351 research outputs found

    Combining Capability Indices and Control Charts in the Process and Analytical Method Control Strategy

    Get PDF
    Different control charts in combination with the process capability indices, Cp, Cpm and Cpk, as part of the control strategy, were evaluated, since both are key elements in determining whether the method or process is reliable for its purpose. All these aspects were analyzed using real data from unitary processes and analytical methods. The traditional x-chart and moving range chart confirmed both analytical method and process are in control and stable and therefore, the process capability indices can be computed. We applied different criteria to establish the specification limits (i.e., analyst/customer requirements) for fixed method or process performance (i.e., process or method requirements). The unitary process does not satisfy the minimum capability requirements for Cp and Cpk indices when the specification limit and control limits are equal in breath. Therefore, the process needs to be revised; especially, a greater control in the process variation is necessary. For the analytical method, the Cpm and Cpk indices were computed. The obtained results were similar in both cases. For example, if the specification limits are set at ±3% of the target value, the method is considered “satisfactory” (1.22<Cpm<1.50) and no further stringent precision control is required

    Life jacket

    Get PDF
    Anyone who cannot swim well should wear life jacket whether they are in the water or around the water. Even those who are can swim well should wear the life jacket when they are doing activity such as swimming, fishing, boating or while doing any water-related activity. Life jacket is a kind of safety jacket that keeping the wearer float the in the water. The wearer may be in the conscious or unconscious condition but by wearing the life jacket we can minimize the risk of drowning because life jacket assist the wearer to keep floating in the water

    Cumulative sum quality control charts design and applications

    Get PDF
    Includes bibliographical references (pages 165-169).Classical Statistical Process Control Charts are essential in Statistical Control exercises and thus constantly obtained attention for quality improvements. However, the establishment of control charts requires large-sample data (say, no less than I 000 data points). On the other hand, we notice that the small-sample based Grey System Theory Approach is well-established and applied in many areas: social, economic, industrial, military and scientific research fields. In this research, the short time trend curve in terms of GM( I, I) model will be merged into Shewhart and CU SUM two-sided version control charts and establish Grey Predictive Shewhart Control chart and Grey Predictive CUSUM control chart. On the other hand the GM(2, I) model is briefly checked its of how accurate it could be as compared to GM( I, 1) model in control charts. Industrial process data collected from TBF Packaging Machine Company in Taiwan was analyzed in terms of these new developments as an illustrative example for grey quality control charts

    Detecting the process\u27 1.5 sigma shift: A quantitative study

    Get PDF
    Process behavior can change with time. In this study an attempt was made to discover whether the Six Sigma™ claim of changes in the process mean stayed within +/- 1.5 sigma units. Several process groups were examined for a particular firm that made metal castings, machined parts, tested major components and assembled these into a vehicle that was a product sold to the customer. As the assembly progressed, deficiencies were identified and recorded. Analyses employed cumulative sum (CUSUM) sequence charts, Autoregressive Integrated Moving Average (ARIMA) time series analyses, minimum mean square error (MMSE) exponentially weighted moving average (EWMA), Shewhart control charts and Analysis of Variance (ANOVA) to identify the shift in the process mean, M/sw, the duration of the shift, λB, and the proper choice of EWMA smoothing coefficient, λEWMA. Kruskal-Wallis analysis of the relationship of these measures to process group (assembly, foundry, heat treatment, machining, shaving, test machine, grinding, turning, warranty and yield) was also performed. The method used was generally applicable for all these processes. The process group and the ARIMA type also influenced the measurement of M/sw , λB , and λEWMA

    Parametric, Nonparametric, and Semiparametric Linear Regression in Classical and Bayesian Statistical Quality Control

    Get PDF
    Statistical process control (SPC) is used in many fields to understand and monitor desired processes, such as manufacturing, public health, and network traffic. SPC is categorized into two phases; in Phase I historical data is used to inform parameter estimates for a statistical model and Phase II implements this statistical model to monitor a live ongoing process. Within both phases, profile monitoring is a method to understand the functional relationship between response and explanatory variables by estimating and tracking its parameters. In profile monitoring, control charts are often used as graphical tools to visually observe process behaviors. We construct a practitioner’s guide to provide a stepby- step application for parametric, nonparametric, and semiparametric methods in profile monitoring, creating an in-depth guideline for novice practitioners. We then consider the commonly used cumulative sum (CUSUM), multivariate CUSUM (mCUSUM), exponentially weighted moving average (EWMA), multivariate EWMA (mEWMA) charts under a Bayesian framework for monitoring respiratory disease related hospitalizations and global suicide rates with parametric, nonparametric, and semiparametric linear models

    A Novel Diagnostic and Prognostic Framework for Incipient Fault Detection and Remaining Service Life Prediction with Application to Industrial Rotating Machines

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Data-driven machine health monitoring systems (MHMS) have been widely investigated and applied in the field of machine diagnostics and prognostics with the aim of realizing predictive maintenance. It involves using data to identify early warnings that indicate potential system malfunctioning, predict when system failure might occur, and pre-emptively service equipment to avoid unscheduled downtime. One of the most critical aspects of data-driven MHMS is the provision of incipient fault diagnosis and prognosis regarding the system’s future working conditions. In this work, a novel diagnostic and prognostic framework is proposed to detect incipient faults and estimate remaining service life (RSL) of rotating machinery. In the proposed framework, a novel canonical variate analysis (CVA)-based monitoring index, which takes into account the distinctions between past and future canonical variables, is employed for carrying out incipient fault diagnosis. By incorporating the exponentially weighted moving average (EWMA) technique, a novel fault identification approach based on Pearson correlation analysis is presented and utilized to identify the influential variables that are most likely associated with the fault. Moreover, an enhanced metabolism grey forecasting model (MGFM) approach is developed for RSL prediction. Particle filter (PF) is employed to modify the traditional grey forecasting model for improving its prediction performance. The enhanced MGFM approach is designed to address two generic issues namely dealing with scarce data and quantifying the uncertainty of RSL in a probabilistic form, which are often encountered in the prognostics of safety-critical and complex assets. The proposed CVA-based index is validated on slowly evolving faults in a continuous stirred tank reactor (CSTR) system, and the effectiveness of the proposed integrated diagnostic and prognostic method for the monitoring of rotating machinery is demonstrated for slow involving faults in two case studies of an operational industrial centrifugal pump and one case study of an operational centrifugal compressor

    Monitoring and performance analysis of regression profiles

    Get PDF
    There are many cases in industrial and non-industrial sections where the quality characteristics are in the form of profiles. Profile monitoring is a relatively new set of techniques in statistical quality control that is used in situations where the state of product or process is presented by regression models. In the past few years, most research in the field of profile monitoring has mainly focused on the use of effective statistical charting methods, study of more general shapes of profiles, and the effects of violations of assumptions in profile monitoring. Despite several research on the application of artificial neural networks to statistical quality control, no research has investigated the application of neural networks in monitoring profiles. Likewise, there is no research in the literature on the process capability analysis in profile processes. The process capability analysis is to evaluate the ability of a process to meet the customer/engineering specifications and must be done in Phase I of profile monitoring. In a review study on profile monitoring, Woodall (2007) pointed out the importance of process capability analysis in profiles. In this research, we use artificial neural networks (ANN) to detect and classify shifts in linear profiles. Three monitoring methods based on ANN are developed to monitor linear profiles in Phase II. We compare the results for different shift scenarios with existing methods in linear profile monitoring and discuss the results. Furthermore, in this thesis, we evaluate the estimation of process capability indices (PCIs) in linear profiles. We propose a method based on the relationship between proportions of non-conformance and the process capability indices in the profile process. In most existing profile monitoring methods in the literature, it is assumed that the profile design points are deterministic (fixed) so they are unchanged from one profile to another one. In this research, we investigate the estimation of the PCI in normal linear profiles for different scenarios of deterministic and arbitrary (random) data acquisition schemes as well as fixed or linear functional specification limits. We apply the proposed method in estimating the PCI in a yogurt production process. This thesis also focuses on the investigation of the process capability analysis in profiles with non-normal error terms. In this study, we review the methods for estimating PCI in non-normal data and carry out a comprehensive comparison study to evaluate the performance of these methods. Then these methods are applied in the leukocyte filtering process to evaluate the PCI with effect of non-normality in a blood service section. In addition, we develop a new method based on neural networks to estimate the parameters of the Burr XII distribution, which is required in some of the PCI estimation methods with non-normal environments. Finally, in this research we propose five methods to estimate process capability index in profiles where residuals follow non-normal distributions. In a comparison study using Monte Carlo simulations we evaluate the performance of the proposed methods in terms of their precision and accuracy. We provide conclusions and recommendation for the future research at the end

    Statistical process control by quantile approach.

    Get PDF
    Most quality control and quality improvement procedures involve making assumptions about the distributional form of data it uses; usually that the data is normally distributed. It is common place to find processes that generate data which is non-normally distributed, e.g. Weibull, logistic or mixture data is increasingly encountered. Any method that seeks to avoid the use of transformation for non-normal data requires techniques for identification of the appropriate distributions. In cases where the appropriate distributions are known it is often intractable to implement.This research is concerned with statistical process control (SPC), where SPC can be apply for variable and attribute data. The objective of SPC is to control a process in an ideal situation with respect to a particular product specification. One of the several measurement tools of SPC is control chart. This research is mainly concerned with control chart which monitors process and quality improvement. We believe, it is a useful process monitoring technique when a source of variability is present. Here, control charts provides a signal that the process must be investigated. In general, Shewhart control charts assume that the data follows normal distribution. Hence, most of SPC techniques have been derived and constructed using the concept of quality which depends on normal distribution. In reality, often the set of data such as, chemical process data and lifetimes data, etc. are not normal. So when a control chart is constructed for x or R, assuming that the data is normal, if in reality, the data is nonnormal, then it will provide an inaccurate results.Schilling and Nelson has (1976) investigated under the central limit theory, the effect of non-normality on charts and concluded that the non-normality is usually not a problem for subgroup sizes of four or more. However, for smaller subgroup sizes, and especially for individual measurements, non-normality can be serious problem.The literature review indicates that there are real problems in dealing with statistical process control for non-normal distributions and mixture distributions. This thesis provides a quantile approach to deal with non-normal distributions, in order to construct median rankit control chart. Here, the quantile approach will also be used to calculate process capability index, average run length (ARL), multivariate control chart and control chart for mixture distribution for non-normal situations. This methodology can be easily adopted by the practitioner of statistical process control

    Control Charts With Estimated Process Parameters And A Proposed Coefficient Of Variation Chart

    Get PDF
    Carta kawalan menerima perhatian besar dalam Kawalan Proses Berstatistik (SPC) sebagai alat yang paling berguna dalam pengesanan anjakan proses supaya tindakan pembetulan boleh diambil untuk mengenal pasti dan menyingkirkan sebab-sebab terumpukkan yang hadir. Objektif utama penyelidikan ini adalah untuk menangani masalah anggaran parameter proses bagi carta larian kumpulan dengan kepekaan sisi (carta SSGR) dan carta pensampelan ganda dua sintetik (carta SDS). Kebanyakan carta kawalan memerlukan andaian bahawa nilai sasaran parameter proses dalam kawalan, iaitu min dan sisihan piawai adalah diketahui untuk pengiraan had-had kawalan serta statistik carta kawalan. Malangnya, parameter proses lazimnya tidak diketahui dalam keadaan sebenar, yang mana nilainya dianggarkan daripada set data Fasa-I dalam kawalan. Dalam penyelidikan ini, prestasi carta-carta SSGR dan SDS dengan parameter proses yang dianggarkan dibandingkan dengan prestasi carta-carta yang sepadan apabila parameter proses diketahui. Control charts receive great attention in Statistical Process Control (SPC) as the most useful tool in detecting process shifts so that corrective actions can be taken to identify and eliminate the assignable causes that are present. The main objective of this research is to address the problems of estimation of process parameters for the side sensitive group runs (SSGR) chart and synthetic double sampling (SDS) chart. Most control charts require the assumption that the target values of the in-control process parameters, i.e. the mean and standard deviation are known for the computation of the control charts’ control limits and statistics. Unfortunately, process parameters are usually unknown in real situations, where they are estimated from an in-control Phase-I dataset. In this research, the performances of the SSGR and SDS charts with estimated process parameters are compared with that of their known process parameters counterparts

    Development of the statistical process control methods

    Get PDF
    Statistical process control represents a statistical procedure using control charts to see if any part of production process is not functioning properly and could cause poor quality. Process control is achieved by taking periodic sample from the production process and plotting these sample points on a chart, to see if the process is within statistical control limits. Statistical process control prevents quality problems by correcting the process before it starts producing defects. This paper encompasses an application of statistical process control methods with numerous modifications in order to make possible appropriate process quality improvement of the soft drink production line via detecting out-of-control process or unusual patterns in a sample. Used methods corresponding with the total quality management require a never-ending process of continuous improvement that covers people, equipment, suppliers, materials and procedure. The end goal is perfection, which is never achieved but always sought
    corecore