
Prepared for the - '  31 October 1973
GEORGE C. MARSHALL
SPACE FLIGHT CENTER Contract No.: NAS8-30376
Huntsville, Alabama MSFC No.: MSFC-DR L-389, Line Item No. 2

IBM No.: 73W-00326

SPACE LAB
SOFTWARE DEVELOPMENT AND INTEGRATION CONCEPTS
STUDY REPORT

Volume I

tMSACl 120409) SPACE BTSTUDYs
.oCB R iTEGRAT uness Unclas

\~iacB"One Corp.) 03 CSCL 22B

https://ntrs.nasa.gov/search.jsp?R=19740025199 2020-03-23T04:43:09+00:00Z



This report was prepared by P. L. Rose and B. G. Willis.

The Integrated Development Concept was developed by
D. H. Norton.



PREFACE

This report documents the proposed software guidelines to

be followed by the European Space Research Organization (ESRO) in

the development of software for the Spacelab being developed for use

as a payload for the Space Shuttle. This report was developed by the

IBM Federal Systems. Division, Huntsville, Alabama, under contract No.

NAS 8-30376 from the National Aeronautics and Space Administration,
Marshall Space Flight Center.



SPACELAB/
DEVELOPMENT & INTEGRATION

CONCEPTS

TABLE OF CONTENTS

Section Paragraph Title Page

1 INTRODUCTION
1.1 PURPOSE ............................................... ... 1.2
1.2 SCOPE ........................................................ 1.3
1.3 O BJECTIV E ..................................................... 1.4
1.4 STUDY BASE ................ ........................ ........... 1.6
1.5 DEFINITION OF SOFTWARE TERMS ................................ 1.9

2 CONCEPTS & PHILOSOPHY

2.1 PROGRAM MANAGEMENT PHILOSOPHY ............................ 2.3

2.2 THE SOFTWARE DEVELOPMENT PROCESS .......................... 2.4

2.3 OPERATION .................................................... 2.12

3 TECHNIQUES

3.1 TECHNIQUES ..................................................... 3.2
3.2 COMPOSITE DESIGN ............................................. 3.8
3.3 STRUCTURED CODE .................................. ........... 3.12
3.4 PROGRAM LIBRARIES ........................................... 3.19
3.5 STRUCTURED DOCUMENTATION *.................................. 3.22
3.6 CAUSE AND EFFECT ANALYSIS ................................... 3.28
3.7 SIM ULATION ................................................... 3.32
3.8 AUTOMATED MANAGEMENT BOARDS ............................. 3.38
3.9 SOFTWARE MANAGEMENT BOARDS ............................... 3.42

4 SYSTEM CONSIDERATIONS

4.1 HIGH ORDER LANGUAGE ....................................... 4.2

4.2 USER LANGUAGE .............................................. .4

4.3 ONBOARD COMPUTER ................ ......................... 4.6

4.4 SUPPORT SOFTWARE ............................................ 4.12

4.5 SOFTWARE........................... ...................... 4.16

5 SUMMARY

5.0 GUIDELINES SUMMARY .......................................... 5.1



LIST OF ILLUSTRATIONS

Figure Title Page

1.3-1 Hardware vs Software Cost 1-5

2.0-1 Integrated Software Development Activity 2-2

3.1-1 Software Development Approach Comparison 3-5

3.1-2 Software Milestone Comparison 3-6

3.3-1 Logic Structures 3-13

3.3-2 Traditional and Structured Control Code 3-16

3.5-1 Visual Table of Contents Diagrams 3-26

3.5-2 Detail Flow/Input-Process-Output Diagrams 3-27

3.7-1 Software Debug Comparison 3-37

3.8-1 Deviation and Delivery Tracking Manpower Requirements 3-41

3.9-1 Software Management Board Evolution 3-45

3.9-2 Software Control Board Functions 3-46

4.3-1 Computer Hardware/Software Trends 4-7

4.3-2 Memory Utilization History 4-8

4.3-3 Computer Capability (CPU Memory Capacity) 4-9

ii



INTRODUCTION

Paragraph Title Page

1.1 PURPOSE .......................................... 1.2

1.2 SCOPE ............................................ 1.3
1.2.1 Development... ...................... .......... .. ...... 1.3
1.2.2 Operational Support ....................................... 1.3
1.2.3 Management . ...................................... 1.3

1.3 OBJECTIVE ....................................... 1.4
1.3.1 Cost ........................................ 1.4
1.3.2 Schedule ........................................... 1.4
1.3.3 Performance ........................................ 1.4

1.4 STUDY BASE ....................................... 1.6
1.4.1 Experience ......................................... 1.6
1.4.1.1 Saturn .................. ........................... 1.6
1.4.1.2 Skylab ............................................. 1.7
1.4.2 Analysis ........................................ 1.7
1.4.2.1 Space Shuttle ....................................... 1.7
1.4.2.2 Spacelab ........................................... 1.7
1.4.2.3 Experiment ......................................... 1.7
1.4.3 Innovation ......................................... 1.8

1.5 DEFINITION OF SOFTWARE TERMS .................... 1.9



1.1 PURPOSE

It is the purpose of this report to provide guidelines for the

development of Spacelab software--software not only for the operation of
the data management subsystem, the support of experiments and space
applications, but also the software used with ground support equipment,
and for integration testing. These guidelines have applicability to all
software associated with Spacelab and have been developed from consideration
of special Spacelab characteristics, such as the wide geographic dispersion
and multinational effort involved by the Spacelab development and use.

Clearly, the software for Spacelab should be characterized by:

o Systems which are functional
o Systems which are simple
o Systems which are well structured
o Systems which are well documented
o Systems which are easy to keep running
o Systems which are easy to modify
o Systems which are reliable
o Systems which are-usable

Many of the concepts, tools, and techniques described within this
document are refinements of existing techniques. This report integrates
those techniques that have proved their worth over several years and new
techniques that show high promise.

1-2



1.2 SCOPE

This report defines concepts, techniques, and tools needed -to

assure the success of a programming project. Experienced programmers have

used these concepts, techniques, and tools on previously successful programs,

but. the formulation and strict adherence recommended by this report provides

a programming philosophy that encourages overall reduction of cost and

time. This philosophy also provides a method of creating an end product

that is understandable, maintainable, and, most important, functionally

correct. The report was written with the intent of bringing scientific

discipline to the development of software.

All of the concepts, techniques and tools presented in this report

fit logically into three main areas of software functions.

1.2.1 Development

Development includes the normal divisions of software generation.

These are design, implement, verify, document, and control.

1.2.2 Operational Support

Operational support implies all necessary support required to

successfully complete the software project. This includes hardware support

(computers, facilities, models), and software support (compilers, simulators).

Tools must be provided for the operational phase of Spacelab which will

allow principle investigators and crew members to monitor and control the

varied experiments envisioned.

1.2.3 Management

Management covers all systems necessary to control cost, schedule,

and performance. Configuration Management and Change Control techniques

will be discussed in terms of applicability for NASA requirements.

1-3



1.3 OBJECTIVE

The objective of this study is to recommend concepts, techniques,
and tools that, if applied to the initial Spacelab software development,

will reduce cost,.support strict schedules, and ensure the performance

level required in a manned space environment.

1.3.1 Cost

Experience has proven that in today's computer applications hardware

unit costs are less than software unit costs (see Figure 1.3-1). The quality
of work done during program development has a direct influence on the operational

cost. These two facts will be of prime concern to NASA since the majority
of NASA's cost will be in the operational aspect of the program. Any concepts,
techniques, or tools that can be incorporated into the development phase
to provide:

o Understandability
o Usability
o Maintainability

will certainly aid in a smooth transition from the development phase (ESRO)
to the operational phase (NASA) of Spacelab software.

1.3.2 Schedule

Cost is an important aspect of software generation; however, just
as important in the Spacelab program are the strict schedule requirements
that the developed software must support.

The proposed 50 flights per year present a software scheduling
challenge that has never been attempted in a space application. This report
outlines concepts and techniques that will aid in the development of software
that is understandable, easily changed, and easily verified in an operational
state. It is imperative that the Spacelab software adhere to these attributes
if the strict schedules and time lines are to be met once the software
system is delivered.

1.3.3 Performance

Cost and time must be controlled during the life of a long term
project like Spacelab, however, many previous software development phases
have controlled these important factors yet failed to meet the functional
requirements. In basic terms, cost and time objectives were met, but the
program did not do what was intended. This, of course, is an inadequate
product and additional resources must be expended to modify or change the
developed software to perform the required functions.

1-4



HARDWARE vs SOFTWARE COSTS

SOFTWARE COSTS PER INSTRUCTION

(0C) (ASSEMBLERS) MODULARITY

N . HOL

(LSI) HOLC

(PLATED WIRE)
(BUBBLE)

1955 1960 1965 1970 1975

Figure 1.3-1 Hardware vs Software Cost

1-5



1.4 STUDY BASE

In the performance of this study, the data provided herein was
obtained from experience gained on projects such as Saturn, Skylab, Spacelab,
Manned Orbiting Laboratory, Real Time Computer Complex, and non-space related
projects such as Tactical Aircraft Guidance System, FAA, Airborne Warning
and Control System, and A-701E. For brevity, the related Spacelab applica-
tions are summarized below. Analysis of information gained from these programs
and innovative approaches of problem solving contributed significantly to the
detailed sections of this study.

1.4.1 Experience

1.4.1.1 Saturn

IBM has a broad experience base in the checkout and control of
space vehicles. The complexities inherent in the diverse mission require-
ments supported by these systems and the use of the systems at multiple sites
have demanded the employment of sophisticated technical and management
techniques. Integral components of this base include:

Saturn Ground Computer System - consists of general purpose
computers connected together via a high speed data link. The Operating
System which executes in the two computers performs task management,
display services, discrete processing, and redundancy management.

Application programs were developed by IBM which execute under the
control of the Operating System. Of particular significance, an engineering-
oriented user checkout language was developed for the purpose of providing a
simple language for engineers to use which would not require an intensive
programming knowledge. This language was the Acceptance Test or Launch
Language (ATOLL). These application programs perform the automatic prelaunch
checkout and verification of the Saturn vehicle.

Saturn Operational Display System - consists of a Display Control
Computer and its associated equipment. This system provides a communication
link between the test engineer and the launch vehicle. The operating soft-
ware controls the displaying of data being input from many varied sources.

Digital Events Evaluator - consists of three high speed general
purpose computers. Communication between these computers takes place over
both high and low speed data links. This system monitors the status of
discretes input from the Saturn vehicle and prints a record of each change
in discrete status.

Saturn Launch Vehicle Flight Programs - performs navigation, guidance,
attitude control, launch vehicle sequencing, telemetry, command processing, and
programmed backups to specified hardware functions for the Saturn vehicle.

1-6



0-erational Support Systems - Simulators played an important part

in developing and validating the software. A System 360/75 was used for

interpretive simulation; and a Simulation Laboratory and Flight Program

Checkout Facility were used to develop and verify the Saturn Launch Vehicle

Flight Program software. The ground system software was developed and

validated on a hardware breadboard. The System 360/75 was also used in

the configuration/control and delivery process for all developed systems.

1.4.1.2 Skylab

The Skylab is controlled by two special purpose computers, with

one performing control functions and the second available as backup. IBM

programmed these computers to perform the attitude control functions, sub-

system monitoring, and experiment control.

The software for the Skylab control computer was developed using
the top-down programming technique. The program development and validation

was aided by the use of simulation. The same simulators used for the Saturn

Launch Vehicle Flight Program were modified to be used for Skylab.

1.4.2 Analysis

The experience gained on the Saturn and Skylab programs provides

a base to review additional areas that might apply to the Spacelab program.

These areas included Space Shuttle, Spacelab, and proposed Spacelab experi-

ments.

1.4.2.1 Space Shuttle

Space Shuttle documents were reviewed to evaluate development plans

and management control aspects of the Shuttle system for their applicability

to the Spacelab program. Management concepts, techniques, and tools of the

Space Shuttle have been embodied within this report.

1.4.2.2 Spacelab

Existing Spacelab documents were reviewed to acquire a better

understanding of the intended Spacelab application. These documents include
the Computer Software Development Plan and the Phase B-2 reports. These
provide an engineering overview of the Spacelab system along with the required
control functions.

1.4.2.3 Experiment.

Experiment sizing and data flow were studied to reassure that experiment
performance would not be degraded by any concepts, techniques, or tools
considered in this study. Areas reviewed included the high data rates
of specific experiments, quantities of data gathered by specific experiments,
general types of data analysis required, general experiment support, and
payload descriptions.



1.4.3 Innovation

The review of existing trade journals and technical publications
formed an active part of this study. New techniques were reviewed for
applicability to Spacelab.

Research in both the commercial and military programming activities
by the IBM Corporation has resulted in new techniques that have been
successful in improving quality and reducing costs of programming products.
These techniques have been reviewed and integrated where applicable.

1-8



1.5 DEFINITION OF SOFTWARE TERMS

This section defines software terms that are subject to mis-

interpretation and defines them as they are being used in this document.

o Cnboard - Onboard software includes all software executed

onboard the Spacelab computer or computers.

o Ground - All support software not used onboard

:pacelab.

o O:erating System - The operating system is a continuously

executing set of programs that manages interfaces, supports

applications, and provides overall data management.

o A-Dlications - Programs written to control, test, and

support Spacelab experiments and subsystems.

o :igh Order Language (HOL) - A programming language that

provides.computer instruction in a pseudo-English
environment. A HOL supports programming techniques at

a level that is transparent to the programmer. Examples
of High Order Languages reviewed were Houston Aerospace
Language (HAL) and FORTRAN.

o User Language - An engineering oriented language designed
to facilitate Spacelab checkout. Examples of user languages

are the Saturn Acceptance Test or Launch Language (ATOLL),
and the Ground Operational Aerospace Language (GOAL).

o Verification - Verification testing ensures that the
product performs to specification.

o Validation - Validation testing ensures that the Spacelab

software system meets the functional requirements.

o Integration - Integration is the process of: 1) verifying

that software interfaces perform to specifications as the

modules are merged into a programming system, and 2) verifying

that the software interfaces with the Spacelab hardware and

performs to specifications.

o Modules - A program or program element which can be
defined, developed, and to some extent, tested

independently of the remaining system parts.

1-9



CONCEPTS AND PHILOSOPHY

2

Paragraph Title Page

2.1 PROGRAM MANAGEMENT PHILOSOPHY ,,,. ,,,,,,,.... 2.3

2.2 THE SOFTWARE DEFINITION PROCESS ................. 2.4
2.2.1 Definition ........................................... 2.4
2.2.2 Program Design ....................................... 2.6
2.2.2.1 Introduction ....................................... 2.6
2.2.3 Program Implementation ................................ 2.8
2.2.4 Program Verification ................................... 2.9
2.2.5 Validation ...................................... .... 2.9
2.2.6 Acceptance and Delivery ................................ 2.10

2.3 OPERATION ..... ...............................' 2.12



SECTION 2

CONCEPTS AND PHILOSOPHY

Software development embodies management and technical concepts
which work in concert to produce cost effective, useful software systems.
The application of compatible concepts results in an integrated development
process. Integrated development is based on the assumption that design, imple-
mentation, verification, and validation can occur simultaneously during the
software development .phase. It also assumes that documentation and control
are active participants in this development phase. It is the purpose of this
section to describe some of -the advantages of integrated development that
best support the Spacelab software development process.

Through interlocking techniques, as shown in Figure 2.0-1, the
activities of definition, design, implementation, and validation are serially
related, while the verification and documentation activities are depicted to
represent the fact that these are integrated with and span the definition,
design, and implementation activities. This interlocking approach creates a
new emphasis on aspects of software development that has not previously been
present:

o Verification is considered before system code is complete.

o Documentation spans all areas of software activity.

o Management and control become useful functions instead of
necessary requirements to meet contract specifications.

Advantages realized from an Integrated Development Approach applied
specifically to the Spacelab development phase are:

o Milestones can be set which notify management of early
problem areas allowing appropriate action to be taken
at a time when needed.

o Ambiguities and inconsistencies are identified before
complete development, thus reducing the possibility of
major modification during system integration.

o Documentation is an integral part of the development
phase thus providing training and familiarization infor-
mation long before system delivery.

2-1



MANAGEMENT

DEFINITION

D
O V

U -. DESIGN R
M I

E F
M - IMPLEMENTATION C

A A A
T VALIDATION I

NN
" ACCEPTANCE DELIVERY

OPERATION

CONTROL

Figure 2.0-1 InLegrated Software Development Activity

2-2



2.1 PROGRAM MANAGEMENT PHILOSOPHY

The collection of principles which span the software development

activities is referredto as the program management philosophy. These prin-
ciples run as common themes throughout the various methods which are described

in this document as a set of guidelines for software development.

The primary objective of the program management philosophy is to

guide the application of the various techniques for software development so

that a set of principles is embodied in the effort and reflected in the end

products.

One of the most important principles is concerned with the purpose

of the development methodologies. It arises from recognition that it is not

enough for the requirements of the problem to be addressed; but that the ability

to validate the program against the requirements must be aided to the greatest

extent possible.

The primary objective of the development methodologies is to provide

a usable, functional end product.

Other important objectives are to ensure that the program system can
be enhanced and modified without difficulty and to increase the comprehensibility
of the program system at all levels of abstraction.

There should be common and equal management visibility over both the
hardware and the software development activities. This is justified by the
rising cost of software and the declining cost of hardware. The project
leaders for software and hardware should be at an appropriate level. An
attitude of mutual support and accommodation should prevail between the hard-
ware and software groups. Problems should be conveyed across the hardware/
software interface to determine if the alternate discipline can assist.
Management visibility should be established and employed to ensure that this
close working relationship begins at the start of the system definition activity
and continues throughout the system design, implementation, validation, and
acceptance activities.

To the maximum extent possible, the working papers, or byproducts,
of the development process should serve as documentation. This can be accomp-
lished by the judicious choice of methods and provides the advantage of integra-
ting the documentation effort throughout the other activities. Lucid results
are thereby made available at numerous intermediate points in the schedule for
software development, from the definition phase, through the design and imple-
mentation phases. Use of byproducts as documentationavoids the nemesis of
documentation which is prepared late in the schedule for the ostensible pur-
pose of providing following efforts with insight into the characteristics of
the system. It is this late documentation which inevitably suffers when
schedules are revised. In addition, documentation prepared after the develop-
ment phase is not available to support the program reviews which must occur
throughout the schedule, requiring special purpose review documents to be
developed instead.

2-3



2.2 THE SOFTWARE DEVELOPMENT PROCESS

The software development process consists of distinct, but inter-
related, activities. These activities are distinct because we can assign
and-discuss methods of performance for each. They are interrelated by their

mutual support and by their integrated nature which is evident, once the soft-
ware development process begins. The definition activity is where the problem
is described in its most abstract form. The design activity is where an
approach is used to synthesize a system which will meet the specifications
of the definition phase. The verification activity is where each level of
abstraction of the evolving system solution is reviewed for conformance to
the specifications for its appropriate level. The implementation activity
is where coding and testing is done for the modules comprising the
system whose design has been completed and verified. The validation activity
is where the coded modules are analyzed, exercised, and evaluated with respect
to their ability to function exactly as required. The acceptance and delivery
activity assures that the system is in acceptable accord with the requirements
and that the working system is delivered at the specified change level.
Permeating the entire development process are the control and management
functions. All of these activities culminate in an operational system.

2.2.1 Program Definition

In the definition phase it is determined what the software is to do.
This activity is a refinement of the statement of work, for the purpose of
thoroughly defining the problem before a solution is begun. Emphasis in this
phase should be on what the problem is, as opposed to how it is to be solved.
Although consideration of some design concepts is necessary, the urge to get
on with the job and enter the design phase prematurely should be resisted.

A requirements specification document should be the product of the
definition phase. The preliminary document is reviewed, analyzed, and
revised to make the final requirements specification which is used as input
to the program design phase. In the requirements specification, the problem
should be described in detail, in non-technical language. The users should
be identified. The problem environment should be described. Subsequently,
the technical problem should be described in increasing levels of detail.
The capabilities to be included in the system should be specifically stated.
Where helpful in clarifying the requirements specification, capabilities which
are not to be included should be detailed.

It is during the definition phase that verification should start.
Each level of the technical definition of the problem should be verified to
determine its ability to meet the requirements of the level immediately above.
This parallel verification process is concerned with all aspects of software
development, not just the implementation phase as previously practiced.

2-4



Software and hardware should be configured and changes controlled in
a common manner. This means that the relationships among software modules
making up the system must be defined and maintained at all times during the
development effort, just as the analogous relationships are maintained for
hardware. In addition, the record of changes to each module should be main-
tained and, when a delivery of the system is made to support a given mission
or set of missions, the change level of each module should be accurately
specified and audited.

Change activity for both hardware and software should be managed by
change control boards whose members have the technical expertise and management
responsibility to assess the impact of proposed changes to the function of
the system and conduct trades between software and hardware implementation of
the changes. In no case should a change to hardware or software be made with-
out an assessment of whether the alternate discipline should be affected.

It is also during the definition phase that the tools which begin to
establish test cases should be applied. These tools support the verification
activity by providing test cases for use in the review of technical problem
definition. The technique is to convene a review board of persons who will
manually carry out the actions of the system as it is stimulated by each test
case and examine the requirements specification to verify that it is technically
sound.

Using the tools and methods for test case generation, the requirements
specification is examined for observable effects and the causes which, when
invoked, will cause these effects. Normally, the cause and effect relation-
ships will be simple, often involving the logical functions AND, OR NOT,
NAND, and NOR in addition to some direct relationships. When these relation-
ships are displayed in graphic form, with causes as nodes on one side, effectsas nodes on the other, and the logical connectives indicated, a picture
begins to emerge as to the quality of the requirements specification. This is
an application of Boolean algebra to the very areas where the English language
and other conversational languages are inadequate - the area of vigorous
definition of logical relationships which require graphics and precision.

It should be possible to spot ambiguities, causes without effects,
effects without causes, and inconsistencies in the requirements specification.
Therefore, a beneficial review can be accomplished which results in improvement
in the requirements specification. This benefit, in addition to contributing
much needed clarity for management review purposes, passes on to the design
phase a better quality document for use as a baseline. The process also spots
problems which might remain hidden and become troublesome much later in the
software development cycle.

2-5



A beneficial effect of using the tools and methods of test case
generation during the definition phase is to involve the designers in con-
sideration of the requirements of the validation phase. Members of the design
team should be used as validators.

It must be realized that misunderstandings concerning the problem
to be solved will arise.between contractors and customers, between different
organizations within the same company. In most such cases, the root of the
misunderstanding can be traced to a lack of written definition of the problem.
The strict requirement of an organized, written Spacelab software specifications
will reduce this misunderstanding.

2.2.2 Program Design

2.2.2.1 Introduction*

The primary objective of the program design process is to speci-
fically avoid the all-too-common practice of programming a system directly
from a definition of the problem, without first translating the requirements
specification into a sound program design.

The product of the design phase is the software design specification
which defines the functions and interrelationships of the program modules which
comprise the system. Intermediate outputs of the design phase are produced
as byproducts of the design effort. The purpose of the intermediate outputs
is to convey design ideas as they evolve, for use in conducting management
reviews and verification.

The process of verification, which began in the definition phase,
continues in the design phase. Here, it is a process of feedback, criticism,
itteration, and testing of assumptions. It proceeds, as does the design effort,
from the top down; each successive level being verified with regard to its
ability to meet the requirements of the higher level.

2.2.2.2 Composite Design

Composite design is a method of program design which provides
criteria for decomposing a system into modules. It is oriented toward
reducing the difficulty and cost associated with creating and maintaining
large programming systems. It provides substantial benefits to the validation
phase, as well as the design and implementation phases because it tends to
define modules which are highly independent of one another.

Composite design examines the function performed by each module.
Function is defined to be the transformation performed by the module on its
inputs, in order to produce its output. Any module's function is related to
the function performed by its subordinate modules as well as its internal
operation.

2-6



In two complementary ways, the program design is structured so that
modules are highly indpendent. By focusing on the relationships among internal
parts of a module, composite design seeks to maximize the strength of individual
modules. By examining the ways in which modules reference data and the nature
of that data, composite design seeks to minimize the coupling between modules.
One-and only one complete function is performed by each module. All input
and output data is passed as parameters when this design method is followed to
the fullest extent.

In addition to providing design methodology, measures of how well
the design is progressing can be defined. On an ascending scale of strength,
different module strengths are rated. For module coupling, a descending scale
is available. These measures provide management with tools with which to
evaluate an emerging design. They also provide viable alternatives when,
during implementation, system constraints force the use of a less than optimum
design. Instead of reverting to an arbitrary division of the system into
modules, or an ad hoc methodology for managing data, the design can be modi-
fied in specific areas -to meet the constraints. In these specific areas,
the design method should be to move one position on the module coupling or
module strength scale, rather than revert to less formal methodologies for
the entire system.

Byproducts of composite design lend themselves well to documentation
of the system and review material for intermediate milestones. There are pro-
gram structure diagrams showing the function of a module and the relationship
to its immediate subordinates. There are input/output tables showing parameter
names and the type of module coupling exhibited by each module interconnection.
Since composite design is a top-down process, meaningful design reviews may be
held at any time during the design phase. During such reviews, the design
will be more lucid, and potential problems can be detected earlier than might
otherwise be the case.

Reliability must be designed into a system; it cannot be tested into
a system. That is why it is important to have design methodology which has a
positive effect on the ability to comprehend and modify the system. System
reliability requires that'each module be reliable and the most thorough way to
test the system is to exercise it through all its possibilities. The problems
with such a method have been in identifying what the possibilities are, and in the
sheer size of the aggregate. While composite design may not reduce the total
number of possibilities to a practical level, it does have a positive effect on
identifying the possibilities of a single module and reducing the interactions
with other modules of the system. In a correct design, modules are less complex,
and thus validation is easier and more straightforward.

.2-7



The reduction in complexity also increases the likelihood that the

system can be easily understood, from the top, through all lower levels of
abstraction. The increased independence among modules reduces the implementa-

tion costs by reducing the interactions among programmers. When a change is
necessary to one function of the system, composite design increases the proba-

bility that only one module will need to be changed. At worst, the change should

affect only one part of the system and the impact should be more easily assessed

than in an arbitrarily modularized system, where any change is apt to ripple
throughout the system in ways that are difficult to detect and validate.

2.2.3 Program Implementation

The objective of the implementation phase is the transformation
of the design specification into verified code.

The output of the design phase is a detailed design specification
that has been verified against the requirements. The specification includes
both coding and test procedures. Low cost implementation of reliable software
requires that the programmer convert these specifications into code without
further design. Implementation proceeds along two parallel paths - code
and test.

These paths join during the verification of the code using the test
procedures. The outputs of the implementation phase are updated design
specifications, verified code and test cases used in the verification. The
updated design specification including the organization of the code, a source
listing, and the implementation limitations becomes the documentation of the
computer program.

Costs can be reduced by using tools such as higher order languages,
standard subroutines, test generation programs and automated programming
aids.

Coding is the process of converting the design into a machine
readable form. This code normally takes the form of assemble language instruc-
tions or higher order language statements. The organization of the code should
agree with the design specification. The code is divided into a tree like
structure using the techniques of composite design that were employed in the
design phase. This technique of separating tasks into independent modules
that perform a function, is continued by using the concepts of structured code
that permits definition of each function in terms of basic coding elements.
Code segments are kept small by using subroutines. Subroutines may be
those previously developed, or may be generated as part of implementing the
module.

2-8



Testing is planned just as coding. Test cases are generated that
exercise all paths of the module. Probable exception conditions are defined
and test cases generated. If exceptional conditions exist that cannot be
tested, then this fact is reflected in the design specification as a limitation
on the implementation.

Verification tests the revised design specification against the
code. Verification is complete when the revised specification is reviewed
and approved.

2.2.4 Program Verification

This activity of the software development process is discussed here
simply for completeness. It is not a separate activity which is in line with
definition, design, and implementation. Instead, it is an integrated activity
within the development process.

Verification began in the definition phase where, as each level of
technical definition emerged, it was examined for compatibility with the next
higher level of problem definition. It continues throughout the design phase
as the top-level design is verified with respect to its ability to solve the
problem defined in the requirements specification. In the implementation
phase, the internal algorithm for implementing each module is verified against
the function and data interface requirements developed in the design phase.
Thus, verification is a continuing, iterative activity which is integrated
throughout other phases of the software development cycle from definition
through implementation.

Since verification begins long before the implementation phase, the
methods involved do not rely on the existence of written program statements.
The principle technique uses the test cases identified by a cause and effect
analysis of the design area to be verified. These cases are manually walked
through to determine if the requirements of the higher design level are met.

2.2.5 Validation

System validation demonstrates that the software and hardware inter-
face as a system, providing confidence in the system's ability to perform
its intended function.

The goal of validation is to develop a high quality cost effective
programming product on schedule. To accomplish this objective, testing should
be performed as early as possible in the development cycles. Problems found
early in the development phase permit flexible response where problems found
late may cause major impacts in the completed program structure.

2-9



The validation team should consist of system designers, programmers,
and systems engineers with expertise in the software design, the software
interfaces and a knowledge of the hardware interfaces that are utilized by
the software. This validation team is independent of the implementation
group and assures that the system meets design requirements and user
requirements. Experience gained in the development of large complex systems
has proved the value of independent software testing to ensure the high
quality required for space oriented programming systems.

The validation team must work closely with the programmers thereby
developing a working relationship which will permit validation to maximize
the results of program development testing which is normally done by the
programmer independently. During the software implementation, programmers
will develop and execute test plans for each module. The validation team will
audit the test plans and provide feedback to the programmer to assure that
the testing will meet all requirements. This permits the validation
team to get involved and exert influence during the early development phases
of the project. Additionally this approach assures formalization of program
test plans and reduces the duplication of testing efforts between the validators
and programmers.

The top-down programming approach being followed by the programmers
will permit initiation of validation tests early in the development phase
to assure the quality of those interfaces and functions which have already
been developed without waiting for the entire system to be completed. This
approach maximizes the benefits which can be attained from early systems
testing. This would include identification of system problems early enough
in the development phase to permit a flexible response without impact to
project schedules.

When the development is completed a final set of testing will be
performed to ensure the completed integrated system performs to design
requirements on the actual hardware. These tests will be developed and the
segments verified as the system is being tested during development.

2.2.6 Acceptance and Delivery

The acceptance and delivery activity defines the completion of
the development process and the start of the operational phase. It isimperative that all parties agree to the components of this activity toassure a smooth transition from ESRO responsibility to NASA assumption
of the developed products. This activity consists of the end item
acceptance testing; verification of the consistency of end item products,
including actual programs and supporting documentation; and initiation of
configuration controls.

2-10



Software does not lend itself to the usual means of verifying
end item configuration. Inspection of the physical computer programs is
inadequate to prove either function or consistency of components. Therefore,
it is imperative that acceptance testing within an operational or simulated
operational environment is performed and controlled under a frozen base-
line configuration. This testing effort is defined by a set of acceptance
test procedures written to prove functional as well as performance require-
ments. All errors are formally documented and placed under configuration
control.

Supporting the actual testing of the system is an analysis effort
to prove that the computer programs in their object form (as they operate
in the computer) agree with the program source form (as they are coded by
the programmer) and the supporting documentation. The result of this
activity becomes the baseline configuration for the operational phase.
It is from this activity that the delivery is accomplished and baseline
accountability is established.

To effect adequate configuration control of the contract end items
a configuration control system must be established prior to the start of
the acceptance and delivery activity. This system-is comprised of a
configuration control board, a set of procedures that determine contract
end item identifications to assure consistent end item levels between
programs and documentation, and program change and deviation accounta-
bility. The configuration control system must accommodate multiple site
usage of the end items.

Identification of contract end items and end item components
must be established early in the development process. Contract end item
types would consist of operational programs, simulators, development support
systems, assemblers, compilers, debug aids, and other developed software
that would be required during the operational phase. End item components
would probably comprise computer programs in their object and source forms,
computer program listings and flow charts, requirements specifications, design
specifications, user documentation, verification/validation/acceptance plans
and results, and configuration accounting documents.

2-11



2.3 OPERATION

Due tothe long term nature of the Spacelab program, operational
software costs will exceed development costs; however, the extent of the
operational cost will be directly related to the attributes of the developed
operational system and its supporting software tools. Imposition of rigid
disciplines at the inception of a programming project will allow the development
of functional, reliable, and easily maintained systems at lower cost than
systems less amenable to support over a long life span.

Changing requirements ordinarily are reflected in the evolution
of software. The economical way to approach this fact is to manage-to-
change and properly prepare those who will make the changes. NASA should
begin an intensive training program early in the Spacelab project to equip
programmers with the knowledge of the deliverable systems that will allow
a smooth transition of the maintenance responsibility. The training process
can be shortened and enriched with adoption of the design and documentation
techniques discussed in this report.

Integration of the experiments on Spacelab will require the develop-
ment of software to monitor and control these experiments. The principle
investigators should not be expected to be programming experts, instead
they should be provided a system which is easy to use and requires minimal
training. If the design of the operational system is conceived as a tool
of the end user, it will contain subroutines, macros, and utilities. These
can be invoked through simple procedures to aid the experimentor and crew
in developing the automated applications to assist them in gaining their
objectives.

Development of the experiment software applications will fall
almost entirely within NASA's responsibility. It is imperative that a user
language be defined early in the Spacelab development process, because
the user language will not only impact, but depend on the design of the
deliverable system.

Training of the men and women who will fly with Spacelab is an
activity that will begin before delivery of the Engineering Model, and
continue throughout the program. The crew members will not only have to
learn how to survive in a space environment, but also have to gain a knowledge
of the Spacelab systems and the experiments they will activate. In the
current Skylab missions, a major complaint of the astronauts has been the
inability to interface with the computer systems controlling the experiments.
The onboard systems should provide an easily learned, interactive capability
which would allow the crew to invoke predefined procedures or to develop
new procedures during a mission. This interactive control and display
language should be syntactically compatible with the user language. Apollo
and Skylab have proven that man, given the tools, can correct or circumvent
failures that occur on space missions. Spacelab should capitalize on thisknowledge.

2-12



TECHNIQUES

3"

Paragraph Title Page

3.1 TOP-DOWN DEVELOPMENT........................... 3-2
3.1.1 Theme ..................... ...................... 3-2
3.1.2 Conclusions ........................................ 3-2
3.1.3 Description .............. .......................... 3-3
3.1.4 Study Data .............................. .. ........ 3-7

3.2 COMPOSITE DESIGN ................................ 3-8
3.2.1 Theme ........................................... 3-8
3.2.2 Conclusions ....................................... 3-8
3.2.3 Description ......................................... 3-9
3.2.4 Study Data .............................. ........... 3-11

3.3 STRUCTURED CODE ................................. 3-12
3.3.1 Theme .........................................
3.3.2 Conclusions ..................................................... 3-12
3.3.3 Description ............................ ............ 3-12
3.3.4 Study Data ................................... ...... 3-17

3.4 PROGRAM LIBRARIES............. .... .... 3-19
3.4.1 Theme ........................................... 3-19
3.4.2 Conclusions .................. ............ .... ... 3-19
3.4.3 Description ........................ ............... 3-20193.4.4 Study Data 3-203.4.4 Study Data ......................................... 3-21

3.5 STRUCTURED DOCUMENTATION............................. 3-22
3.5.1 Theme -23.5.1 Theme....."''"''''""'''' ...................................... 3-223.5.2 Conclusions.......................................3-22
3.5.3 Description ......................................... 3-23
3.5.4 Study Data ........................................ 3-25

3.6 CAUSE AND EFFECT ANALYSIS....................... 3-28
3.6.1 Theme .......................................... 3-28
3.6.2 Conclusions.............. ......................... 3-28
3.6.3 Description ......................................... 3-29
3.6.4 Study Data ......................................... 3-31



TECHNIQUES

3
(Continued)

Paragraph Title Page

3.7 SIMULATION ........................................ 3-32
3.7.1 Theme ................................................................. 3-32
3.7.2 Conclusions ......... ................................... 3-32
3.7.3 Description............................................. 3-33
3.7.4 Study Data ............ ................ .............. 3-35

3.8 AUTOMATED MANAGEMENT SYSTEM ..................... 3-38
3.8.1 Theme ................................................ 3-38
3.8.2 Conclusions ..................................... ....... 3-38
3.8.3 Description ............................................. 3-39
3.8.4 Study Data ............................................. 3-40

3.9 SOFTWARE MANAGEMENT BOARDS ..................... 3-42
3.9.1 Theme....................................... ..... 3-42
3.9.2 Conclusions ........................................... 3-42
3.9.3 Description ............................................. 3-43
3.9.4 Study Data. ...................................... .. 3-43



SECTION 3

TECHNIQUES

State-of-the-art programming techniques have reached the point
that for-il descriptions have been developed. Many of these techniques
have recieved wide acceptance in principle, and have been applied to pro-
gramming projects. As a result a firm base for programming theory is
beginning to emerge. 'This theory covers program design, implementation,
verification, validation, and management.

This study has identified some of these formal techniques and has
integrated them into a consistent theory.

Techniques for design and implementation are:

o Top-down development
o Composite design
0 Structured code
o Hierarchical documentation
o Programming libraries

Techniques for verification and validation are:

o Cause and effect analysis
o Simulation

Techniques for program management are:

o Automated management systems
o Management review boards

3-1



3.1 TOP-DOWN DEVELOPMENT

3.1.1 Theme

The traditional development approach for software has been to
design from the top-down and then to implement from the bottom-up. The
lowest level software modules are developed first, then the next level,
and then these levels integrated. This continues level by level until
the entire package has been integrated and tested. The top-down approach
applies disciplined system design concepts to software development; and,
as a result, design and implementation proceed from the highest level
downward. The top-down approach makes software development more systematic
and controllable.

3.1.2 Conclusions

Application of the top-down approach to software development has
demonstrated the following advantages:

o Interface problems have been significantly reduced.

o A uniquely planned software integration task is eliminated.

o Overall software system compatibility is maintained.

o A functional software system becomes available in stages.

Spacelab benefits most from the last of these. Because functional
software becomes available in stages, ESRO will be able to deliver operational
software to NASA early in the development cycle. NASA can use these early
deliveries for design validation and operational training. This will reduce
the time required to transfer the software from ESRO to NASA and relieve
schedule pressure.

3-2



3.1.3 Description

The top-down development technique is the application of the
natural system of design.approach. This technique requires the software
control architecture and interfaces be established and developed first
and succeeding levels-of detailed logic implemented in a downward fashion.
Top-down development provides an ordering of development which allows for
continual software integration of system components and provides for
well-defined interfaces- at each level.

Although software design has always followed a top-down approach,
the actual implementation has been conducted in an opposite direction.

Traditional software implementation has evolved as a bottom-up
procedure where the lowest level processing programs are coded first, unit
tested, and made ready for integration (see Figure 3.1-1). Driver programs
are needed to perform the unit testing and lower levels of integration
testing. Data definitions and interfaces tend to be simultaneously defined
by more than one person and often are inconsistent. During integration,
definition problems are recognized; however, integration is delayed while
the data definitions and interfaces are correctly defined and the programs
are reworked, and unit tested again, to accommodate the changes. It is
often difficult to isolate a problem during the traditional integration
cycle because of the large number of possible sources. Management control
often is ineffective because there is no coherent, visible product until
integration. Modules that have been coded, debugged and verified become
obsolete and must be modified and reverified.

In top-down development, the system is organized into a tree structure
of segments. The top segment contains the highest level of control logic
and decisions within the program and either passes control to lower level
segments, or identifies lower level segments for in-line inclusion. The
process continues for as many levels as required until all functions within
a system are defined in executable code.

Many system interfaces may occur either through data base definition
or calling sequence parameters. The top-down approach requires the data
base definition statements be coded and actual data records be generated
before exercising any segment which references them.

The top-down approach provides the capability of evolving the
product in a manner which maintains the characteristic of being always-
operable, modular, and always available for the successive levels of testing
that accompany the corresponding levels of implementation. The quality
of a system produced using this approach is increased, as reflected in
fewer errors in the module integration process. Inconsistencies are eliminated,
and lower level segments can be generated by referencing implemented code.

3-3



The top-down approach introduces a significantly improved capability
for management.control of the software development effort by providing
continuous product visibility. Since the developing system is undergoing
continuous integration, the system status is accurately reflected through
..e contents of the system library; therefore, completeness is measured
objectively in terms of how much of the system is operational. Managers
can review the completed code to verify status and appraise the quality
of the software product.

The top-down approach alters or eliminates some of the traditional
-ilestones usually-associated with the program production process (see
Figure 3.1-2). Probably the most obvious milestone elimination is the
disappearance of an identified software integration period. It is no longer
required since the system parts are continually being integrated as development
oroceeds.

Another area affected is documentation. In the past, given a set
cf funtional system specifications, system design proceeded down until
a complete set of detailed program specifications was written prior to
coding. Using the top-down approach, the various-levels of documentation
cdescribe the developing system, thereby reducing inconsistencies between
:rograms and their documentation. Design can be verified and validated
6y levels both as a document and as a program.

Conceptually, top-down implementation proceeds from a single starting
,oint while conventional implementation proceeds from as many starting
points as modules in the design. The single starting point does not imply
that the implementation must proceed down the hierarchy in parallel. Some
=ranches intentionally will be developed earlier than other branches.
For example, user or other external interfaces might be developed to permit
e arly training or hardware/software integration.

In systems with user interfaces, the user can interact with the
system much earlier in the development phase. This early interaction provides
an opportunity to prepare user and operator guides top-down as user facilities
are developed to validate the guides.



-I-

7-'

Driver rver Driver Driver

-I-1

LL .J

3-5

I ' I --

Top Down

Figure 3.1-1 Software Development Approach Comparison

3-5



Begin
Acceptance

Start Test

Design Code Unit Test Integrate

Bottom-Up:

Begin
Acceptance

Start Test

Design Code and Integrate

Top-Down:

Figure 3.1-2 Software Milestone Comparison

3-6



3.1.4 Study Data

Top-down has been recognized as the way to do system designfor both hardware and software.

The use of these concepts for software implementation has
evolved in recent years. However, the fact that systems could be imple-mented and used before all components are designed is employed frequently
by making intermediate deliveries of systems.

Top-down implementation has been recommended for use in Shuttle
software development and Shuttle payload software.

A formal top-down integration approach was utilized during initialdevelopment of the Skylab flight program. A skeleton nucleus was createdwhich contained the executive program and major subroutines, and the remainingapplication subsystem modules were added in a systematic manner until all
requirements had been satisfied. Utilization of this approach providedan orderly approach to program integration and provided a thorough test
of system design concepts during early program development.

In the development phase, three distinct integration steps weremade between baseline of requirements and delivery of the initial program.
The resulting program at completion of each step was utilized as the develop-ment baseline for the following step.

The first baseline was delivered at six months from start of design,the second at eight months, and the final flight version at eleven months.The final program used the full 16K word memory of the Skylab computer.

3-7



3.2 COMPOSITE DESIGN

3.2.1 Theme

Composite design is design methodology that consists of a
strategy, rules, and measures to produce modular computer programs.
Specifications are composed of independent, functionally organized modules.

3.2.2 Conclusions

Composite design has a positive effect on the cost of developing
and maintaining a program because:

o Composite design creates programs composed of many
relatively independent parts, thus reducing interactions
and dependencies. Therefore, programmer productivity in
implementing a program is higher.

o Design changes are easier because they normally affect only
one part of the program.

o The design of the program is highly visible and easily
understood. This factor has a positive effect on program
maintenance and modification.

o Testing of the program can proceed in a straightforward
sequence of steps. Designs produced using this technique
are excellent candidates for top-down structured programming
implementation.

o Validation can be done by function, producing high quality
programs.

The functional organization into independent modules will permitthe software to be maintained, modified, and expanded over the operational
life of the Spacelab. This is a key-item in the control of operation cost
of software.

The ease of validation will reduce the verification cost that
normally represents 40 percent of flight software costs.

3-8



3.2.3 Description

Composite-design is a tool used for defining the modular structure
of a computer program. Its use requires that a new activity be included in
the software development process at some point after system or program defini-
tion but prior to the coding and testing activities. This often-ignored
process might be called the internal structural design of the program. Much
of today's software-is produced as a result of a direct translation from a
flowchart to a coding sheet. The problem involved in maintaining and modify-
ing software produced in this way are well known. Proper application of the
principles of composite design can improve this situation by producing systems
and programs with an inherently simple design which is easily understood and
therefore easily maintained and modified.

Classically, a good modular structure for a program is defined as
one in which the interrelationships of the modules which make up the program
are minimized and the internal strength (dedication of-elements of the module
to performing a single function) are maximized. Composite design defines
measures-for evaluating both the interdependence of modules and the internal
strength of a module. These measures are used concurrently in evaluating the
modular design of a program. Good design is refined until the measure is
acceptable.

Programs designed using this concept are composed of modules. A
module is a group of program statements which have the following character-
istics:

o The statements are lexically together.

o The statements are bounded by identifiable boundaries.

o The statements can be collectively referenced by a name from
any other part of the program.

Composite design provides the software designer two sets of measures
for evaluating the modular structure of a program. The first and most
important of these measures is modular strength. Modular strength is a
measure of how tightly the internal elements (statements, code segments)
of a module are bound together. Composite design recognizes six types of
binding and associates a weight with each type on a relative scale. Theoptimally bound module is one in which all elements within the module are
an integral part of, or essential to, the performance of a single function.
This type of module is to produce program structure which is composed of
modules which exhibit functional binding.

3-9



The second set of measures of program modularity is coupling.
Coupling is a measure of the relationship between program modules. Modules
that exhibit low coupling tend to be independent of the program structure in
which they are used. Composite design recognizes five different types of
coupling; the lowest, and therefore best, is data coupling. A module which
is-data coupled to the environment in which it resides communicates with
other modules by accepting input and returning output in the form of para-
metric data.

Composite design produces a flexible, step-by-step strategy for
developing the modular structure of a program from the basic structure of
the problem to the solution. This top-down process, entitled composite
analysis, channels the designer to think of a problem as being composed of
several smaller problems in which a portion of the software solution can be
allocated. Composite analysis is an interactive process of continually
reviewing the emerging design to produce independent program modules with
clearly defined interfaces. The results of the process are a graphic repre-
sentation of the program's-modular structure.

3-10



3.2.4 Study Data

The terms and methods that are called composite design have been
adopted from a paper by G. J. Meyers.

The techniques of composite design have been recognized and used
extensively in software projects for years. Composite design has identified
and named the techniques that have been used. The best examples of these
techniques are arithmetic subroutines available in most computer installations
(all parameters are passed through calling sequences and perform a single
function).

Modern operating systems have extensive library management systems
to handle individually developed modules. These systems evolved because
most users recognized the value of modular programming systems.

The experience of the Saturn flight program can be cited as an
application similar to Spacelab. The early Saturn flight program was not
organized as functional modules. This was identified as a problem and the
programs were redesigned as functional modules. Verification cost savings
were d-ramatic--390 hours-of computer time per flight before, 175 hours after.
Errors due to programmer interaction dropped from 26 percent to 12 percent
of the errors reported during debug and verification. Redesigned into a
modular system increased core utilization only one percent--from 86 to 87
percent of the total available. Program change implementation time was
reduced by 30 percent--a critical factor in the Spacelab operational environ-
ment.

3-11



3.3 STRUCTURED CODE

3.3.1 Theme

In concept, structured coding is an extension of the approach

utilized in hardware design and development,.of constructing complex
circuits from elementary AND, OR, and NOT gates. The software analogies
to the hardware components are:

o Sequence of two operations.
o Conditional branch to one of two operations and return.

o Repeating an operation while some condition is true.

Structured coding is the technique of coding a program such that
all logical functions to be performed are comprised of these three basic
software structures.

3.3.2 Conclusions

Application of the structured coding technique to software
development has shown the following advantages:

o Readability/maintainability of logic flow.
o Detail design of logic flow prior to initiation of coding.
o Reduction in complexity of software with a corresponding

reduction in testing requirements and an increase in
overall reliability.

o Increased visibility for communication and audit purposes.
o Eliminate possibility of incorrect branches.

Spacelab, as all space systems, requires reliable software.
Structured coding takes one more step in the evolutionary process of
eliminating programmer errors, thereby improving reliability.

In addition, the readability of structured code will reduce
transfer time and expense when ESRO delivers the software to NASA.

3-12



3.3.3 Description

Structured coding is based on the structure theorem which states
that any proper program (a program with one entry and exit) is equivalent
to a program that contains as logic structures only:

o Sequences of two or more operations.
o Conditional branch to one of two operations and return

(IF -Then Else Statement) .
o Repetition of an operation while a condition is true

(Do While).

The physical representations of these logic structures are shown
in Figure 3.3-1.

. Sequence

IFTHENELSEO ILE

Figure 3.3-1 Logic Structures

Each of the above figures constitutes a proper program and, through combinations
of these basic structures, any size program can be developed.

3-13



Traditionally, programmers have been unrestricted as to the format
of code and organization of logic. The primary objective has been to develop
software which will solve the immediate problem at hand with little thought
given to readability, ud arsra~iaFflity, maintenance, transferability, and
documentation. The standards established through use of structured coding
will address these significant problem areas through the following techniques:

o Absence of arbitrary "branches" in logic.
o Formatted coding.
o Picture-on-page organization.

A major characteristic of programs written in structured code is
that they can be literally read from top to bottom typographically; there
is never any jumping around as is typical in trying to read code which
contains GO TO statements. The property of readability is a major advantage
in testing, maintaining, or otherwise referencing code.

Another advantage of structured code, of possibly even greater benefit,
is the program design work that is required to produce structured code.
The programmer must think through the processing problem, not only writing
down everything that needs to be done, but writing it down in such a way
that there are no afterthoughts with subsequent jump-outs and jump-backs.
He must ensure -no indiscriminate use of a section of code from several locations
because it just happens to do something at the time of the coding. Instead,
the programmer must think through the control logic of the module completely
at one time, in order to provide the proper structural framework for the
control. This means that programs will be written in a much more uniform
way because there is less freedom for arbitrary use of code.

As illustrated in Figure 3.3-2, structured coding is performed
according to indentation standards which group logical sequences for reada-
bility and which organize the program logic such that the logic flow is
significantly easier to comprehend. It may be seen from analysis of the
figure that programmer thought is required to arrive at the structured approach;
however, it is more obvious that traditional code is significantly more
complex and more difficult to read, maintain, or transfer.

Inherent in achieving the readability objective of structured
code is the necessity for restricting the physical size (number of state-
ments) which comprise a logical entity. Although a program may be highly
structured and readable, it is extremely difficult to comprehend 15 to
20 pages of code without significant analysis. For this reason, the picture-
on-a-page technique should be utilized. This technique requires that theprogrammer utilize a top-down design on his assigned area and subdivide
the logic into small stand-alone elements of approximately 50 to 100 linesof code. The first page would then contain the necessary controlling logic
for subsequent pages containing lower levels of coding. Through
this technique, a programmer or program user can access any level of detailfrom the highly summarized top-level to the complete detail at lower levelsin a systematic manner. This can be recognized as the application of top-
down concepts to coding.

3-14



An important task in assuring that a program meets its design
requirements is the detailed audit procedure. Since this audit is best
performed by someone not intimately involved in the program development,
readability of the code is of prime importance. One of the advantages
-of the structured code technique is that it provides a basis for systematic
reading of the program. The reading sequence within each segment is
strictly from top to bottom. As a result, audit procedures are made
more systematic and result in higher reliability of software.

3-15



TRADITIONAL STRUCTURED1

IF p GOTO label q IF p THEN

IF w GOTO label m A function

L function B function

GOTO label k IF q THEN

label m M function. IF t THEN

GOTO label k G function

label q IF q GOTO label t. DOWHILE u

A function H function

B function- ENDDO

C function - I function

label r IF NOT r GOTO label s (ELSE)

D function - - ENDIF

GOTO label r ELSE

label s IF s GOTO label f C function

E function DOWHILE r

label v IF NOT v GOTO label k D function

J function ENDDO

label k K function IF s THEN

END function F function

label f F function ELSE

GOTO label v E function

label t IF t GOTO label a ENDIF

A function ENDIF

B function IF v THEN

GOTO label w J function

label a A function (ELSE)

B function ENDIF

G function ELSE

label u IF NOT u GOTO label w IF w THEN

H function M function

label w IF NOT t GOTO label y ELSE

I function L function

label y IF NOT v GOTO label k ENDIF

J function ENDIF

GOTO label k K function

Figure 3.3-2 TraddCtional and Structured Control Code

3-16



S3.3.4 Stud Data

Work by H. D. Mills forms the basis for the structured coding

concepts of this study. His work was based upon earlier works by Bohm,

Jacopini, and Dijkstra.

The principle drawing factor in utilization of structured coding

is to increase programmer productivity through significant reduction in

coding errors. The measurement parameter utilized for assessing programmer

productivity is the number of source statements generated per programmer

day or programmer month when spread over the lifetime of software development

to cover all associated development activity. As would be expected, this

measurement parameter varies widely depending on such factors as complexity

of software system, user requirements, programmer experience, change activity,

software system application, hardware limitations, etc.

F. T. Baker's work on the New York Times Information Bank System

has been the most notable application of structured coding. This system

required over 83,000 PL/I source statements. The programmer productivity

figures for that application were 65 source statements per day with a minimum

of error encountered as shown in Tables 3.3.1 and 3.3.2.

Comparison of programmer productivity among widely varying applica-

tions is extremely subjective; however, the results shown indicate that

an improvement by a factor of two should be possible over existing coding

techniques. The use of structured coding as a software development tool

adds a new dimension to programmer productivity.

3-17



TABLE 3.3.1 ERRORS IDENTIFIED DURING ACCEPTANCE TESTING

ERROR TYPE

Misinter-
Source Incorrect Omitted preted

Subsystem Lines Function Function Function Total

File Maintenance 12,029 0 0 0 0

Conversational -38,990 9 8 3 20

Data Entry Edit 13,421 0 0 1 1

Other 18.884: Q - -Q- - -Q-

Total 83,324 9 8 4 21

TABLE-3.3. 2  ERRORS IDENTIFIED DURING OPERATION

ERROR TYPE

Misinter-

Source Incorrect Omitted preted

Subsystem Lines Function Function Function Total

File Maintenance 12,029 1 0 1 2

Conversational 38,990 4 3 0 7

Data Entry Edit 13,421 8 5 3 16

Other 18,884 0 _0 0 0

Total 83,324 13 8 4 25

New York Times Information Bank System Error History

3-18



3.4 PROGRAM LIBRARIES

3.4.1 Theme

The program library provides an automated method of generating,

updating, and releasing programming products.

3.4.2 Conclusions

Automated control of the software by programming libraries provides

a cost effective method to control software development.

Spacelab will benefit during both the development and operational

phases in several ways:

o Product delivery quality is improved.

o Measurable milestones can be established and monitored.

o Product visibility is improved.

o A data base is established for configuration control.

3-19



3.4.3 Description

Programming libraries are those classes of data files on mass

storage devices (disk or tape) that represent the source and object code

that is the programming end product.

Libraries used to assist the programmer have four distinct sections:

o Developm;nt Library - The working file of source statements

and object decks that are the programmer's .evolving product.

The programmer can modify this file as required to produce

a finished product.

o Verification Library - The file of modules that have been

declared complete by the programmer. Modules will

be subject to formal verification procedures by the testing

organization.

o Qualified Library - The file of completed, tested modules

that have met all specifications. These modules can be
selected and used as finished products, but have not been
submitted to the ultimate user as CPCEI.

o Production Library - The file of programming products that
have been qualified for and by the customer. This file
includes source statements and object code for individual

modules as well as the complete, integrated load modules
that represent deliverable CPCEIs.

Automated libraries become a valuable management tool by providing
control points for milestone measurement and statistics for performance
measurement.

3-20



3.4.4 Study Data

Numerous library tools exist. Most operating systems developed
by computer manufacturers provide the basic building block. Using these
blocks, library management and control systems have been developed.

The IBM Federal Systems Division Programming Production Library
(PPL) discussed by F. T. Baker represents another, as does the IBM Federal
Systems Division Saturn Software Release System.

3-21



3.5 STRUCTURED DOCUMENTATION

3.5.1 Theme

Structured documentation is a strategy for obtaining low cost,

usable documentation of programming products. This is accomplished by

integrating the concepts of top-down composite design with the documen-

tation process. As a result, documentation by program review and final

description become byproducts of the programming process.

3.5.2 Conclusions

Spacelab costs can be reduced by adopting structured documentation

techniques that will:

o Produce usable documents on time.

o Reduce the number of documents.

o Reduce the-volume.of documentation..

o Produce consistent documents.

In addition, software quality will be improved because:

o Programmers will produce programs that agree with the

document, not documents that agree with the program.

o Programs will reflect approved requirements.

3-22



3.5.3 Description

Documentation should be products of the definition and design
activity. Implementation, verification, validation, and delivery should
only modify design documentation.

Employing top-down design will require that documentation be
developed in a hierarchical, tree-like fashion. High level documents
will reflect high-level program modules. These high level documents will
in turn be explained and/or expanded by lower level descriptions, and the
process continued to the lowest module level. This produces documents
that can be read and understood at any level. In addition, physically
separate documentation required by volume can be done without impacting
readability.

When the design of a program module has been documented (at any
level), that document is verified against the specification and then is
reviewed and approved for implementation. The programmer must then program
the document, not document the resulting program. Any modifications from
the approved design must be reflected by revised documentation that must be
returned for the verify, review, and approval cycle. This includes limi-
tation and/or constraints. The only.addition permitted to the design.
document is the program listing and verification test results.

Usability of documentation is enhanced by using the principle of
composite design in determining content. Composite design calls for modules
that describe functions. So, documentation should reflect functions to be
performed. This is done by describing what are the inputs, what outputs
are required, and what transformations-occur to translate inputs into outputs.
Assisting in this design is IBM HIPO: Design Aid and Documentation Tool.
This tool uses visual techniques. They are shown in Figures 3.5-1 and
3.5-2.

Readability can be enhanced by using these visual display techniques.
Program operation is described in the form of:

o Visual Table of Contents
o Overview diagrams.
o Detail diagrams.
o Supporting text and annotated data.

Functional documentation proceeds from a top level Visual Table of
Contents diagram down to a basic module diagram of Input, Processing, Output,
functional chart. For each task to be performed (see Figure 3.5-2), a module
diagram is developed. For simplicity sake, only one module is described in
the figure.

3-23



The top level Visual Table of Contents (Figure 3.5-1) identifies

major functions to be performed and also points the reader to additional

lower level charts via text data within the diagram.

The major functional block is documented by a lower level table

of contents. This table of contents identifies the next level tasks to be

performed by the selected function. Each block illustrated on the second

level Visual Table of Contents is further described by function (see Figure

3.5-2). Functions are described in relation to INPUT, PROCESSING, and

OUTPUT. Pertinent additional descriptive data relating to processing functions

are described in tabular format.

3-24



3.5.4 Study Data

Structured documentation has two major features--hierarchical

organization and input/output/process. The hierarchical organization is

a natural byproduct of the top-down design and an accepted concept in

engineering for description of hardware. The technique has gained accep-

tance in programming in the form of block diagrams. Dr. H. Trauboth

(NASA/MSFC) and others have proposed hierarchical organization of software

documentation.

The Input/Output/Process format for describing computer programs

is the basic organization of the Part I CPCEI format in the Apollo

Configuration Management Manual (NHB 8040.2). -

These two concepts were merged in the IBM-developed concept of

-HIPO: Design Aid and Documentation Tool used to document the System/370

Operating System for virtual storage operating system.

3-25



Diagram 1.1 (Page I of 3)
machine Chek ileri Supervisor Overview ard Visual Table

chnV Cc inrruonintptio of ConIents for Diagrams

MACHINE CtEC. ANDLA

- -. " TManag ment Sup -SVC FISt-LEVitEL INRAIUPTION HAND,

the O sAS Reor . ( e b reist, contens of I*e iEver opd
M..See, Sc1m S C

fl Di--.. 2.0 HHi....r ,T...d bm 1h.k.
.1ul nl . C.1:1111

S.C SECOD-LELit 1Nr U-.11 ON ANDLfA

o.S ro 5h T _. t e wlill pmik 11e r sed urric
S- D i,, 7.3 Ty,,

V in.y ti"n n 7- SVC

T--1eo Sr -I; - I1

V - VC in or
lllOM *Midi tlo (OO e

.v C a

i ~ r* wel In riwon 1vt irrcrOlr 3.17

Diagra2 2.0

inlerrupiorn Siiprviision

Visual Table of Conleefe

Z. .. VO i--.
rnidll ag v i,,i;, gL Tn 2 l.~ l 4 TOn...,. .. ,,. .,ok.20O~T.

Figure 3.5-1 Visual Table of Contents Diagrams

3-26

".-rra IC p0 o,*i

I IDiagram 2.0

-al~I, I/O~lT- 7. 3,1

Figure3.5-1 isualTable f Conents Dagram

'nid il~ li~loior.. r3-26a



Diagram 2.0
Interruption Supervision
Visual Table of Conlent

gram 2.2

ype-I SVC Interruplion Handling

Input Processing Output

C £ iAS CSA

'5h'* 0 5 1 I t..l OSS i! 05$A,1,

.---- 2 ie5er g9 r r10? ,k. .e4res e

........ r.... -- .. .. 5.. o d.

t. .20 o ...... .....O l d. .TT. AC I.

5 ...... 
.

STTA SVC Wall i OS.- --;d -- - -. ..

1. I0

7, C R,- t........

S " i 7 O).... o 5 . .. . . .. ..qn .a.- O

7c- i , b rI .... .

IC......... C L--S- -

I 1t-; W r T

C 3 n dn w.o e r.-Ll+nl a ,l III1U l.L

wuA. 0. .. t C . u t

bout. 50c I Ioa

I-I OT ; 5 1 I II

1 r a I t ,it. I rye al.. | et R

I 300t t-" Itt.,i o,, s I .t t. . .. n.l l: 554 - IltIoI-oO I

3------- ----- ------ -------

t . W0B 5 4e o2H . IV I

6I I t T- 11 ,, lt - A llt,, T- I.O-

II ~~ s . , 11;. t3.

I I Ill I

1,11 55 C/ tarnt L vt ,, Ine pio fl nd t r, V., /4 i ietA1,t kII0 IO

I tort i.ttbr le Ios.(S I l n I I I
I I

6 I;trthiA:onICI'O Inil r dr cn rlh a'L I)w n

o~yn(o 'lo l6141;"1S1 I+ 'j  III

1o4 , - I I

I5v I1100LoonioIIVI1u$I I

Ir o lI I

-I IEAO OOCIm.In IS. Id.Ks I t ,

7I Iabassr I

I IIA I,+ S ., tt .. ,.f I l ll t.OI /I S Ii. 1.p::4 . I I I

II

-- - -- - -- - - - -- - -- - - - -- - -- - -- - -- - -- - - - -- - -- - -- -

0 Ltc. ii a,.v is . e t- )e .,t,
5 

._t. r.tt tn I
51 AT)0,. ) I. . t,$ ,Lr r n *o, S:.l. (1/ 1 I ll .It.v

* I 52 . I r ste rI t .t tot 4t VI. ri ::.

Figure 3.5-2 Detail Flow/Input-Process-Output Diagrams

3-27



3.6 CAUSE AND EFFECT ANALYSIS

3.6.1 Theme

Cause and effect analysis, based on techniques used in hardware logic

design, is a means of rigorously defining a software element in terms of its

inputs (causes) and outputs (effects). The techniques involved include annota-

tion of the written program definition to identify which causes produce which

effects, and graphic representation of the results to form Boolean graphs.

3.6.2 Conclusions

Cause and effect analysis is an excellent specification review tool

providing:

o A concise means of documenting complex interrelationships

which are difficult to express in writing.

o A complete set of validation tools used to verify the quality

of a software product.

o A vivid description of system interrelationships when Spacelab
is transferred to NASA.

3-28



3.6.3 Description

Cause and effect analysis produces a Boolean graph that rigorously
describes the structure of a program's functions. It shows relationships in
precise, logical, Boolean terms that are difficult to express in English. It

shows them graphically so that they can be analyzed.

The graphs and associated techniques were originally developed as a
software verification tool. Prior to the development of these techniques the

process of software validation was an error-prone activity. The steps involved
analysis of the program specification and the code if available in an attempt to
identify all possible functional variations that could occur during program
execution. The findings produced by this somewhat intuitive process were then
documented in the form of test cases. The problem was that no one using this
method could be sure that every possible situation had been covered by a test
case. The result was that many times software was released into a production
environment without being thoroughly tested. Cause and effect analysis makes
the process of software validation a more disciplined activity in which all
possible functional variations of a program are identified, and therefore can be
tested.

To produce a Boolean graph, it is necessary to thoroughly analyze the
written program specification. The process of analysis involves identification
of each cause and effect in the document and numbering them as unique entities.
The result of this process is called a node list. The graph itself is then
developed from the node list. The process is to list the causes on one side
of the.graph and the effects produced on the opposite side. Some causes will
produce immediate effects; others must be associated using the Boolean operators
AND, OR, NAND or NOR to produce the required effect. The node for each cause
that is involved in process of producing an effect must be connected by a line
to the appropriate effect node. Each Boolean association of causes is identified
by an appropriate symbol on the graph. During the development of the graphs,
errors in the specification document are identified. The nature of the graphing
process is such that there can be no ambiguities or inconsistencies or the graph
cannot be drawn. This characteristic is one of the major benefits of cause and
effect analysis. The system designer and the programmer jointly can develop a
complete graph which rigorously defines the problem the program is required to
solve. The completed graph then becomes a valuable communication tool for the
remainder of the development cycle. The graph is also an excellent addendum
to the normal program documentation providing a clear and concise definition of
how the completed program will perform.

Using this rigorously defined technique permits the development of
automated tools to document these interrelationships.

The process of developing the necessary test cases to prove a program's
validity normally is conducted concurrently with the actual implementation effort.
The validation group assigned to test the finished program can develop a computer

3-29



program that provides the computational and data handling power required to

produce an effective set of test cases. Input to this program would be the

encoded information contained on the cause and effect graph. The program would

produce four kinds of output information which complete the process of developing

aft exhaustive tes-t plan for the program being validated. These outputs are:

o A list of the distinctive functional variations eligible for

testing.

o A pattern of causes (inputs) to be invoked or suppressed for
each-test case.

o A pattern of effects (outputs) to be observed in a correctly
executed test-

o A pattern of faulty variations potentially responsible for a
failing test.

3-30



3.6.4 Study Data

The base for this study was the advanced techniques used by the

IBM System Development Division in validation of software systems (such

as OS/370 VS).

3-31



3.7 SIMULATION

3.7.1 Theme

Software in space must execute correctly the first time. No
test runs are permitted-. Therefore, simulation must be employed to debug,
verify and validate software prior to actual operation.

.3.7.2 Conclusions

Both hardware and digital simulation of the Spacelab will be required
to ensure reliable software that works.

Digital simulation provides these advantages:

o Repeatability - with digital simulation, exact repeatability
is possible including timing and error conditions.

o Error Response - with digital simulation, hardware errors
can be introduced that are physically impossible, either
because of timing constants or possibility of hardware damage,
in the operational environment.

o Traceability - all simulated elements of the system can be observed
at any point of operation. This permits detailed analysis of all
software errors.

Hardware simulation provides these advantages:

o Authenticity - real time operation is more closely obtained. Any
software simulation is a model and as such never describes all
physical operation.

o Speed - digital simulation at the detail level normally is much
slower than hardware simulation in real time.

Spacelab will require both types of simulations for the development
of onboard software. The hardware and software used for these simulations
should be duplicated (or moved) when Spacelab delivery is made from ESRO to
NASA.

3-32



3.7.3 Description

Development of onboard software requires five modes of simulation.

o Modeling -

The operation of the onboard processor and system dynamics
is grossly modeled for a ground-based computer to permit
rapid execution of software programs. Most programs' logical
errors can be detected and corrected at low cost.

NOTE: -System dynamics includes all input and output
functions to the computer as well as dynamic models'
-external functions.

o Interpretive Computer Simulation (ICS) -

A detailed logical model of the onboard processor and the related
system dynamics is developed for a ground based system. This
simulates the onboard processor at the bit level. The simulation
can perform diagnostic checks-during execution to-produce trace
data, memory dumps and accumulator values to enable a more
detailed analysis of a problem. Information can be obtained
to produce a measure of the load placed on the computer at
any given time. Random but controlled error conditions can
be introduced into the software to evaluate software response.
The actual code under test need not be altered to obtain
expected results or induce specific software paths. The
simulator can perform separate checks on the output of the
software under test to insure that the calculations are being
performed correctly. Every variable used in the program
computation is available to facilitate problem analysis. The
ICS can provide a record of critical timing paths, frequency of
instruction reference and even a record of unused (or untested)
instructions. In addition, error conditions can be traced
back to the source.

o Target Computer Independent Simulation -

Interpretive Computer Simulation suffers in performance as the
target computer speed approaches the host computer speed. The
ratio of simulation execution time to mission real time has
grown from approximately a 1.8 to 1 ratio to over a 100 to 1 ratio
over the past few years. To maintain acceptable software develop-
ment schedules, alternative simulation techniques are required.
The target computer independent simulator becomes a useful tool
if the operational software is written in a higher order language.
The programmer source statements, being computer independent, can
be compiled into host computer instructions instead of target
computer instructions. The simulator takes advantage of this
attribute. The programmer coding in the high order language
requests that the compiler generate host computer instructions
rather than target computer instructions. The compiler provides

3-33



timing information with each source statement code to assure
that the simulation will proceed based on realistic timing
relationships. Diagnostic checks similar to those afforded
by an ICS are available. The advantage of this type of
simulation is that it proceeds at a rate close to the host
z-achine's speed, affording quick testing of program logic.
This type of simulator is being developed for the Space Shuttle
software development effort.

o fvbrid Simulation -

The ground based computer is interfaced with an onboard
processor. This provides actual hardware execution of
instructions but system dynamics is simulated digitally.
This allows the software to execute in a manner which will
obtain exact timing and interface signals without the useof the actual hardware which may or may not be developed
at that time. The hardware is simulated by means of
m.athematical models and allows the design engineers to
evaluate hardware changes before implementation. This
technique also provides a simulation of-a real time-
environment so that software can be tested as if in actualconditions. Hardware problems can be simulated that maybe impossible to do with a hardware breadboard. The
use of hybrid simulation allows situations to be simulated
w ich would cause physical damage to actual hardware in
proving software response.

o Eardware Simulation -

This is a complete hardware buildup of the onboard system.It provides a realistic response to the onboard software,
while providing easy access to induce requested hardwareresponse. This type simulation provides the most realistic
environment for software validation.

No sof:ware validation is complete until it executes on the realhardware. Onbcard software approaches real hardware execution in stages--
first on the onboard processor driven by a software model of system dynamics,then to a breadboard and finally to the actual flight.

3-34



3.7.4 Study Data

The IBM Federal Systems Division has developed and used digital

simulation for most of their flight processors. This included the Saturn

LVDC, the Skylab Apollo Telescope Mount Digital Computer (ATMDC), all of the

4/Pi series processors, and the Shuttle AP-101.

The Saturn flight program was developed with these simulators.

Skylab used these same facilities with additional equipment representing

Skylab functions.

Shuttle has identified these simulation facilities for operational

software development.

Simulation used in the Saturn/Apollo and Skylab Programs provides an

excellent study base for evaluation of the simulation techniques.

The Six Degree of Freedom/LVDC Simulator, Simulation Laboratory, and
Flight Program Checkout Facility (360/44) have been utilized as tools in

verification of both Saturn and Skylab flight programs. The following figures

demonstrate the value of simulation in delivering an error free software

package by raising questions and exposing possible problems.

SATURN FLIGHT PROGRAM (LVDC)

Saturn
Flight Program Questions
For IU Exposed

SA-206 Launch Vehicle 232
SA-207 Launch Vehicle 199
SA-207A Launch Vehicle 203
SA-208 Launch Vehicle 105
SA-209 Launch Vehicle 30

SKYLAB FLIGHT PROGRAM (ATMDC)

Questions
System Exposed

16K Programming System 403
8K Programming System 317

3-35



While simulation uncovered a large number of questions the fact
remains that:

o On a system as ccmplicated as Saturn, there has never been
a software problem to prevent achieving complete mission
objectives.

o The ATMDC on Skylab has reported two minor software problems
in over six months of continuous operation. Neither affected
mission performance.

This record provides -proof that the simulation techniques used on those projects
produce high quality software.

Simulation saves time during program verification on the actual hard-
ware. Simulation uncovers problems such as coding errors, logic problems,
and data specification errors, thus allowing all the time used for verification
on hardware to determine interface problems and erroneous hardware specifica-
tions. Proof of this time saving technique is illustrated in Figure 3.7-1.
This represents two programs that were written for the Tactical Aircraft
Guidance System application. These are two delivered- programs that.were a
part of this application. These programs performed different functions, yet
did the same basic operations of read input, reformat, and output. One used
simulation during program verification, the other did not. Note that the program
using simulation completed verification approximately four weeks early.

3-36



- - - PROGRAM DEBUG WITH SIMULATOR

• M MI PROGRAM DEBUG WITHOUT SIMULATOR

7C - -

70 6r. /
JOB
COMPLETE 5C

1 2 3 4 5 6 7 8 1011 12

TIME (WEEKS)

Figure 3.7-1 Software Debug Comparison

.3-37



3.8 AUTOMATED MANAGEMENT SYSTEM

3.8.1 Theme

The Automated Management System provides an automated method for
assuring controlled planning, development, and implementation of the software.
This is accomplished through written guidelines, procedures, and reports
which provide visibility into the status and progress being made at any point
in time of the software development. Additionally, facilities are provided
which assist in controlling the generation and maintenance of the software
and documentation.

3.8.2 Conclusions_

Experience gained in the development of techniques for the Saturn/
Skylab programs has proven that an automated management system is a mandatory
requirement for accurate, cost effective system control of software programs.

The magnitude of the Spacelab software system presents a large
paper-control problem to control the change activity within the-system. The
ability to track change activity, the programs in development, documentation,
and the coordination of hardware and software implementation, is vital to the
operation of those charged with the responsibility of a successful mission.
This important fact is accented because of the short lead times caused by
the refurbishment cycle of the Spacelab at multiple sites.

3-38



.3.8.3 Description

The Space-lab software consists of many interactive software modules
and exists in many forms and change levels. These include source modules,
object modules, az.d load modules in the different phases of development.
This assortment creates a complex control problem during the software development
and delivery process. The problem is not isolated to computer programs
alone. Documentation, such as specifications, user's manuals, and interface
control documents -exhibit the same problem characteristics.

To accomrlish this timely and accurate configuration management,
the use of automated methods is required and must encompass the complete
spectrum of software design, development, and maintenance. These automated
methods must be flexible to meet the varying Spacelab requirements and
yet provide a straightforward approach to control of the entire system
from cradle to grave.

The automated management system should support:

o Remc e terminal'access for software program generation,
configuration accounting, and management information
tracking activities-.

o A security system to prevent inadvertent destruction
of the data base.

o Processes for management and control of the software
program libraries.

o Autctmated generation of the delivery package (source
modules, object modules, and documentation).

3-39



3.8.4 Stud Data

The recommended use of the automated management system is based on
IBM's success with these methods in the Saturn/Skylab programs. These methods
have significantly increased visibility into the system and provided better
control of change by management. The delivery process has been significantly
improved and streamlined both in time, manpower, and accuracy in making a
Saturn software delivery.- Figure 3.8-1 shows the manpower saving realized by
an automated system.-

3-40



MANUAL SYSTEM
120 .

110 -

100 -

90

MANUAL SYSTEM
80

70

MANPOWER
IN MAN/HRS 60
PER WEEK

50

40

AUTOMATED SYSTEM
30

AUTOMATED SYSTEM
20 -

10

DELIVERY TRACKING DEVIATION TRACKING
SYSTEM SYSTEM

Figure 3.8-1 Deviation and Delivery Tracking Manpower Requirements

3-41



3.9 SOFTWARE MANAGEMENT BOARDS

3.9.1- Theme

Proper management of the software development and operational phases
is required to produce computer programs that satisfy operational requirements
as T'ell as cost and schedule commitments. Properly organized Software
Man.aement Boards have proved to be effective vehicles to provide software
development precepts in the pre-development phase, control of the design
during the development phase, and configuration control of the end products
during the operational phase. Software Management Boards serve as focal
points for software requirements emanating from many sources, assuring quick
and decisive action.

3.9.2 Conclusions

Software Management Boards have proved to be effective software
management techniques on several large and small software development projects.
With the number of government organizations and contractors involved in the
Spacelab.project, positive management control of the software is mandatory
and can be effected through the use of Software Management Boards.

3-42



3.9.3 Description

The requirements for the control of software change as the software

transcends from concepts, requirements, development to operation. To satisfy

these changing responsibilities, the management boards' makeup and 
spheres of

control must be adjusted accordingly as depicted in Figure 3.9-1. Three types

of boards that have served successfully for diverse types of software 
require-

ments and products are described below.

SOFTWARE REVIEW BOARD

This board, in its preliminary form, consists of ESRO and NASA personnel

and is expanded to include contractor personnel when appropriate. This group's

primary purpose is to manage the design and development 
of the Spacelab's systems.

During the software pre-development period, the Board will define

software standards, programming-languages, programming techniques, documen-

tation requirements, and verification techniques. The Board will ensure that

these sets of software standards and procedures are established and used by

the software contractor.

During the development phase the board acts as the clearing house for

software requirements imposed by the users. The Board will forward approved

requirements to the software contractor for inclusion into the 
system specifi-

cations. The responsibilities of the Board during this phase are:

o Establish schedules and monitor these schedules to ensure

timely and orderly controlled development of the software

system.

o Receive and approve software requirements baselines and

baseline changes.

o Review and approve the software requirement specifications,
products of the definition activity.

o Review and approve the design specifications, products of the

design activity. This point establishes the design baseline

from which the computer program is manufactured and also

establishes the point at which changes to the requirements

are rigorously controlled.

o Review and approve all requirement changes and provide

positive change accounting procedures. This responsibility
of the Board is important and is usually the determinate in

providing on-time, on-cost software products.

o Assure that the hardware and software development processes are

compatible through establishment of interface control documents,
hardware/software trade studies, and interlocking board
memberships.

3-43



o Review and approve software acceptance test plans to assure

the test will adequately prove that the software is reliable

and meets the operational requirements.

SOFTWARE CONTROL BOARD

The Software Control Board consists of contractor personnel, and it

is their responsibility to provide direct management over the software during

the software development phase. The Control Board will ensure that the guide-

lines and the designs approved by the Review Board will be implemented. The

types of functional groups comprising this Board are shown in Figure 3.9-2.

The Software Control Board will meet as required to review current

status, additional requirements, and/or implementation or integration diffi-

culties. This Board will have the authority to resolve all technical problems

within the scope of the guidelines and design requirements approved by the

Review Board. It will also refer any design requirements or technical

problems that cannot be resolved within the framework of the contract to the

Review Board for final resolution.

The Software Control Board will be active during the software
development phase to enable fast response to problems that appear during

development.

SOFTWARE CONFIGURATION CONTROL BOARD

The Configuration Control Board consists of the combination of the
Software Review Board and the Software Control Board and is placed into
operation at the software acceptance test milestone. The most experienced technical
people from ESRO, NASA and the contractor are combined into a comprehensive,
integrated management control unit. This is necessary to provide fast
action on changing requirements during the operational phase. With up to
50 launches a year, fast software response to requirement changes is imperative.

The Configuration Control Board will assess new requirements or
change recommendations and analyze the impact on the system performance.
If the change is approved, the Board will conduct a design review and,
upon approval, implement the requirement and determine the change break-in
point into the Spacelab system.

3.9.4 Study Data

Saturn experience has proved the effectiveness of the Software
Management Board concept. During the early stages of Saturn development no
board existed as a formal, recognized entity. As the project progressed
and the number of software users expanded, it became imperative to establish
a single point of control for the software development/operation processes.
The spheres of authority and responsibility were modified as experience with
the Board concept grew. The concept proved so valuable that it was imposed
upQn other Saturn software projects and was implemented at the inception of
the Skylab Apollo Telescope Mount Digital Computer (ATMDC) software system.

3-44



SOFTWARE REVIEW BOARD

OFTWARE CONTROL BOARI

! TRANSITIONAL SOFTWARE CONFIGURATION
PERIOD CONTROL BOARD

Project Start Software Acceptance Test
Contract

Award

Figure 3.9-1 Software Management Board Evolution

3-45



GROUND
CHECKOUT
SOFTWAR

ONBOARD MENT
SOFTWARE

SOFTWARE
CONTROL

IBOARD

INTERFACE
GROUP

Figure 3.9-2 Software Control Board Functions

3-46



SYSTEM -CONSIDERATIONS

4

SParagraph Title Page

4.1 HIGHER ORDER LANGUAGE ........................... 4-2

4.2 .USER LANGUAGES ................................. 4-4

4.3 ONBOARD COMPUTER..............................4-6

4.4 SUPPORT SOFTWARE ............... ............... 4-12

4.5 SOFTWARE DEVELOPMENT FACILITIES .................. 4-16



SECTION 4

SYSTEM CONSIDERATIONS

Spacelab programmatic decisions must be made that affect the cost
of software and yet cannot be considered techniques of programming.

For Spacelab, these items present opportunity for significant cost
savings in software development and operation:

o Higher Order Language
o User Language
o Onboard Computer
o Support Software
o Software Development Facilities

4-1



4.1 HIGHER ORDER LANGUAGE

The term Higher Order Language (HOL) is used to identify a class
of programmer tools that permit coding in English language statements.
The statements are then translated into object code by a compiler for that
HOL -

The HOL is problem-oriented and is relatively machine independent.
The compiler is the tool that implements the HOL on a computer, and is
normally designed to produce code for only one class computer. One HOL may
have several compilers, each compiler producing code for different computers.
One compiler may execute on one computer (the Host computer) and produce
object code that executes on another computer (the target computer). The
compiler may be implemented in a HOL other than the one it translates.

Higher order languages are designed to be an effective tool in expressing
problem solutions. This is an advantage since the-HOL programmer can express
his software solution in statements which are natural for him to use. The
key issue here is that the programmer avoid having to translate his solution
into the terms understandable to the machine. In time, an HOL programmer
comes to think in terms of the language he is using much like mathematicians
think in mathematical notation. This results in improved programmer produc-
tivity. The resulting programs are easier to understand, easier to learn
and easier to maintain.

The machine-independent characteristic of a high-order language has
two aspects. The first of these is that programmers using the language do
not need a detailed knowledge of the hardware on which their program will run.
This is not to say that hardware knowledge is not a valuable asset for a
programmer, it is, because a basic function of a programmer is to use the com-
puter hardware effectively. Nevertheless, it is true that it takes less
education time to become a productive programmer using a high-order language
than using an assembly language, primarily because a detailed knowledge of
complex hardware is unnecessary.

The second aspect of the machine-independent characteristic is
program transferability. If the language is sufficiently removed from the
machine, then it may be run on any computer if a translator exists for the
language on the target machine. This aspect is particularly important since
it provides the means for recovering software investment by maximizing the
use of existing programs.

These advantages come at a price. Historically, HOL's do not take
advantage of the hardware features of the target computer. As a result the
code produced has been less than optimal both in size (too much memory) and
performance (slow).

4-2



Memory and performance have been critical factors in computers
designed for the space environment and HOL's could not meet the restrictions.
Recent improvements in technology and manufacturing techniques have signifi-
cantly reduced the'restrictions on these computers. State-of-the-art space
computers can now provide greater memory and performance in a smaller, lighter
package that requires less power and can be purchased for fewer dollars.

Higher order languages now present a viable alternative to assembly
level coded systems.- The reduced software development costs can be evaluated
against the cost of providing an onboard computer with more memory and
performance capability required to compensate for the less than optimum out-
put from the HOL compiler. The reduced software cost realized by using a
HOL are a result of:

o Improvement in programmer productivity

o Improvement in product quality

o Improvement in program readability

o Improvement in program documentation

o Improvement in program maintainability

o Improvement in program development schedules

The availability of a HOL compiler should be a consideration in the
selection of the onboard computer.

Several candidate HOL's exist and have been evaluated for space
applications. Each has advantages and disadvantages. As a result of the
evaluations, JOVIAL and some of its dialects have been selected for use on
Air Force programs, and HAL (the Houston Aerospace Language) has been selected
for the Space Shuttle software. Current analysis indicate that 80 to 95 percent
of the Space Shuttle software can be done in HAL.

The use of a HOL for Spacelab software should be carefully evaluated
as a cost-effective alternative to assembly language coding tehcnique. The
operational advantages offered by the HOL's readability, reliability and
maintainability weigh heavily in such a decision.

4-3



4.2 USER LANGUAGES

A user language is a subset of the class of higher order languages
that is oriented to the non-programmer. The language is defined to solve
problems stated in terms of a particular discipline. Languages exist for
electrical engineers- mechanical engineers, traffic engineers and many others.
For Spacelab a language is required for the test engineers, principle investi-
gators and the Spacelab crew members.

Spacelab language requirements are:

o The language must be self-documenting.

This minimizes the requirement for additional documentation
and provides written definition of checkout procedures for
test personnel.

o The language must support engineering nomenclature.

Engineering terms and symbols must be integrated into
the user language to provide usability and readability.

o The language must provide automatic execution of defined test
procedures.

To eliminate operator errors and excessive response time,
test procedures can be defined and created in an off line
environment and be cycled in an automatic condition in the
Spacelab.

o The language must provide capability of building special
checkout procedures in real time.

Problems will arise during checkout where automatic test
procedures will not completely fulfill the necessary test.
Because of this it is very important that the capability
exist to interrupt automatic operations and allow the
crew or principle investigator to build a special proce-
dure to address the problem area.

o The language must support machine language and special purpose
subroutines.

It is probable that some aspects of checkout and experiment
control cannot be successfully accomplished by using aspects
of the user language. When these cases arise, it will be
necessary for the user language to relinquish control to a
machine language or special purpose subroutine. This must be
done automatically by the user language without interruption
of the procedure.

4-4



o A language must be functional and easy to use.

It is of prime importance that the user language provide the
functions required for the Spacelab program in a clear and
understandable manner.

Several examples of languages exist that meet most of these require-
ments. These languages are normally classified as test and checkout languages.
Examples are:

o Abbreviated Test Language for Avionic Systems (ATLAS) developed
for commercial airline use by Aeronautical Radio, Inc. in 1968.

o Acceptance Test or Launch Language (ATOLL) developed for check-
out of the Saturn vehicle by NASA/Marshall Space Flight Center
in 1965.

o Basic English for Testing Applications (BETA) developed for
aircraft testing-by the General Dynamic Corporation in 1970.

o Ground Oriented Aerospace Language (GOAL) developed by NASA/
Kennedy Space Center for Shuttle checkout in 1971.

o Vast Interface Test Application Language (VITAL) developed
for the Navy's Versatile Avionics Shop Test System by PRD
Electronics in 1970.

A user oriented language should be developed for the Spacelab to
reduce development and operational costs by giving engineering and scientific
personnel access to both onboard and ground computer systems without the
necessity of going through the software development cycle.

4-5



4.3 ONBOARD COMPUTER

With recent and projected computer hardware improvements in memory
capacity, computational ability, and power utilization combined with a
decreasing computer cost, the impact of software development cost on over-
all system cost has become an increasing concern. In addition, increasing
reliance is being placed on software to perform functions previously performed
by hardware. As a result, the software has become a critical gating item
both in system development and the ability to meet overall system objectives.
Figure 4.3-1 indicates the trend in software costs versus computer hardware
costs.

A common problem in all previous space programs has been a lack of
onboard computer capability to satisfy all the demands made upon it. The
most significant hardware limitations have been in the memory capacity of
the computer and the CPU computational speeds.

Previous experience in memory utilization on three projects is shown
in Figure 4.3-2. In all cases, the memory capacity was chosen based on pre-
liminary software requirements analysis and was thought to be more than
adequate for any future needs, In all cases a significant increase in soft-
ware requirements occurred during software development. This failure to plan
for adequate growth in software resulted in requirements exceeding the memory
capacity of the computer.

As with memory utlization, CPU computational capability has
largely been based on preliminary data, and growth in software requirements
has likewise placed a significantly increased computational burden on the
computer.

The effects of marginal computer capability on software develop-
ment costs is shown in Figure 4.3-3. The reason for the rapid increase
in development costs as the computer capability is approached is that a
slight gain in software capability can only be bought at the cost of increased
logic complexity. This increased complexity makes the program harder to
write, to checkout, modify, verify, and coordinate with other operations.

Because of the tendency to build unique computers to satisfy parti-
cular requirements, spaceborne computers have had unique architecture,
instruction sets, input/output capabilities, memory capacity, and CPU speeds.
These unique characteristics have resulted in significantly increased software
development cost. The costs were largely the result of inability to transfer
software having the same capabilities and the necessity for development of
special-purpose support software for every application/computer.

Studies conducted by IBM on airborne software development projects
which utilized the same computer hardware indicate that transferability
of common software from application to application can reduce cost per
program statement by as much as 75% and increase productivity by a factor
of five. In addition, transfer of operational software improves system
reliability.

4-6



100

,-
8 80
O

>60

0
OL.
I--

0

1955 1970 1985
YEAR

Figure 4.3-1 Computer Hardware/Software Trends

4-7
4-7



MEMORY.CAPACITY UTILIZATION HISTORY

100loo%

75%-
/ /

/ f

_ I

, 75/%
25%

TIME -

SATURN LAUNCH VEHICLE

SKYLAB ONBOARD SOFTWARE

....... TACTICAL AIRCRAFT
GUIDANCE SYSTEM (TAGS)

Figure 4.3-2 Memory Utilization History

4-8



VARIES ACCORDING TO
PROGRAM COMPLEXITY

6

z

4-9

U 3

25% 50% 75% 100%

Figure 4.3-3 Computer Capability (CPU Memory Capacity)

4-9



A result of commonality between onboard/ground based computers will
be the capability to utilize support software (high-order languages/
assemblers/linkage editors/debug aids, etc.) which already exist. This
co=monality also results in a reduction in the simulation area in that an
interpretive simulation of the onboard computer will not be required.

A significant problem in the development of spaceborne software is
.programmer training. In the majority of previous applications, the programmer
had to become knolwedgeable in the details of computer operations, support
software, and test equipment for each new project. Commonality can
significantly reduce this programmer training.

Studies have indicated that fixed-point arithmetic adds between six
percent and seventeen percent of the overall software costs. The use of fixed-
point arithmetic requires that the following tasks be performed:

o Scaling of all data to fit within the architecture
constraints.

o The range of' values of all parameters must be determined.

o Programmer must insert shift operations in equations to
assure proper alignment for arithmetic operations.

o Programmer must resolve conflicts between scaling require-
ments and accuracy requirements.

o Extensive testing of adequacy of scaling is required.

The range of cost increase is a function of the program type--
computational functions require more scaling operations than logical data
handling functions. With the increasing trends toward more capability in
data analysis/computation burden in the onboard computer, floating point
hardware is becoming a requirement.

As a result of the trend toward less hardware cost for computers
and increased cost of onboard software, it is recommended that the impact
of computer architecture, speed, memory, and configuration on software
cost be closely evaluated. Rather than making computer cost the main guide-
line, more emphasis must be placed on overall system cost impact resulting
from selection of the particular computer.

Because of their direct relationship on software cost, the following
recommendations are made:

o Onboard computer should have a memory capacity of at
least 50 percent over that thought necessary in preliminary
design.

o Onboard computer should have CPU computational ability
exceeding the original requirements by 50 percent.

o Onboard computer should have floating point arithmetic
built into hardware.

4-10



In addition to hardware capabilities, commonality between onboard
computers and ground-based computers should be a prime objective in space
software development. Commonality will reduce costs of support software and
will allow use of existing capabilities such as high order languages to
increase programmer productivity and allow transferability of software
Spacelab experiments. Retraining of programmers will also be reduced
significantly.

4-11



4.4 SUPPORT SOFTWARE

In the development of Spacelab software, support software packages/
capabilities must be utilized to increase programmer productivity and to
provide the means to ensure that the software system satisfies require-
ments.

Support software consists of those software packages/capabilities
which are utilized by the programmer/analyst in software development. Included
in-this category-are the following:

o Assembler/compiler/linkage editor.

o Source program library maintenance and remote job entry.

o Source code flowcharter.

o Source code analyzer.

o Data analyzer.

o Program tracing and snap/dump.

o Automatic simulator event sequencer.

Assembler/Compiler/Linkage Editor

Provide the capability to prepare modularized avionic specifications
into relocatable object modules which in turn can be combined into
an executable and loadable program.

The assembler and a high order language compiler must be provided
to facilitate the programmer's task of transforming the avionic
specifications into relocatable object modules. The linkage
editor is required to combine these relocatable object modules
into an executable and loadable program.

The assembler is employed to produce relocatable object programs
from the programmer's source code. It allows macro processing
and conditional assembly. Outputs consist of an assembler listing,
a relocatable object module, assembler error diagnostics, and
symbol table statistics.

The compiler is employed to process high level language source
code into acceptable assembler input. It provides good
memory and register utilization and an easy to use language to
express data and processing requirements. Outputs consist of
assembler acceptable input, a compiler listing, compiler diag-
nostics, and symbol table statistics.

The linkage editor combines the relocatable object module
outputs from the assembler and resolves program linkages. It
outputs a linkage editor module map of the output program,
diagnostics, and a program which can be used as simulator input
or be loaded into the flight computer.

4-12



Source Program Library Maintenance and Remote Job Entry

To provide an efficient and flexible tool to maintain source and
data code and the capability to prepare, maintain, and submit
jobs remotely.

Using video terminals, the programmer will be able to maintain,
add, delete, and update the source and data code in real time
on a mass storage device. In addition, jobs to be batch pro-
cessed can be prepared, maintained, and submitted remotely via
a terminal.

To increase programmer efficiency, job turn-around, and dynamic
library accessibility, a terminal management system should be
employed as an on-line computer facility, to provide programmers
with remote job preparation and submission capability. This
system must provide multi-terminal, multi-user capability.

User source and data code card images can be maintained on
mass storage.devices. They can be retrieved', reviewed, updated
and then returned to the mass storage device in one terminal
session. Batch accessing is also available if desired.

Source Code Flowcharter

Provide a visible representation of the avionic specifications as
derived from the source code itself.

Using the module source code as input, logic flowcharts can be
generated which depict the actual avionic software. Flowchart
outputs will provide programmers with a logic checkout tool and
double as a documentation and specification review aid.

Flowcharts provide visibility into the detailed logic of the
avionic software. The flowcharts can be generated from encoded
flowcharting instructions or based on each source code instruction
itself. The flowcharts can be used in specification comparisons,
alterations, and reviews. While specifically augmenting the
programmer's coding task, they also complete the programming
cycle in the form of documentation.

Source Code Analyzer

The source code analyzer provides a means of automatically
checking for adherance to established programming standards
through analysis of the source listing.

4-13



Each program module developed for the Spacelab should be examined
through use of the source code analyzer. Items to be checked are
of the following types:

1) Correct use of macros
2) Reentryable routine utilization
3) Structured coding format
4) Routine linkages
5) Priority level interrelationships

The use of the source code analyzer support program will result in
the programmer's being assured that certain established standards
have been satisfied. Such a support software package can be used
to reduce problems in integration of experiment software developed
by principle investigators responsible for specific experiments.

Data Analysis

Provide the capability to assemble avionic software telemetry
outputs into meaningful.analyzable reports.

As an addendum of the avionic software simulator, telemetry outputs
from the avionic flight program will be scanned and assembled into
formats for performance analysis, program debug, and logic sequencing
checkout.

Telemetry outputs in raw form are meaningless unless they are
assembled into decipherable reports. Such reports will be in the
form of strip charts, graphic plots, and flight variable tabulations.

From these reports, avionic specification performance analysis can
be performed for nominal and off-nominal conditions. Flight logic
sequencing and program output formats can be verified during program
debug.

Program Tracing and Memory Snap Dumps

Provide the programmer with 'detailed instruction tracing of
selected avionic software segments and memory image dumps at any
selected point during program execution.

As an addendum of the avionic software simulator, program instruction
tracing will be provided to check out logic path execution. Memory
snap dumps will also be provided at program logic points as desired
to verify memory contents.

4-14



The debug phase of program development necessitates a pseudo
hands-on environment to verify program logic sequencing. Through
the manual or automatic simulator sequencer modes, the avionic
software simulator will permit the programmer to initiate program
execution, trace.logic paths including register contents, and to
dump memory contents and selected points to verify proper or
improper software logic.

Automatic.Simulator Event Sequencer

Provide an interactive automatic simulator sequencing system
which will-maximize simulator utilization in a hands-on environment.

The avionic'software simulator will provide an interactive graphics
display in which to sequence the simulation runs. The standard
programmer mode will be manual operation for maximum debug capability.
An automatic -simulator sequencer will augment this mode to provide
remote and more efficient simulator utilization.

The automatic simulator sequencer will duplicate the same user
stimuli through punch card input as available through the tutorial
graphics display. Simulation runs can be run completely, remotely
or with user intervention and resumption permitted.

Each automatic simulator sequencing run will be coded in a special
language to duplicate light pen and compose field operation. This
input is processed as source code and link edited as an executable
driving program to the avionic software simulator.

Since development of support software can be a significant cost item
in the overall software development cost, the ability to utilize existing
support software must be a prime cost consideration for Spacelab. Since
support software capability is a function of computer architecture, instruction
sets, etc., an attempt should be made to select an onboard computer which is
compatible with existing ground-based computer systems. If such a selection
is made, the support software available with the ground-based computer system
will be directly applicable to the Spacelab onboard software development
activity, and a significant cost savings can be realized.

The various support capabilities discussed have proven invaluable
in previous onboard computer software development projects and are recommended
for use on Spacelab. It should be noted that the capabilities discussed are
not all-inclusive, but merely a synopsis to increase the understanding of the
term 'support software.'

4-15



4.5 SOFTWARE DEVELOPMENT FACILITIES

Historically, the the areospace industry, Simulation and Functional
Prototype Facilities have been used to evaluate engineering and software
designs and to train personnel who check out and man space vehicles. These
facilities have proven to be extremely effective especially since the use of
operational equipment is impractical due to- cost and availability.

The three types of facilities proposed to be used in the Spacelab
program for software development are:

o Program Development Facility

o Integration Facility

o Prototype Facility

The Program Development Facility will be the first facility utilized.
The software design personnel will utilize this facility which will consist of
a large computer and its associated peripheral equipment. This facility will
simulate the Spacelab computer and its environment. The Interpretive Simulator
will be executed in this facility and will allow software development to be
accomplished while the hardware development is being accomplished. This
facility will provide the support needed for the software generation process
and will provide automated tools required for the management and control of
the development process and an automatic system for delivery package creation.

The Integration Facility is the second facility utilized. This
facility will consist of the Spacelab onboard computer interfaced through
special interface equipment to a large scale ground-based computer. This
facility will simulate the Spacelab vehicle hardware and dynamic-control
characteristics will be simulated. The primary utilization of the facility
will be in overall onboard software system testing and verification. Although
the Program Development Facility and the Integration Facility perform separate
functions they may reside in a single physical environment sharing the large
computer complex.

The Prototype Facility consists of an engineering model of the Spacelab
and associated equipment and a large computer to simulate the Shuttle craft.
This facility will provide the final check of the interfaces between the
Spacelab hardware and the operational software. Advance training of checkout
personnel and crew members will be performed. Engineering changes will be
finalized on this facility before being implemented on a flight model of
Spacelab. The man-machine interface will be tested in this facility.

The proper use of the three facilities described above will ensure
that the design of the flight model will be performed as error free as possible
with the result being a greater reliability factor in the flight model.
This will keep cost of the program at a minimum and prevent mission failures.

4-16



To determine if the need of a checkout facility exists in the
Spacelab program, past experience in the Apollo/Saturn program was used.
The Apollo/Saturn program utilizes all three facilities described in the
preceding sections. To date, only one mission had to be aborted; however,
no loss of life was realized. The crew returned safely. Numerous examples
can be cited where a malfunction occurred during a mission and, due to simula-
tion of the failure on a-prototype facility, a work-around was established
which resulted in the main objectives of the mission being performed. Based
.upon the performance record of the Apollo/Saturn program, the checkout facili-
ties will be an invaluable tool in the Spacelab program.

Simulation and prototype facilities are recommended for use in the
development and integration of Spacelab concepts. These facilities will
become invaluable tools-used in evaluating engineering and software designs,
crew training and selection, and check out personnel training. The success
or failure of the mission very possibly depends on the successful use of these
facilities.

4-17



SUMMARY

5 >§

Paragraph Title Page

5 GUIDELINES SUMMARY 5.1



SECTION 5

GUIDELINES SUMMARY

This section provides a summary of recommended guidelines
formulated in the body of the report. Although the recommendations
are listed as separate items for clarity, maximum benefit can be
attained through adoption of all those techniques basic to the integrated
software development concepts.

o Software Standards

Software standards must be imposed at the beginning
of the software acquisition phase (contract award).
These standards should include programming standards
such as structured coding, listing comments and
annotations, picture-on-a-page listings; documentation
standards including structured documentation, flowchart
conventions; and configuration control standards such
as program naming conventions and program baseline/
revision level identification.

o Program Definition

Program definition is the process of defining the problem
before a solution is begun. The product of the program
definition is a requirements specification. A thorough
validation of the requirements specification should be
performed. This is the prime technique for development
of a low cost, high quality programming product.

o Top-Down Development

The top-down approach applies disciplined system design
concepts to software development. Design and implemen-
tation proceed from the highest level downward. The
approach should be applied to Spacelab. It will provide
the capability of evolving the product in a manner which
maintains the characteristics of being always operable,
modular, and always available for the successive levels
of testing that accompany the corresponding levels of
implementation.

5-1



o - - Composite Design

Composite design is a design methodology that consists
of a strategy, rules, and measures to produce modular

computer programs. The resulting programs are composed
of relatively independent parts that are highly visible
and easily understood. Applying these concepts to Spacelab

will discipline the design technique.

o Structured Code

Structured coding is the technique of coding a program

such that all logical functions to be performed are com-

prised of three basic software structures. Programs
written in structured code can be literally read from
top to bottom typographically. Using structured code

for Spacelab will produce code that is readable.

o Structured Documentation

Structured documentation is a strategy for obtaining low
cost, usable documentation of programming products. This

is accomplished by integrating the concepts of top-down
composite design with the documentation process. Docu-
mentation for program review and final product description

become byproducts of the programming process. This will
reduce Spacelab documentation cost while producing a
quality product.

o Planned Verification

Verification is the process of ensuring that the product
performs to specification. Verification is a planned
activity at each step in the program development cycle.
It applies to documentation as well as code. Planned
verification will produce programs that work.

o Planned-Validation

System validation performed by an independent group
demonstrates that the hardware and software interface
as a system, providing confidence in the system's
ability to perform its intended function.

o Acceptance Testing

The acceptance testing activity consists of verification
testing within an operational or simulated operational
environment performed against a frozen baseline configura-
tion. The activity defines the completion of the
development phase and the start of the operational phase.
Applying this concept to Spacelab will sharply define
milestone completion.

5-2



o Deliverable Items

Deliverable contract end items must be identified early in
the development cycle and consist of acceptance tested
operational programs, simulators, development support systems,
assemblers, compilers, debug aids, and other software required
during the operational phase. End item components are computer
programs in their object and-source form, listings and flow-
charts, requirements and design specifications, user documen-
tation, test procedures and results, and configuration
accouhting documents.

o Software Review Board

The Software Review Board should be established early in the
project-life. The primary purposes of the Board are to
define software standards, languages and techniques; and to
manage the design and development of the software systems.
The Board has- the responsibility of- reviewing and approving
software requirements and design documentation, employing
Preliminary and Critical Design Reviews as necessary. The
levels of the members should be such that quick problem
resolution is assured.

o Software Control Board

The Software Control Board consists of lead contractor
personnel having the responsibility to provide direct
management over the software during the software development
phase. The Board will review current status, requirements
changes, and implementation problems. It will insure that
standards and guidelines directed by the Software Review
Board are implemented.

o Configuration Control Board

The Configuration Control Board is placed into being at the
software acceptance test milestone (FACI). It consists of
members of the Software Review and Control Boards which cease
to operate at this time. This Board will assess, analyze,
and approve new requirements. It will be the controlling
body for the control of the configuration of all operational
and support software at each site.

5-3



o - Software Reviews

Adequate technical and management reviews must be conducted
during the software development cycle to assure that develop-
ment is proceeding in a satisfactory manner. These reviews
will be conducted through the auspices of the Software Review
Board. Types of reviews include Preliminary Design Reviews
(PDRs),-Critical Design Reviews (CDRs), First Article
Configuration Inspection (FACI), software delivery reviews,
and software standards reviews. Adherance to the integrated
develbpment approach will assure project visibility at any
time during the development process.

o Higher Order Language

A higher order language (HOL) is a programmer tool that
permits coding in English language statements. A HOL improves
program productivity by making it easier to express problems.
The resulting product is easier to use, easier to maintain,
and more reliable than assembly language code. A higher order
language should be selected and used for Spacelab.

o User Language

A user language is a higher order language defined in terms of
a particular discipline. It is oriented to the non-programmer.
Spacelab requires a language for the test engineers, principle
investigators, and crew members that give them access to the
onboard and ground computer systems through that command and
display terminals without going through the software development
cycle.

o Simulation

Simulation is the process of reproducing the functional
requirements of an operational environment with software
and hardware. Simulation is employed to debug, verify and
validate software prior to actual operations. The results
are programs that execute correctly the first time. Multiple
level simulators should be employed in the development of
Spacelab software.

o Automated Management System

Experience has proved the worth of an automated management
system during the development as well as operational phases.
Spacelab is a multinational, multicontractor endeavor lending
itself to all of the advantages of a real time, interactive

5-4.



management system. An automated management system should be
implemented to provide program status, program revision levels,
requirements change status, program delivery milestones, pro-
gram defect status and other information required to properly
manage this set of many complex systems encompassing onboard
software, support software, software support facilities software,
etc.

o Computer Selection

Selection of an onboard computer must be made which will
adequately meet the requirements of the Spacelab program
as it is defined and as it is sure to evolve. The computer
is of prime importance in developing cost effective, flexible
software systems. The computer should have design reserves
of approximately 50 percent in both computation speed and
memory capacity. It should contain floating point arithmetic.
Instruction set compatibility with the ground host computer
is highly desirable and allows utilization of support soft-
ware which already exists. Commonality results in significant
simulation savings because an interpretive simulator is not
required. Commonality reduces the programmer training time.
Selection criteria for the onboard computer should consider
the magnitude of available support software such as compiler,
simulators, program testing aids, etc., to minimize the
support software that must be developed.

o Support Software

Adequate support software is mandatory for cost effective
development of software systems and must be defined and
developed in the initial development phase. Proper computer
selection will serve to minimize the amount of support
software that must be developed. Support software consists
of those software packages/capabilities which are utilized
by the programmer. Included in this category are assemblers,
compilers, linkage editors, program library maintenance,
flowcharts, source code analyzers, data analyzers, program
traces and snap/dump, and automatic simulator event sequencer.
The higher order language compiler is of extreme importance
due to the large cost associated with developing one.

o Software Development Facilities

It is imperative that proper software development facilities
are available throughout the software development cycle. Only
through utilization of these types of facilities can highly
reliable software be developed within critical cost and
schedule requirements. The types of facilities recommended
for Spacelab are the Program Development Facility, the Inte-
gration Facility, and the Prototype Facility.

5-5



REFERENCES

Apollo Configuration Management Manual NHB 8040.2. National Aeronautics and
Space Administration, Washington, D. C., January 1970.

Baker, F. T., "Chief Programmer Team Management of Production Programming."
IBM System Journal, Vol. 11, No. 1, 1972.

Baker, F. T., Mills, H. D., Chief Programmer Teams. IBM, Gaithersburg, Maryland, 1973.

Barnett, T. 0. and Constantine, E. L., Editors, "Proceedings of the National
Modular Programming Symposium."' (Pre-print) Information and Systems Press,
Cambridge, Massachusetts, July 23-24, 1968.

Brief Survey of Languages used for System Implementation. IBM Gaithersburg,
1971.

Computer Software Development Plan, MBB, Doc. No. PL-A40000-0210, 1973.

Dillon, T. J.; Jacobs, J. H., "Interactive Saturn Flight Program Simulator."
IBM System Journal, Vol. IX, No. 2, 1970.

Flight Program Checkout Facility Specification Document, Contract NAS8-14000,
MSFC-DRL-008A, Marshall Space Flight Center, Huntsville, Alabama.

Glans, Thomas, B.; Grad, Burton; Holstein, David; Meyers, William E.;
Schmidt, Richard N.; Management Systems; New York: Holt, Rinehart and
Winston Inc., 1968.

Ground Operations Aerospace Language, NASA, 1972.

Hamilton, M., and Zeldin, S., Top-Down, Bottom-Up Structured Programming
and Program Structuring, Revision 1, The Charles Stark Draper Laboratory,
MIT, Cambridge, Massachusetts, December 1972.

Hertel, H. F. and Stanley, W. I., The Performance Measurement and Analysis
of System/360 Multiprogrammed Systems. IBM,. Houston, 1966.

Hetzel, W. C., Program Test Methods. Englewood Cliffs; Prentice-Hall Inc.,
1973.

Higher-Order Language Study for Avionics Programming, Technical Report-
AFAL-TR-71-154, IBM Owego, 1971.

"HIPO: Design Aid and Documentation Tool," SR20-9413, IBM Corporation 1973.

Hoskins, J. F., Space Shuttle Software Management Plan," IBM No. 73-55-732,
IBM Houston, September 1973.

Hughes, J. S., "Space Shuttle Software Development Plan," IBM No. 73-C04-001,
IBM Houston, January 1973 (Rough Draft).



Hughes J. S. and Witzel, T. H., Flight Software Development Laboratory,
IBM No. 69-226-0036, IBM Huntsville, Alabama, 1969.

IMS Software Study for Manned Shuttle Payloads, Volumes I and II Technical
Appendices. Information Management System Steering Group, Ad Hoc Committee
on Software, NASA MSFC.

Lord, D. R., "Spacelab Guidelines and Constraints for Program Definition,
Level i", NASA No. MF-73-1, March 1973.

McHenry, R. C., Management Concepts for Top-Down Structured Programming,
IBM No. FSC 73-0001, Gaithersburg, Maryland, February 1973.

Metzer, P. W., Managing a Programming Project, Prentice-Hall Inc., 1973.

Mills, H. D., "Mathematical Foundations for Structured Programming," IBM FSD,
Gaithersburg, Maryland, FSC 72-601, February 1972.

Mills, H. D., "Top-Down Programming in Large Systems," Courant Computer
Science Symposium, July 1, 1970.

Myers, G. J., "Composite Design: The Design of Modular Programs," IBM SDD
Poughkeepsie, New York, TR00.2406, February 1972.

Newbold, P. M.; Helmers, C. T., Jr.; Meuse, L. A., "HAL/S Language Specification,"
Intermetrics Incorporated, Cambridge, Massachusetts, September 1973.

Program Verification Plan for the Skylab I Flight Program, Contract NAS8-14000,
MSFC-DRL-008A, Line Item 244, 1972.

Schoderbeck, Peter P., Management Systems: New York, John Wiley & Sons, Inc.,
1967.

Spacelab Phase B2 Report, Volume II Programme Definition Part 2 Baseline
Programme. ERNO VFW-Fokker, July 31, 1973.

Spacelab Phase B2 Report, Volume II Programme Definition Part 2 Baseline
Programme. Messerschmitt-Bolkow-Blohm-GMHB, July 31, 1973.

Spacelab Programme System Requirements for Project Definition, ESRO,
Nordwijk, The Netherlands.

Space Station Program Development Definition, Volume III Software Requirements
Document. MSFC-DRL-160, Line Item 18. McDonnell-Douglas Astronautics Company-
West, July 1970. Huntington Beach, California.

Trauboth, H., "Proposal for Hierarchical Description of Software Systems,"
NASA Technical Note: NASA TN D-7200. George C. Marshall Space Flight Center,
National Aeronautics and Space Administration, Washington, D. C., March 1973.



GLOSSARY

ATMDC Apollo Telescope Mount Digital Computer

CPT Chief Programmer. Team

DDAS' Digital bata Acquisition System

FCDD Flight Computer Data Device

FPDD Four Pi Data Device

GOAL Ground Operations Aerospace Language

HAL Houston Aerospace Language

HIPO Hierarchy Input Output Processing

"HOL High Order Language

IC Instruction Counter

IF Integration Facility

IO Input Output

LCC Launch Computer Complex

LSI Large System Integration

LVDA Launch Vehicle Data Adapter

LVDC Launch Vehicle Digital Computer

MDI Mobile Launcher Discrete Input

MDO Mobile Launcher Discrete Output

MIS Management Information System

MLC Mobile Launcher Computer

PCR Program Change Request

PDF Program Development Facility

PF Prototype Facility

PRN Program Release Notice

PTR Program Trouble Report

SP Structured Programming

SS Switch Selector

STCR System Tape Configuration Report



SVC Supervisory Call

TM Telemetry


