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Abstract

Data-driven machine health monitoring systems (MHMS) have been widely investigated and applied in the
field of machine diagnostics and prognostics with the aim of -ealiz,, > nr- dictive maintenance. It involves
using data to identify early warnings that indicate potential systen, ~alfunctioning, predict when system
failure might occur, and pre-emptively service equipment to « ~id unscheduled downtime. One of the most
critical aspects of data-driven MHMS is the provision of . "~~nt fault diagnosis and prognosis regarding the
system’s future working conditions. In this work, a novel di. 7 .ostic and prognostic framework is proposed to
detect incipient faults and estimate remaining servic® ..*> (h3L) of rotating machinery. In the proposed
framework, a novel canonical variate analysis (C'/A)-bas 4 monitoring index, which takes into account the
distinctions between past and future canonical variabi.  is employed for carrying out incipient fault diagnosis.
By incorporating the exponentially weighted mnving average (EWMA) technique, a novel fault identification
approach based on Pearson correlation ar Jysis is | “esented and utilized to identify the influential variables
that are most likely associated with th> fau,. Mr eover, an enhanced metabolism grey forecasting model
(MGFM) approach is developed for I SL r ediction. Particle filter (PF) is employed to modify the traditional
grey forecasting model for improv ig . ~red’ .tion performance. The enhanced MGFM approach is designed
to address two generic issues n* ... 'v dealing with scarce data and quantifying the uncertainty of RSL in a
probabilistic form, which are nften encou.itered in the prognostics of safety-critical and complex assets. The
proposed CVA-based indey s va dated on slowly evolving faults in a continuous stirred tank reactor (CSTR)
system, and the effectiveness ¢ the proposed integrated diagnostic and prognostic method for the monitoring
of rotating machinery " der onstrated for slow involving faults in two case studies of an operational industrial

centrifugal pump and one 2se - .udy of an operational centrifugal compressor.
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1. Introduction

Rotating machines, such as centrifugal pumps, are widely used due to their .. ~h performance and
robustness. These machines typically operate under adverse conditions, sucl as freq. »nt load changes and
high speeds, and are thus subject to performance degradation and mechanical 1. ure. Ir an effort to solve this
problem, data-driven machine health monitoring systems (MHMS) [1] v ere ir*-~duced to realize predictive
maintenance. Data-driven MHMS aim to monitor the degradation ratl, .nan i .st detecting the faults. It
comprises four main steps: extracting features from collected data, detc. “ng an incipient fault, determining
the variables mostly affected by the fault, applying a prediction ~odel on inline measurements to predict
machine deterioration. It is clear that these procedures are ¢. ~ial v the safe, reliable, efficient and
sustainable operation of any industrial system. Therefore. ** * __.prising that automated data-driven
machine health monitoring has been an active research area for dev es now.

Industries can face large economic losses and security “rear ... :n faults occur. Condition monitoring and
diagnosis are effective means to reduce the unplanne’” fown. e and economic losses, and to sustain reliable
system performance. The growing interest in the reliabi. ty " industrial processes and continuing progress in
developing new signal processing techniques . ve .. * -ated the development of advanced diagnostic
approaches for complex industrial systems [2]. Multivari. 2 statistical process monitoring (MSPM) techniques
have recently seen improvements in dia ,.o0s. > process abnormalities. Multivariate statistical analysis
techniques such as principal component . “alysis (P “A) [3], independent component analysis (ICA) [4] and
canonical variate analysis CVA [5] hs /e been . sely applied for the detection of process abnormalities in
industrial plants and systems. In add ~on alterr itives to the standard multivariate monitoring methods [6-9],
which take into consideration the -orrelatic  between timestamps in the past and the future, have also been
put forward for dynamic proce ses 1. nitoring. Amongst the aforementioned MSPM techniques, CVA-based
approaches were shown to b 5. “erior to other monitoring methods in terms of lead time and false positive
rates [8]. Demand for faci. “atir , fault prognosis has driven increased attention towards the development of
incipient fault detectior techniqu. *, and great efforts have been made to improve the detectability of slow
evolving faults [10- 2]. dowr ser, these techniques require additional steps to select various model
parameters so as to - “hieve . ' able fault detection rate. In this study, traditional CVA approach is extended to
form a novel m itoring ‘ndex based on the distinctions between past and future canonical variables.

Compared to tradiu. =21 © /A-based indices, the new index relies on the dissimilarity between past and future




measurements and is therefore more sensitive to incipient faults. For the present study faulf diagnosis is
implemented by comparing the values of the new monitoring index with pre-defined hresn. ‘s calculated
from kernel density estimation (KDE) [13]. It should be pointed out that although mo=‘*oring "~dices derived
from CVA approach have been successfully applied for fault detection of e giner i systems, their
applicability for prognostics of rotating machines has not been fully studied. In ta. a monitoring index
provides valuable information about the health status of an equipment, and tt .refore . 'so has great potential
in indicating the future behavior of the degrading system. Consequently, we w.'! explor in this paper the use
of the distinction-based monitoring index not only for detecting machine .onorm-~lities but also for remaining
service life (RSL) prediction.

Another major task of data-driven MHMS is to identify the influc *ial variables that are most likely
associated with the detected fault. Considering the possible sync ~v betwec 1 different process variables, a
MSPM model may provide more accurate diagnoses in comparise = to Wi.cu a single source of information or
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only a part of the variables are used [2]. However, it may be~~=~ aging for the accurate identification
and localization of a fault when a large number of variabi. are considered [14]. Including a fault
identification module comes along with various benefit. ru .., "ie process variables that do not show a
degradation trend were eliminated automatically. Fror: a prog, ostics perspective, variables that do not show a
significant trend are not suitable for RSL predictior. |1." Computationally, the inclusion of only the

1:

influential variables alleviates the curse of dim. ~w...""* reducing the computational costs in relation to
prognostic feature extraction. Thirdly, fault identificatio.. ~llows the location, type and severity of the fault to
be determined at an early stage, thereby al’ ,w.. - the optimization of preventive maintenance schedule and
spare parts supply to be carried out alon_ with RS] prediction so as to prevent catastrophic failures. Thus,
identifying variables related to a faul* 1s valua.™ for preventive maintenance and essential for developing
effective diagnostic and prognostic too! . In .nis investigation, exponentially weighted moving average
(EWMA) [16] is used together v .th Peai. + correlation analysis (this technique is hereafter referred to as
EWMA-Pearson) to realize av’ yma.. identification of the most fault-related variables. Pearson correlation
analysis [17], as one the of n~ ... ~ommonly used measures of correlation, has been widely applied in the field
of medical research [18,1¢ tim , series analysis [20], pattern recognition [21], to name a few. In this study,
we explore the use of P .arson c. -elation analysis for fault identification of mechanical systems, which has
not been addressed I fore EW' (A, which is a well-known irregular fluctuations smoothing technique for
time series analysic “vas s..  a to be sensitive to small shifts [22] and therefore has gained popularity for
providing incipie it fault d. gnosis recently [10,23]. However, most existing works related to EWMA propose

solutions for incipi. * far’. detection rather than incipient fault identification. To address this issue, EWMA is




utilized to modify the traditional Pearson correlation analysis to improve its fault identifice .on a' ility at early
stages of degradation. The proposed fault identification method operates with varior< slov. -~ developing
faults but not restricted to mechanical system faults that evolve slowly over time.

The main aim of prognostics is to provide practitioners with warnings by predic’ ng tF . uc ~rioration of an
incipient fault, thereby allowing engineers to control the progression of the fault ai.. schedule repairs and
maintenance. Typical procedures in data-driven MHMS involve a prognostic s’ .p wher. long-term predictions
of continuous observations are carried out with the aim of estimating the RS. of the ystem. Various data-
driven techniques are available for the long-term prediction of continuo .s observations, including statistical
models and neural networks. In order to undertake training these model. * pend ¢ a large amounts of failure
data. However, field failure data is extremely difficult to obtain, and ti. nrevents these models from being
applied in real industrial facilities. Even in the era of big machi: ~rv data, ¢ ympanies and practitioners still
have a limited pool of “useful” data resources to fulfill prognos.. - tasks, -ince safety-critical equipment are
usually not allowed to run to failure. In order to deal with sca=~~ “~“= = apply grey forecasting model, which
was originally devised to tackle small sample problems [24], . implement RSL prediction with limited
amount of failure data. Moreover, a single-valued foreca. ‘ng : .. ~ 1 learnt from historical data will only be
learning the system’s deterministic and stochastic pro’ ~tties 1. general, not specifically. For example, a neural
network may be learnt from past values. However, to. »rediction purposes, it is not only a single

manifestation of a neural network prediction tl.. 1, , >~< “le. Therefore, multiple random seeds and thus

multiple manifestations of the trajectory need to be inc. porated into the forecasting model. To address the
aforementioned issue, this paper proposes 2 vu.. "ced grey forecasting model based on the metabolism grey
forecasting model (MGFM) [25] and pa: “~le filter PF) [26] approaches (hereafter the proposed method is
referred to as MGFM-PF). By leverag’ 1g the su - gths of the MGFM and PF models, the proposed MGFM-
PF method can provide site engine ~s w .h re’.able and robust RSL estimates of systems operating under
faulty conditions. There are ma .y bene.. ~ of using PF in this study, including but not limited to: a)
quantifying the uncertainty of ".SL .. 2 probabilistic form. Uncertainties associated with measurements and
process noise are not taken ... consideration when a single-valued forecasting model is utilized, which
regards damage deteriora ~n ¢, deterministic in nature [27]. Using PF, prediction of RSL along with
confidence levels can b’ achieve. and this helps site engineers to gain an insight into the uncertainty of the
RSL; b) Improving t' : pre .ictiv accuracy of MGFM. Prediction of the progression of machinery fault is a
complex nonlinear —~-oblewn.. .d in this context PF becomes a very suitable tool because it is particular
suitable for non! near sys. ms [27]. Moreover, a high-order hidden Markov model (HMM) may be more

suitable for predic. ~o f> .t growth than a first-order model in real world applications [28]. In this work,




MGFM is utilized together with a high-order PF to realize a high-order HMM for predir .1on ¢ ' RSL. Note
that prediction errors always exist even with a well-established predictor, and system ¢~nami. may change
when the fault propagates. Therefore, in this context, PF technique which has th~ abili., to update its
parameters according to the changes in system dynamics is desirable and can impro~ ¢ the Jic. ~tion accuracy.

A number of studies addressing different aspects of MHMS have already bec. nresented [5,29,30].
However, individual components of MHMS are usually separately invest zated ii traditional condition
monitoring analyses, and this prevents these methods from being applied to al-ind stries where industry
users usually wish to find a complete solution to predictive maintenance. heref~re, in this paper, we propose
an integrated framework that covers all aspects of MHMS, from faul. * ectio to fault identification to
prognostics. The proposed framework was validated using historical fail. ~ data rom an industrial centrifugal
pump, retrieved from a server rather than raw sensor meast ~ments ¢ mmonly used. Use of actual
information addresses a major prognostics challenge: limited w -ks u...cing real-life data to demonstrate
data-driven MHMS’ applicability and benefits in industry.

The major contributions of this paper are as follows:

e The development of a novel RSL prediction 1. "der ... MGFM-PF) able to address the challenge
of failure data scarcity in the era of big r ~chine. * data to enable accurate prediction of the RSL
of a system.

e The development of a novel integta ~ wn... "~ vork that covers all MHMS, from detection of
incipient faults to determination of fault rela.. 1 variables to prediction of remnant life.

e Incipient fault diagnosis using - nove. “VA distinction-based index.

e The development of the EW. “A-Pears m method for early and accurate identification of fault
related variables.

e The use of degradation. 'at capt .red from an operational industrial centrifugal pump and a

CoOmMpressor.

2. Methodology
2.1 Existing conditic. - monitoring methods
2.1.1 CVA rev site’,

Given two se s o zer~-mean variables y; , € R™ and y, . € R™, CVA finds pairs of projection matrices K
and G that maxin. e the cc relation between the projections z;, = K * y; , and z,, = G * y, . The projections

zy, and z,, e also referred to as canonical variates. To generate two data sets from the measured data




¥: € R™, where n is the number of variables, the data were expanded at each sampling in< ance »y including
a, the number of previous samples, and b, the number of future samples, to generat~ the . -t and future
vectors Y, ; € R" and y, ; € R™.

[Ve-1

Voo = [ e ®ma (1)
[Vt-a

Ve

o= | V5 e R @

| Vt+b-1

To avoid domination of variables with large absolute values, y, ; anc ' aic then normalized to the zero-
mean vectors J, . and J;, .. Then, the normalized future and past ectors ¥, . and 9, , are rearranged as per

Egs. (3) and (4) to generate the reshaped matrices ¥, and ¥,,:

Vo= [Var+1 Vars2r o Jaren] € RPN -
?b = [yb,t+11 )’)b,t+2' ""yb,t+N] € RNbXN (4)

where N =M —a — b+ 1and M denotes the length of y, T .en the covariance matrices X, , and X}, and

cross-covariance matrix X, , can be computed as per \ ..

65T 6o T No |
Saa=Yala /(N =1); 5y =00 /(N=1); © =17 /(N-1) )
The vector of canonical correlations D = diag\.” ...,4;), 4, =1, == 1, > 0 can be obtained by

performing singular value decomposition (SV™ I31] on the matrix H:

Ho=2, 5y oZea /2 = UEVT (6)

2.1.2 Pearson correlation ai. 'V (s

In order to identify the mos 1. 't affected variables, we use Pearson correlation analysis that results in a
numerical value (i.e. Pearson ~~rrelation coefficient (PCC)) for how well variations in expression degrees of
two variables correlates. P C is ne of the most commonly used statistical metrics in statistics that measures
the direction and strengtt of a 1.. ~ar relationship between two random variables [32,33].

Given two sets of _ero- .ean *andom variables x and y, the PCC is defined as [17]:

E[x.y] )

p(x,y) = o

where E[x,y] de otes the « "oss-correlation between the variable x and y, g(x) and o(y) denote the standard

deviation of ¥ ~~d y, = _cctively. Standard PCCs were determined for each variable versus the fault detection




index using data collected from early stages of deterioration. The PCCs give an indication r . the ontributions
of different variables during the monitoring process. The higher the PCC of a performan-e var.. “le, the larger

the contribution of the specific variable to the detected fault.

2.1.3 Metabolism grey forecasting model

Metabolism grey forecasting model (MGFM) [25] is the basic model of _rey thec y and has been used
widely since its development in the early 1980s. Grey system theory is 2 .i10vel methodology that focuses on
problems involving small data and poor information. It addresses unc “t~".. sys' :ms with partially known
information through generating, excavating, and extracting useful ini.. mativ. rom what is available. The
theory enables a correct description of a system’s running behavic *r and its ¢ ‘olution law, and thus generates
quantitative predictions of future system changes. By updatin_ the ... _clling data and introducing new
information, MGFM can reflect the characteristics of the current citnat  Grey forecasting model is suitable
for real-time prediction with limited availability of degradation . *a. MGFM uses operations of accumulated
generations to build different equations. The general proc. twe . “*GFM is described as follows.

Consider the non-negative sequence of the origin-! data .. ¥
XO© = (X(O)(l),X(O)(Z), e, XO () ) ®)

Then XM = (X(l)(l),X(l)(Z), L, XD ) ) . caunvs e first order accumulative generation sequence

of the sequence X©, where

XDV =3, X0 t=12,,n ©)

A new sequence Z@ can be extracted .. n X as per the following:
70 = (z0(2),203), -, 2DV () > (10)
Z0() =05 (xO(t - D +xV0)),0 27, n (11)

Then, the least square se jaen. estimation of the grey difference equation of MGFM is defined as
follows:
x@O@) +cz(t) =d (12)

And the whitenization e ,aation 1> -~ follows [25]:
ey
L0 4 () = (13)

Where [c,d]” 1s the rarameter vector of MGFM, which can be obtained by the least square estimation

[c,d]T = (BTB) 'BTY,in vhich




-zW(2) 1 x©(2)
P EARE)) 1"1,:[;:(0)(3)

@ ()

According to Eq. (13), the solution of x( at time ¢ is:

-Z®Wm) 1

20 = (x@(1) = 2) e D 42t = 12,0 (14)
where x (1) = x©@(1).
To obtain the predicted value of the primitive data at time t, the inver- . wccumuwaied generating operation

is used to establish the following grey model:

2O@) = W) = xD(t = 1) = (1 - €9) (xO(1) = &) e~ (15)

2.2 Enhancement of existing condition monitoring 1..~thods

2.2.1 Modified CVA

Suppose that N samples of the process data ¥, € R™ N and ¥,, € R™*VN are available for diagnosing
possible anomalies in the system under study, the rem. ‘u. ~ iss e is to find the diagnostic observers that can
achieve optimal fault detection with a given thres-~!d. In « »nventional CVA-based approaches, only past data
vectors J, . are used to construct test statistics:

2 =K Jar = %72;2/2}7” (16)
e =G " Jae = Via-qZad Jar (17)

Motivated by the fact that CVA is 2" le te fina . .aximum correlations between past and future data, one can
detect subtle changes by examining . “w ar av 1y future canonical variates are deviated from past canonical
variates (e.g. by examining the us .al correi. on between past and future). This leads to a diagnostic observer
called canonical residuals th:. qua. “fies the distinctions between the past and future measurements.
Canonical residuals are gene  .ee as follows:

= LZ}A’b,t - qugffa,t (18)

Where L}, denotes the * rst o rows uf the projection matrix L, and LT = Zb'llj/ng. Similarly, J7 is the first g
rows of the projection .. trix *, and JT = £,5/°V7. X, = diag(Ay, Az, -, ) is a diagonal matrix with its
diagonal element being t = first q canonical correlations calculated as (6). Canonical residuals are measures

of the discrepancy <~ betwe a the past and future measurements and are able to provide more effective feature




representation of small shifts in the early stage of emerging faults compared with diagnost’ . stat’ ,tics derived
from traditional CVA approach [34].

Since the condition monitoring data are mean-variance normalized, the mean of th~ ~anow. =l residuals 7,
is:
E(r) = LEE(lA’b,c) - qugE(}A'a,:) =0 (19)

The covariance of 7 can be calculated as:
Zy = E@r") = JGE(DacYae' W + ELGE (I, Ioc JegE" —JGE (FacIoe JLAE - ELT . (9pPas’ ) =1+
T — 3yt — 33T =1 - 337 (20)

The distinctions between the past and future measurements are centrea arouns a zero mean under healthy
conditions. Hence, a diagnostic test statistics can be formed as the mu.. ariate standard distance of the

discrepancy features from zero [35]:

le@-0)"s r-0)|  _ Te- “wN11/2 — [T (] — yyTY+ 11/2
|C|[(Tt—O)TS_iSS_l(Tt—O)] - [(rt) S \ )] - [rt (1 PPN )rt]
(21)

where c is a normalizing constant, and S = I — Z2T is th. cove . ~e matrix of the test and the healthy data.

Ty = f(c(ry —0)S™1(r, — 0)) =

The roots of the multivariate standard distance betwe~n two . ‘ndom vectors can be traced back to the results
presented in [35], which is described as follows:

Given two random vectors x; and x,, the un. -u...- -t~ dard distance between the two vectors is defined
as follows:
f(@) = la"x, — a"x,|/(a"Sa)!/? (22
where a is a vector of unit length and a” = 1. a”: | and a”x, are the orthogonal projections of the vectors
x, and x, on the linear space spanned ,y a. resp. dvely. S is the covariance matrix of x; and x,. Thus, f(a)
denotes the univariate standard dist. ~ce " etwe n vectors x; and x, in this subspace. According to [35], the
multivariate standard distance be ween x; . 1 x, is attained for a = c(x; — x,)7S*(x; — x,) and takes the
value:
Ty = fclx —x)"S7M(x;  x; ) = [(x1 = 2,)"S 7 (xy — x,)]*/2 (23)

In this paper, fault de. ~ti )n is implemented using a novel CVA distinction-based index T, which is

defined as follows

T2 Q T
TL. = W + a'_Q + g—Tdd (24)
T? =zlz, (25)
Q=ele (26)




where 67, 62 and ¢4 are the threshold of Hotelling’s T2 and Q statistics [36], and, T, * dex. cespectively.
The aforementioned fault thresholds are calculated using the KDE algorithm [13]. T, ¢ *ends ." » traditional
T? and Q statistics to form a new index, and is developed and adopted for the first tir s a a.. ~nostic index

for fault detection of rotating machinery.
2.2.2 EWMA-Pearson for fault identification

Motivated by the fact that EWMA smoothing is sensitive to small shift. in dat- [10,22], EWMA is
incorporated into the contributions calculated from the data collected fror . earlv “~gradation states to enhance
the fault identification performance of Pearson correlation analysis. Con., ¢ to F :arson correlation analysis
[17], EWMA-Pearson incorporates historical information and has great . *ential for detecting small shifts in
the mean change. In other words, EWMA-Pearson improves the ™ult iden' fiability of Pearson correlation
analysis by enhancing the contributions from influential variabic. To suuw that the proposed technique is
superior to Pearson correlation analysis for fault identificati~~ ** “ ___ (dentifiability is compared with that
of Pearson correlation analysis in Section 3.2.2. The results show .” ~t the fault identification performance can
be significantly improved by applying EWMA-Pearson.

The contribution of variable y, based on the EW" “A app. ach can be obtained as:

ct = (1= 68)cqee + 8¢y (27)
t-1
Croq = 2:k=1:—‘/|1'/,1,/cde,t (28)

where & is the forgetting factor and W is the *idth of the moving window. The reconstructed contributions
can provide information regarding the ' .ost stroy jyly affected variables when a fault occurs. The most
influential variables are spotted if they have .. ~ la gest contributions during the early stages of degradation.
The influential variables identified v .ng t' e preposed method will be used subsequently to construct a new
monitoring index using data colle ted .. ~m r urly stages of deterioration as per Egs. (1)-(6) and (16)-(26).

With this process, a refined heal’ (. dicator is extracted and then fed into a MGFM-PF prognostic model.

2.2.3 Enhancemen: ~f r etabolism grey forecasting model using particle filter

The particle filter 1s a .ecursive Bayesian filtering technique utilizing Monte Carlo simulations [37].
Based on Monte Carlo . cip] s, particle filters are used to make approximations to the future status of the
system dynamics Particl s with associated weightings determine the required posterior distribution of the
health state. Thes wvarticle: change and respond recursively with the availability of new information [38]. The

pseudo code 1 wne PF algorithm is listed in Algorithm 1.
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Algorithm 1: PF
Step 1 (state tracking)
fori=123,..,N

Draw particle x}, as per Eq. (29)
End for
Implement prediction as per Eq. (37)
fori=123,..,N

Compute weights w}. as per Eq. (36)
End for

N P Wi
Normalize weights wy = 5

resmaple weights {w}_s, wi}

T
Step 2 (prediction)
fori=123,.., N

Implement prediction as per Egs. (38) — (39)
End for
Predict RSL as per Eq. (40)

In this study, the monitoring index that was reconstructeu “<ing data collected from early stages of

deterioration is defined as the state x of the equipment ur 'er si «, The system deterioration was assumed to
be a fourth-order Markov process since the grey forec -ting n. “del uses four previous samples as the inputs. A
high-order prediction model may be more appropriate ‘o . ~resent the fault progression than a first-order
HMM [28]. The Markov process can be describeu .

X = g (Xpem1, Xpe—2) Xpe—3) Xi—a) + Vg (29)

where g is the state transition function, x;, » w “vstem state at time k and v, is the noise term. The noise
term is assumed to follow a Gaussian di. “bution, nd its statistical properties were initially determined by
the MGFM’s modelling errors. During che state . .cking process, a sliding window containing 50 estimation
residuals was adopted to update the , “ce s noi‘ : at every time instance. The estimation residual z; is defined
as the deviation between the estir .ated pro, stic feature value and the true prognostic feature value at time

k:

Zp =X — X (30)

i = 20 2z /d (31
1 -

Oy = EJZ?=01(Zk—i My )? (32)

where X, is the esti~~ted sw. "~ at time k, u,, ; and o, ; are the mean and the standard deviation of the process
noise at time k, nd d is t1 » length of the sliding window (which is set to 50 in this study). The estimation

residuals covered b, “he - indow were utilized to compute an error density that is subsequently employed to

11




update the model parameters in each iteration. In this way, the last estimation error v aich .ccounts for
potential system dynamics change during the estimation process was included in the pr~dictic. model. With
the updated model parameters, MGFM was utilized to propagate the trend of the syste= statec . ~ ver Eq. (29),
and details regarding this technique are discussed in section 2.4.1.

When a new measurement of the system state y,,, becomes available, the <tate update step is
implemented, and the posterior state probability transition density p(xo.x|V1.k) S estime =d as:

_ POklxi)p (k| Xk—4:k—1)P (X0:k-11Y1:k—1)
p(x0:k|y1:k—1) POklYV1d—1) (33)

Pk lxk)
PVkly1:k-1)

p (ol y1a) =
where (Vi lyik—1) = [ 2Vrlx)p (i |V1k-1) . According to [28], s nce oth the system state x, and
measurement Y, represent the monitoring index, the likelihood functic »(y; |- > an be simply described as:
Yie+1 = Xk+1 + Uk (34)

where vy, is the measurement noise.

Nevertheless, it is hard to compute the posterior probability tran. ““on density in real-world applications
as per Eq. (30) since the integrals do not have an analytica. ~olution in most cases. Hence, a four-order
particle filtering approach is employed here to approxir ‘- *he posierior state probability transition density
p(X0.k|V1.1) by a set of particles with associated weightings.

P(Xoulyia) = ZiLy W)i 6 (X0 — x(i):k) (35)

where x;, denotes a series of states estimated by "~ ith pu ticle, and wj denotes the weight of the ith particle
in relation to x{.,,. N denotes the total number of partic. <. and in the present study the value of N was set to
1000 as the trade-off between accuracy and »  ~mtational cost. The value of the weights are adjusted at every
time instance when new measurements ar- available s follows

wi < wi_ip(yi|xk),i=12,..,N (36)

To overcome the degeneracy pr olen press it in the particle filter algorithm, systematic resampling [37]
is implemented in every iteratior with t. -~ m of multiplying samples with high weights and suppressing
samples with low weights. Intu’ (ve., 2 particle that possesses a higher weight is more likely to be duplicated
and vice versa. The resamplr . | ~rticles are than employed to estimate the system state as per Eq. (32), and
which then makes up the p or dr usity for the next state tracking (estimation) iteration.

At a given time k (- hen the . ~tual system state is not available), the future value of the system state can
be obtained by carryir s out 1 one step-ahead prediction:

X = XLy Wi X (37)
A multiple-step-¢ 1ead prec stion can be obtained by iteratively propagating the particles as follows

~ _oN . i
Xk+m = 21‘:1 we rm—. ‘ m (38)
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x}lc+m = g(xllc+m—1' xlic+m—2' xllc+m—3' xlif+m—4) + Vk+m-1 (39)
where X ., denotes the multiple-step-ahead prediction at time k + m, and x,i(+m denot. the va e of the ith
particle at time k + m. The process noise vy4,,—; remained unchanged during the p~ _"~tion .. >cess and its

value is determined the last time the actual measurement of the system state is av .1labl , nawn.ely, Vgim_q =

Vk+m-2 = *** = Vg-1-
Finally, the RSL is calculated based on the particles propagated by the MC FM-PF 1 >thod as follows
RSL = %Ly wiTtor (40)

where wj denotes the estimated weight of the ith particle during the prec ctior sic ess. Tiop denotes the time
of failure predicted by the ith particle, which is defined as the time brtween now .nd the time point at which
the propagated particle reaches the pre-defined failure threshold. In othe. words, the estimated RSL is a
weighted sum of all particles starting from the point to commence p. ictior until the time instance at which
the propagation of the particles approached the pre-determined thres. ~1d. The failure thresholds of the pump
failure cases were chosen to be the average value of the ~onitoring indices (i.e. at the time when the
equipment was forced to shut down) of all available fault ~ases. Duc 0 the limited availability of failure data,
we subjectively set the failure threshold of the compressor . il e case to be the largest value of the prognostic

feature as did Wu et al. [39].
2.3 Overall framework of the integ’ 22~ di. 1nostic and prognostic method

In summary, Fig. 1 shows a flowchart of the implementation process of the proposed integrated
framework. Once the CVA deviation-bases index xceeds the fault threshold, an alarm will be generated to
give an indication of the occurrence of a . ~lt, wk ch will subsequently trigger the fault identification and
prognostic modules. In other words, d grad tion aata are identified by the CVA-based fault detection module.
The EWMA-Pearson model performs ™ .t ide .cification after the occurrence of the fault, which will help in
the reconstruction of the monitor 1g index. ~iter the fault influential variables are successfully identified, the
proposed MGFM-PF approach s utiliz. ' to propagate the trend of the reconstructed monitoring index until it
reaches the pre-determined ‘ ires, >ld. The RSL is calculated based on the probability density function of the

propagated particles.
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Figure 1. Flowchart of the proposed integrated diagnostic and pr ... stic meuiuu.
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The detailed training and monitoring procedure of the propose.” diagnr<*. and prognostic method is

illustrated in Fig. 2. The extended CVA-based diagnostic method is traine. using normal data. After fault

detection, the EWMA-Pearson approach is applied to identify the .. ~st .ult related variables using data

obtained at early degradation stages. The same data set is also empi._=d to train the MGFM-PF algorithm.

The trained predictor is subsequently utilized to propagate parw. 'es forward to perform RSL prediction.
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Figur 2. Detailed illustration of the proposed diagnostic and prognostic method.
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3. Case studies

3.1 Continuous stirred tank reactor (CSTR) simulation cases

~x

The purpose of this section is to evaluate the monitoring performance of the - ropor sa <A distinction-
based index using a CSTR case study. The CSTR simulation model used in this paper 1. ~reated by the authors
of [40], which is specially designed for analysing slowly evolving faults. Fig 3 illus. 1tes the measurement
locations and the control strategy of the reactor. The reactor temperature T is ~ntroll¢ 1+ by manipulating Q.
which denotes the coolant flow rate. The reader is referred to Karl and ™ 1’s w~~" [40] for full details of the
simulation program. Nine test sets are constructed to test the monitoring _ .cform nce of the indices studied
(see Table 1). Test sets 1-3 simulate sensor drifts on the measured variav. ~ T;, I and T, respectively. During
the simulation, a decaying component 6t was added to the sens. * measur: ments (i.e. T; = T; o + 6t; T, =
T.o+6t; T =T, + 6t), where T;g, T,y and Ty denote the valuc. of 7;, T, and T under normal operating
conditions, respectively. The values of the decaying rate § f i.vicu west sets are detailed in Table 1. Test
sets 4-6 simulate catalyst decay fault: a; = agexp(—6t). In the . ndel, a, is set to ay = 1 during normal
operation. The decaying rate § is varied among test sets 1. ord r to evaluate the effectiveness of the T, index
when the faults deteriorate at different rates. Test se. 7-10 s. 1ulate two simultaneous faults, catalyst decay
and heat transfer fouling (b; = byexp(—4t)). by = 1 de. tes -he value of b; during normal operation, and §
is the decaying rate. During faulty operating cona..’™ns, u; and b; decayed from their healthy values toward
0. In each test set, faults were introduced after 1400 min of normal operation. For illustrative purposes, the
output variables under fault conditions 4 7 «d 2 a. plotted in Fig. 4 to demonstrate how the catalyst decay,

and, simultaneous catalyst decay and heat .. ~sfer fc iling affect the system outputs.

¢ mol/",

S

T (s, C (mol/L)
Q. (L/min) T(K)

Figure 3. Schematic sketch fthe 7STR process for collecting the test data [40]. C; denotes the concentration in the reactor, T; denotes
the temperature of the ith  actc , T,; d iotes the outlet temperature of the ith cooling water and T, denotes the inlet temperature of the

cooling water.
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Figure 4. Output faulty variables under fault conditions 2 and 4. (a) fault case 2: T, sc
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Faults were introduced after 1400 minutes of normal operation.
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Table 1. Monitoring performance ~f T, » ~

"
-~ arift, ar 1 (b) fault case 4: catalyst decay.

Test

Fault description Decaying rate setting T. T? Q
set
Sensor drifts on the N 237 272
1 0.05
measured variable T; ~nasd 7.23% 0.17%
5 Sensor drifts on the ol 226 219 144
measured variable T, ’ 1.21% 4.89% 1.13%
3 Sensor drifts on the ol N 96 96 96
measured variable T ' - 2.8% 7.15% 0.17%
482 469 441
4 Catalyst decay 0.0006
0.67% 6.3% 0.71%
311 262 258
5 Catalyst decay M) |
0.5% 4.8% 0.5%
102 102 90
6 Catalyst decay €003
4.05% 6.69% 2.76%
; Catalyst decay + Heat 0 J08 for ca. "~ t decay and 338 335 332
transfer fouling 7.0u.  ‘or heat transfer fouling 5.39% 9.61% 0.25%
N Catalyst decay + Heat 0.003 for cutalyst decay and 110 112 106
transfer fouling 0 04 for heat transfer fouling 0.75% 7.2% 0.79%
0 Catalyst decay + Heat J.0005 for catalyst decay and 507 510 506
transfer foulir | 0.v.* for heat transfer fouling 0.5% 4.76% 0.5%
277.89 260.22 249.44
Averaged .. ~ .oring erformance
2.09% 6.51% 0.78%

? First row of ez h column. ‘etection delays (minutes).
b Second row o. *ach colum : false positive rate (FPR).
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Figure 5. Monitoring results of fault conditions 2 ((a). T, sensor rift) and 4 ((b* catalyst decay).

The proposed CVA distinction-based index was applied to my. “tor the CSTR numerical examples. All
upper control limits for healthy operational conditions in this 1. =stigation were calculated at the 99%
confidence level. Fault thresholds were calculated using the I o wewoa. The cross-validation method [5,41]
was utilized to determine the optimal model order g, and a was set . 15 for all CSTR test sets. The detection
delays and false positive rate (FPR) are presented in Table T’ e FrR is calculated by dividing the number of
false detections under normal conditions by the lengtl. . “the tc *ing data. The detection delay is defined as the
period between the detection time and the start of fam It .5 observable from the table that the averaged
detection delays and FPR of the proposed methoa .. » smauer than those of the other methods, verifying that
the proposed diagnostic method shows better monitoring performance than T? and Q. For illustrative
purposes, the monitoring charts of test set ~ and 4 e presented in Fig. 5. In both cases, T? and Q struggle to
cross the fault threshold, resulting in large. Jetecti n delays and larger FPRs, but the proposed distinction-
based index achieves earlier detection imes and lower FPRs.

The results in this section verify ." 2 the r .oposed CVA distinction-based index is new and outperforms
traditional T2 and Q indices whe applied to slowly developing faults in that it is able to detect the faults

earlier with a relative low FPR.

3.2 Centrifugal oui..- case studies 1 & 2

3.2.1 Fault des ript'on

In order to 2 sess the abuity of the proposed diagnostic and prognostic technique to effectively detect
incipient faults «d predi t system RSL, the model was tested using two data sets captured from an

operational i~ sustrial centrifugal pump. This pump is a high-pressure centrifugal pump running at a large
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refinery in Europe (hereafter referred to as pump A). The first measured time series cons sted of 380
observations and 13 variables (Table 1 shows all measured variables). The second time s~ries c. “<isted of 197
observations. For this study, all data were captured at a sampling rate of one sample p~~ hour. _* is observable

~ ath

from Fig. 6 (a) that the unit is operated under healthy conditions between the 125" and t . _ point of the
time series. The readings of the four different bearing-temperature sensors start to 1. » at around the 335™
sampling point; the machine continued to run until the 380™ sampling point. or faul. ~ase 2, it can be seen
from Fig. 6 (b) that that the machine is operated under healthy conditions betv. ~en the " and the 137™ point
of the time series. The readings of the four different bearing-temperature < .nsors tart to increase at around the

138" sampling point; the machine continued to run until the 197" sampl. ~ _oint. 1t that time, site engineers

shut down the pump for inspection.
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® : Radial bearing temperature 2 5 | Radial bearing temperature 2
5 a Active thrust bearing temperature T Active thrust bearing temperature
8 o 0.08 Inactive thrust bearing temperature go 0.08] [—  “active thrust bearing temperature
p 2
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@ o |
§ oo . o ] 8 o
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(a) (b)

Figure 6. Trend of four different bearing temperature sensor measuren.. ~ts of pump cases 1 and 2 (signals are normalized). (a) fault case

' (b) fault case 2.

Tlac ~ 2. Mea ured variables of pump A

Variable ID Va, able Name Units
1 4 Speed rpm
2 a8 Suction pressure bar
3 Discharge pressure bar
4 Discharge temperature degree C
4 Actual flow kg/h
o 4 Radial vibration overall X 1 mm/s
7 Radial vibration overall Y 1 mm/s
g 4 Radial bearing temperature 1 degree C
I Radial vibration overall X 2 mm/s
10 Radial vibration overall Y 2 mm/s
1 Radial bearing temperature 2 degree C
- 4y Active thrust bearing temperature degree C
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13 Inactive thrust bearing temperature degree C

3.2.2 Results and discussion

3.2.2.1 Fault detection and identification

To begin with, the CVA-based diagnostic approach is trained using a ¢ ‘ta set ¢ llected from normal
operating conditions. The scale of time lags a and b were estimated throu- .1 tne antocorrelation analysis [5] of
the root summed squares of all variables in the training data set. Here t. ~ - umber of time lags a and b were
set to 5. Since the underlying process data is non-stationary and non-u. ar, auu does not follow a Gaussian
distribution, the KDE method was adopted here to determine the 1 ~ner contr | limits of the test statistics. All
upper control limits for healthy operational conditions in this vesu,..on were calculated at the 99%
confidence level (i.e. the probability the test statistics are smaller +h~~ ¢ predefined threshold is 99%). We
set the value S equal to 0.99 in this section. Here, the optimal mo< ! order q in the CVA diagnostic model was
set to 25 using the cross-validation method.

Fig. 7 (a) shows the results obtained in terms of “~ult de. ‘ction for fault case 1. The T, index is sensitive
to small shifts in the underlying process, resulting in an « ari.. - detection of the fault when compared to T2 and
Q statistics (12 and 27 hours earlier compared to . - . ? “atistics, respectively). FPRs were also calculated
for the tested statistics. The FPR of the T, index is 1.31, ", and the FPRs of the T? and Q statistics are 1.84%
and 0.8%, respectively. Therefore, in thic cas. the T, statistics outperforms T? and Q in terms of fault
detection time, providing ample time for . hsequen' product planning. Meanwhile, the T, index has less FPR
than T2 and demonstrates similar perfc mance as _. It is worth noting that although the FPR of Q index is the
lowest among the three test statistics, * fa’.ed tc Jetect the fault during the entire operation of the machine and
hence does not satisfy the pract’.al applic. .on requirement. The fault detection results coincide with the
conclusion made in the previc .s Sev ‘~n that the proposed index is able to detect the faults earlier with a
relative low FPR. The fault ¢ ..cc “on result for fault case 2 is depicted in Fig. 7 (b). Although T, demonstrates
similar performance as T?, ** st'.l performs better than Q in that it is able to avoid missed detections under
faulty conditions. The - zason wh, 2 index incurs missed detections is that it is not as sensitive as T, when
applied to slowly dev 'op’ g fo its. Collectively, T, demonstrates superior or comparable performance than
traditional T2 stati- .. in ter.. s of fault detection time and FPR. Moreover, T, presents superior performance
than Q statistics 1 terms « 7 sensitivity to incipient faults under faulty conditions (i.e. the ability to avoid

missed detecti~=s) 1.~ . cases.
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Figure 7. Fault-detection results for pump A case 1 & 2. (a) fault case 1; (b) fault case 2. T, sta. “tics obtained using CVA. Legend: solid

blue — test statistics, dashed red — upper r ~ntrol limit.
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Figure 8. Contributior plots * r iden“fying the detected fault. (a) Fault case 1; (b) Fault case 2.
Table 3. Averaged y <entages of cuntributions from the influential variables under faulty conditions
Averaged percentages of contributio. , _ Pearson correlation analysis EWMA-Pearson
Pump case 1 53.97% 58.28%
Pump case 2 66.83% 72.28%
Compressor ' 18.65% 23.01%

After fault detectio.. che r oposed EWMA-Pearson fault identification approach is applied to the data

obtained from ez 1y stag s ot deterioration. To be specific, PCCs were first determined for each process

variable versus t. » diagnc ,tic monitoring index. Then, the contributions (PCCs) were fed into a EWMA

model to im .ove the tault identification performance. Here, the forgetting factor § and width of the moving
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window W in Egs. (27)-(28) were set to 0.9 and 5, respectively. Since PCCs at certair time instant only
examines the contributions at one time point and therefore may not be able to accuratel * iden.. ™’ the process
variables that are responsible for the detected fault. In an effort to solve this prot'»m, u. contributions
calculated based on the EWMA-Pearson approach were averaged over a period of .me ( .kc. “0 be 25 hours
starting from the 331th sampling point for fault case 1 and the 138th sampling poin. ~r fault case 2). With
this process, contributions at multiple time stamps were stacked into one .igure t. clearly illustrate the
contribution of different variables over the early degradation process. The -~sultant contribution plots is
displayed in Fig. 8. The results indicate that variable no. 8, 11, 12 and 13 are influential variables in both
cases, which is 100% accurate according to the root cause of the fault a. ~*.ced p :viously. In order to show
that EWMA-Pearson is superior to Pearson correlation analysis for ta.’* idenufication, the percentages of
contributions of faulty variables (i.e. the ratio of accumulated cont "hutions fr m variables 8, 11, 12 and 13 to
accumulated contributions from all variables) were calculated an. *he av..aged percentages of contributions

YvT.

of faulty variables under faulty conditions were compare” - A-Pearson and Pearson correlation
analysis (see Table 3). It can be seen from both case studies tha. “e fault identification performance can be

significantly improved by applying EWMA-Pearson.
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(a) (b)
Figure 10. Predicted posterior distributions and actual end of service life for (a) case 1 and (b) case 2. The v. "~ dashed line is

parallel to the horizontal axis.

3.2.2.2 Fault prognostics

The MGFM-PF approach was employed to propagate the trend of the n snitoring ‘index until it reaches
the pre-determined threshold. Similar to [42], a locally weighted regression fil. = (LOF ,S) with a span value
of 0.3 was applied to the calculated degradation health indicator to sme sth or* “he degradation trajectories.
LOESS is a powerful smoothing technique based on a locally weightea  ressic 1 function and a 2™ order
polynomial function (reader is referred to [43] for more details about thi. ‘echnique). Fig. 9 (a) illustrates an
exemplary result of the predicted monitoring index for prediction. *arting af the 365th sample for fault case
1. The red curve indicates the health indicator (HI) predicted by u. »ropused prognostic method when actual
measurements of the system states are available. The light ¢ _...< .adicates the mean values of the RSL
probability density functions for each time instance. The shade. atea shows the values within which the
monitoring index was predicted as per Egs. (8)-(15) and (- ?)-(+ . imilarly, Fig. 9 (b) shows the result of the
predicted monitoring index for predictions starting at ©* = 164 ~ample for fault case 2.

The predicted RSLs by MGFM-PF in terms of prov *bu.. - distributions and actual end of service life for
case 1 and 2 are shown in Fig. 10. The results sh. 7 wia. ~ :he prediction start point gets closer to the actual
failure time, the mean of the failure time distribution ge.. closer to the real end-of-life, and the variance gets
smaller. It was mentioned in Section 1 th . rr 'lows the quantification of the uncertainties of RSL in a
probabilistic form. Fig. 10 has demonsti.. ~d that t e prediction of the RSL can be obtained as probability
distributions, and in order to further i .stifv the . .cessity of using PF in this study, the predicted RSLs for
different prediction starting points a. ~g * 1th t' : associated tolerance intervals were depicted in Fig. 11. The
dark blue shaded areas denote thr one sign. lerance interval (covers around 68% of the RSL density) that
was derived from the RSL dens des (.. “wn in Fig. 10) with particles being assumed normally distributed. The
light blue shaded areas denc < .. » two sigma tolerance interval (covers around 95% of the RSL density). It
can be seen from the figur. *hat ae confidence interval becomes narrower as the prediction start point moves

toward the end-of-life. / s a result, e RSL uncertainty is reduced considerably.
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Figure 11. Predicted RSL and its confidence bounds (one and two sigma tolerance interv 's) for (a) .ase 1 and (b) case 2.

The graphs in Fig. 12 demonstrate the prognostic performance of t. » - .opos d MGFM-PF method and
MGFM [44], LSTM [45], ANFIS [46], and AR model [47] for differen.. “ult cases. The Akaike Information
Criterion (AIC) was employed to determine the optimal parame?~rs for AR models. For LSTM model, the
network consists of one input layer, one hidden layer and one ou 1t lay . the number of hidden neurons in
the hidden layer was set to 200. For ANFIS model, two memharche functions (MFs) were chosen. It is
observable from Fig. 11 that the predictive accuracy of MGFM-r " is lower at the beginning and the estimated
RSLs lie well within the ¥25% confidence bounds, ind. aun, ~ * the proposed MGFM-PF model has the
ability to accurately predict the system’s remaining sevvice 1. . As the prediction starting point gets closer to
the actual end-of-life, the RSL predicted by MGFM-Pt <c.. ~loser to the true remaining useful life, yielding
more accurate estimations.

The predictive performance of the existing metho.. mentioned above are compared with the proposed
MGFM-PF model, and the comparison resu!’ . .. etailed in Table 4.

Three performance metrics were use to quanti itively benchmark predictive performance of the models
compared. The employed metrics are:

1. Root mean square deviatio' (RV sD):

RMSD = \/Z?’ﬂ(RSLWe_i —RSI .,)?/N 41)
2. Mean absolute deviatinn (MAD).
MAD = Z?:l |RSLpre,i = PoLy, ,il/N (42)
3. Cumulative rels ive ace +acy (CRA):
CRA = Bl (1 - 0 20 melly y “3)
SLer i

where RSLpre; ar . 1oLy ; wenote the predicted and actual RSL, respectively, and N is the total number of
predictions. The bold val es in column 3 of Table 4 verify that the MGFM-PF method shows better

prognostics r ..ormauce than the other four methods. The RSLs were also calculated for the situations when
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all variables are utilized. It is clear that using only influential variables greatly imprc ed t' ¢ predictive
accuracy. Furthermore, in order to obtain a general idea on the computational cost of the nropo. 1 MGFM-PF
method, the processing times of MGFM-PF and its counterparts were recorded and li~*=d in ble 4. All the
methods considered were implemented with MATLAB R2018b and conducted on = desk op ~mputer with a
3.2 GHz 8 core CPU and 16 GB memory. It is observable from Table 4 that the shorw. * orocessing time was
achieved by MGFM in both cases, followed closely by AR model and MGF’ (-PF. L."TM and ANFIS were
more time-consuming and could account for the relatively long processi, ~ times .neasured. However,
compared with the long prediction timeframes (ranging from 1 hour to 2 . houre the processing times of all
above mentioned methods are deemed to be relatively short, which coi. "~ .is the applicability of the above
mentioned methods for online monitoring. Collectively, the proposea " *Gkivi-PF method outperforms its
counterparts in that it greatly improves the predictive accuracy a.  has a cc nputational speed that satisfies

practical applications.

Table 4. Comparison of predictive accuracy and proc. ~ing time using various models

MGFM-PF
Case studies Algorithms MGFM-PF LSTM £ R ANFIS Grey (all variables
used)
RMSD 2.44 20.82 T4 16.45 3.69 3.81
MAD 1.92 17.49 ~ 77 9.69 297 2.8569
Pump case 1 CRA 0.0051 0.046 0.0094 0.025 0.0078 0.0075
Processing
10.85 o4.0. 7.92 104.62 0.058 N/A
time (s)
RMSD 3.14 0064 3.9 26.49 8.18 7.75
MAD 235 17.8/ 32 16.51 42 5.81
Pump case 2 CRA 0.012 0.09 0.017 0.087 0.022 0.031
Processing
107 + - 192 42.66 140.25 0.032
time (s)
RMSD 191 49.28 38.75 6.05 39.57 8.7
MAD 1..° 41.79 33.8 3.46 34.44 4.53
Compressor CRA 0.0° 84 0.026 0.0209 0.0021 0.0213 0.0028
Processing
177.0- 667.88 41.11 629.42 2.26 N/A
time (s
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Figure 12. The comparison between the proposed MGFM-PF model and other existing metho.. (a) far’ case 1 and (b) fault case 2.

3.3 Centrifugal compressor case study
3.3.1 Fault description

In this section, a third industrial case study is utilized to “arther verify the effectiveness and
generalizability of the proposed method, which involves prea.. “ng the RSL of a centrifugal compressor. This
machine is a high-pressure centrifugal compressor (he ~~fter refe.ced to as compressor A). The dataset
consists of 1614 observations and 21 variables. Table 5 su. ‘v arizes the name of different process variables.
The sampling rate is one sample per hour. The degi. . “on ¢ ta are shown in Fig. 13, and the root-cause
variables are the stage 3 drive-end radial vibration sensors overall X and Y. The compressor was turned off at

the 1614" sampling point due to high levels of vibrau. =

30} | Stage 3DE Re |aI;'b_m1ﬁor ’J\‘rerall X‘ | I ‘H- 1
Stage 3 DE Rau. " Vibratior Overall Y [

g Wi
E 251 M v\ ]
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g% %) “\ H’ M m ﬁ[
5

15} 1

-
o
¢ ’
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Time (hour)
‘oure 3. Tre J of two different bearing vibration sensor measurements of compressor A
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Table 5. Measured variables of compressor A

ID Variable Name ID Variable Name

1 Stage 1 Suction Pressure 12 Stage 1-2 Non-drive-end (NDE) Raa.. ~ Vibration Overall X
2 Stage 1 Discharge Pressure 13 Stage 1-2 Non-drive-end (N /E) k dial Vibration Overall Y
3 Stage 1 Suction Temperature 14 Stage 1-2 Thrus. ‘*eT;nmal Probel—
4 Stage 1 Discharge Temperature 15 Stage 1-2 Tk Positio.. * xial Probe 2

5 Stage 2 Suction Pressure 16 Stage 3 Drive-e 4 (DE) Rac 'l Vibration Overall X

6 Stage 2 Discharge Pressure 17 Stage 3 Drive-enu ME) R~ .al Vibration Overall Y

7 Stage 2 Suction Temperature 18 Stage 3 Non: .rive-er © NDE) Radial Vibration Overall X
8 Stage 2 Discharge Temperature 19 Stage 3 Non- ‘—,—em DE) Radial Vibration Overall Y
9 Stage 3 Suction Pressure 20 S>.. 3 Tuust Position Axial Probe 1

10 Stage 1-2 Drive-end (DE) Radial Vibration Overall X 21 Stage 3 hrust Position Axial Probe 2

Stage 1-2 Drive-end (DE) Radial Vibration Overall Y

3.3.2 Results and discussion

3.3.2.1 Fault detection and identification

Similar to the procedure described in Section 3.2, "he ~alv of time lags a and b were estimated through
the autocorrelation analysis [5] and were set to 17 ™"~ an. nal model order g in Eq. (18) was set to 17 using
the cross-validation method. Fig. 14 (a) and (b) demo.. *rate the results obtained in terms of fault detection
and identification, respectively. In Fig. 14 (2>, " ~ T, statistics is more sensitive than T2 and Q statistics at the
early stages of deterioration and crosses * s control imits at 1405 hour with a FPR of 0.88%. In this study,
fault detection is defined as the first ti ae whe. 4 consecutive sampling points are above the control limits,
which was suggested by the authors of [ ,,491 The fault detection results verify that the proposed method
maximizes the fault detectability * ader a.. ~c eptable FPR when compared to traditional CVA test statistics.
Fig. 14 (b) indicates the most ir fuc. “ial variables are variables 16 and 17, which is 100% accurate according
to the root-cause of the fault »= *ated in Section 3.3.1. Moreover, the averaged percentages of contributions of
influential variables unde’ faul’; conditions are compared for EWMA-Pearson and Pearson correlation
analysis (see Table 3). "¢ is cic. - that EWMA-Pearson can obtain a better contribution rate of influential

variables comparing t- the » crfor 1ance of Pearson correlation analysis.
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Figure 14. Fault detection and identification results of compressor A. (a) faur. *ection, (b) fault identification.

3.3.2.2 Fault prognostics

Fig. 15 (a) shows the predicted degradation feature at 1559 he. = Fig. 15 (b) shows the predicted posterior
distributions of failure time at the different prediction s “rt p ... for compressor A, which implicate the
potential degradation mechanics at the correspondin time. - can be seen that as the prediction start point
moves towards the actual failure time, the mean of the ™ilu. ~ time distribution gets closer to the real failure
time, and the variance gets smaller.

The predicted RSLs for different prediction starting |, oints are illustrated in Fig. 16 (a). The data before
1527 hour are used for state tracking and th o, “recast starts at 1528 hour. The black dashed line indicates
the mean RSL that were derived from the 'SL densi y functions shown in Fig. 15 (a). The dark and light blue
areas represent the one and two sigm‘ tolerance atervals containing 68% and 95% of the RSL probability
densities at each cycle, respectively The red s raight line demonstrates the actual RSL. It is clear that the
mean RSL curve of the proposed * .ethod cu” - .ides with the actual RSL.

Finally, the RSL of comr .esso. A predicted using MGEM-PF was compared with MGFM, LSTM,
ANFIS, nd AR model. The r _..._ arison results are depicted in Fig. 16 (b) and the three performance metrics
were calculated and listed -~ Ta'.e 4. RMSD, MAD and CRA of MGFM-PF are all minimal compared to the
others algorithms. The r saluation. -etrics confirm that the MGFM-PF method outperforms its counterparts. It
can also be observed om " able . that the prediction errors of MGFM-PF when only the influential variables
were used are sma'' -~ thau '“ sse when all process variables were utilized, which verifies the necessity of
using only influe tial varia les for prediction. The forecast information provided by the proposed MGFM-PF

model can be use. “» 4~ ,elop production plans in advance and provide ample time for organizing spare
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repairs and scheduling maintenance so as to prevent serious abnormal conditions, catastrop’ ic fai ares or even

emergency situations.

. Il
45 !
! 06

4a0r "
<] i
p=] 2
§ 35 ; £ 04
S ! 8
€30 State tracking Prediction o
= > £ 02
= i
325 !
T ! ! 0 oy

20 L i 1613 iy L

—True HI ! 1593 T o Actual end of service life 1864 1914
15 ~——Hi predicted by MGFM-PF (measurements available) 15730 OSSN ~ 1764 1814
H predicted by MGFM-PF (measurements not available) 1553 2o = 1714 1764
0 \Areas spanned by farticles 1533 45701614 1604
1449 1499 1549 1599 1649 1699 Predicted end of service life (hour)
Time (hour) Starting ~oint of prediction (b /)
(a) (b)

Figure 15. (a) Predicted health indicator at 1559 hour; (b) Predict * vosterior di ributions of compressor A.
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Figure 16. (a) Predicted RSL and its confidence bounas “ne and two sigma tolerance intervals) for compressor A; (b) The

comparison between the proposed MGFM-r ¢ model and other existing methods.

4. Conclusion

In this work, an integrated d’ onor.ic a’d prognostic framework was proposed for incipient fault

diagnosis and remaining service J° ¢ predic. "~ 1 in nonlinear dynamic processes. The developed approach was

validated through a CSTR casr stuu, and condition monitoring data acquired from an industrial centrifugal

pump and a compressor. Fav’ . >gnosis was carried out by comparing the values of the canonical distinction-

based diagnostic index wit  nre- .efined thresholds. The proposed diagnostic approach can distinguish normal

operational conditions f' ym slow._ developing faults incurring system anomalies leading to an early detection

of faults. Moreover, t e pr posee EWMA-Pearson method can effectively identify fault influential variables

in early degradatic~ stage. -.d the fault identifiability is greatly improved when compared to Pearson

correlation analy is. MGF.  was introduced to learn the system evolution and to compensate for the lack of

historical failure a.. ~ Tk procedure for propagating the particles and forecasting RSLs was performed in a

stable and f st mani. v, due to the computational benefits of the MGFM. The novel MGFM-PF scheme leads
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to very good prediction results. The predictive accuracy of the MGFM-PF method was « emor .trated to be
superior to MGFM, LSTM, ANFIS and AR model. Through experiments, capabilit;” of u. ~¢ only fault
related variables for RSL prediction has been shown. The associated processing time altho._h. larger than
AR and MGFM, confirms the general applicability of the MGFM-PF techni ue f .. . “'ine condition
monitoring. In three real-world machine health monitoring case studies, the robustnc. - and effectiveness of
the proposed condition monitoring approach were verified. The proposed hy srid dia_ 1ostic method can be
used to provide site engineers with reliable diagnosis of rotating machinery « *d mear shile the MGFM-PF
technique can assist inthe subsequent production planning and dec sion-m~king process and enhance
profitability by eliminating unpredicted failures. While the proposed frai. ~ ork is tested using run-to-failure
data captured from a centrifugal pump and a compressor and forms ~n uutial step towards machinery
prognostics in grey model framework, it can be applied to othe. ‘ndustrial -otating machines, such as gas
turbines and wind turbines. With the continuous improvement o. ™achi...y, data on faulty are increasingly
limited. The needs for such a methodology can only increase

A consideration for future study is to improve the model’s pe. ~rmance for long-term RSL predictions. In
addition, strategies for identifying fault influential vari.les .. . earlier stage of degradation should be

further studied in the future.
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The development of a novel RSL prediction model (e.g. MGFM-PF) able to address the challenge
of failure data scarcity in the era of big machinery data to enable accurate prediction of the RSL
of a system.

The development of a novel integrated framework that covers all MHMs, from: 'etection of
incipient faults to determination of fault related variables to prediction of remn nt life.

Incipient fault diagnosis using a novel CVA distinction-based index.

The development of the EWMA-Pearson method for early and accu ~*~ identification of fault
related variables.

The use of degradation data captured from an operation | industt 1l centrifugal pump and a

compressor.




