182 research outputs found

    A review of aerial manipulation of small-scale rotorcraft unmanned robotic systems

    Get PDF
    Small-scale rotorcraft unmanned robotic systems (SRURSs) are a kind of unmanned rotorcraft with manipulating devices. This review aims to provide an overview on aerial manipulation of SRURSs nowadays and promote relative research in the future. In the past decade, aerial manipulation of SRURSs has attracted the interest of researchers globally. This paper provides a literature review of the last 10 years (2008–2017) on SRURSs, and details achievements and challenges. Firstly, the definition, current state, development, classification, and challenges of SRURSs are introduced. Then, related papers are organized into two topical categories: mechanical structure design, and modeling and control. Following this, research groups involved in SRURS research and their major achievements are summarized and classified in the form of tables. The research groups are introduced in detail from seven parts. Finally, trends and challenges are compiled and presented to serve as a resource for researchers interested in aerial manipulation of SRURSs. The problem, trends, and challenges are described from three aspects. Conclusions of the paper are presented, and the future of SRURSs is discussed to enable further research interests

    Exploration: Past and Future Contributions of the Vertical Lift Community and the Flight Vehicle Research and Technology Division

    Get PDF
    Fulfillment of the exploration vision will require new cross-mission directorate and multi-technical discipline synergies in order to achieve the necessary long-term sustainability. In part, lessons from the Apollo-era, as well as more recent research efforts, suggest that the aeronautics and specifically the vertical lift research community can and will make significant contributions to the exploration effort. A number of notional concepts and associated technologies for such contributions are outlined

    Tracking and Grasping of Moving Objects Using Aerial Robotic Manipulators: A Brief Survey

    Get PDF
    Unmanned Aerial Vehicles (UAV) has evolved in recent years, their features have changed to be more useful to the society, although some years ago the drones had been thought to be teleoperated by humans and to take some pictures from above, which is useful; nevertheless, nowadays the drones are capable of developing autonomous tasks like tracking a dynamic target or even grasping different kind of objects. Some task like transporting heavy loads or manipulating complex shapes are more challenging for a single UAV, but for a fleet of them might be easier. This brief survey presents a compilation of relevant works related to tracking and grasping with aerial robotic manipulators, as well as cooperation among them. Moreover, challenges and limitations are presented in order to contribute with new areas of research. Finally, some trends in aerial manipulation are foreseeing for different sectors and relevant features for these kind of systems are standing out

    A Human-Embodied Drone for Dexterous Aerial Manipulation

    Full text link
    Current drones perform a wide variety of tasks in surveillance, photography, agriculture, package delivery, etc. However, these tasks are performed passively without the use of human interaction. Aerial manipulation shifts this paradigm and implements drones with robotic arms that allow interaction with the environment rather than simply sensing it. For example, in construction, aerial manipulation in conjunction with human interaction could allow operators to perform several tasks, such as hosing decks, drill into surfaces, and sealing cracks via a drone. This integration with drones will henceforth be known as dexterous aerial manipulation. Our recent work integrated the worker’s experience into aerial manipulation using haptic technology. The net effect was such a system could enable the worker to leverage drones and complete tasks while utilizing haptics on the task site remotely. However, the tasks were completed within the operator’s line-of-sight. Until now, immersive AR/VR frameworks has rarely been integrated in aerial manipulation. Yet, such a framework allows the drones to embody and transport the operator’s senses, actions, and presence to a remote location in real-time. As a result, the operator can both physically interact with the environment and socially interact with actual workers on the worksite. This dissertation presents a human-embodied drone interface for dexterous aerial manipulation. Using VR/AR technology, the interface allows the operator to leverage their intelligence to collaboratively perform desired tasks anytime, anywhere with a drone that possesses great dexterity

    Opportunities and Challenges with Autonomous Micro Aerial Vehicles, The Int.

    Get PDF
    Abstract We survey the recent work on micro-UAVs, a fast-growing field in robotics, outlining the opportunities for research and applications, along with the scientific and technological challenges. Micro-UAVs can operate in three-dimensional environments, explore and map multi-story buildings, manipulate and transport objects, and even perform such tasks as assembly. While fixed-base industrial robots were the main focus in the first two decades of robotics, and mobile robots enabled most of the significant advances during the next two decades, it is likely that UAVs, and particularly micro-UAVs will provide a major impetus for the third phase of development

    Trajectory Generation and Control for Quadrotors

    Get PDF
    This thesis presents contributions to the state-of-the-art in quadrotor control, payload transportation with single and multiple quadrotors, and trajectory generation for single and multiple quadrotors. In Ch. 2 we describe a controller capable of handling large roll and pitch angles that enables a quadrotor to follow trajectories requiring large accelerations and also recover from extreme initial conditions. In Ch. 3 we describe a method that allows teams of quadrotors to work together to carry payloads that they could not carry individually. In Ch. 4 we discuss an online parameter estimation method for quadrotors transporting payloads which enables a quadrotor to use its dynamics in order to learn about the payload it is carrying and also adapt its control law in order to improve tracking performance. In Ch. 5 we present a trajectory generation method that enables quadrotors to fly through narrow gaps at various orientations and perch on inclined surfaces. Chapter 6 discusses a method for generating dynamically optimal trajectories through a series of predefined waypoints and safe corridors and Ch. 7 extends that method to enable heterogeneous quadrotor teams to quickly rearrange formations and avoid a small number of obstacles

    VERTICAL REPLENISHMENT BY UNMANNED AERIAL VEHICLES.

    Get PDF
    Master'sMASTER OF ENGINEERIN
    corecore