’s throughput and flexibility. However, migrating all existing applications into a compliant form could be an expensive step. To avoid this process, the second proposal consists in keeping the current centralized communication scheme. Our objective is to assess and compare the real time guarantees that each proposal can offer. The paper includes the functional description of each proposed communication network and a military avionic application to highlight proposals ability to support the required time constrained communications

    Fly-By-Wireless for Next Generation Aircraft: Challenges and Potential solutions

    Get PDF
    ”Fly-By-Wireless” paradigm based on wireless connectivity in aircraft has the potential to improve efficiency and flexibility, while reducing weight, fuel consumption and maintenance costs. In this paper, first, the opportunities and challenges for wireless technologies in safety-critical avionics context are discussed. Then, the assessment of such technologies versus avionics requirements is provided in order to select the most appropriate one for a wireless aircraft application. As a result, the design of a Wireless Avionics Network based on Ultra WideBand technology is investigated, considering the issues of determinism, reliability and security

    Aircraft electromagnetic compatibility

    Get PDF
    Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting

    Aeronautical engineering: A continuing bibliography with indexes, supplement 100

    Get PDF
    This bibliography lists 295 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System in August 1978

    Spacelab software development and integration concepts study report, volume 1

    Get PDF
    The proposed software guidelines to be followed by the European Space Research Organization in the development of software for the Spacelab being developed for use as a payload for the space shuttle are documented. Concepts, techniques, and tools needed to assure the success of a programming project are defined as they relate to operation of the data management subsystem, support of experiments and space applications, use with ground support equipment, and for integration testing

    Role of simulation and emulation in the development of Shuttle-Centaur (STS-Centaur)

    Get PDF
    To support the task of integrating the Centaur liquid-fueled upper-stage space vehicle into the space shuttle program. A system to simulate and emulate the STS-Centaur avionic flight system and its supporting ground control and checkout equipment was selected and designated the systems integration facility (SIF). Located in San Diego, California, the SIF is composed of integrated simulators that form a composite control system complement to the STS-Centaur airborne and avionic support equipment. An off-line capability to verify the system design of the Centaur airborne support equipment (CASE) and the Centaur avionic flight system is provided as well as a realistic medium for the development and integration of ground checkout and airborne control software programs. Each simulator is composed of prototype hardware, where feasible, to maximize configuration likeness. Where emulated flight or ground hardware is used, it provides physical characteristics (loads, signals, etc.) equivalent to those of the flight hardware. The hardware and software implementation of the SIF are described

    Hierarchical Traffic Shaping and Frame Packing to Reduce Bandwidth Utilization in the AFDX

    Get PDF
    The increasing complexity and heterogeneity of avionic networks make resource savings a challenging task to guarantee easy incremental design during the long lifetime of an aircraft. In this paper, we focus on the optimization of interconnection devices for multi-cluster avionic networks, called Remote Data Concentrators (RDC), and especially for the CAN-AFDX network. The design of this optimized RDC device consists in implementing frame packing strategies to manage upstream (sensors) flows to improve bandwidth utilization in the AFDX; and Hierarchical Traffic Shaping (HTS) algorithm to control downstream (actuators) flows to guarantee bandwidth isolation on CAN. Schedulability analysis integrating the effects of these new mechanisms is detailed and validated. Furthermore, a heuristic approach to tune the Hierarchical Traffic Shaping parameters within the RDC device is proposed to reduce as much as possible bandwidth utilization in the AFDX, while ensuring flows schedulability. The performance analysis conducted on a realistic avionic case study proves the efficiency of the optimized RDC device to reduce bandwidth utilization in the AFDX, compared to the basic device currently implemented in avionics

    In-flight direct-strike lightning research

    Get PDF
    Tests designed to investigate the lightning-generated electromagnetic environment affecting aircraft are discussed. An F-106B aircraft specially instrumented for lightning electromagnetic measurements was used. The instrumentation system is reviewed and typical results recorded by the instrumentation during simulated-lightning ground tests performed for a safety survey are presented. Several examples of data obtained during summer flight testing are presented and future plans are discussed
    corecore