1,396 research outputs found

    Viewfinder: final activity report

    Get PDF
    The VIEW-FINDER project (2006-2009) is an 'Advanced Robotics' project that seeks to apply a semi-autonomous robotic system to inspect ground safety in the event of a fire. Its primary aim is to gather data (visual and chemical) in order to assist rescue personnel. A base station combines the gathered information with information retrieved from off-site sources. The project addresses key issues related to map building and reconstruction, interfacing local command information with external sources, human-robot interfaces and semi-autonomous robot navigation. The VIEW-FINDER system is a semi-autonomous; the individual robot-sensors operate autonomously within the limits of the task assigned to them, that is, they will autonomously navigate through and inspect an area. Human operators monitor their operations and send high level task requests as well as low level commands through the interface to any nodes in the entire system. The human interface has to ensure the human supervisor and human interveners are provided a reduced but good and relevant overview of the ground and the robots and human rescue workers therein

    A safe and energy efficient robotic system for industrial automatic tests on domestic appliances: Problem statement and proof of concept

    Get PDF
    In this paper, the design and the development of a robotic platform conceived to perform accelerated life tests on a newly manufactured domestic appliances is presented. The proposed system aims at improving the safety of human operators that share the workspace with the robotic platform which is a common scenario of test laboratories. A deep learning algorithm is used for the human detection and pose estimation, while the integration between a conventional motion planning algorithm with a fast 3D collision checker has been implemented as a global planner plugin for the ROS navigation stack. With the twofold objective of improving safety and saving energy in the battery-powered mobile manipulator used in this project, the problem of minimizing the overall kinetic energy is addressed through a properly designed task priority controller, in which the manipulator inertia matrix is used to weight the joint speeds while satisfying multiple robotic tasks according to a hierarchy designed to interact with the appliances while preserving the safety of the human operators. Simulations are carried out to evaluate the overall control architecture and preliminary results indicate the effectiveness of the developed system in the test laboratory floors

    User-centered design of a dynamic-autonomy remote interaction concept for manipulation-capable robots to assist elderly people in the home

    Get PDF
    In this article, we describe the development of a human-robot interaction concept for service robots to assist elderly people in the home with physical tasks. Our approach is based on the insight that robots are not yet able to handle all tasks autonomously with sufficient reliability in the complex and heterogeneous environments of private homes. We therefore employ remote human operators to assist on tasks a robot cannot handle completely autonomously. Our development methodology was user-centric and iterative, with six user studies carried out at various stages involving a total of 241 participants. The concept is under implementation on the Care-O-bot 3 robotic platform. The main contributions of this article are (1) the results of a survey in form of a ranking of the demands of elderly people and informal caregivers for a range of 25 robot services, (2) the results of an ethnography investigating the suitability of emergency teleassistance and telemedical centers for incorporating robotic teleassistance, and (3) a user-validated human-robot interaction concept with three user roles and corresponding three user interfaces designed as a solution to the problem of engineering reliable service robots for home environments

    What is a robot companion - friend, assistant or butler?

    Get PDF
    The study presented in this paper explored people's perceptions and attitudes towards the idea of a future robot companion for the home. A human-centred approach was adopted using questionnaires and human-robot interaction trials to derive data from 28 adults. Results indicated that a large proportion of participants were in favour of a robot companion and saw the potential role as being an assistant, machine or servant. Few wanted a robot companion to be a friend. Household tasks were preferred to child/animal care tasks. Humanlike communication was desirable for a robot companion, whereas humanlike behaviour and appearance were less essential. Results are discussed in relation to future research directions for the development of robot companions

    A biologically inspired architecture for an autonomous and social robot

    Get PDF
    Lately, lots of effort has been put into the construction of robots able to live among humans. This fact has favored the development of personal or social robots, which are expected to behave in a natural way. This implies that these robots could meet certain requirements, for example, to be able to decide their own actions (autonomy), to be able to make deliberative plans (reasoning), or to be able to have an emotional behavior in order to facilitate human-robot interaction. In this paper, the authors present a bioinspired control architecture for an autonomous and social robot, which tries to accomplish some of these features. In order to develop this new architecture, authors have used as a base a prior hybrid control architecture (AD) that is also biologically inspired. Nevertheless, in the later, the task to be accomplished at each moment is determined by a fix sequence processed by the Main Sequencer. Therefore, the main sequencer of the architecture coordinates the previously programmed sequence of skills that must be executed. In the new architecture, the main sequencer is substituted by a decision making system based on drives, motivations, emotions, and self-learning, which decides the proper action at every moment according to robot's state. Consequently, the robot improves its autonomy since the added decision making system will determine the goal and consequently the skills to be executed. A basic version of this new architecture has been implemented on a real robotic platform. Some experiments are shown at the end of the paper.This work has been supported by the Spanish Government through the project called “Peer to Peer Robot-Human Interaction” (R2H), of MEC (Ministry of Science and Education), the project “A new approach to social robotics” (AROS), of MICINN (Ministry of Science and Innovation), the CAM Project S2009/DPI-1559/ROBOCITY2030 II, developed by the research team RoboticsLab at the University Carlos III of Madrid

    Network robot systems

    Get PDF
    This article introduces the definition of Network Robot Systems (NRS) as is understood in Europe, USA and Japan. Moreover, it describes some of the NRS projects in Europe and Japan and presents a summary of the papers of this Special Issue.Peer Reviewe

    Design and modeling of a stair climber smart mobile robot (MSRox)

    Full text link

    GUARDIANS final report

    Get PDF
    Emergencies in industrial warehouses are a major concern for firefghters. The large dimensions together with the development of dense smoke that drastically reduces visibility, represent major challenges. The Guardians robot swarm is designed to assist fire fighters in searching a large warehouse. In this report we discuss the technology developed for a swarm of robots searching and assisting fire fighters. We explain the swarming algorithms which provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also one of the means to locate the robots and humans. Thus the robot swarm is able to locate itself and provide guidance information to the humans. Together with the re ghters we explored how the robot swarm should feed information back to the human fire fighter. We have designed and experimented with interfaces for presenting swarm based information to human beings
    • 

    corecore