18,728 research outputs found

    Non-contact Microelectronic Device Inspection Systems And Methods

    Get PDF
    Non-contact microelectronic device inspection systems and methods are discussed and provided. Some embodiments include a method of generating a virtual reference device (or chip). This approach uses a statistics to find devices in a sample set that are most similar and then averages their time domain signals to generate the virtual reference. Signals associated with the virtual reference can then be correlated with time domain signals obtained from the packages under inspection to obtain a quality signature. Defective and non-defective devices are separated by estimating a beta distribution that fits a quality signature histogram of inspected packages and determining a cutoff threshold for an acceptable quality signature. Other aspects, features, and embodiments are also claimed and described.Georgia Tech Research Corporatio

    Anomalous random correlations of force constants on the lattice dynamical properties of disordered Au-Fe alloys

    Full text link
    Au-Fe alloys are of immense interest due to their biocompatibility, anomalous hall conductivity, and applications in various medical treatment. However, irrespective of the method of preparation, they often exhibit a high-level of disorder, with properties sensitive to the thermal or magnetic annealing temperatures. We calculate lattice dynamical properties of Au1x_{1-x}Fex_x alloys using density functional theory methods, where, being a multisite property, reliable interatomic force constant (IFC) calculations in disordered alloys remain a challenge. We follow a two fold approach: (1) an accurate IFC calculation in an environment with nominally zero chemical pair correlations to mimic the homogeneously disordered alloy; and (2) a configurational averaging for the desired phonon properties (e.g., dispersion, density of states, and entropy). We find an anomalous change in the IFC's and phonon dispersion (split bands) near xx=0.19, which is attributed to the local stiffening of the Au-Au bonds when Au is in the vicinity of Fe. Other results based on mechanical and thermo-physical properties reflect a similar anomaly: Phonon entropy, e.g., becomes negative below xx=0.19, suggesting a tendency for chemical unmixing, reflecting the onset of miscibility gap in the phase diagram. Our results match fairly well with reported data, wherever available

    Prospects of reinforcement learning for the simultaneous damping of many mechanical modes

    Get PDF
    We apply adaptive feedback for the partial refrigeration of a mechanical resonator, i.e. with the aim to simultaneously cool the classical thermal motion of more than one vibrational degree of freedom. The feedback is obtained from a neural network parametrized policy trained via a reinforcement learning strategy to choose the correct sequence of actions from a finite set in order to simultaneously reduce the energy of many modes of vibration. The actions are realized either as optical modulations of the spring constants in the so-called quadratic optomechanical coupling regime or as radiation pressure induced momentum kicks in the linear coupling regime. As a proof of principle we numerically illustrate efficient simultaneous cooling of four independent modes with an overall strong reduction of the total system temperature.Comment: Machine learning in Optomechanics: coolin

    Signatures of Anderson localization and delocalized random quantum states

    Get PDF
    We consider the notion of equilibration for an isolated quantum system exhibiting Anderson localization. The system is assumed to be in a pure state, i.e., described by a wave-function undergoing unitary dynamics. We focus on the simplest model of a 1D disordered chain and we analyse both the dynamics of an initially localized state and the dynamics of quantum states drawn at random from the ensemble corresponding to the minimum knowledge about the initial state. While in the former case the site distribution remains confined in a limited portion of the chain, the site distribution of random pure state fluctuates around an equilibrium average that is delocalized over the entire chain. A clear connection between the equilibration observed when the system is initialized in a fully localized state and the amplitude of dynamical fluctuations of a typical random pure state is established

    Suppression of extraneous thermal noise in cavity optomechanics

    Get PDF
    Extraneous thermal motion can limit displacement sensitivity and radiation pressure effects, such as optical cooling, in a cavity-optomechanical system. Here we present an active noise suppression scheme and its experimental implementation. The main challenge is to selectively sense and suppress extraneous thermal noise without affecting motion of the oscillator. Our solution is to monitor two modes of the optical cavity, each with different sensitivity to the oscillator's motion but similar sensitivity to the extraneous thermal motion. This information is used to imprint "anti-noise" onto the frequency of the incident laser field. In our system, based on a nano-mechanical membrane coupled to a Fabry-P\'{e}rot cavity, simulation and experiment demonstrate that extraneous thermal noise can be selectively suppressed and that the associated limit on optical cooling can be reduced.Comment: 27 pages, 14 figure

    Tunnel spectroscopy in ac-driven quantum dot nanoresonators

    Full text link
    Electronic transport in a triple quantum dot shuttle device in the presence of an ac field is analyzed within a fully quantum mechanical framework. A generalized density matrix formalism is used to describe the time evolution for electronic state occupations in a dissipative phonon bath. In the presence of an ac gate voltage, the electronic states are dressed by photons and the interplay between photon and vibrational sidebands produces current characteristics that obey selection rules. Varying the ac parameters allows to tune the tunneling current features. In particular, we show that coherent destruction of tunneling can be achieved in our device
    corecore