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Trajectory Generation and Control for Quadrotors

Abstract
This thesis presents contributions to the state-of-the-art in quadrotor control, payload transportation with
single and multiple quadrotors, and trajectory generation for single and multiple quadrotors. In Ch. 2 we
describe a controller capable of handling large roll and pitch angles that enables a quadrotor to follow
trajectories requiring large accelerations and also recover from extreme initial conditions. In Ch. 3 we describe
a method that allows teams of quadrotors to work together to carry payloads that they could not carry
individually. In Ch. 4 we discuss an online parameter estimation method for quadrotors transporting payloads
which enables a quadrotor to use its dynamics in order to learn about the payload it is carrying and also adapt
its control law in order to improve tracking performance. In Ch. 5 we present a trajectory generation method
that enables quadrotors to fly through narrow gaps at various orientations and perch on inclined surfaces.
Chapter 6 discusses a method for generating dynamically optimal trajectories through a series of predefined
waypoints and safe corridors and Ch. 7 extends that method to enable heterogeneous quadrotor teams to
quickly rearrange formations and avoid a small number of obstacles.
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Chapter 1

Introduction

Small unmanned rotorcraft have the potential to change the world in a positive way. They

can maneuver in three dimensions to collect information with onboard sensors and even

physically interact with their environments using onboard grippers. Full-size helicopters

are presently used for numerous tasks that their smaller brethren could perform such as

traffic, crop, and weather monitoring; building, bridge, and power line inspection; general

surveillance activities; as well as aerial photography and videography applications. Un-

manned rotorcraft do not require an onboard pilot which means they can be made smaller,

safer, and cheaper.

The small size of these vehicles enables them to operate indoors in constrained spaces.

This capability will be particularly useful in dangerous situations such as searching for

survivors in damaged buildings, entering and clearing buildings with armed adversaries,

and collecting information in buildings with biological or nuclear contamination. In these

scenarios the ability to create situational awareness without ever having to put a human in

harm’s way is extremely valuable.

It is true that a ground robot could accomplish some of these described tasks. Ground

robots do have a considerable advantage over aerial vehicles in some situations because

they can carry larger payloads, are generally more robust to collisions with the environ-

ment, do not require active sensing in order to stay in one place, and do not require the
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continuous use of energy to stay aloft. However, the ability to fly gives a rotorcraft access

to locations that are impossible for a ground robot to reach. Additionally, navigating rough

terrain and climbing stairs are difficult tasks for ground vehicles but in most environments

the air space is relatively free so the navigation problem for aerial vehicles is considerably

easier.

Another alternative to rotorcrafts are fixed-wing vehicles. For navigating long dis-

tances the efficiency of a fixed-wing vehicle cannot be beat by a rotorcraft. However,

compared with fixed-wing vehicles rotorcraft have the distinct advantage of being able to

hover in place. Fixed-wing vehicles, in comparison, must be constantly moving forward

to produce lift. The ability to hover is valuable for navigating constrained spaces as well

as precisely picking up and dropping off payloads.

Quadrotor helicopters (or quadrotors) are a type of small unmanned rotorcraft. They

have four fixed-pitch propellers attached to motors typically mounted in a cross config-

uration. An image of a quadrotor is shown in Fig. 2.1. They are available from several

companies as research and commercial vehicles as well as toys [1, 2, 4, 5]. The long

moment arms on which the propellers lie enable them to produce large control moments

perform aggressive maneuvers. One of the biggest advantages of quadrotors is their me-

chanical simplicity. In contrast, small-scale standard helicopters and coaxial helicopters

require mechanisms to change the pitch of the propeller in order to produce control forces

and moments.

1.1 Related Work

Quadrotors are an excellent robotics platform for many of the reasons mentioned pre-

viously. The robotics community has seen a proliferation of research using quadrotors.

There have been advances in design as several groups have built and flown quadrotors

in the 50 cm range [21, 34, 40, 67] and in the 10 cm range [38, 47]. There has also

been work on dynamics and control [21, 33, 40, 51], planning [11, 35, 36], trajectory

2



generation [26, 32, 37, 54], learning [54], payload transportation [28, 31, 53], and state

estimation with onboard sensors [17, 39, 73]. Related work will be discussed in more

detail throughout the thesis.

1.2 Motivation and Contributions

While there is no doubt great progress has been made on all aspects of quadrotors, they

are not yet used for many of the tasks described at the beginning of this chapter and have

not yet reached their full potential. To reach this goal, much work needs to be done to

advance the state-of-the-art in all areas of quadrotor technology. The motivation for the

work presented in this thesis is to push the limits of the capabilities of quadrotors in certain

areas. Specifically, the work described here represents contributions to the state-of-the-art

in terms of control, payload transportation with single and multiple vehicles, and trajectory

generation for single and multiple vehicles.

First, we describe our approach to modeling and control of a single quadrotor in Ch. 2.

We discuss methods that work well for near-hover flight and also methods that enable flight

requiring large roll or pitch angles. This Large-Angle controller exploits the quadrotor’s

ability to produce large control moments and enables the vehicle to follow trajectories

requiring large accelerations and also recover from extreme initial conditions.

In Ch. 3 we extend these control methods to systems with mutliple quadrotors attached

to the same rigid body. This method enables teams of quadrotors to work together to carry

payloads that they could not carry individually. In Ch. 4 we discuss online parameter

estimation for quadrotors transporting payloads. This work enable a quadrotors to use its

dynamics in order to learn something about the payload it is carrying and also adapt its

control law in order to improve tracking performance.

The next three chapters (5-7) discuss trajectory generation methods for quadrotor heli-

copters. In Ch. 5 we present a trajectory generation method where complex trajectories are

designed as a sequence of simpler ones. This method enables flight through narrow gaps
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at various orientations and perching on inclined surfaces. A second trajectory generation

method is presented in Ch. 6 which uses piecewise polynomials to generate dynamically

optimal trajectories through a series of predefined waypoints and safe corridors. The last

chapter, Ch. 7, discusses a method for generating piecewise polynomial trajectories for

teams of heterogeneous quadrotors that enables them to quickly rearrange formations and

avoid a small number of obstacles.

It should be noted that the dynamics and control content is included in Ch. 2. Other-

wise, each chapter is self-contained and may be read independently from the others. Each

chapter contains a discussion of related work, a explanation of the developed method, and

a presentation of experimental results.
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Chapter 2

Modeling and Control

Many quadrotor controllers operate near hover and rely on small angle assumptions for

roll and pitch. Several groups have pushed model rotorcrafts beyond these small angles

and created exciting aerobatic flights [9, 33, 54, 56]. However, during the large angle

portion of these trajectories there is no position control [33, 54, 56] or position control

is not precise enough for obstacle avoidance [9]. Here we describe a control law that is

sufficient for small angle flight and a control law for large pitch and roll angles for the

purpose of controlling precisely along aggressive trajectories.

2.1 Modeling

2.1.1 Dynamic Model

The coordinate systems and free body diagram for the quadrotor are shown in Fig. 2.2.

The world frame,W , is defined by axes xW , yW , and zW with zW pointing upward. The

body frame, B, is attached to the center of mass of the quadrotor with xB coinciding with

the preferred forward direction and zB perpendicular to the plane of the rotors pointing

vertically up during perfect hover (see Fig. 2.2). Rotor 1 is on the positive xB-axis, 2
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Figure 2.1: Hummingbird Quadrotor [1]

Figure 2.2: Coordinate systems and forces/moments acting on the quadrotor frame.
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on the positive yB-axis, 3 on the negative xB-axis, 4 on the negative yB-axis. We use

Z − X − Y Euler angles to model the rotation of the quadrotor in the world frame. To

get from W to B, we first rotate about zW by the yaw angle, ψ, then rotate about the

intermediate x-axis by the roll angle, φ, and finally rotate about the yB axis by the pitch

angle, θ. The rotation matrix for transforming coordinates from B toW is given by

R =


cψcθ − sφsψsθ −cφsψ cψsθ + cθsφsψ

cθsψ + cψsφsθ cφcψ sψsθ − cψcθsφ

−cφsθ sφ cφcθ

 ,
where cθ and sθ denote cos(θ) and sin(θ), respectively, and similarly for φ and ψ. The

position vector of the center of mass in the world frame is denoted by r. The forces on the

system are gravity, in the −zW direction, and the forces from each of the rotors, Fi, in the

zB direction. The equations governing the acceleration of the center of mass are

mr̈ =


0

0

−mg

+R


0

0

ΣFi

 . (2.1)

The components of angular velocity of the robot in the body frame are p, q, and r. These

values are related to the derivatives of the roll, pitch, and yaw angles according to
p

q

r

 =


cθ 0 −cφsθ

0 1 sφ

sθ 0 cφcθ



φ̇

θ̇

ψ̇

 .
In addition to forces, each rotor produces a moment perpendicular to the plane of rotation

of the blade, Mi. Rotors 1 and 3 rotate in the −zB direction while 2 and 4 rotate in the

zB direction. Since the moment produced on the quadrotor is opposite to the direction of

rotation of the blades, M1 and M3 act in the zB direction while M2 and M4 act in the −zB
direction. We let L be the distance from the axis of rotation of the rotors to the center of

the quadrotor. The moment of inertia matrix referenced to the center of mass along the

xB − yB − zB axes, I , is found by weighing individual components of the quadrotor and

7



building a physically accurate model in SolidWorks. The angular acceleration determined

by the Euler equations is

I


ṗ

q̇

ṙ

 =


L(F2 − F4)

L(F3 − F1)

M1 −M2 +M3 −M4

−

p

q

r

× I

p

q

r

 . (2.2)

2.1.2 Motor Model

Each rotor has an angular speed ωi and produces a vertical force Fi according to

Fi = kFω
2
i . (2.3)

Experimentation with a fixed rotor at steady-state shows that kF ≈ 6.11× 10−8 N
rpm2 . The

rotors also produce a moment according to

Mi = kMω
2
i . (2.4)

The constant, kM , is determined to be about 1.5× 10−9 Nm
rpm2 by matching the performance

of the simulation to the real system.

The exact relationship between the actual and commanded motor speed is a compli-

cated function of the motor controller and the propeller and motor dynamics. The true

performance is a function of the speed of the rotor and whether the speed is increasing or

decreasing. However, for simplicity a simple first order motor model is used for controller

development and simulation throughout this work. The rotor speed is approximately re-

lated to the commanded speed by a first-order differential equation

ω̇i = km(wdes
i − wi).

This motor gain, km, is found to be about 20 s−1 by matching the performance of the sim-

ulation to the real system. The desired angular velocities, ωdes
i , are limited to a minimum

and maximum value determined through experimentation to be approximately 1200 rpm

and 7800 rpm.

8



Figure 2.3: The nested control loops for position and attitude control.

2.2 Small Angle Control

Each robot is controlled independently by nested feedback loops as shown in Fig. 2.3.

The inner attitude control loop uses onboard accelerometers and gyros to control the roll,

pitch, and yaw and runs at approximately 1 kHz [34], while the outer position control loop

uses estimates of position and velocity of the center of mass to control the trajectory in

three dimensions. Similar nesting of control loops is presented in previous works [13, 21,

30, 34, 40].

Our controllers are derived by linearizing the equations of motion and motor models

(3.3 – 2.4) at an operating point that corresponds to the nominal hover state, r = r0,

θ = φ = 0, ψ = ψ0, ṙ = 0, and φ̇ = θ̇ = ψ̇ = 0, where the roll and pitch angles are small

(cφ ≈ 1, cθ ≈ 1, sφ ≈ φ, and sθ ≈ θ). At this hover state, the nominal thrusts from the

propellers must satisfy

Fi,0 =
mg

4
,

and the motor speeds are given by

ωi,0 = ωh =

√
mg

4kF
.

2.2.1 Attitude Control

We now present an attitude controller to track trajectories in SO(3) that are close to the

nominal hover state where the roll and pitch angles are small. From (2.2), if we assume

9



that the products of inertia are small (ideally, they are zero because the axes are close to

the principal axes) and Ixx ≈ Iyy because of the symmetry then:

Ixxṗ = u2 − qr(Izz − Iyy) (2.5a)

Iyy q̇ = u3 − pr(Ixx − Izz) (2.5b)

Izz ṙ = u4. (2.5c)

We can also assume the component of the angular velocity in the zB direction, r, is

small so the rightmost terms in (2.5a) and (2.5b) which are products involving r are small

compared to the other terms. We note that near the nominal hover state φ̇ ≈ p, θ̇ ≈ q, and

ψ̇ ≈ r. For these reasons we can use simple proportional derivative control laws that take

the form

u2,des = kp,φ(φdes − φ) + kd,φ(pdes − p)

u3,des = kp,θ(θ
des − θ) + kd,θ(q

des − q)

u4,des = kp,ψ(ψdes − ψ) + kd,ψ(rdes − r).

(2.6)

The vector of desired rotor speeds can be found from the desired net force (u1,des) and

moments (u2,des, u3,des and u4,des) by inverting

udes =


kF kF kF kF

0 kFL 0 −kFL

−kFL 0 kFL 0

kM −kM kM −kM




ω2
1,des

ω2
2,des

ω2
3,des

ω2
4,des

 . (2.7)

2.2.2 Position Control

Here we present two representative position control methods that use the roll and pitch

angles as inputs via a method similar to a backstepping approach [45]. The first, a hover

controller, is used for station-keeping or maintaining the position at a desired x, y, and z

location. The second tracks a trajectory in three dimensions.
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Hover Controller

Here we use pitch and roll angle to control position in the xW and yW plane, u4 to control

yaw angle, and u1 to control position along zW . We let rT (t) and ψT (t) be the trajectory

and yaw angle we are trying to track. Note that ψT (t) = ψ0 for the hover controller.

The command accelerations, r̈des
i , are calculated from PID feedback of the position error,

ei = (ri,T − ri), as

(r̈i,T − r̈des
i ) + kd,i(ṙi,T − ṙi) + kp,i(ri,T − ri) + ki,i

∫
(ri,T − ri) = 0,

where ṙi,T = r̈i,T = 0 for hover.

Then we linearize (3.3) to get the relationship between the desired accelerations and

roll and pitch angles

r̈des
1 = g(θdes cosψT + φdes sinψT )

r̈des
2 = g(θdes sinψT − φdes cosψT )

r̈des
3 =

u1,des
m

.

These relationships are inverted to compute the desired roll and pitch angles for the

attitude controller, from the desired accelerations, as well as u1,des

φdes =
1

g
(r̈des

1 sinψT − r̈des
2 cosψT ) (2.9a)

θdes =
1

g
(r̈des

1 cosψT + r̈des
2 sinψT ) (2.9b)

u1,des = mr̈des
3 . (2.9c)

The position control loop for the hover controller runs at the rate data is received

from Vicon (normally around 100 Hz), while the inner attitude control loop runs at 1 kHz.

There is the usual trade-off in optimizing the control gains between speed of response and

stability. Experimental results show (see the representative trial in Figs. 2.7(a)–2.7(b)) for

a tightly optimized “stiff” controller the horizontal positioning errors are within 2 cm and

the error in the vertical direction is always less than 0.6 cm. However, this set of gains
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leads to a relatively small basin of attraction. By optimizing the gains for a softer response

we can increase the size of this basin of attraction. We can experimentally characterize

this basin by perturbing the quadrotor from the hover state, and measuring the response

of the hover controller. We found the robot to be quite robust if we used the “softer”

controller, allowing it to recover from disturbances as large as 1.5 m (3 body lengths) in

the horizontal direction and 2.0 m (4 body lengths) in the vertical direction, pitch or roll

angle errors of 60 ◦, and velocity errors of up to 3.0 m
s .

3D Trajectory Control

The 3D Trajectory Controller is used to follow three-dimensional trajectories with modest

accelerations so the near-hover assumptions hold. We use an approach similar to those

described in [40, 62]. We have a method for calculating the closest point on the trajectory,

rT , to the the current position, r. Let the unit tangent vector of the trajectory associated

with that point be t̂ and the desired velocity vector be ṙT . We define the position and

velocity errors as

ep = ((rT − r) · n̂)n̂ + ((rT − r) · b̂)b̂

and

ev = ṙT − ṙ.

Note that here we ignore position error in the tangent direction by only considering posi-

tion error in the normal, n̂, and binormal, b̂, directions.

We calculate the commanded acceleration, r̈des
i , from PD feedback of the position and

velocity errors:

r̈des
i = kp,iei,p + kd,iei,v + r̈i,T .

Note that the r̈i,T terms represent feedforward terms on the desired accelerations. At low

accelerations these terms can be ignored but at larger accelerations they can significantly

improve controller performance. Finally we use (2.9a), (2.9b), and (2.9c) to compute the

desired roll and pitch angles as well as u1,des.
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2.2.3 Non-dimensional tuning

We rely on the dynamic model of the vehicle to tune the control law. In order to tune the

attitude controller we consider the equation of motion for rotation about the body frame x

axis:

Ixxφ̈+ kd,φφ̇+ kp,φφ = 0 (2.10)

This is a second order system so we compare it to

φ̈+ 2ξωnφ̇+ ω2
nφ = 0 (2.11)

where ξ represents the damping ratio for the second order system and ωn represents its

natural frequency. Here we design our controllers to have a certain damping ratio and

natural frequency so we pick the attitude control gains according to

kp,φ = Ixxω
2
n (2.12)

and

kd,φ = 2Ixxξωn (2.13)

Typically we design the attitude controller to be close to critically damped, ξ ≈ 1, with

ωn ≈ 9 rad
s

.

This response of the attitude controller is limited by the time delay in the motor re-

sponse which is a complicated function of the propeller and motor controller. In practice

we use the method described here as a starting point for tuning our controller experimen-

tally. A similar analysis of the equations of motion are performed to design the position

controller to have a certain damping ratio and natural frequency. This non-dimensional

approach to controller tuning has been used on vehicles ranging from 65 to 1000 grams.

2.3 Large Angle Control

The control laws presented in the previous sections rely on the assumption that the roll

and pitch angles are small. Indeed, most of the work in this area uses controllers that are
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derived from the linearization of the model around hover conditions and are stable only

under reasonably small roll and pitch angles [40]. In order to follow trajectories requiring

large lateral accelerations it is necessary to relax small angle assumptions and allow for

significant excursions from the hover state.

In this section we present a controller which does not rely on the Euler angle pa-

rameterization of the orientation of the quadrotor. The key problem with the previously

presented controller is that when the angular errors are large, the difference in Euler an-

gles between the current and desired attitude is no longer a good metric for defining the

orientation error. Rather, one needs to write this error as the 3-D rotation required to get

from the current to the desired orientation. Here we use rotation matrices to compute this

error as in [51] but one can equivalently use quaternions as is described in [78]. Other

than the change in the orientation error metric, the large angle controller described here is

conceptually very similar to the controller presented in the previous section.

2.3.1 Model for Control

In practice, the motor dynamics are relatively fast compared to the rigid body dynamics

and the aerodynamics. Incorporating the dynamics leads to a fifth order dynamic model

with added complexity without significant improvement in performance. Thus we will use

a dynamic model based on (3.3-2.2):

ṙ = v (2.14)

v̇ = −gzW +
u1
m

zB (2.15)

˙WRB = WRB ω̂BW (2.16)

ω̇BW = I−1

−ωBW × IωBW +


u2

u3

u4


 (2.17)
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with the state given by the position and velocity of the center of mass and the orientation

(locally parameterized by Euler angles) and the angular velocity:

x = [x, y, z, φ, θ, ψ, ẋ, ẏ, ż, p, q, r]T

or without the parameterization by the the position and velocity of the center of mass and

the rotation matrix WRB and the angular velocity ωBW . The input is simply:

u = [u1, u2, u3, u4]
T

where u1 is the force from all the propellers and u2, u3, and u4 are the moments about the

body frame axes.

2.3.2 Differential Flatness

In this section we show that the quadrotor dynamics with the four inputs is differentially

flat [77]. In other words, the states and the inputs can be written as algebraic functions

of four carefully selected flat outputs and their derivatives. This facilitates the automated

generation of trajectories since any smooth trajectory (with reasonably bounded deriva-

tives) in the space of flat outputs can be followed by the underactuated quadrotor.

Our choice of flat outputs is given by:

σ = [x, y, z, ψ]T ,

where r = [x, y, z]T are the coordinates of the center of mass in the world coordinate

system and ψ is the yaw angle defined earlier. We will define a trajectory, σ(t), as a

smooth curve in the space of flat outputs:

σ(t) : [t0, tm]→ R3 × SO(2) (2.18)

We will now show that the state of the system can be written in terms of σ and its deriva-

tives. In other words, there exists a smooth map:

(x,u) = Φ(σ, σ̇, σ̈,
...
σ,

....
σ )
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Position and orientation

The position, velocity, and acceleration of the center of mass are trivially functions of σ:

[x, y, z]T = [σ1, σ2, σ3]
T

[ẋ, ẏ, ż]T = [σ̇1, σ̇2, σ̇3]
T

[ẍ, ÿ, z̈]T = [σ̈1, σ̈2, σ̈3]
T

To see that WRB is a function of the flat outputs and their derivatives, consider the equa-

tions of motion (4.2, 4.3). From (4.2),

zB =
t

‖t‖
,

where

t = [σ̈1, σ̈2, σ̈3 + g]T , (2.19)

which defines the body frame z axis of the quadrotor.

Given the yaw angle, σ4 = ψ, we can write the unit vector

xC = [cosσ4, sinσ4, 0]T ,

by a rotation of the inertial frame through the yaw angle ψ as shown in Figure 7.1. We can

determine xB and yB as follows:

yB =
zB × xC
‖zB × xC‖

, xB = yB × zB,

provided xC × zB 6= 0. In other words, we can uniquely determine

WRB = [xB yB zB]

provided we never encounter the singularity where zB is parallel1 to xC .

1Although from a theoretical standpoint we can determine WRB from the flat outputs and their deriva-
tives almost everywhere, there is a practical limitation in using this map at points near this singularity since
the rotation matrix can undergo large changes even with small changes of the flat output. Our practical fix
to this problem is discussed later in Section 5.1.
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Figure 2.4: The flat outputs and the reference frames.

Angular Velocity

To show the angular velocity is a function of the flat outputs and their derivatives, take the

first derivative of (4.2):

mȧ = u̇1zB + ωBW × u1zB (2.20)

Projecting this expression along zB, and using the fact that u̇1 = zB ·mȧ, we can substitute

u̇1 into (2.20) to define the vector hω:

hω = ωBW × zB =
m

u1
(ȧ− (zB · ȧ)zB)

hω is the projection of m
u1
ȧ onto the xB − yB plane. The first two body frame components

of angular velocity, p and q, are found as follows

p = −hω · yB, q = hω · xB

To find the third component we must analyze the equation relating the derivatives of

the euler angles to the angular velocity:
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ωBW = [xC yB zW ]


φ̇

θ̇

ψ̇

 (2.21)

Provided yB × zW 6= 0 the matrix in (2.21) is invertible and we can write

[xC yB zW ]−1WRB


p

q

r

 =


φ̇

θ̇

ψ̇

 (2.22)

We can use the third scalar equation in (2.22) with the previously found body-frame angu-

lar velocity components, p and q, as well as the chosen value for the derivative of the yaw

angle, ψ̇, to find the zB component of the angular velocity, r.

Angular accelerations

To write angular accelerations as functions of the flat outputs and their derivatives, we take

the first derivative of (2.20):

mä = ü1zB + 2ωBW × u̇1zB

+ ωBW × ωBW × u1zB + αBW × u1zB (2.23)

Note that here αBW represents the derivative of the angular velocity, ωBW , in the body

frame. Projection of (2.23) along zB yields

ü1 = zB ·mä− zB · (ωBW × ωBW × u1zB)

The components of the angular acceleration αBW along xB and yB are found by comput-

ing:

hα = αBW × zB.

Then

ṗ = −hα · yB, q̇ = hα · xB
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To find the zB component of the αBW we must take the first derivative of equation

(2.21):

WRB



ṗ

q̇

ṙ

+


p

q

r

×

p

q

r


 = ωCW × φ̇xC +ωBW × θ̇yB + [xC yB zW ]


φ̈

θ̈

ψ̈


(2.24)

Provided yB × zW 6= 0 we can write:

A


ṗ

q̇

ṙ

+ b =


φ̈

θ̈

ψ̈

 (2.25)

where A and b are a matrix and a vector, respectively, of known value. Then we can

calculate ṙ from the third scalar equation in (2.25) given the previously found values , ṗ

and q̇, and the chosen value for the second derivative of the yaw angle, ψ̈.

Inputs

The net thrust from the quadrotor propellers is seen to be a direct function of the flat

outputs and their derivatives from Equation (4.2,2.19):

u1 = m‖t‖.

Given the angular velocity and acceleration are functions of the flat outputs and the deriva-

tives we use the Euler equations to compute the inputs as functions of these variables:
u2

u3

u4

 = I


ṗ

q̇

ṙ

+


p

q

r

× I

p

q

r


2.3.3 Control Law

We now present a controller to control along a tracking trajectories, σT (t) = [rT (t)T , ψT (t)]T .

This controller is very similar to the one in our previous work [62] with exceptions that
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will be pointed out later. First we define the errors on position and velocity:

ep = r− rT , ev = ṙ− ṙT

Next we compute the desired force vector for the controller and the desired body frame z

axis:

Fdes = −Kpep −Kvev −mgzW +mr̈T

where Kp and Kv are positive definite gain matrices. Note that here we assume ‖Fdes‖ 6=

0. Next we project the desired force vector onto the actual body frame z axis in order to

compute the desired force for the quadrotor and the first input:

u1,des = Fdes · zB

To determine the other three inputs, we must consider the rotation errors. First, we observe

that the desired zB direction is along the desired thrust vector:

zB,des =
Fdes

‖Fdes‖

Thus if e3 = [0, 0, 1]T , the desired rotation WRB denoted by Rdes for brevity is given by:

Rdese3 = zB,des.

Knowing the specified yaw angle along the trajectory, ψT (t), we compute xB,des and yB,des

as in the previous section.:

xC,des = [cosψT , sinψT , 0]T ,

and

yB,des =
zB,des × xC,des
‖zB,des × xC,des‖

, xB,des = yB,des × zB,des,

provided xC,des × zB,des 6= 0. This defines the desired rotation matrix Rdes. While math-

ematically this singularity is a single point in SO(3), this computation results in large

changes in the unit vectors in the neighborhood of the singularity. To fix this problem, we

observe that −xB,des and −yB,des are also consistent with the desired yaw angle and body
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frame z axis. In practice we simply check which one of the solutions is closer to the actual

orientation of the quadrotor in order to calculate the desired orientation, Rdes.

Next we define the error on orientation:

eR =
1

2
(RT

desR−RTRdes)
∨

where ∨ represents the vee map which takes elements of so(3) to R3. This is the major

departure from the small angle controller where the angular errors were computed using

the small angle assumption.

The angular velocity error is simply the difference between the actual and desired

angular velocity in body frame coordinates:

eω = B[ωBW ]− B[ωBW,T ]

Now the desired moments and the three remaining inputs are computed as follows:
u2,des

u3,des

u4,des

 = −KReR −Kωeω (2.26)

whereKR andKω are diagonal gain matrices. This allows unique gains to be used for roll,

pitch, and yaw angle tracking. Finally we compute the desired rotor speeds to achieve the

desired u. This is done by inverting (4.1).

Note that the linearization about the hover point for this nonlinear controller is the

same as the small angle controller. This nonlinear controller presented here adds two new

important features. First, the orientation error is not based on the Euler angles which

contain singularities. Second, the desired force is projected onto the actual z body axis.

Proofs of stability and convergence are presented for a similar controller in [51] but with

(a) the addition of feedforward terms including the angular acceleration; (b) the inclusion

of feedback terms cancelling the ω×Iω in (4.4); (c) the assumption that all gain matrices

are scalar multiples of the identity (e.g., KR = kRI); and (d) the assumption that motor

dynamics are insignificant. Under these conditions the dynamics are exponentially stable

provided the initial conditions satisfies two conditions:
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tr
[
I −RT

des(0)WRB(0)
]
< 2

‖eω(0)‖2 < 2

λmin(I)
kR(1− 1

2
tr
[
I −RT

des(0)WRB(0)
]
)

and almost globally exponential attractiveness of the complete dynamics with less re-

strictive conditions. It is important to note that these results assume infinitely fast motor

dynamics, perfect sensing, zero time delay, and perfect knowledge of m and I. In our

system, the dynamics cancelling terms involving ω × Iω are small compared to the other

terms and can be neglected since I is nearly diagonal. We do not include feedforward

terms on angular acceleration, which can be significant, and do not use the same gains

in all directions as this is not desirable. Thus our realization of the controller is different

and does not quite satisfy these assumptions. However, the controller yields good tracking

performance even with very large roll and pitch angles.

2.4 Experiments

2.4.1 Experimental Setup

The hardware, software, and implementation details of the experiments follows. The pose

of the quadrotor is observed using a VICON motion capture system at some rate less than

225 Hz [8]. The position is numerically differentiated and low-pass filtered to compute

the linear velocity of the robot. These values are available to MATLAB via ROS [6] and a

ROS-MATLAB bridge [7]. All commands are computed in MATLAB using the latest state

estimate at the rate of the VICON. The commands in MATLAB are bridged to ROS and the

most recent command is sent to the robot via ZIGBEE at a fixed rate of 100 Hz. This fixed

rate is due to the limited bandwidth of ZIGBEE (57.6 kbps). Commands sent to the robot

consist of the gains and desired attitude, desired angular velocities, and thrust values.

The robot (Fig. 1.2.1) is sold commercially [1]. The quadrotor follows a standard four-

propeller design and is equipped with two embedded processors running at 1 kHz (denoted
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as high-level (HL) and low-level (LL)), an IMU (running at 300 Hz). The HL processor

runs our custom firmware, receives commands via ZIGBEE, and sends motor commands

to the LL processor to execute those commands. The LL processor provides attitude es-

timates to the HL processor. A comparison between attitude estimates and VICON shows

very similar results. Latencies and data flow are shown in Fig. 2.5.

2.4.2 Controller Performance

Here we illustrate the performance of the basic control modes. We performed experiments

to characterize the performance of the attitude controller. The quadrotor was commanded

to gain vertical velocity in order to enter a free-fall state. Then a desired pitch angle was

commanded for 0.6 seconds while a nominal net thrust of 0.2mg was commanded. The

data shown in Fig. 2.6 demonstrates the performance for desired angles of 60◦ and 90◦.

We present time histories of positions for both the hover and trajectory following con-

trollers in Figs. 2.7(a)–2.7(d). Standard deviations for the x − y and z errors are shown

in Tab. 2.1 for hover control with stiff gains and 3-D path following along a specified

circular path. The VICON motion capture provides the position update at up to 225 Hz. To

simulate a slower localization method we tested the hover control with the position and

velocity updated at slower rates as shown in Table 2.1. Note that we found the perfor-

mance of the hover controller to be the same at rates above 35 Hz. In addition to being

slower, an alternate localization method could have larger errors which would further de-

crease performance. We simulated this situation by adding gaussian noise to the position

estimate from the motion capture system as is also shown in Table 2.1. However, despite

these limitations similar trajectories as those demonstrated in this work should be possible,

albeit less precise, with a less accurate localization method.
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Figure 2.5: Latencies (ms) in experimental system. Here the motion capture system op-
erates at 225 Hz. Quadrotor pose and velocity data is received and bridged to Matlab.
Commands are computed in Matlab and the latest command is sent to the robot via Zigbee
at 100 Hz (throttled due to bandwidth limitations). Commands are received on the robot;
the high-level (HL) embedded micro-processor computes direct motor commands, then
sends the motor commands to the lower-level (LL) processor. Our custom firmware runs
on the HL processor and the proprietary firmware runs on the LL processor. The motor
response time is denoted as tr. Negligible times (< 0.01 ms) are not noted. The worst
case response of the system from observation to motors rotating based on the observation
is approximately 85 ms with tr as the dominant limiting factor.

24



0 0.2 0.4 0.60

20

40

60

80

100

Time (sec)

Pi
tc

h 
An

gl
e 

(d
eg

)

(a) Tracking 60◦
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(b) Tracking 90◦

Figure 2.6: Pitch angle response to step inputs.

Type Update Rate (Hz) Added Noise x− y error (cm) z error (cm)
Hover Control 225 0 0.7 0.3
Hover Control 20 0 0.8 0.6
Hover Control 20 σ = 1 cm 1.1 0.9
Hover Control 20 σ = 2 cm 1.6 0.9
Hover Control 20 σ = 4 cm 1.8 1.3
Hover Control 10 0 1.5 0.85
Hover Control 6 0 2.6 1.2
Path Following 225 0 1.3 0.7

Table 2.1: Controller performace data. Update Rate corresponds to the rate the position
and velocity were updated in the controller. Added Noise corresponds to the standard
deviation of the gaussian noise that was added to the position estimate along each axis.
Standard deviations are shown in the rightmost columns for hover control and 3-D path
following of a 1 meter radius circle with the axis making a 45◦ angle from the vertical at
1.5 m

s
.
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(c) Errors in position.
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(d) Velocity history.

Figure 2.7: Representative results with the hover controller (Figs. 2.7(a)–2.7(b)). Exper-
imental results from the 3D trajectory controller tracking a circle of radius 1 m with the
axis making a 45◦ angle from the vertical at 1.5 m

s
(Figs. 2.7(c)–2.7(d)). Here the position

and velocity update rate is 100 Hz.
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Chapter 3

Multi-Vehicle Modeling and Control

In this chapter, we consider the problem of controlling multiple quadrotor robots that

cooperatively grasp and transport a payload in three dimensions. We model the quadrotors

both individually and as a group rigidly attached to a payload. We propose individual robot

control laws defined with respect to the payload that stabilize the payload along three-

dimensional trajectories. We describe the design of a gripping mechanism attached to

each quadrotor that permits autonomous grasping of the payload. An experimental study

with teams of quadrotors cooperatively grasping, stabilizing, and transporting payloads

along desired three-dimensional trajectories is presented with performance analysis over

many trials for different payload configurations.

3.1 Introduction

Autonomous grasping, manipulation, and transportation of objects is a fundamental area

of robotics research important to applications which require robots to interact and effect

change in their environment. With recent advancements in relevant technologies and com-

mercially available micro aerial vehicles (MAVs), the problem of autonomous grasping,

manipulation, and transportation is advancing to the aerial domain in both theory and ex-

periments. However, MAVs have a reduced payload capacity due to power constraints
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and are fundamentally limited in their ability to manipulate and transport objects of any

significant size. In this paper we address this limitation and consider the problem of con-

trolling multiple quadrotor robots that cooperatively grasp and transport a payload in three

dimensions.

We approach the problem by first developing a model for a team of quadrotors rigidly

attached to a payload (Sect. 3.3). In Sect. 3.5, we propose individual robot control laws

defined with respect to the payload that stabilize the payload along three-dimensional tra-

jectories. An experimental study with teams of quadrotors cooperatively grasping, stabi-

lizing, and transporting payloads of different configurations to desired positions and along

three-dimensional trajectories is presented in Sect. 3.7.

3.2 Related Literature

The problem of aerial manipulation using cables is analyzed in [28, 60] with the focus on

finding robot configurations that ensure static equilibrium of the payload at a desired pose

while respecting constraints on the tension. We address a different problem as the robots

use “grippers” that grasp the payload via rigid connections at multiple locations. The

modeling of contact constraints is considerably simpler as issues of form or force closure

are not relevant. Additionally, contact conditions do not change in our case (e.g., rolling to

sliding, or contact to no contact). However, the system is statically indeterminate and the

coordination of multiple robots is significantly more complex than in the case when the

payload is suspended from aerial robots. In particular, as the problem is over-constrained

the robots must control to move in directions that are consistent with kinematic constraints.

There is extensive literature on multi-fingered grasping and legged locomotion that dis-

cusses the problem of coordinating robot actuators with kinematic constraints [20, 48, 69].

However, our work is different in many ways. First, unlike legs or fingers, we have less

control over the wrenches that can be exerted at each contact. Each robot is capable of
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controlling propellers to exert wrenches of a fixed pitch, (i.e., a thrust and a moment pro-

portional to the thrust, both perpendicular to the plane of the rotor). Second, the robot

system can be underactuated if the planes associated with each rotor are all parallel. In

fact, this is generally the case in formation flight and it may be desirable to grasp the pay-

load at multiple points, allowing the quadrotors to be in parallel horizontal planes. Third,

the control of quadrotors necessitate dynamic models that reconcile the aerodynamics of

flight with the mechanics of cooperative manipulation.

In this work we take advantage of the fact that we have access to many rotors to gen-

erate the thrust necessary to manipulate payloads. A similar concept is presented in [64],

where the authors propose control laws that drive a distributed flight array consisting of

many rotors along a desired trajectory. However, our control methods differ considerably

as we are working with quadrotor robots and must derive feedback control laws based on

the control inputs required by these robots. Similar to the concept of using multiple rotors

in a flight array is the development of an aerial robot with more than four rotors (as in

quadrotors), such as the commercially available Falcon with eight rotors from Ascending

Technologies, GmBH [1].

A gripping mechanism is presented in this work that enables autonomous grasping of

the payload by the quadrotors. Toward this design, we build upon considerable research

in the area of climbing robots which generally rely on clinging to surface asperities via

microspine arrays [16]. Similar designs with microspine arrays enable aerial vehicles

to perch on vertical walls [27]. These robots do not require penetration to cling to the

wall. However, in our work, the normal forces required to grasp objects are much higher

compared to the shear forces that are exerted on the surfaces interfacing with the spines.

Using similar microspine technology, we utilize the advantages of penetration in softer

material such as wood and cardboard to attach to horizontal planar surfaces.
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Figure 3.1: The coordinate systems.

3.3 Modeling

3.3.1 Coordinate Systems

The coordinate frames for the multiple quadrotor system are shown in Fig. 3.1. The world

frame, W, is defined by axes xW , yW , and zW with zW pointing upward. We consider n

quadrotors rigidly attached to a body frame, B. It is assumed that the body frame axes are

chosen as the principal axes of the entire system. Each quadrotor has an individual body

frame, Qi, attached to its center of mass with zQi perpendicular to the plane of the rotors

and pointing vertically up. Let (xi, yi, zi) be the coordinates of the center of mass of the

ith quadrotor in B coordinates and ψi be the relative yaw angle. For this quadrotor, rotor 1

is on the positive xQi-axis, 2 on the positive yQi-axis, 3 on the negative xQi-axis, 4 on the

negative yQi-axis. We require the zQi axes and zB to be parallel. We still use ZXY Euler
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angles to model the rotation of the body (and the quadrotors) in the world frame. The

position vector of the center of mass of the body in the world frame is denoted by r. The

rotation matrix, Euler angles, angular velocities, and position vector to the center of mass

of the ith quadrotor are denoted as WRQi, (φi, θi, ψi), (pi, qi, ri), and ri, respectively.

3.3.2 Equations of Motion

Each of the j rotors on each of the the i quadrotors produces a force, Fi,j , and moment,

Mi,j , in the zQi direction. These rotor forces can be rewritten as a total force from each

quadrotor Fq,i as well as moments about each of the quadrotor’s body frame axes:
Fq,i

Mxq,i

Myq,i

Mzq,i

 =


1 1 1 1

0 L 0 −L

−L 0 L 0

kM
kF
−kM

kF

kM
kF
−kM

kF




Fi,1

Fi,2

Fi,3

Fi,4

 , (3.1)

where L is the distance from the axis of rotation of the rotors to the center of the quadro-

tor. The total force and moments on the system from the quadrotors in the body frame

coordinates, B, are:
FB

MxB

MyB

MzB

 =
∑
i


1 0 0 0

yi cosψi −sinψi 0

−xi sinψi cosψi 0

0 0 0 1




Fq,i

Mxq.i

Myq.i

Mzq.i

 . (3.2)

Note that zi is not present in (3.2) so this formulation allows for quadrotors in different

planes. If we letm be the mass of the entire system and ignore air drag. Then the equations

governing the acceleration of the center of mass are simply

mr̈ =


0

0

−mg

+ WRB


0

0

FB

 . (3.3)
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The moment of inertia matrix for the entire system referenced to the center of mass along

the xB − yB − zB axes is denoted by I . We assume xB − yB − zB are chosen such that I

is diagonal. The angular accelerations determined by the Euler equations are

I


ṗ

q̇

ṙ

 =


MxB

MyB

MzB

−

p

q

r

× I

p

q

r

 .

3.4 Control Basis Vectors

The linear system in (3.2) defines four equations with 4n unknowns and can be rewritten

as: [
FB, MxB, MyB, MzB

]
T = Au,

where A ∈ R4×4n is fixed and determined by the relative positions and orientations of the

n quadrotors. Here u ∈ R4n contains the four control inputs for each of the quadrotors:

u = [Fq,1,Mxq,1,Myq,1,Mzq,1, ..., Fq,n,Mxq,n,Myq,n,Mzq,n]T

For a system with more than one quadrotor the linear system is underdetermined so we

have a choice on how to achieve net forces and moments on the entire system. Here we

design our control basis vectors to minimize the cost function:

J =
∑
i

wFiF
2
q,i + wMxiM

2
xq,i + wMyiM

2
yq,i + wMziM

2
zq.i.

For example, we may wish to choose a control input basis vector uMx to achieve a unit

moment in xB while minimizing the cost function:

uMx = argmin
u
{J |[0, 1, 0, 0]T = Au}. (3.4)

A natural way to treat the point-wise minimization of the function J is by choosing control

inputs using the Moore-Penrose inverse. First we define H ∈ R4n×4n so that J = ‖Hu‖22:

H = diag
(√

wF1,
√
wMx1,

√
wMy1,

√
wMz1, ...,

√
wFn,

√
wMxn,

√
wMyn,

√
wMzn

)
.
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After algebraic manipulation:

uMx = H−1(AH−1)+[0, 1, 0, 0]T = H−2AT(AH−2AT)−1[0, 1, 0, 0]T, (3.5)

where + denotes the Moore-Penrose inverse. This same process is used to compute control

basis vectors uF , uMy, and uMz.

We now consider the special case in which all quadrotors are identical and axially

symmetric meaning roll and pitch can be treated the same way. Indeed this is the case in

our experimental testbed. In this case wFi = wF , wMxi = wMyi = wMxy, and wMzi =

wMz. Consider the following term from (3.5) for this case:

AH−2AT =


n
wF

∑
yi

wF
−

∑
xi

wF
0∑

yi
wF

∑
y2i

wF
+ n

wMxy

−
∑
xiyi

wF
0

−
∑
xi

wF

−
∑
xiyi

wF

∑
x2i

wF
+ n

wMxy
0

0 0 0 n
wMz

 . (3.6)

Here we can assume that the positions of the quadrotors dominate the mass properties of

the entire structure since the quadrotors are heavier than what they can carry. The x and

y locations of the center of mass of the payload and quadrotors together are close to that

of just the quadrotors so
∑
xi =

∑
yi = 0. Additionally,

∑
xiyi = 0, as the principle

axes of the quadrotors are aligned with the principal axes of the structure. Therefore, all

quadrotors contribute an equal force and yaw moment to produce a net body force or yaw

moment:

uF =
1

n
[1, 0, 0, 0, ..., 1, 0, 0, 0] T

uMz =
1

n
[0, 0, 0, 1, ..., 0, 0, 0, 1] T.

The control basis vectors for moments in pitch and roll reflect the tradeoff between the

weighting factors:

uMx =
1

wMxy

wF

∑
y2i + n

[
wMxy

wF
y1, cψ1, sψ1, 0, ...,

wMxy

wF
yn, cψn, sψn, 0

]T

uMy =
1

wMxy

wF

∑
x2i + n

[
−wMxy

wF
x1,−sψ1, cψ1, 0, ...,−

wMxy

wF
xn,−sψn, cψn, 0

]T

.
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Here, an increase in the cost of individual quadrotor moments relative to the forces,

wMxy/wF , causes the individual body forces used to create a net body moment to increase

and the individual body moments from each quadrotor to decrease. This ratio allows a

user to tradeoff between the individual quadrotor force and moments used to create body

moments in pitch and roll.

3.5 Multi-Vehicle Small Angle Control

Here we recycle the small angle controller used for the single quadrotor for the multi-

vehicle system.

3.5.1 Attitude Control

To control the attitude of the body we use proportional derivative control laws that take

the form

M des
xB = kp,φ(φdes − φ) + kd,φ(pdes − p)

M des
yB = kp,θ(θ

des − θ) + kd,θ(q
des − q)

M des
zB = kp,ψ(ψdes − ψ) + kd,ψ(rdes − r).

(3.7)

3.5.2 Hover Controller

Here we use pitch and roll angle of the entire system to control position in the xW and yW

plane, M des
zB to control yaw angle, and F des

B to control position along zW . We let rT (t) and

ψT (t) be the trajectory and yaw angle we are trying to track. Note that ψT (t) = ψ0 for the

hover controller. The command accelerations, r̈des, are calculated from PID feedback of

the position error, e = (rT − r), as

(r̈T − r̈des) +Kd(ṙT − ṙ) +Kp(rT − r) +Ki

∫
(rT − r) = 0,

34



where ṙT = r̈T = 0 for hover. We linearize (3.3) to get the relationship between the

desired accelerations and roll and pitch angles

r̈des
1 = g(θdes cosψT + φdes sinψT )

r̈des
2 = g(θdes sinψT − φdes cosψT )

r̈des
3 =

1

m
F des
B − g.

These relationships are inverted to compute the desired roll and pitch angles for the attitude

controller, from the desired accelerations, as well as F des
B :

φdes =
1

g
(r̈des

1 sinψT − r̈des
2 cosψT )

θdes =
1

g
(r̈des

1 cosψT + r̈des
2 sinψT )

F des
B = m(r̈des

3 + g).

We substitute these into (3.7) to yield the desired net body force and moments. From these

quantities the control inputs for individual quadrotors are computed using the control basis

vectors developed in Sec. 3.4:

u = F des
B uF +M des

xBuMx +M des
yBuMy +M des

zBuMz.

We calculate the desired angular velocities from (2.3,4.1) for each of the 4n rotors to

determine the lowest level control input.

3.5.3 3D Trajectory Control

The trajectory controller is used to follow 3D trajectories with modest accelerations so

the near-hover assumptions hold. This is nearly the same controller used for the single

quadrotor. We have a method for calculating the closest point on the trajectory, rT , to the

the current position, r. Let the unit tangent vector of the trajectory associated with that

point be t̂ and the desired velocity vector be ṙT . We define the position and velocity errors

as

ep = ((rT − r) · n̂)n̂ + ((rT − r) · b̂)b̂
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and

ev = ṙT − ṙ.

Note that here we ignore position error in the tangent direction by only considering posi-

tion error in the normal, n̂, and binormal, b̂, directions. This is done because we are more

concerned about reducing the cross-track error rather than error in the tangent direction of

the trajectory.

We calculate the commanded acceleration, r̈des, from PD feedback of the position and

velocity errors:

r̈des = Kpep +Kdev + r̈T .

Note that r̈T represents feedforward terms on the desired accelerations. At low accelera-

tions these terms can be ignored but at larger accelerations they can significantly improve

controller performance. Finally, we use the process described in Sec. 3.5.2 to compute the

desired angular velocities for each rotor.

3.6 Decentralized Control Law

We assume the quadrotors are attached rigidly to the body. As long as each quadrotor

knows its fixed relative position and orientation with respect to the body and the goal

of the body controller (hover location or desired trajectory) then this controller can be

decentralized. If each quadrotor senses its own orientation and angular velocity then the

orientation and angular velocity of the body are calculated as follows:

WRB = WRQi

QiRB and [p, q, r]T = BRQi
[pi, qi, ri]

T.

From the position and velocity of the ith quadrotor, the position and velocity of the center

of mass of the body are calculated as:

r = ri − WRB[xi, yi, zi]
T

ṙ = ṙi − ωB ×
(
WRB[xi, yi, zi]

T
)
.
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Each quadrotor runs a hover or velocity controller along with the attitude controller (3.7).

While we evaluated this decentralized approach experimentally on the robots, for the re-

sults presented in this work, we use a centralized formulation. For centralized control the

state estimates from the n quadrotors are combined to create a single estimate of the state

of the entire body from which the control inputs are computed. This averaging reduces the

noise on the state estimate of the entire body and thus results in a cleaner control signal.

For this reason, the centralized formulation yields better results.

3.7 Results

In this section we describe results from two experimental trials designed to evaluate the

performance of the multi-vehicle controllers and demonstrate cooperative transportation

of payloads in 3D.

The hardware, software, and implementation details of the experiments follows. The

pose of the quadrotor is observed using a VICON motion capture system at 100 Hz [8]. The

pose is numerically differentiated to compute the linear and angular velocities of the robot.

These values are available to MATLAB via ROS [6] and a ROS-MATLAB bridge [7]. All

commands are computed in MATLAB using the latest state estimate at the rate of the

VICON. The commands in MATLAB are bridged to ROS and the most recent command is

sent to the robot via ZIGBEE at a fixed rate of 100 Hz. This fixed rate is due to the limited

bandwidth of ZIGBEE (57.6 kbps). Commands sent to the robot consist of the gains and

desired attitude, angular velocities, and thrust values described in Sect. 3.5.

The first experimental trial consists of a team of four quadrotors rigidly attached to

different payload configurations (see Figures 3.2 and 3.4). For this test, we wish to focus

on cooperative manipulation and transportation and as such use a payload structure built of

wood with quadrotors attachments made via Velcro for easy rearranging. The total mass

and x and y principal moments of inertia for each configuration (payload and quadrotors)
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Figure 3.2: Hover performance data for 40 seconds for four configurations. The center dot
represents the mean error and the error bars represent one standard deviation. Graphical
depictions of the four configurations.

Configuration Ixx (kg m2) Iyy (kg m2) m (kg)
Line 0.0095 0.73 3.33
El 0.079 0.50 3.33

Tee 0.082 0.43 3.33
Cross 0.11 0.19 3.23

Table 3.1: Mass and Inertia Properties.

are shown in Table 3.1. Note that the mass of a single quadrotor with a battery is about

500 g, so in each of these configurations the total payload is greater than 1.2 kg.

For each configuration, the control basis vectors are computed as described in Sect. 3.4

with wMxy/wF = 2. We chose this ratio as our connection to the payload is stronger in

resisting a force pulling it away from a surface than a moment in pitch or roll. Data for

each configuration is shown in Fig. 3.2. Note that for each configuration, control along the

x axis is intentionally performed with the body angle corresponding to the larger principal

moment of inertia, Iyy. The performance along the x axis is worse than the y axis as

expected. A large moment of inertia limits the bandwidth of the control on that angle. This

decrease in attitude control performance leads to decreased position control performance

along that axis. Here we note that position control for a single quadrotor is much better
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Figure 3.3: Trajectory tracking data for the Cross configuration along a 0.8, m radius
circle tilted at 45◦ from horizontal at 0.6 m/s.

than for any of the multi-robot structures because their moments of inertia are much larger.

The trajectory tracking controller in Sect. 3.5.3 is implemented on the Cross config-

uration for which data is shown in Fig. 3.3. We see that the system performs well and

controls to the desired trajectory in three-dimensions.

The gripping mechanism described in [58] is used on two quadrotors to pick up and

transport an 0.8 m, 320 g structure as shown in Fig. 3.4. The quadrotors first descend to the

structure and engage the gripping mechanism. The quadrotors ascend with the structure

and fly twice along the same circular trajectory as in Fig. 3.3 at 0.5 m/s. Finally, the

quadrotors descend to structures initial location, disengage the gripping mechanism, and

depart.
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Figure 3.4: Left: Image from an experiment with the gripping mechanism enabling
cooperative grasping, manipulation, and transportation. Right: Four quadrotors car-
rying a payload in the El configuration. Videos of the experiments are available at
http://tinyurl.com/penndars.

40



Chapter 4

Online Parameter Estimation

This chapter addresses mechanics, estimation and control for aerial grasping. We present

the design of several light-weight, low-complexity grippers that allow quadrotors to grasp

and perch on branches or beams and pick up and transport payloads. We then show how

the robot can use rigid body dynamic models and sensing to verify a grasp, to estimate

the the inertial parameters of the grasped object, and to adapt the controller and improve

performance during flight. We present experimental results with different grippers and

different payloads and show the robot’s ability to estimate the mass, the location of the

center of mass and the moments of inertia to improve tracking performance.

4.1 Introduction

In recent years, we have seen extensive research on unmanned aerial vehicles (UAVs)

[21, 23, 40, 65]. UAVs offer promises of speed and access to regions that are otherwise

inaccessible to ground robotic vehicles. Although most UAV research has focused on

fixed-wing aerial vehicles, rotorcrafts such as quadrotors have important benefits. These

vehicles can be scaled down to small sizes and can operate in closed, confined environ-

ments such as inside buildings. With the smaller size comes increased agility and the

41



Figure 4.1: Quadrotor assembling part on a cubic structure.

ability to adapt to the environment. Micro UAVs can enter buildings, obtain informa-

tion in environments that are dangerous for humans, and perch on walls or on joists for

monitoring and surveillance.

However, most research on UAVs has typically been limited to monitoring and surveil-

lance applications where the objectives are limited to “look” and “search” but “don’t

touch.” Indeed contact with the environment is avoided as UAVs are primarily used for

fly-throughs, such as surveillance and search and rescue. Thus the underlying research

focuses on navigation and observation of the environment while minimizing interactions

with that environment. By allowing UAVs, specifically quadrotors, to interact with the

environment, we get an entire new set of applications.

First, allowing robots to fly and perch on rods or beams allows them to increase the

endurance of their missions. Indeed, if perches are equipped with charging stations, robots

can recharge their batteries extending their lives substantially. Second, the ability to grasp

objects allows robots to access payloads that are unavailable to ground robots. There are
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fewer workspace constraints for aerial robots. Third, robots are able to assemble struc-

tures and scaffolds of arbitrary height in three dimensions without requiring such special

purpose structures as tower cranes.

There are many challenges in aerial grasping for micro UAVs. The biggest challenge

arises from their limited payload. While multiple robots can carry payloads with grip-

pers [58] or with cables [61], their end effectors and grippers have to be light weight

themselves and capable of grasping complex shapes. Second, the dynamics of the robot

are significantly altered by the addition of payloads. Indeed this is also an attraction in

assembly because aerial robots can use this to sense disturbance forces and moments.

However, for payload transport, it is necessary that the robots be able to estimate the iner-

tia of the payload and adapt to it to improve tracking performance.

This chapter addresses the mechanics, design and control for aerial grasping. The next

section presents the background literature in relevant areas. In Sec. 4.3 several grippers

we have developed for aerial grasping are described. Section 4.4 explains the dynamic

model and control strategy. Section 4.5 discusses parameter estimation methods and their

application to the quadrotor dynamics. Finally, we present experimental results in Sec. 4.6.

4.2 Background

Aerial Manipulation Aerial manipulation with full-size helicopters using cables is per-

formed extensively in several applications. The logging industry uses helicopters to trans-

port logs and equipment from areas that trucks cannot access while power companies use

this approach to transport and assemble transmission line towers in remote areas. Smaller

size rotorcraft have also been used with cables to manipulate objects. The authors of [19]

designed a simplified model for modeling single/multiple small size helicopters, objects

and ropes. In [61], the authors focused on position and orientation control of a towed

object in 6 dimensions by treating multiple quadrotors as anchors whose positions could
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be controlled in three dimensions.

In contrast to aerial towing, direct manipulation using grippers can be used to ma-

nipulate objects aerially. In [66], the authors develop an elastic constraint contact model

to study the flight stability of a small RC helicopter with a compliant gripper in contact

with an object and/or the ground. In [53, 58], we used grippers described in Sec. 4.3 to

pick up parts and explored multi-robot cooperative transport requiring grasping. None of

this previous work, however, considers the changes in flight dynamics due to the grasped

payload.

Parameter Estimation Estimation of unknown parameters in dynamic systems is a

problem of great interest in robotics. A common approach is to use linear least-squares

methods in systems where the unknown parameters are linear in the equations of mo-

tion. These approaches have been applied in a number of systems from robotic manipula-

tors [24] to underwater vehicles [22]. We will adopt a similar strategy for estimating the

unknown parameters that change when a quadrotor transports payloads.

We then use the estimated parameters in the control laws that determine the behavior

of the system. This is similar but not equivalent to the idea of adaptive control. In adap-

tive control an online parameter estimator provides estimates of certain unknown system

parameters at each instant to a control law that is based on those parameters [50]. One

example of adaptive control is model reference adaptive control (MRAC) in which the

goal is to make the closed loop system perform like a desired model [42]. In all types of

adaptive control, the performance and stability of the system are functions of the coupling

between the parameter estimator and the control law. In the approach presented here, the

parameter estimation is separated from the control law in order to decouple them. The

parameter estimation is performed first and then the results of the parameter estimator are

used in the control law.
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4.3 Gripper Design

While not the primary focus of this thesis our group has developed a number of grippers

to enable quadrotors to pick up and transport payloads. We have used impactive and

ingressive methods of grasping. Impactive grippers use solid jaws or fingers in contact

with an object to produce the necessary grasping force while ingressive grippers depend

on surface deformation, possibly penetration of the surface, to grasp the object [63].

Impactive Gripper

Impactive grippers typically use clamping motions either to enclose or to apply sufficient

normal forces and by extension frictional forces to the walls of the object to overcome

gravity. In general, these clamping motions are easy to generate using singly actuated

mechanisms, which can alleviate weight concerns. Impactive grippers are particularly

useful when the gripper can be designed for a small set of parts and orientations such as the

gripper shown Fig. 4.2(a) used for assembling structures with quadrotors [53]. Although

this impactive gripper was designed to carry specific parts it can also grasp a wider range

of objects.

Ingressive Grippers

Impactive grippers require that the object’s dimensions are compatible with the gripper’s

geometry. In contrast, ingressive grippers excel at handling objects that do not have well-

defined attachment points which are made of wood, foam, fabric or other porous or de-

formable materials. The ingressive grippers shown in Fig. 4.3 use the paradigm of penetra-

tion into surfaces with metal hooks to attach to surfaces. They use opposing hooks which

allows for large normal forces with respect to the penetration force. We have developed an

actively engaging gripper shown in Fig. 4.3(a) [57, 58] in which a servo drives the hooks

into a surface. We have also developed a passively engaging gripper shown Figs. 4.2(b)

and 4.3(b) in which the hooks passively engage in a surface when a surface contacts a
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(a) The beam is grasped with an impactive gripper.

(b) The flat piece of wood is held by an ingressive gripper.

Figure 4.2: Quadrotors carrying objects

trigger pin at the center of the gripper [59].

4.4 System Dynamics and Control

When a quadrotor transports payload the dynamic model of the system changes. We

describe the dynamic model and control strategy in this section.
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(a) Actively Engaging (b) Passively Engaging

Figure 4.3: Ingressive Grippers

4.4.1 Dynamic Model

The coordinate systems including the world frame,W , and body frame, B, as well as the

free body diagram for the quadrotor are shown in Fig. 4.4. We use Z−X−Y Euler angles

to define the roll, pitch, and yaw angles (φ, θ, and ψ). The rotation matrix from B toW

is given by WRB. The angular velocity of the robot is denoted by ω, denoting the angular

velocity of frame B in the frameW , with components p, q, and r in the body frame. Each

rotor has an angular speed ωi and produces a force Fi and moment Mi according to

Fi = kFω
2
i , Mi = kMω

2
i .

Since the motor dynamics are fast compared to the rigid body dynamics and the aerody-

namics, we will assume that rotor speeds can be instantly achieved during the controller

development. Therefore, the control input u, where u1 is the net body force and u2, u3, u4

are the body moments, can be expressed in terms of the rotor speeds as
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Figure 4.4: Free Body Diagram and Coordinate Systems

u =


kF kF kF kF

0 kFL 0 −kFL

−kFL 0 kFL 0

kM −kM kM −kM




ω2
1

ω2
2

ω2
3

ω2
4

 , (4.1)

where L is the distance from the axis of rotation of the rotors to the center of the quadrotor.

The position vector of the center of mass and geometric center rCM and rGC , respec-

tively, are related according to

rCM = rGC + WRBroff,

where roff = [xoff, yoff, zoff]
T are offsets in body-frame coordinates.

The forces on the system are gravity, in the −zW direction, and u1 =
∑
Fi, in the zB

direction where Fi is the force from each rotor. Newton’s equations of motion governing

the acceleration of the geometric center are

m (r̈GC + α× roff + ω × (ω × roff)) = −mgzW + u1zB, (4.2)
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where α is the angular acceleration of frame B in frameW .

The Euler equation for the system is

ICM ω̇ = −ω × ICMω +


u2

u3

u4

− roff ×


0

0

u1

 (4.3)

where ICM is the moment of inertia matrix referenced to the center of mass along the

xB − yB − zB axes. Note that the net propeller force, u1, creates a moment in (4.3) since

u1 acts at the geometric center which is not coincident with the center of mass.

4.4.2 Quadrotor Control

We now present a controller to follow specified near-hover trajectories in position of the

geometric center and yaw angle, rT (t) and ψT (t). First, we define the errors on position

and velocity as

ep = rGC − rT , ev = ṙGC − ṙT .

Next we compute the desired force vector:

Fdes = −Kpep −Ki

∫
ep −Kvev + m̂gzW + m̂r̈T ,

where Kp, Ki, and Kv are positive definite gain matrices and m̂ is the estimate of the

system mass. Note that this controller effectively treats the two terms mα × roff and

mω × (ω × roff) in (4.2) as disturbances that are rejected by the feedback. This is done

because these terms are generally small relative to the other terms in practice.

The magnitude of the desired force vector Fdes is the first control input, u1. The desired

roll and pitch angles, φdes and θdes, are found by determining the attitude which achieves

the desired lateral components of Fdes for the desired yaw angle ψT . The net body frame

moments are then computed according to:
u2

u3

u4

 = KR


φdes − φ

θdes − θ

ψT − ψ

−Kω


p

q

r

+


ŷoffu1

−x̂offu1

0

 ,
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where KR and Kω are diagonal gain matrices and x̂off and ŷoff are estimates of the center

of mass offsets. Finally we compute the desired rotor speeds to achieve the desired u by

inverting (4.1).

The departure from previous work [56, 62], is that we explicitly include our estimates

of the mass of the system and center of mass offsets in the controller, these changes can be

significant during payload transport. The offset causes pitching and rolling moments that

change with the net thrust produced. Explicitly including this term leads to significantly

improved tracking performance as shown in Sec. 4.6.

4.5 Estimation of Inertial Parameters

4.5.1 Method Overview

We use methods which require the unknown parameters, θ, to appear linearly in the equa-

tions of motion [41, 50]. We will first outline the proposed parameter adaptation algorithm

(PAA) described in [50] which will be used to determine flight parameters. The PAA must

be implemented in discrete time so we will consider systems written as

y(k + 1) = θTφ(k) (4.4)

where k represents the time step, θ is the parameter vector, φ is the measurement vector,

and y is the system output. Note that we use Tustin’s method to convert the differential

equations of motion to discrete time equations. The PAA will try to find an estimated

parameter vector, θ̂, at each time step. The estimated parameter vector is used to predicted

the output of the system as

ŷ(k + 1) = θ̂(k + 1)Tφ(k) (4.5)

The a priori prediction error is

ε0(k + 1) = y(k + 1)− θ̂(k)Tφ(k) (4.6)
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and the a posteriori prediction error is

ε(k + 1) = y(k + 1)− θ̂(k + 1)Tφ(k) (4.7)

Given this framework there are a number of methods that can be used to estimate the

parameter vector. One of the simpler methods is the instantaneous gradient method. Here

the cost function to be minimized is

min
θ̂(k)

J(k + 1) =
(
ε0(k + 1)

)2 (4.8)

Using this cost function the parameter vector is modified at each time step to move down

the gradient of the cost function according to:

θ̂(k + 1) = θ̂(k) + Fφ(k)ε0(k + 1) (4.9)

where F is some positive definite matrix adaptation gain. While simple to implement, the

instantaneous gradient method has a few drawbacks. It is difficult to tune the adaptation

gain. If the gain is too high then oscillations about the minimum will occur. However, a

high adaptation gain is desirable at the beginning in order to ensure fast convergence [50].

Also, the instantaneous gradient method attempts to minimize the error at each time step

but does not necessarily lead to the minimization of the error over some finite time span.

This is the motivation for the recursive least squares algorithm where the cost function is

min
θ̂(k)

J(k) =
k∑
i=1

λ
(k−i)
1

(
y(i)− θ̂T (k)φ(i− 1)

)2
(4.10)

and λ1 ≤ 1 is a forgetting factor which is used to weight old data less than new data. Here

the cost function is a function of the squared error over t time steps. Note that this cost

function can be minimized in a batch fashion or recursively [50].

Batch Least-Squares

The solution to the batch least-squares problem with a forgetting factor of 1 for data col-

lected over k time steps is

θLS = R̂−1φφ r̂φy
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where

R̂φφ =
1

kp

k∑
i=1

p∑
j=1

φj(i− 1)φj(i− 1)T

and

r̂φy =
1

kp

k∑
i=1

p∑
j=1

φj(i− 1)yj(i)

Recursive Least-Squares

The method can also be applied recursively so that the estimate changes at each time step

as new data is received. In this case the parameter vector estimate is updated according to:

θ̂(k + 1) = θ̂(k) + F (k + 1)

p∑
j=1

φj(k)ε0j(k + 1)

where

ε0j(k + 1) = yj(k + 1)− θ̂T (k)φj(k).

Here F (k) is a weight matrix that is also recursively updated based of the inversion of:

F (k)−1 = λ1F (k + 1)−1 +

p∑
j=1

φj(k)φj(k)T (4.11)

Persistent Excitation

Both approaches require φj to be persistently exciting. The measurement vectors, φj , are

persistently exciting if

lim
k1→∞

1

k1

k1∑
i=1

p∑
j=1

φj(i)φj(i)
T > 0.

Intuitively, this conditions means that the dynamics are excited sufficiently to identify the

unknown parameters. In the batch least-squares method, persistent excitation guarantees

that R̂φφ is invertible. In the recursive least-squares method, we see from (4.11) that if

the term
∑p

j=1 φj(k)φj(k)T becomes non full rank then the adaptive gain, F (k), will tend

towards infinity if the forgetting factor, λ1, is less than one.
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4.5.2 Application to Quadrotor Dynamics

These least-squares methods parameter estimation methods are applied to the equations of

motion of the quadrotor as described here.

Estimation of payload parameters during hover

When the quadrotor is commanded to hover in place the derivatives of the position and

Euler angles are nominally zero. Eliminating these terms from the equations of motion

simplifies the parameter estimation method. Consider the z equation of motion during

hover:

0 = u1 (zB · zW )−mg.

Treating m as the unknown parameter and applying the batch least-squares method for k

measurements yields

m̂ =
1

gk

k∑
i=1

u1(i) (zB(i) · zW ) .

Next we consider the Euler equation for the y axis during hover treating the net body force

as a known constant, ū1, where barred coordinates represent the average over the time span

of collected data. The unknown offset, xoff, found via least-squares is simply an average

over collected data:

x̂off =
ū3
ū1
.

The y axis offset is found similarly. Note the moments of inertia cannot be found dur-

ing hover because the terms multiplying them are zero. An experimental benefit to this

approach is that averages can be computed on the onboard controller and sent back to a

control computer at a slower rate than what is required for the method described in Sec.

4.5.2 where applied moments and angular velocities are constantly changing. Note that

this method assumes that the robot is not being subjected to any disturbances.
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Estimation of payload mass in the presence of disturbances

Newton’s equations provide three equations which give information about the mass of the

system:

mẍ = u1 (zB · xW ) + Fx

mÿ = u1 (zB · yW ) + Fy

mz̈ = u1 (zB · zW )−mg

where Fx and Fy are the lateral aerodynamic disturbance forces.

In this formulation the unknown parameter vector is θ = [1/m, Fx/m, Fy/m]T . Since

the mass of the quadrotor and gripper are fixed this method can be used to determine

the mass of the payload. The recursive least-squares method can run in real-time and is

especially useful for identifying if the quadrotor has successfully picked up or dropped

payload.

Estimation of payload inertia

The Euler equations for a system in which the center of mass is offset from the geometric

center by some vector roff are given by (4.3). We make two assumptions to make these

nonlinear equations suitable for our parameter estimation methods: (1) the body axes of

the quadrotor are close to the principal axes so its products of inertia are small and (2) the

excitation is primarily about one axis so the ω × (I × ω) term can be neglected. Under

these assumptions the equation of motion about the y axis is

Iyy q̇ = u3 + u1xoff,

where u1 is the net body force from the props, u3 is the applied moment along the y axis,

and xoff is the center of mass offset in the x direction. Here the unknown parameter vector

is θ = [1/Iyy, xoff/Iyy]
T . The least-squares estimators can be applied using flight data for

which the pitch dynamics are sufficiently excited. An equivalent procedure is used along

for the z and x axes to estimate Izz, Ixx, and yoff.
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Figure 4.5: Data for mass and center of mass offset during hover.

4.6 Experimental Results

4.6.1 Estimation of payload parameters during hover

Mass was incrementally added to the system, and the quadrotor was commanded to hover

in place for about 10 seconds for each condition. The mass of the system was estimated

with the method described in Sec. 4.5.2 as shown in Fig. 4.5(a). The average net thrust

was computed by averaging the commanded net thrust sent from the control computer.

Note that the error in the prediction is less than 3 grams in all cases.

A mass of 66 grams was added to a quadrotor weighing 687 grams at a number of

positions along the x axis in order to offset the center of mass. The theoretical change

in the center of mass and the error in estimated center of mass offset are shown in Fig.

4.5(b). Note that the error in the center of mass position estimate is less than 1 mm in all

cases. The average net thrust was computed as described above and the average moments

were computed by averaging the commanded moments on the onboard microprocessor

and sending out these averages at a rate of 10 Hz. Sending out data at a low rate allowed

the quadrotor to be computer controlled via the same XBEE module.
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Figure 4.6: Mass estimate (black) and true mass (red) for quadrotor picking up and drop-
ping of three payloads with different weights. The pick up and drop off events can be
observed from the change in the true mass.

4.6.2 Estimation of payload mass in the presence of disturbances

The procedure described in Sec. 4.5.2 was applied in a scenario where the quadrotor was

commanded to pick up three payloads of different mass and drop them at a prescribed

location. For this estimator the accelerations were computed by numerical differentiating

the position estimates from VICON. The applied forces were calculated from the com-

manded net thrust and the orientation sensed from VICON. Since the mass changes in this

experiment the recursive least-squares method was used. The estimated mass during this

experiment along with the true mass is shown in Fig. 4.6. As expected, the estimated

disturbance forces (not shown) are small. For this data a forgetting factor, λ1, of 0.985

was used at a data collection rate of 100 Hz. Note that for a forgetting factor of 0.985,

63.1% (about 1− 1
e
) of the cost function is based on the last 66 data points. Comparing the

response of this filter to a first order system, the approximate equivalent time constant is

0.66 seconds (66 times 0.01 seconds). Choosing a larger forgetting factor makes the mass

estimate less noisy but at the cost of responding slower to changes in system parameters.
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4.6.3 Estimation of payload inertia

The procedure described in Sec. 4.5.2 was implemented on the quadrotor. For this esti-

mator the angular accelerations were computed by numerically differentiating the angular

velocities sensed by the 3-axis rate gyro onboard the quadrotor. The commanded body

moments and net force are also available on the onboard controller. In the current exper-

imental setup, it is impossible to both send and receive commands at high rates using a

single XBEE module. For this reason in these experiments, the quadrotor was commanded

by a pilot using the RC, and the XBEE was used to send data out at a rate of 100 Hz.

This method was applied for the three cases shown in Fig. 4.7. For the last case the

point mass is offset from the center of mass by 30 cm in the x direction. For each case,

the pilot commanded oscillatory excitation about each of the three axes independently.

Data for the pitch excitation for the Unloaded and Meterstick + Mass cases are shown in

Fig. 4.8. Note that the larger moment of inertia can observed from the larger moment in

(b) required to produce less angular acceleration. Also, the center of mass offset can be

observed from the nonzero mean moment required in (b).

As shown in Table 4.1, the batch least-squares method was applied to estimate the

unknown parameters for each combination of case and axis. Note that the y axis offset

remain unchanged as expected. For the Meterstick + Mass case the x axis offset increases

by about 3.2 cm. Theoretically, it should increase by about 2.6 cm. The inertia estimates

behave qualitatively as expected. The moment of inertia along the x axis increases slightly

for the added payloads. As expected, significant increases in Iyy and Izz are observed for

the added payloads.

4.6.4 Controller Compensation

The gripper was loaded with a 120 gram horizontal beam as far to one side as possible in

the −x direction as shown in Fig. 4.2(a). The mass and center of mass were estimated

57



Meterstick 

x 

y 

Point Mass 

Unloaded 

Meterstick + 
Mass 

Meterstick 

Figure 4.7: Three loading cases tested. The meterstick weighs 125 grams and the point
mass weighs 66 grams.

using the methods described in Sec. 4.5.2 using 3 seconds of data collected while hov-

ering in place. The quadrotor was then commanded to fly along a sine wave along the

z-axis with amplitude 0.767 meters and frequency 2.77 rad/s using the compensated and

uncompensated controller. The compensated controller used the estimated mass and cen-

ter of mass offset while the uncompensated controller assumed the offset to be zero and

the mass to be the mass of the quadrotor and gripper with no part. Plots of the errors in

the x and z directions as well as their standard deviations are shown in Fig. 4.9. Note that

Case Ixx Iyy Izz xoff yoff

Unloaded 3.9 4.4 4.9 -0.30 0.12
Meterstick 5.2 21.5 15.3 -0.26 0.12

Meterstick + Mass 5.8 32.6 21.9 2.89 0.13

Table 4.1: Identified Properties (all inertias in gm2 and lengths in cm)
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Figure 4.8: Pitch Moment and Pitch Angular Velocity Data

the x performance is in the direction of the center of mass offset. Including the estimated

parameters leads to significantly improved tracking performance for this trajectory. This

improvement will be significant whenever the trajectory calls for significant changes in the

thrust commanded since a changing thrust causes a changing moment which is explicitly

cancelled using the controller described here.

4.7 Concluding Remarks

Picking up and transporting payload is a valuable capability for unmanned aerial vehi-

cles. We have demonstrated the ability to grasp and manipulate a number of items using

quadrotor helicopters with several grippers that we have designed. When quadrotors trans-

port objects important flight parameters change. Methods for identifying the mass, center

of mass offset, and moments of inertia using batch and recursive least-squares methods

were described in this paper. A controller was described which explicitly accounts for the

estimated mass and center of mass offset. Experimental data was presented to demonstrate

all parameter estimation methods. Significant improvement in tracking performance was

shown with the inclusion of the estimated parameters.
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Figure 4.9: Time histories and standard deviations of x and z errors for uncompensated
and compensated controller for following the trajectory z(t) = 0.77 sin(2.77t)m with x
and y constant for 10 seconds.

Adaptive control, didn’t want to put the adaptation too closely in the control loop.

Simple straightforward based on a well understood models. Frequency based techniques

are available but I didn’t really investigate those.
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Chapter 5

Trajectory Generation via Sequencing

In Chapter 2 we described several controllers for a quadrotor. Namely, an attitude con-

troller, a hover controller, and a 3D trajectory controller. Even a single controller type can

be serve several different purposes. For example, a hover controller with stiff gains can be

used to hold a position very precisely while a hover controller with soft gains can be used

to reject large disturbance and recover from a larger range of intial conditions. These three

simple types of control can be sequenced in an intelligent way to perform complex tasks.

Of course, sequencing is useful for simple experiments. For example, one may wish to fly

to a certain position and hover and then fly somewhere else.

The focus in this chapter is on the design of aggressive trajectories for quadrotors

via the composition of three simple control modes. In particular we consider the design

of dynamically feasible trajectories and controllers that drive a quadrotor to a desired

state (position, orientation, linear and angular velocity) in state space. We focus on the

development of a family of trajectories defined as a sequence of segments, each with

a controller parameterized by a goal state or region in state space. Each controller is

developed from the dynamic model of the robot, and then automatically refined through

successive experimental trials to account for errors in the dynamic model and noise in the

actuators and sensors. We show that this approach permits the development of trajectories

and controllers enabling aggressive maneuvers such as flying through narrow, vertical gaps
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and perching on inverted surfaces with high precision and repeatability.

Aggressive maneuvers with aerial robots is an area of active research. Exciting re-

sults have been demonstrated for perching with fixed-wing aerial vehicles [25, 27] as well

perching on inclined surfaces with a small helicopter [18]. A number of groups have

demonstrated aggressive aerial maneuvers with small-scale rotorcraft [9, 33, 54]. In this

area considerable effort is focused on strategies for generating sequences of controllers

that stabilize the robot to a desired state. In [32, 33], Gillula et al. present an optimization-

based control design methodology that generates a sequence of stabilizing controllers that

drive a robot to a hover state after entering a flipping maneuver. The authors are able to

provide guarantees of recovery from a flipping maneuver based on the robot model and

present experimental results to validate their approach. Tedrake proposes an optimization-

based design methodology with similar guarantees using a guided sparse sampling of the

state space and creating sequences of stabilizing controllers that drive the system to a

desired state through a sequence of sampled states [75].

Impressive results are also shown using methods based on reinforcement learning or

iterative adaptation of the control law. In [54], Lupashin et al. propose a control law

with initial parameters for flipping a quadrotor multiple times. The control law is exe-

cuted many times and corrected after each trial toward the desired performance. A similar

strategy is presented in [9, 74], where the authors develop a minimal control law model

and refine the model based on data collected from an expert human operator executing the

aggressive maneuver. In both cases, system models are based on first principles.

In contrast to the work presented in [9, 32], we address the challenge of designing

trajectories in the full, 12-dimensional state space with an underactuated robot with only

four actuators. Specifically, we consider goal states parameterized by an arbitrary po-

sition, linear velocity, roll, pitch and the derivatives of roll and pitch. We depart from

the optimization-based methods described in [32, 33, 75] and incremental search tech-

niques [52] because these methods do not appear to scale to 12 dimensions. The appren-

ticeship learning methods in [9, 74] require an expert human operator to generate data for
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model and control identification and therefore limit the ability of the control law to handle

cases not considered a priori by the human operator. Indeed, in several cases considered in

this paper, it was not possible for a trained human operator to fly the robot in the specified

manner.

Similar problems have also been addressed using model predictive control (MPC) [46,

79]. With these approaches, guarantees of convergence are only available when the lin-

earized model is fully controllable [79] or if a control Lyapunov function can be syn-

thesized [43]. As such it appears to be difficult to directly apply such techniques for the

trajectory generation of a quadrotor

5.1 Control

Our basic approach relies on the development of three controllers (described next), and the

composition of these controllers (described in the next section). Each controller is tuned

automatically to obtain the desired performance using a combination of off-line system

identification techniques and on-line parameter identification techniques [50, 59]. These

controllers are have the following objectives:

1. Attitude Control: Driving the robot to a desired roll, pitch and yaw, while maintain-

ing a constant nominal thrust in the body-fixed frame;

2. Hover Control: Achieving and maintaining a desired three-dimensional position and

yaw angle;

3. 3-D Path Following: Controlling the center of mass to follow a prescribed three-

dimensional path while maintaining a specified, possibly varying yaw angle along

the path, with a specified velocity (and acceleration) profile along the path.

In this section, we present methods used for all three controllers. The controllers for

hover and path following rely on small angle assumptions. In other words, we assume

small deviations from the nominal hover position. This assumption is relaxed in [55].
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5.2 Trajectory Generation via Sequential Composition

In the previous section we described three controllers. Each controller can be naturally

thought of as a mode in a hybrid system [14]. Each mode has a number of underlying

parameters and set points that determine its behavior as shown in Table 5.1. The pa-

rameters determine the feedback performance and the set points govern the feed-forward

component that determine the orientation, position, or path to be tracked. Changing the

parameters of a controller allows us to use it to serve different purposes. For example, a

hover controller with stiff gains can be used to hold a position very precisely while a hover

controller with soft gains can be used to reject large disturbance and recover from a larger

range of initial conditions.

These three simple types of controllers can be sequenced in an intelligent way to per-

form complex tasks. The transitions between modes of operation can be time-triggered or

event-triggered. A time-triggered transition between modes arises when it is necessary to

spend a specified amount of time in a particular mode (for example, hover) before exiting

out of the mode (for example, to fly to a new position). An event-triggered transition arises

when a specified region in state space is reached or a specified condition on state and input

variables is satisfied.

In this section, we will describe two applications of the basic idea of mode switching

for trajectory generation. In the first example, we will develop a method for controlling to

any position in space with a specified range of velocities and pitch angles. This enables

flying through windows at different specified angles and perching on vertical or inclined

surfaces. In the second example, we demonstrate approaches to robustly recover from

failed perching attempts.
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Attitude Control Hover 3-D Path Following
Parameters for kp, kd for φ, θ, ψ kp, kd for φ, θ, ψ kp, kd for φ, θ, ψ

feedback control kp, ki, kd for x, y, z kp, ki, kd for x, y, z
Set points and φdes, θdes, ψdes rT , ψT rT (ξ), ṙT (ξ), r̈T (ξ), ψT (ξ)

feed-forward control pdes, qdes, rdes

Table 5.1: Parameters underlying feedback control and set points and desired paths for
feed-forward control for each of the three control modes

5.2.1 Sequence for Aggressive Trajectories

Trajectory Description

We design a sequence of controllers to reach a goal state, G, with a specified position, rG,

velocity, vG, yaw angle, ψG, and pitch angle, θG, with zero angular velocity and roll angle.

The sequence consists of 5 phases:

• Phase 1 - hover control (stiff) to a desired position;

• Phase 2 - 3-D path following toward a desired position, rL, and yaw angle, ψG;

• Phase 3 - attitude control to desired pitch angle, θG, yaw angle, ψG, and zero roll;

• Phase 4 - attitude control to zero pitch angle, yaw angle, ψG, and zero roll;

• Phase 5 - hover control (soft) to a desired position.

The sequence can also be illustrated as a hybrid automaton in Fig. 5.1.

The yaw angle is controlled to be a specified ψG during all phases. In Phase 2, the

robot controls along a 3−D trajectory to build up momentum and reach a commanded

velocity vL at a launch point, xL. Phase 3 is initiated when the quadrotor passes the plane

perpendicular to the desired velocity at the launch point. In Phase 3, the robot’s attitude

is controlled to a commanded pitch angle and a roll angle of zero. Note that during Phase

3, a constant net thrust is commanded. Phase 4 and 5 are recovery phases. In Phase 4, we
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Figure 5.1: Composition of controllers to execute an aggressive trajectory to a goal state.
The clocks at the base of the arrows represent time-triggered transitions whereas mathe-
matical conditions represent event-triggered transitions. The phase number is labeled near
the tip of each arrow.

use the attitude controller to control to a pitch and roll angle of zero. In Phase 5, a soft

hover controller is used to stabilize to a position in space with zero velocity.

Initial Parameter Selection

The pitch tracking controller used in Phase 3 is tuned so that the settling time is approx-

imately Ts seconds and the response is close to critically damped in response to a step

input. For this reason, we design the system to reach the state G, Ts seconds after starting

Phase 3. The position of the launch point, rL, and the velocity vector at the launch point,

vL, necessary to achieve the desired state G are found via backwards integration of the

equations of motion (3.3) from G to L. Here we assume the pitch angle tracks a trajectory

with a critically damped response characterized by a settling time of Ts seconds, the yaw

angle is ψG, the roll angle is zero, and the net thrust is equal to the desired thrust. During

Phase 2, the quadrotor starts at hover at rS and follows the line segment from rS to rL

with commanded velocity vL. So the start position, rS , is simply a chosen distance, l , in

the direction of −vL from rL according to

rS = rL − l
vL
‖vL‖

. (5.1)
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Parameter Adaptation

The real quadrotor does not perform exactly the same as the model. The system will not

reach the exact launch point, rL, or have the exact desired velocity, vL, at the launch point.

Additionally the quadrotor will not have an exactly zero pitch angle at the launch point

and the angle performance will not be exactly critically damped with a settling time of Ts

seconds. These deviations are caused by air drag, rotor dynamics, and actuator saturation

limits. It is difficult to accurately model these effects so we iterate on experimental trials

to achieve the goal state G using a form of iterative learning [15].

In this approach, starting with the initial parameter selection, we iterate na times on

the commanded pitch angle during Phase 3. We let the commanded pitch angle at iteration

k be θkC . We let θkact be the actual pitch angle achieved Ts seconds after entering Phase 3

during iteration k and update with a step size parameter, γθ ≤ 1, as follows

θk+1
C = θkC + γθ(θG − θkact) (5.2)

Since the pitch angle achieved during Phase 3 is not strongly affected by the velocity com-

manded during Phase 2, we can iterate on the commanded velocity without significantly

affecting the pitch angle. We use the same strategy as for pitch angle and iterate nv more

times on velocity:

vk+1
C = vkC + γv(vG − vkact) (5.3)

Finally, we run the final parameters for nx trials and let r̄act be the average position

achieved Ts seconds after entering Phase 3 during the trials. The entire trajectory is then

simply shifted by the difference between the desired position, rG, and the actual position,

r̄act, as follows:

rL = rL + (rG − r̄act)

rS = rS + (rG − r̄act)

Note that the gains for all the controllers are designed ahead of time. During parameter

adaptation only the feed-forward control parameters, the commanded pitch angle and the

three components of the commanded velocity are adapted in this iterative learning process.
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5.2.2 Sequence for Robust Perching

The mode-switching sequence described in the previous section can be used for perching

on surfaces at different angles. In this section, we show how this approach can be used to

perch on vertical surfaces and recover from failed attempts.

Idle 
Props 

Attitude 
Control, 90o 

3-D Path 
Following 

Stiff Hover 
Control 

Soft Hover 
Control 

Attitude 
Control, 0o 

Figure 5.2: Control strategy for robust perching on a vertical wall. The clocks at the
base of the arrows represent time-triggered transitions whereas mathematical conditions
represent event-triggered transitions.

In the 3-D path following mode, the robot controls along a 3−D line segment at a

commanded velocity, vL, towards a launch point, rL. Attitude control to 90◦ is initiated

when the quadrotor passes the plane perpendicular to the desired velocity at the launch

point after which the robot’s attitude controls to a commanded pitch angle of 90◦ and

a roll angle of zero. At this point if the quadrotor successfully attaches to the vertical

surface, the propellers are controlled to idle.

If the quadrotor misses perching on the wall then steps must be taken for the quadrotor

to recover. First we must detect that the quadrotor has failed to attach to the wall. We

do this by sensing that the quadrotor has dropped below the height of the perch, zmin.

After sensing that the quadrotor has missed the perch, it switches to the attitude control

to 0◦ mode for a specified time and then to hover at a distance away from the wall with a

controller with soft gains and a large basin of attraction. After recovering from the failed

perching attempt, the quadrotor tries the perching sequence again until it succeeds.
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5.3 Sequence for Robust Landing

Here we describe a different sequence of the controllers designed to robustly land on

a small horizontal surface. We assume the position and velocity of the quadrotor are

available for the feedback controller and the x and y position of the landing location can

be sensed with zero mean error. We do not require the exact z height of the landing location

to be sensed as it is detected from a change in quadrotor performance. The sensing of an

event or the passing of a specified amount of time triggers a change in the controller mode.

A diagram illustrating the control strategy is shown in Figure 5.3.

Engage  
Grippers 

Idle 
Props 

Descend Hover 

Figure 5.3: Control strategy for robust landing. The clocks at the base of the arrows repre-
sent time-triggered transitions whereas mathematical conditions represent event-triggered
transitions.

First, the quadrotor is controlled to Hover above the desired landing location. Next

it is commanded to Descend at a specified velocity. While in the Descend mode the

quadrotor waits to sense an event before transitioning to the next mode. If an error is

sensed the quadrotor is controlled to hover at its original location. If a z velocity close

to zero is sensed then the quadrotor has likely made contact with the surface and the

quadrotor enters the Idle Props mode. If an error is sensed in this mode the quadrotor is

commanded to Hover at its original location. If no error occurs in some amount of time

then the grippers are engaged.

The concept of an error is an important part of this control strategy. Here we sense

an error by checking if the roll angle, pitch angle, or velocity are above the threshold

values φmax, θmax, and vmax. These conditions are designed to catch situations when the
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quadrotor is falling off the desired landing location or when the quadrotor is in free fall

because it switched into the Idle Props mode when it was not actually on a surface.

5.4 Experiment Design and Implementation Details

In this work we present a systematic approach for designing trajectories and associated

controllers that permit aggressive maneuvers with quadrotor robots. We consider four

experimental scenarios:

• flying through a vertical opening at varying angles;

• flying downward through a horizontal opening;

• flying upward through a horizontal opening;

• perching on a target at varying angles.

Note that adhesion during perching is achieved by placing Velcro R© on the underside of

the quadrotor and on a target location. Graphics depicting the four scenarios are shown in

Fig. 5.4. The first and last scenarios include cases at various angles. For each of the cases,

the quadrotor executed 15 trials of the trajectory after completing 2 iterations of (5.2) and

4 iterations of (5.3). We report the results of these experiments in Sect. 5.5.

5.5 Results

5.5.1 Aggressive Trajectories

Nine cases of the four scenarios shown in Fig. 5.4 were tested. All of the cases use a

desired yaw angle, ψG, of 90◦. The details of these cases are shown in Table 5.2. In all
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Case Description vG (x,y,z) (m/s)
1 Vertical Window at 45◦ (2, 0, 0)
2 Vertical Window at 60◦ (2, 0, 0)
3 Vertical Window at 75◦ (2, 0, 0)
4 Vertical Window at 90◦ (2, 0, 0)
5 Down Through Horizontal Window at 90◦ (0, 0, -1.5)
6 Up Through Horizontal Window at 90◦ (0, 0.4, 2.2)
7 Perch at 60◦ (0, 0.8cos(30), -0.8sin(30))
8 Perch at 90◦ (0, 0.8, 0)
9 Perch at 120◦ (0, 0.8cos(30), 0.8sin(30))

Table 5.2: The 9 test cases used to generate the experimental results for this paper.

of the vertical window cases (1-4) the desired velocity is 2 m/s through the window and

zero in the other directions. This speed is large enough for the quadrotor to coast through

the window at the desired angle. For descending though the horizontal window (case 5),

the desired downward speed is 1.5 m/s and zero in the other directions. This speed has to

be small enough to give the quadrotor time to recover after passing through the window.

Ascending through the horizontal window (case 6) is the most difficult case because the

quadrotor must achieve enough vertical speed to coast upward through the window. For

each of the perching cases (7-9), the desired velocity was set to be 0.8 m/s normal to the

perching surface. This speed is large enough to guarantee adhesion given proper alignment

of the quadrotor to the perching surface. Representative images from cases 4, 5, and 9 are

shown in Fig. 5.5.

The performance of the iteration scheme for a representative case (case 8) in Fig. 5.7.

After the first iteration the initial angle error drops from 10◦ to less than 2◦ for the rest of

the iterations. The velocity adaptation begins after iteration 3. The velocity error improves

significantly in iteration 4 and continues to stay low for the remainder of the iterations.

After performing the iteration scheme for each of the cases, 15 trials with the same

parameters are run for each case. A summary of the data collected from the 15 trials

for all of the cases is shown in Figs. 5.8 and 5.9(b). For a representative case (case 3)
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the standard deviation on the achieved angle is 0.9◦ and the standard deviations on the

velocity and position are around 8 cm/s and 2 cm, respectively, for all axes.

5.5.2 Robust Perching

The quadrotor was commanded to perch on a vertical surface for ten trials. In order to

guarantee failure no mechanism was placed on the quadrotor to enable attachment. For

all ten trials the quadrotor recovered to a stable hover. A representative trial is shown in

Figure 5.9(a). The quadrotor launches to the wall then controls to a pitch angle of 90◦.

After failing to attach to the wall the quadrotor is controlled to a pitch angle of 0◦ and then

finally to a stable hover.

5.5.3 Robust Landing

The quadrotor was commanded to land on the wide side of a two-by-four ten times. All

ten trials were successful and the standard deviations in the x and y landing locations were

both less than 1 cm. The two-by-four was then displaced in various directions from the

quadrotor’s target location for 40 trials. On all 40 trials the quadrotor successfully re-

covered to a stable hover. A representative trial is shown in Figure 5.10. The quadrotor

descends until it hits the board and then switches to the idle propellers mode. The quadro-

tor begins to fall off the board and enters the recovery hover mode after the roll angle

exceeds 10◦. The quadrotor then recovers to its original position and is ready to perform

another attempt at landing.
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5.6 Conclusion

Here we studied the problem of designing dynamically feasible trajectories and controllers

that drive a quadrotor to a desired state in state space. We focus on the development of

a family of trajectories defined as a sequence of segments, each with a simple controller

parameterized by a few gains and a goal state. Each controller is developed from the dy-

namic model of the robot, but is deliberately kept simple with a relatively few parameters

to permit iterative refinement through successive experimental trials. These iterations al-

low us to account for the inevitable errors in the dynamic model and limitations of the

actuators and sensors. Four scenarios are tested experimentally as considered by nine case

studies with fifteen trials of each case study. The scenarios include flying through narrow,

vertical and horizontal openings and perching on an inverted surface. We show that our

approach results in repeatable and precise control along trajectories that demand velocities

and accelerations that approach the limits of the vehicle’s capabilities.
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Figure 5.4: The four experimental scenarios considered in this work. Flying downward
and upward through a horizontal opening are both shown in Fig. 1.5.4(b), where the
stages of the robot’s progression are reversed for the latter. Note that in Figs. 1.5.4(a)
and 1.5.4(c), θ denotes the varied window and perching orientation.
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(a) (b) (c) (d) 

(e) (h) (f) (g) 

(l) (k) (j) (i) 

Figure 5.5: Images from representative experimental trials. Figures 5.5(a-d) present a trial
of the quadrotor passing through a vertical window at 90◦ (case 4). Figures 5.5(e-h) show
the quadrotor descending through a horizontal window (case 5). Figures 5.5(i-l) show the
quadrotor perching on a 120◦ surface (case 9). Videos of the experiments are available at
http://tinyurl.com/quadrotorcontrol.

75



(a) Vertical Window, Cases 1-4, Top Views (above) and
Front Views (below)

(b) Horizontal Window, Cases 5 and 6, Side Views

(c) Perching, Cases 7-9, Side Views

Figure 5.6: Experimental data for first two phases for each tested case. The lines represent
the orientation of the quadrotor. Phase 2 is shown with light gray lines and phase 3 is
shown with dark gray lines. The dotted straight line illustrates the line segment that the
quadrotor is commanded to follow during phase 2.
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Figure 5.7: Pitch angle and velocity improvement after iterating when perching at 90◦

(case 8).
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Figure 5.8: Mean pitch angles (a) and velocities (b) for 15 trials of each case. The error
bars represent three standards deviations and the solid bars are the desired pitch angles
and velocities. In (b) the x, y, and z velocities are shown in the left, middle, and right
positions, respectively, for each case.
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Figure 5.9: (a) Recovery from a failed perching attempt on a vertical surface. The circles
represent the transitions between control modes. (b) Standard deviations on goal positions
for 15 trials for each case.

Figure 5.10: Recovery from a failed landing attempt on a horizontal surface.
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Chapter 6

Minimum Snap Trajectory Generation

using Piecewise Polynomials

In this chapter we address the controller design and the trajectory generation for a quadro-

tor maneuvering in three dimensions in a tightly constrained setting typical of indoor en-

vironments. In such settings, it is necessary to allow for significant excursions of the

attitude from the hover state and small angle approximations cannot be justified for the

roll and pitch. We develop an algorithm that enables the real-time generation of op-

timal trajectories through a sequence of 3-D positions and yaw angles, while ensuring

safe passage through specified corridors and satisfying constraints on velocities, accelera-

tions and inputs. A nonlinear controller ensures the faithful tracking of these trajectories.

Experimental results illustrate the application of the method to fast motion (5-10 body

lengths/second) in three-dimensional slalom courses.

6.1 Introduction

Our focus in this chapter is on the modeling, controller design, and trajectory generation

for quadrotors. Most of the work in this area uses controllers that are derived from lin-

earization of the model around hover conditions and are stable only under reasonably small
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roll and pitch angles [40]. Exploring the full state space using reachability algorithms [33],

incremental search techniques [52] or LQR-tree-based searches [75] is impractical for a

dynamic system with six degrees of freedom. Some work in this area has addressed aero-

batic maneuvers [9, 33, 54, 56]. However, there are no stability and convergence guaran-

tees when the attitude of the rotor craft deviates substantially from level hover conditions.

While machine learning techniques have been successful in learning models using data

from human pilots [9] and in improving performance using reinforcement learning [54],

these approaches do not appear to lend themselves to motion planning or trajectory gener-

ation in environments with obstacles. Similar problems have been addressed using model

predictive control (MPC) [46, 79]. With these approaches, guarantees of convergence are

only available when the linearized model is fully controllable [79] or if a control Lyapunov

function can be synthesized [43]. As such it appears to be difficult to directly apply such

techniques to the trajectory generation of a quadrotor.

In this paper, we address the controller design and the trajectory generation for a

quadrotor maneuvering in three-dimensions in a tightly constrained setting typical of in-

door environments. In such settings, it is necessary to develop flight plans that leverage

the dynamics of the system instead of simply viewing the dynamics as a constraint on the

system. It is necessary to relax small angle assumptions and allow for significant excur-

sions from the hover state. We develop an algorithm that enables the generation of optimal

trajectories through a series of keyframes or waypoints in the set of positions and orien-

tations, while ensuring safe passage through specified corridors and satisfying constraints

on achievable velocities, accelerations and inputs.

Many quadrotor controllers operate near hover and rely on small angle assumptions for

roll and pitch. Several groups have pushed model rotorcrafts beyond these small angles

and created exciting aerobatic flights [9, 33, 54, 56]. However, during the large angle

portion of these trajectories there is no position control [33, 54, 56] or position control is

not precise enough for obstacle avoidance [9]. Here we are interested in using large pitch

and roll angles for the purpose of controlling precisely along aggressive trajectories.
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In this work, we develop a flexible and powerful trajectory generation method for

quadrotors. The goal is to generate and then control along trajectories through cluttered

environments or difficult scenarios. The method can be used to generate optimal trajecto-

ries through a series of waypoints and also allows safe corridors of different widths to be

defined between waypoints. In addition to position, velocity, and acceleration constraints

the method is able to incorporate constraints on angular velocities, thrust, and moments

required. For this reason, it can be used to generate trajectories that push the limits of the

capabilities of the quadrotor. However, it can also generate trajectories that satisfy any

arbitrary constraints on trajectory ”safeness” (e.g., angular velocity constraints, maximum

roll or pitch angles). The method has the additional advantage it requires no expert human

operator to train from as in the apprenticeship methods [9] or any experimental training as

in iterative methods [54, 56].

The organization of the chapter is as follows. First, we present a model for the quadro-

tor dynamics and show that the quadrotor dynamics with four inputs is differentially flat

and use this as a tool for trajectory generation. Next, a nonlinear controller that does not

rely on small angle assumptions on the roll and pitch angle is described. In Section 6.2, the

trajectory generation method is described. Finally, the experimental results of a quadrotor

flying through a static environment with three narrow gaps, flying through a thrown hula

hoop, and catching a bouncing ball are presented.

6.2 Trajectory Generation

Here we describe the trajectory generation method presented in [55]. We build on the

results of Ch. 2 and consider trajectories in the flat output space of the form of (2.18). We

parameterize the tracking trajectories, σT (t), using suitable basis functions in R3×SO(2).

In particular, it is convenient to write them as piecewise polynomial functions of order n

over m time intervals. The description of the trajectory is as follows.
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σT (t) =



∑n
i=0 σT i1t

i t0 ≤ t < t1∑n
i=0 σT i2t

i t1 ≤ t < t2
...∑n

i=0 σT imt
i tm−1 ≤ t ≤ tm

(6.1)

The reason for the choice of this basis is simple. We are interested in finding trajecto-

ries that minimize functionals which can be written using these basis functions, namely:

∫ tm

t0

µr

∣∣∣∣∣∣∣∣dkrdtk
∣∣∣∣∣∣∣∣2 + µψψ̈

2dt

where µr and µψ are constants that make the integrand nondimensional. For example,

Flash and Hogan [29] showed human reaching trajectories appear to minimize the integral

of the square of the norm of the jerk (the derivative of acceleration, k = 3). These trajec-

tories are quintics that can clearly be written with the basis (7.2). Indeed, there are also

studies in human movement [44] that show minimizing the integral of the square norm

of derivatives of torques may be a better criterion for modeling motions. In our system,

since the inputs u2 and u3 appear as functions of the fourth derivatives of the positions,

we generate trajectories that minimize the integral of the square of the norm of the snap

(the second derivative of acceleration, k=4). The basis (7.2) allows us to go to higher

order polynomials which can potentially allow us to satisfy different constraints on the

states and the inputs. In what follows we formulate the trajectory generation problem as

an optimization of a functional but in a finite dimensional setting.

In order to do this, we first write the constants σT ij = [xT ij, yT ij, zT ij, ψT ij]
T as a

4nm×1 vector cwith decision variables {xT ij, yT ij, zT ij, ψT ij}. The trajectory generation

problem can then be written in the form of a quadratic program or QP:

min cTHc+ fT c (6.2)

s.t. Ac ≤ b

Aeqc = beq

where the objective function will incorporate the minimization of the functional while the
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constraints can be used to satisfy constraints on the flat outputs and their derivatives and

thus constraints on the states and the inputs. A specification of an initial condition, final

condition, or intermediate condition on any derivative of the trajectory (e.g., dkxT
dtk
|t=ti)

can be written as a row of the constraint Aeqc = beq. If conditions do not need to be

specified exactly then they can be represented with the inequality constraint Ac ≤ b. After

computing the trajectory the methods described in Section 2.3.2 can be used to calculate

the angular velocities, angular accelerations, total thrust, and moments required over the

entire trajectory.

We now describe two methods of using this technique to generate three-dimensional

trajectories for our quadrotor. The first method requires the specification of keyframes in

R3×SO(2) where the time required to execute the trajectory is variable and can be scaled

to the smallest possible value. We call this Optimal Keyframe Navigation. The second

method, Fixed Terminal Time Trajectories, enables the generation of trajectories with a

specified time duration.

6.2.1 Optimal Keyframe Navigation

Here we define a keyframe as a position in space along with a yaw angle. Consider the

problem of navigating through m keyframes at specified times. In between each keyframe

there is a safe corridor that the quadrotor must stay within. This sequence of keyframes

could be generated by a planning algorithm. A trivial trajectory that satisfies these con-

straints is to simply fly in straight lines between keyframes. However this trajectory is

inefficient because it has infinite curvature at the keyframes which requires the quadrotor

to come to a stop at the keyframes.

Our method generates an optimal trajectory that passes through the keyframes at the

given times while staying within the safe corridors. We generate trajectories that smoothly

transition through the keyframes with the most natural velocities and accelerations. The

optimization program to solve this problem while minimizing the integral of snap squared

(without corridor constraints) is shown below.

83



min
∫ tm
t0
µr

∣∣∣∣∣∣d4rdt4

∣∣∣∣∣∣2 + µψψ̈
2
Tdt (6.3)

s.t. rT (ti) = ri, i = 0, ...,m

ψT (ti) = ψi, i = 0, ...,m

dpxT
dtp
|t=tj = 0 or free, j = 0,m, p = 1, 2, 3, 4

dpyT
dtp
|t=tj = 0 or free, j = 0,m, p = 1, 2, 3, 4

dpzT
dtp
|t=tj = 0 or free, j = 0,m, p = 1, 2, 3, 4

dpψT

dtp
|t=tj = 0 or free, j = 0,m, p = 1, 2

Here rT = [xT , yT , zT ]T and ri = [xi, yi, zi]. We assume that t0 = 0 without loss of

generality. We use piecewise polynomial functions to define the trajectory and put this

problem in the form of (7.3). In between piecewise polynomial functions (at t1,...,tm−1)

we enforce continuity between the first four derivatives of rT and first two derivatives of

ψT .

Nondimensional problem

We note that in (7.1) the quantities xT , yT , zT , and ψT are independent in both the cost

function and the constraints so this problem can be separated into four separate optimiza-

tion problems. We now consider a general form of the optimization problem for the nondi-

mensional variable w̃(τ) where τ represents nondimensionalized time:

min
∫ 1

0
dkw̃(τ)
dτk

2
dτ (6.4)

s.t. w̃(τi) = w̃i, i = 0, ...,m

dpw̃(τ)
dτp
|τ=0 = 0 or free, p = 1, 2, 3, 4

dpw̃(τ)
dτp
|τ=1 = 0 or free, p = 1, 2, 3, 4

We will show that this nondimensional problem can be transformed into one to solve

for any of the variables xT , yT , zT , or ψT . First we introduce the dimensional time, t = ατ ,

and the dimensional variable, w, defined as:
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w(t) = w(ατ) = β1 + β2w̃(τ)

Next we rewrite (6.4) using w and t:

min α2k−1

β2

∫ α
0

dkw(t)
dtk

dt (6.5)

s.t. w(ti) = β1 + β2w̃i, i = 1, ...,m

dpw(t)
dtp
|t=0 = 0 or free, p = 1, 2, 3, 4

dpw(t)
dtp
|t=α = 0 or free, p = 1, 2, 3, 4

Note that in this problem the boundary conditions are spatially shifted by β1 and scaled by

β2 and time is scaled by α. Letting the solution to the nondimensional problem be w̃∗ the

solution to the new problem is:

w∗(t) = β1 + β2w̃
∗ (t/α)

Now let’s consider the nondimensional form of (7.1) where the nondimensional r̃,

ψ̃, and τ replace r, ψ, and t. One can solve four nondimensional problems by letting

r̃T = [w̃1, w̃2, w̃3]
T and ψ̃T = w̃4. Then the optimal nondimensional solutions, w̃∗i (t), can

be mapped to the optimal solutions for xT , yT , zT , and ψT in the original problem (7.1).

The time scale, α, must the same for each variable but the spatial transformation, β1 and

β2, can be unique.

Adding corridor constraints

We will now add corridor constraints to (7.1). First we define ti as the unit vector along

the segment from ri to ri+1:

ti =
ri+1 − ri
‖ri+1 − ri‖

The perpendicular distance vector, δi(t), from segment i is defined as

δi(t) = (rT (t)− ri)− ((rT (t)− ri) · ti)ti

A corridor width on the infinity norm, di, is defined for each corridor.
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Figure 6.1: Optimal trajectories (red) to pass through 4 keyframes (black). Left: no cor-
ridor constraints. Right: corridor constraint between keyframes 2 and 3 forces changes
from the unconstrained trajectory on the left.

‖δi(t)‖∞ ≤ di while ti ≤ t ≤ ti+1

This constraint can be approximately satisfied in the QP by introducing nc intermediate

points as follows

|xW · δi(ti +
j

1 + nc
(ti+1 − ti))| ≤ di for j = 1, ..., nc

and equivalently for yW and zW . Note that the absolute value constraints can each be

written as two linear constraints. The use of corridor constraints is shown in Fig. 6.1. In

the left figure the optimization problem is solved without any corridor constraints and in

the right figure a corridor constraint is added for the 2nd segment (d2 = 0.05 and nc = 8).

The trajectory stays within the dotted lines that illustrate the corridor.

Temporal Scaling

Next we consider changing the time to navigate the keyframes by a factor of α so that

the new times to reach the keyframes are ti = ατi. We let the nondimensional desired
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boundary conditions be r̃i = ri and ψ̃i = ψi in the nondimensional form of (7.1) with the

corridor constraints. The solution to the true problem is simply a time-scaled version of

the nondimensional solution.

r∗T (t) = r̃∗T (t/α), ψ∗T (t) = ψ̃∗T (t/α)

This property can be used to tradeoff between fast, aggressive trajectories and slow,

safe trajectories. As α is increased the plan takes longer to execute and becomes safer. As

α goes to infinity all the derivatives of position and yaw angle go to zero which leads to:

u(t)→ [mg, 0, 0, 0]T , ωBW,T (t)→ [0, 0, 0]T

We can therefore satisfy arbitrary constraints of safeness by making α large enough. Con-

versely, as α is decreased the trajectory takes less time to execute, the derivatives of posi-

tion increase, and the trajectory becomes more aggressive.

Optimal segment times

In some cases the arrival times at different keyframes is important and may be specified.

However, in other cases these arrival times may not matter and we can try to find a more

optimal solution by allowing more time for some segments while taking the same amount

of time away from the others. Here we describe a method for finding the optimal relative

segment times for a given set of keyframes. For this part it is more convenient to think

of the time allowed for segment i, Ti, rather than the arrival time for keyframe i, ti where

Ti = ti − ti−1. We then solve the minimization problem:

min f(T) (6.6)

s.t.
∑
Ti = tm

Ti ≥ 0

where f(T) is the solution the optimization problem (7.1) for segment times T. We solve

(6.6) via a constrained gradient descent method. The vectors gi are constructed so that the
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Figure 6.2: Illustration of relative time scaling. Left: Trajectory for different iterations.
Right: Cost function vs. iteration.

ith element has a value of 1 and all other elements have the value −1
m−2 . This is done so that∑

gi = 0 and gi can be added or subtracted from T and the final time does not change.

Next we numerically compute the directional direction for each gi as follows.

∇gif =
f(T + hgi)− f(T)

h

where h is some small number. Given the estimates of the directional derivatives we

perform gradient descent using backtracking line search. An illustration of this method

for a trajectory in the x − y plane where the keyframes are simply points is shown in

Fig. 6.2. The first choice of segment times allowed too much time for the 2nd segment

and the trajectory for this segment deviates significantly from the convex hull formed by

the keyframes. After 7 iterations the cost function converges to a minimum. The optimal

trajectory appears to be a very natural trajectory for passing through all keyframes which

qualitatively validates the choice of the cost function.

6.2.2 Fixed Terminal Time Trajectories

Next we consider the problem of optimally reaching a position and yaw angle in some

fixed time from a rest state. We consider cases where the components of the derivatives of
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position at the final time, t1, are either specified to be 0 or are free. Note that this is just a

special case of (7.1) with m = 1 and all derivatives of rT and ψT at t = 0 specified to be

0.

Spatial scaling

In order to solve this problem quickly, we will exploit the spatial scaling property de-

scribed previously. We consider a single case of the nondimensional form of (7.1) where

r̃T (0) = 0 and r̃T (1) = 1 and the final velocities are specified the same as in the true

problem. Then we solve the nondimensional problem once and transform the solution to

find the optimal solution to our actual problem by setting

x∗T (t) = x0 + (x1 − x0)x̃∗T (t/t1)

and likewise for y∗T (t) and z∗T (t). This is convenient because it is faster to analytically

modify a solution than resolve a QP. For this reason, this approach is useful for quickly

reacting to dynamic obstacles or dynamic targets. We use it to fly through a thrown circular

hoop as shown in the next section. Note that spatial scaling also applies to the problem

with multiple keyframes but the property is less useful as the positions of all keyframes

must be scaled by the same factor.

6.3 Experiments

The experiments are conducted with Ascending Technologies Hummingbird quadrotor

[1]. We use a Vicon motion capture system [8] to estimate the position, orientation, and

velocity of the quadrotor and the onboard gyros to estimate the angular velocities. The

software infrastructure is described in [62].
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Figure 6.3: Trajectory generated to fly through three gaps (left) and performance data for
two traversal speeds (right).

6.3.1 Flying through three static hoops

This experiment demonstrates the ability to fly through environments with several narrow

gaps. We design a scenario with three fixed circular hoops the quadrotor must continu-

ously fly through. Six keyframes with the identical yaw angles are selected at 0.25 meters

on either side of the gaps with a small corridor constraint, 1 cm, added for the segments

passing through the gaps. The corridor widths for the other segments are allowed to be 1

meter so the quadrotor may take a more optimal path where there is no position constraint.

Since arrival time at the keyframes is not important for this problem the optimal relative

time scaling method is used. The final trajectory generated is shown in Fig. 6.3.

This generated trajectory can be tracked at different speeds. The right side of the Fig.

6.3 shows 24 seconds of performance data for tracking this trajectory in 8 seconds (top)
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Figure 6.4: Composite image of a single quadrotor quickly flying through three static
circular hoops. See attached video or http://tinyurl.com/pennquad.

and 4 seconds (bottom). The data shows that we can tradeoff speed for accuracy. The

faster trajectory has velocities as large as 2.6 m/s and roll and pitch angles of up to 40◦.

Images from the faster experiment are shown in Fig. 6.4.

6.3.2 Flying through a thrown hoop

This experiment demonstrates the capability of avoiding fast moving dynamic obstacles.

We use fixed terminal time trajectories to fly through a thrown circular hoop. After de-

tecting that the hoop has been thrown the future position of the hoop is predicted with

a quadratic air drag model. The predicted future time and x and y position of descent

through a chosen z plane is found. The chosen z-plane is 0.6 meters below the quadro-

tor. The allowed region for hoop interception is ∆x = 1.2 to 1.6 meters and ∆y = -0.4 to

0.4 meters, where x is towards the hoop. The time allowed for all trajectories, t1, is 0.9

seconds. The x and z velocity are allowed to be free so the quadrotor can fly forward and

down through the hoop while the y velocity is constrained to be zero as it is assumed the

hoop falls approximately straight down. The worst case performance is for the position
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Figure 6.5: Performance data for aggressive fixed terminal time trajectory.

the farthest away (∆x = 1.6 meters and ∆y = 0.4 meters) for which data is shown in Fig.

6.5.

Even in this worst-case scenario the position error is always less than 8 cm in any

direction. Note that this is a highly aggressive trajectory as the quadrotor quickly reaches

a velocity of 3.6 m/s and at one point hits a pitch angle of 60◦. A series of images showing

the full experiment are shown in Fig. 6.6.

6.3.3 Catching a bouncing ball

This experiment demonstrates the ability to continuously replan in order to catch a bounc-

ing ball. To enable this experiment a gripper was developed to throw and catch a golf ball

from the underside of a quadrotor. The sides of the gripper can be opened simultaneously

in order to drop the ball straight down or can be actuated independently in order to throw

the ball to the left or to the right as shown in Fig. 6.7.

Here we describe a method for catching a ball at the peak of its flight when the z

velocity is zero. As the ball ascends into the gripper the gripper begins to close. The

ball then reaches its peak inside the gripper and by the time the ball begins to descend

the gripper has closed and the ball remains inside the gripper. A flowchart outlining the
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Figure 6.6: Composite image of a single quadrotor flying through a thrown circular hoop.
See attached video or http://tinyurl.com/pennquad.

Figure 6.7: The quadrotor throwing the ball to the right.
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method is shown in Fig. 6.8. As seen in this figure the method for catching a ball requires

two main components, the prediction of the peak of the ball, the Apogee Estimator, and

the planning to reach the desired state, the Trajectory Generator.

New Ball 
Position 

Trajectory 
Generator Quality 

Apogee 
Estimate 

Safe 
Trajectory 

Apogee 
Estimator 

Vicon Controller 

Figure 6.8: Flowchart for catching a ball.

Apogee Estimator

Here we describe our method for predicting when and where the ball will reach its apogee

after a bounce. The first requirement is to find the current position and velocity of the ball.

We cover the ball with reflective tape and use a Vicon Motion capture system to track it

at 150 Hz. There is some noise in the Vicon measurements and Vicon occasionally loses

track of the ball. Therefore we developed a method that estimates the state of the ball only

if the system has maintained a quality track for at least some amount of time and if the

noise is below some threshold.

At each time step we consider the last n measurements (ti, xi, yi, zi) collected during

the last 0.07 seconds of data. Note that we require n to be larger than some threshold. We

assume that each measurement is subject to some error (εxi, εyi, εzi). Our measurement

model is shown in the equations below.

xi = x0 + vx0ti + εxi

yi = y0 + vy0ti + εyi

zi = z0 + vz0ti − 1
2
gt2i + εzi

(6.7)

Note that here we assume the ball is undergoing parabolic flight under the acceleration

of gravity. This implies that we do not attempt to estimate the state of the ball during a

bounce event. We also ignore air drag in the model because at low speeds the air drag on

the golf ball is negligible.
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Using this measurement model the 3n measurements can be written as:

A



x0

vx0

y0

vy0

z0

vz0


= Aβ = b + ε (6.8)

whereA is a 3n×6 matrix and b is 3n length vector which both contain the measurements.

Here ε is a 3n length vector containing the measurement noise. The intial velocites and

positions are represented by β which we estimate using a linear least squares method:

β̂ = (ATA)−1ATb (6.9)

In order to accept the estimate as a quality estimate the mean squared error, ‖Aβ̂−b‖
2

3n
,

must be less than some threshold. Given a quality estimate of the initial state of the ball

we use a parabolic flight model to find the impact location and velocity of the ball. A

golf ball was chosen because it is has a very high coefficient of restitution and also has a

consistent bounce. The bouncing surface is a strong factor is determining the bounce of

the ball. We use a steel lab benchtop that is 5 cm thick. Our impact model is shown in

(6.10) where − and + superscripts represent pre- and post-impact velocities, respectively.

v+x = v−x

v+y = v−y

v+z = −COR(v−z )v−z

(6.10)

Note that we experimentally determined the coefficient of restitution as a linear function

of the velocity of impact, COR(v−z ). We assume that the x and y velocity are the same

pre- and post-impact. However, we acknowledge that unmodeled disturbance is added to

the ball when it bounces off the ground due to imperfections in the ball and the surface as

well as spin on the ball. After calculating the post-impact velocities we use a parabolic

flight model to predict the position and velocity of the ball at its apogee.
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Trajectory Generator

When a quality apogee estimate is produced the Apogee Estimator feeds the apogee po-

sition, velocity, and time to the Trajectory Generator. The Trajectory Generator computes

a minimum snap trajectory from the current desired state of the quadrotor to this desired

catch state. Note that we require the catch state to have acceleration and jerk of zero so

that the catch is performed with the quadrotor at a level attitude with no angular velocity.

It is possible that the ball is thrown out of reach of the vehicle and we must account for

this so the quadrotor does not attempt to follow trajectories that are unsafe. Therefore, after

a trajectory is planned we find the maximum velocities, accelerations, jerks, and snaps for

the planned polynomial trajectories along each axis. If any of these values exceed chosen

safe thresholds then the trajectory is determined to be unsafe and is not executed.

Although it is ideal to reach the catch position at the velocity of the ball, it is possible

to still catch the ball even if the vehicle does not move at the ball’s exact velocity. So, if

the planned trajectory is unsafe we next plan a path to the catch position and allow the

final velocity to be unspecified. This less constrained trajectory will have a lower cost

and it is possible that it will be safe while the first planned trajectory was not. If this

trajectory is safe, then it is executed. If not, then the quadrotor simply executes whatever

safe trajectory it was already executing. Screenshots from a successful experimental trial

are shown in Fig. 6.9.
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Figure 6.9: Quadrotor catching a thrown ball after a bounce. The ball is highlighted in
blue.
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Chapter 7

Trajectory Generation with

Mixed-Integer Quadratic Programs for

Heterogeneous Quadrotor Teams

We present an algorithm for the generation of optimal trajectories for teams of hetero-

geneous quadrotors in three-dimensional environments with obstacles. We formulate the

problem using mixed-integer quadratic programs (MIQPs) where the integer constraints

are used to enforce collision avoidance. The method allows for different sizes, capabilities,

and varying dynamic effects between different quadrotors. Experimental results illustrate

the method applied to teams of up to four quadrotors ranging from 65 to 962 grams and 21

to 67 cm in width following trajectories in three-dimensional environments with obstacles

with accelerations approaching 1g.

7.1 Introduction

Multi-rotor aerial vehicles have become increasingly popular robotic platforms because of

their mechanical simplicity, dynamic capabilities, and suitability for both indoor and out-

door environments. In particular, there have been many recent advances in the design [34],
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control [54] and planning [35] for quadrotors, rotorcrafts with four rotors. In this paper

we present a method for generating optimal trajectories for heterogeneous quadrotor teams

like those shown in Fig. 7.1 in environments with obstacles.

Trajectories that quadrotors can follow quickly and accurately should be continuous

up to the third derivative of position (or C3). This is because, for quadrotors, disconti-

nuities in lateral acceleration require instantaneous changes in roll and pitch angles and

discontinuities in lateral jerk require instantaneous changes in angular velocity. Finding

C3 trajectories requires planning in a high-dimensional search space which is impracti-

cal for methods using reachability algorithms [33], incremental search techniques [52] or

LQR-tree-based searches [75]. The problem is exacerbated when planning for multiple

vehicles as this further expands the dimension of the search space.

This paper builds on our own previous work [55] in which we showed that the dy-

namic model for the quadrotor is differentially flat. We used this fact to derive a trajectory

generation algorithm that allows us to naturally embed constraints on desired positions,

velocities, accelerations, jerks and inputs while satisfying requirements on smoothness of

the trajectory. We extend that method in this work to include multiple quadrotors and

obstacles. The method allows for different sizes, capabilities, and varying dynamic ef-

fects between different quadrotors. We enforce collision avoidance using using integer

constraints which transforms our quadratic program (QP) from [55] into a mixed-integer

quadratic program (MIQP).

Our work also draws from the extensive literature on mixed-integer linear programs

(MILPs) and their application to trajectory planning from Schouwenaars et al. [68, 70–72].

This body of work demonstrates the power and flexibility of integer constraints in simi-

lar trajectory planning problems for both fixed-wing aerial vehicles and rotorcraft. A key

difference in our approach is that we use piece-wise smooth polynomial functions to syn-

thesize trajectories in the flat output space. Using piece-wise smooth polynomial functions

allows us to enforce continuity between waypoints up to any desired derivative of position.

Another difference in our work from this previous work on trajectory generation is the use
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Figure 7.1: The kQuad65 (top), the Asctec Hummingbird [1] (middle), and the kQuad1000
(bottom).

of quadratic cost function resulting in a MIQP as opposed to a MILP.

The organization of the chapter is as follows. First, we present our trajectory genera-

tion method for a single quadrotor in Sec. 7.2 and its extension to heterogeneous quadrotor

teams in Sec. 7.3. In Sec. 7.4, we present experimental results for teams of up to four

quadrotors ranging from 65 to 962 grams and 21 to 67 cm in width shown in Fig. 7.1 fol-

lowing trajectories in three-dimensional environments with obstacles with accelerations

approaching 1g. Finally, in Sec.7.5, we offer some concluding remarks on this approach.
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7.2 Single Quadrotor Trajectory Generation

In this section we first describe the basic quadrotor trajectory generation method using

Legendre polynomial functions incorporating obstacles into the formulation. Specifically,

we solve the problem of generating smooth, safe trajectories through known 3-D environ-

ments satisfying specifications on intermediate waypoints.

7.2.1 Basic Method

Consider the problem of navigating a vehicle through nw waypoints at specified times. A

trivial trajectory that satisfies these constraints is one that interpolates between waypoints

using straight lines. However this trajectory is inefficient because it has infinite curvature

at the waypoints which requires the quadrotor to come to a stop at each waypoint. Our

method generates an optimal trajectory that smoothly transitions through the waypoints

at the given times. The optimization program to solve this problem while minimizing the

integral of the krth derivative of position squared is shown below.

min
∫ tnw

t0

∣∣∣∣∣∣dkrrTdtkr

∣∣∣∣∣∣2 dt (7.1)

s.t. rT (tw) = rw, w = 0, ..., nw

djxT
dtj
|t=tw = 0 or free,w = 0, nw; j = 1, ..., kr

djyT
dtj
|t=tw = 0 or free,w = 0, nw; j = 1, ..., kr

djzT
dtj
|t=tw = 0 or free,w = 0, nw; j = 1, ..., kr

Here rT = [xT , yT , zT ]T and ri = [xi, yi, zi]
T . We enforce continuity of the first kr

derivatives of rT at t1,...,tnw−1. Next we write the trajectories as piecewise polynomial

functions of order np over nw time intervals using polynomial basis functions Ppw(t):
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rT (t) =



∑np

p=0 rTp1Pp1(t) t0 ≤ t < t1∑np

p=0 rTp2Pp2(t) t1 ≤ t < t2
...∑np

p=0 rTpnwPpnw(t) tnw−1 ≤ t ≤ tnw

(7.2)

This allows us formulate the problem as a quadratic program (or QP) by writing the

constants rTpw = [xTpw, yTpw, zTpw]T as a 3nwnp × 1 decision variable vector c:

min cTHc+ fT c (7.3)

s.t. Ac ≤ b

Aeqc = beq

In our system, since the inputs u2 and u3 appear as functions of the fourth derivatives

of the positions, we generate trajectories that minimize the integral of the square of the

norm of the snap (the second derivative of acceleration, kr = 4). The basis (7.2) allows

us to go to higher order polynomials which allows us to satisfy such additional trajectory

constraints as obstacle avoidance that are not explicitly specified by intermediate way-

points.

7.2.2 Choice of basis functions

Although this problem formulation is valid for any set of spanning polynomial basis func-

tions, Ppw(t), the choice does affect the numerical stability of the solver. A poor choice

of basis functions can cause the matrix H in (7.3) to be ill-conditioned for large order

polynomials. In order to diagonalize H and ensure that it is well-conditioned matrix we

use Legendre polynomials as basis functions for the krth derivatives of our positions. Leg-

endre polynomials are a spanning set of orthogonal polynomials on the interval from −1

to 1: ∫ 1

−1
λm(τ)λn(τ)dτ =

2

2n+ 1
δnm

where δnm is the Kronecker delta and τ is the non-dimensionalized time [10]. We then shift

these Legendre polynomials to be orthogonal on the interval from tw−1 to tw which we
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call λpw(t). We use these shifted Legendre polynomials to represent the krth derivatives

of the first np − kr basis functions for our position functions, Ppw(t). These first np − kr
polynomials must satisfy

dkrPpw(t)

dtkr
= λpw(t) p = 1, ..., (np − kr)

We define the last kr polynomial basis functions as

Ppw(t) = (t− tw−1)p−np+kr−1 p = (np − kr + 1), ..., np

Note these last kr polynomial basis functions have no effect on the cost function because

their krth derivatives are zero. In our work we take kr = 4 and np is generally between 9

and 15.

7.2.3 Integer Constraints for Obstacle Avoidance

For collision avoidance we model the quadrotor as a rectangular prism oriented with the

world frame with side lengths lx, ly, and lz. These lengths are large enough so that the

quadrotor can roll, pitch, and yaw to any angle and stay within the prism. We consider

navigating this prism through an environment with no convex obstacles. Each convex

obstacle o can be represented by a convex region in configuration space with nf (o) faces.

For each face f the condition that the quadrotor’s desired position at time tk, rT (tk), be

outside of obstacle o can be written as

nof · rT (tk) ≤ sof , (7.4)

where nof is the normal vector to face f of obstacle o in configuration space and sof is

a scalar that determines the location of the plane. If (7.4) is satisfied for at least one of

the faces then the rectangular prism, and hence the quadrotor, is not in collision with the

obstacle. The condition that the prism does not collide with an obstacle o at time tk can
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be enforced with binary variables, bofk, as

nof · rT (tk) ≤ sof +Mbofk ∀f = 1, ..., nf (o) (7.5)

bofk = 0 or 1 ∀f = 1, ..., nf (o)
nf (o)∑
f=1

bofk ≤ nf (o)− 1

where M is a large positive number [70]. Note that if bofk is 1 then the inequality for face

f is always satisfied. The last inequality in (7.5) requires that the non-collision constraint

be satisfied for at least one face of the obstacle which implies that the prism does not

collide with the obstacle. We can then introduce (7.5) into (7.3) for all no obstacles at nk

intermediate time steps between waypoints. The addition of the integer variables into the

quadratic program causes this optimization problem to become a mixed-integer quadratic

program (MIQP).

Note that this formulation is valid for any convex obstacle but we only consider rectan-

gular obstacles in this paper for simplicity. This formulation is easily extended to moving

obstacles by simply replacing nof with nof (tk) and sof with sof (tk) in (7.5). Non-convex

obstacles can also be efficiently modeled in the this framework as discussed in [72].

7.2.4 Discretization in Time

Equation (7.3) represents a continuous time optimization. We discretize time and write

the collision constraints in (7.5) for nk time points. However, collision constraints at nk

discrete times do not guarantee that the trajectory will be collision-free between the time

steps. For a thin obstacle the optimal trajectory may cause the quadrotor to travel quickly

through the obstacle such that the collision constraints are satisfied just before passing

through the obstacle and just after as shown in Fig. 7.2(a). This problem can be fixed by

requiring that the rectangular prism for which collision checking is enforced at time step
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(a) Time-step overlap constraints are not enforced (b) Time-step overlap constraints are enforced

Figure 7.2: Trajectories for a single quadrotor navigating an environment with four ob-
stacles. Obstacles are the solid black boxes, the trajectory is shown as the black line, the
position of the quadrotor at the nk intermediate time steps for which collision checking is
enforced is shown by the red boxes which grow darker with passing time. Note that for
both of these trajectories np = 15 and nk = 16

k has a finite intersection with the corresponding prism for time step k + 1:

|xT (tk)− xT (tk + 1)| ≤ lx ∀k = 0, ..., nk (7.6)

|yT (tk)− yT (tk + 1)| ≤ ly ∀k = 0, ..., nk

|zT (tk)− zT (tk + 1)| ≤ lz ∀k = 0, ..., nk

These additional time-step overlap constraints prevent the trajectory from passing through

obstacles as shown in Fig. 7.2(b). Enforcing time-step overlap is equivalent to enforcing

an average velocity constraint between time steps. Of course, enough time steps must be

used so that a solution is feasible. Note that the trajectory may still cut corners due to the

time discretization. We address this by appropriately inflating the size of the obstacles and

prisms for which collision checking is enforced. After the trajectory is found we perform

a collision check to ensure that the actual quadrotor shape does not intersect with any of

the obstacles over the entire trajectory.
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7.2.5 Temporal Scaling

As in [55] we can exploit temporal scaling to tradeoff between safety and aggressiveness.

If we change the time to navigate the waypoints by a factor of α (e.g., α = 2 allows the

trajectory to be executed in twice as much time) the solution to the time-scaled problem is

simply a time-scaled version of the original solution. Hence, we do not need to resolve the

MIQP. As α is increased the plan takes longer to execute and becomes safer. As α goes to

infinity all the derivatives of position and yaw angle as well as the angular velocity go to

zero which leads, in the limit, to

u(t)→ [mg, 0, 0, 0]T .

By making α large enough we can satisfy any motion plan generated for a quadrotor with

the assumption of small pitch and roll. Conversely, as α is decreased the trajectory takes

less time to execute, the derivatives of position increase, and the trajectory becomes more

aggressive leading to large excursions from the zero pitch and zero roll configuration.

7.3 Multiple Quadrotor Trajectory Generation

In this section we extend the method to include nq heterogeneous quadrotors navigating

in the same environment, often in close proximity, to designated goal positions, each with

specified waypoints. This is done by solving a larger version of (7.3) where the decision

variables are the trajectories coefficients of all nq quadrotors. For collision avoidance

constraints each quadrotor can be a different size as specified by unique values of lx, ly,

lz. We also consider heterogeneity terms with relative cost weighting and inter-quadrotor

collision avoidance.

7.3.1 Relative Cost Weighting

A team of quadrotors navigating independently must resolve conflicts that lead to colli-

sions and “share” the three-dimensional space. Thus they must modify their individual
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trajectories to navigate an environment and avoid each other. If all quadrotors are of the

same type then it makes sense for them to share the burden of conflict resolution equally.

However, for a team of heterogeneous vehicles it may be desirable to allow some quadro-

tors to follow relatively easier trajectories than others, or to prioritize quadrotors based

on user preferences. This can be accomplished by weighting their costs accordingly. If

quadrotor q has relative cost µq then the quadratic cost matrix, Hm, in the multi-quadrotor

version of (7.3) can be written

Hm = diag(µ1H1, µ2H2, ..., µnqHnq) (7.7)

Applying a larger weighting factor to a quadrotor lets it take a more direct path between

its start and goal. Applying a smaller weighting factor forces a quadrotor to modify its

trajectory to yield to other quadrotors with larger weighting factors. This ability is par-

ticularly valuable for a team of both agile and slow quadrotors as a trajectory for a slow,

large quadrotor can be assigned a higher cost than the same trajectory for a smaller and

more agile quadrotor. A large quadrotor requires better tracking accuracy than a small

quadrotor to fly through the same narrow gap so it is also useful to assign higher costs for

larger quadrotors in those situations.

7.3.2 Inter-Quadrotor Collision Avoidance

Quadrotors must stay a safe distance away from each other. We enforce this constraint at

nk intermediate time steps between waypoints which can be represented mathematically
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for quadrotors 1 and 2 by the following set of constraints:

∀tk : x1T (tk)− x2T (tk) ≤ dx12 (7.8)

or x2T (tk)− x1T (tk) ≤ dx21

or y1T (tk)− y2T (tk) ≤ dy12

or y2T (tk)− y1T (tk) ≤ dy21

or z1T (tk)− z2T (tk) ≤ dz12

or z2T (tk)− z1T (tk) ≤ dz21

Here the d terms represent safety distances. For axially symmetric vehicles dx12 = dx21 =

dy12 = dy21. Experimentally we have found that quadrotors must avoid flying in the down-

wash of similar-sized or larger quadrotors because of a decrease in tracking performance

and even instability in the worst cases. Larger quadrotors, however, can fly underneath

smaller quadrotors. We have demonstrated that a larger quadrotor can even fly stably

enough under a small quadrotor to serve as an aerial landing platform (see attached video).

Therefore if quadrotor 1 and 2 are of the same type then dz12 = dz21. However, if quadro-

tor 1 is much bigger than quadrotor 2 then quadrotor 2 must fly well below the larger

quadrotor at some large distance dz12 while quadrotor 1 can fly much closer underneath

quadrotor 2 represented by the smaller distance dz21. The exact values of these safety dis-

tances can be found experimentally by measuring the tracking performance for different

separation distances between quadrotor types. Finally, we incorporate constraints (7.8)

between all nq quadrotors in the same manner as in (7.5) into the multi-quadrotor version

of (7.3).

7.3.3 Computational Complexity and Numerical Algorithm

Here we analyze the complexity of the MIQP generated by this formulation for a three-

dimensional navigation problem formed by (7.3), (7.5), and (7.8). In this problem the
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number of continuous variables, nc, is at most

nc = 3nwnpnq. (7.9)

Some continuous variables can be eliminated from the MIQP by removing the equality

constraints. A strong factor that determines the computational time is the number of binary

variables, nb, that are introduced. The number of binary variables for a three-dimensional

navigation problem is:

nb = nwnknq

no∏
o=1

nf (o) + nwnk
nq(nq − 1)

2
6 (7.10)

The first term in (7.10) accounts for the obstacle avoidance constraints and the second

term represents inter-quadrotor safety distance enforcement.

In this paper, we use a branch and bound solver [3] to solve the MIQP. At a worst

case there are 2nb leaves of the tree to explore. Therefore, this is not a method that scales

well for large number of robots but it can generate optimal trajectories for small teams (up

to 4 quadrotors in this paper) and a few obstacles. Computational times for all scenarios

presented in this paper are shown in Sec. 7.4.4. One advantage with this technique is that

suboptimal, feasible solutions that guarantee safety and conflict resolution can be found

very quickly (compare T1 and Topt in the Table 7.1) if the available computational budget

is low.

7.4 Experimental Results

The experiments presented in this paper are conducted with Ascending Technologies

Hummingbird quadrotors [1] as well as the kQuad65 and kQuad1000 quadrotors devel-

oped in-house which weigh 457, 65, and 962 grams and have blade tip to blade tip lengths

of 55, 21, and 67 cm, respectively. We use a Vicon motion capture system [8] to estimate

the position and velocity of the quadrotors and the onboard IMU to estimate the orientation

and angular velocities. The software infrastructure is described in [62].
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In previous work [55], the orientation error term was computed off-board the vehicle

using the orientation as measured by the motion capture system. This off-board computa-

tion introduces a variable time delay in the control loop which is significant when using

with multiple quadrotors. The time delay limits the performance of the attitude controller.

We choose to instead use a stiff on-board linearized attitude controller as in [56] instead

of the softer off-board nonlinear attitude controller as in [55].

We solve all problems with the MIQP solver in the CPLEX software package [3].

Computational times for all scenarios presented in this paper are shown in Sec. 7.4.4.

7.4.1 Three Quadrotors in Plane with Obstacles

This experiment demonstrates planning for three vehicles in a planar scenario with obsta-

cles. Three homogeneous Hummingbird quadrotors start on one side of a narrow gap and

must pass through to goal positions on the opposite side. The trajectories were found us-

ing the method described in Sec. 7.2 using 10th order polynomials and enforcing collision

constraints at 11 intermediate time steps between the two waypoints (np = 10, nk = 11,

nw = 1). The quadrotors were then commanded to follow these trajectories at various

speeds for 30 trials with a hoop placed in the environment to represent the gap. Data

and images for this experiment are shown in Figs. 7.3 and 7.4. Figure 7.3(a) shows the

root-mean-square errors (RMSE) for each of these trials. While trajectories with larger

acceleration, jerk, and snap do cause larger errors (as expected) the performance degrades

quite gracefully. The data for a single run is presented in Figs. 7.3(b-d).

7.4.2 Two Heterogeneous Quadrotors through 3-D gap

The experiment demonstrates the navigation of a kQuad1000 (Quadrotor 1) and a Hum-

mingbird (Quadrotor 2) from positions below a gap to positions on the opposite side of the

room above the gap. This problem is formulated as a 3-D trajectory generation problem
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using 13th order polynomials and enforcing collision constraints at 9 intermediate time

steps between the two waypoints (np = 13, nk = 9, nw = 1). For the problem formula-

tion four three-dimensional rectangular prism shaped obstacles are used to create a single

3-D gap which the quadrotors must pass through to get to their goals. Data and images for

these experiments are shown Figs. 7.5 and 7.6. Since the bigger quadrotor has a tighter

tolerance to pass through the gap we choose to weight its cost function 10 times more than

the Hummingbird. This can be observed from the more indirect route taken by the quadro-

tor 2 in Fig. 7.5. Also, this can be observed by the larger error for quadrotor 2 since it

is following a more difficult trajectory which requires larger velocities and accelerations.

Finally, one should note that the larger quadrotor follows the smaller one up through the

gap because it is allowed to fly underneath the smaller one but not vice versa as described

in Sec. 7.3.2.

7.4.3 Formation Reconfiguration with Four Quadrotors

This experiment demonstrates reconfiguration for teams of four quadrotors. This prob-

lem is formulated as a 3-D trajectory generation problem using 9th order polynomials and

enforcing collision constraints at 9 intermediate time steps between the two waypoints

(np = 9, nk = 9, nw = 1). Trajectories are generated which transition quadrotors between

arbitrary positions in a given three-dimensional formation or to a completely different for-

mation smoothly and quickly. We present several reconfigurations in the attached video

and a single reconfiguration within a line formation in Figs. 7.7 and 7.8. We ran the

experiment with four Hummingbirds and a heterogeneous team consisting of two Hum-

mingbirds, one kQuad65, and one kQuad1000. For the heterogeneous group we weight

the cost of the kQuad65 10 times larger than the other quads because it is the least agile

and can presently only follow moderately aggressive trajectories. Notice how the kQuad65

takes the most direct trajectory in 7.7(b). For the homogeneous experiment shown in Fig.

7.7(a) the quadrotors stay in the same plane because they are not allowed to fly underneath
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Fig. nq np nk nb T1 (s) Topt (s)
7.2(b) 1 15 16 208 0.42 35

7.5 2 13 9 270 0.62 1230
7.3 3 10 11 300 0.21 553

7.7(a) 4 9 9 324 0.11 39
7.7(b) 4 9 9 324 0.45 540

Table 7.1: T1 is the time to find the first feasible solution and Topt is the time to find the
optimal solution and prove its optimality.

each other as described in Sec. 7.3.2 but in the heterogeneous experiment shown in Fig.

7.7(b) the optimal solution contains z components since larger quadrotors are allowed to

fly under smaller ones.

7.4.4 Solver Details

We present problem details and computational times for each of the MIQPs solved in this

paper in Table 7.1. All computation times are listed for a MacBook Pro laptop with a

2.66 GHz Intel Core 2 Duo processor using the CPLEX MIQP solver [3]. Note that while

certain problems take a long time to find the optimal solution and prove optimality, a first

solution is always found in less than a second. The solver can be stopped any time after

the first feasible is found and return a sub-optimal solution.

7.5 Concluding Remarks

We presented an algorithm for generating optimal trajectories for multiple heterogeneous

quadrotors in environments with obstacles. This method can enforce constraints on posi-

tions, velocities, accelerations, jerks and inputs and allows for different sizes, capabilities,

and varying dynamic effects between different quadrotors. Collision avoidance is enforced
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using integer constraints. The trajectories are optimal in the sense that they minimize cost

functionals that are derived from the square of the norm of the snap (the fourth derivative

of position). The time scaling property of this approach allows trajectories to be slowed

down to be made safer. The method is complete in the sense that if a solution exists the

method will find it.

Of course, this method is not without its limitations. We acknowledge that this is a

centralized approach that requires knowledge of the start and goal positions for all agents.

The computational complexity of the MIQP limits the application of this method to small

teams with a small number of obstacles. Complexity also increases with the number of

time steps for which collision avoidance is enforced so there is a tradeoff between plan

fidelity and planning time. However, as shown in Table 7.1 suboptimal solutions are often

available orders of magnitude faster than the optimal solution. Nonetheless, large teams

and more complex environments will require a different planning paradigm.

It is difficult to find globally optimal solutions for large teams of vehicles. If one is

willing to sacrifice global optimality then alternative approaches are available. A great

deal of work has been done on methods that use local rules in attempt to reach a global

goal. These methods sacrifice global optimality but gain tractability for dealing with large

teams of vehicles since the computations are only done locally for individual vehicles. A

disadvantage of current approaches is that they generally do not generate trajectories that

are continuous up to high derivatives as is desired for quadrotors. Some examples of this

type of approach are methods that use reciprocal velocity obstacles [76]. In this approach

individual agents choose a velocity that is as close possible to a desired velocity and avoids

collisions with other agents in the environment. This approach has been demonstrated on

large numbers of agents in simulation and experimentally on large teams of differential

drive robots [12]. Approaches such as this may have a lot to offer toward the problem of

planning for large teams of aerial vehicles.

Many planning techniques suffer from dimensional explosion when planning for large

teams of vehicles. Search based planning techniques like ARA* [52] suffer from this
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problem since the dimension of the space which must be searched grows linearly with

the number of vehicles in the environment. One approach to limiting the dimension of the

search space is to group individual vehicles into formations. When planning, the formation

can be treated as a single entity [49]. Of course, with this approach a rigid formation of

vehicles cannot fit through small gaps which individual vehicles can so completeness is

sacrificed. However, this approach scales to extremely large teams of vehicles since a

formation can have any number of vehicles.
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(a) RMSE for 30 trials at various speeds (b) t = 1.0s

(c) t = 1.5s (d) t = 1.8s

Figure 7.3: Images (b-d) show data for a single run (the boxed data in (a)). The colored
boxes represent the quadrotor positions at specified times during the experiments corre-
sponding to the snapshots in Fig. 7.4. The colored lines represent the actual quadrotor
trajectories for this run while the dotted black lines represent the desired trajectories.

Figure 7.4: Snapshots of the three quadrotor experiment in which the hoop represents the
gap. See the attached video or http://tinyurl.com/multiquad.
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(a) RMSE for 11 trials at various speeds (b) t = 0.0s

(c) t = 1.9s (d) t = 2.3s

Figure 7.5: Images (b-d) show data for a single run (the boxed data in (a)). The colored
boxes represent the quadrotor positions at specified times during the experiment corre-
sponding to the snapshots in Fig. 7.6. The colored lines represent the actual quadrotor
trajectories for this run while the dotted black lines represent the desired trajectories.
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Figure 7.6: Snapshots of an experiment with the kQuad1000 (quadrotor 1, red) and the
AscTec Hummingbird (quadrotor 2, green) in which the hoop represents the horizontal
gap. See the attached video or http://tinyurl.com/multiquad.

(a) Four Hummingbirds - Top View (b) kQuad1000 (red), kQuad65 (magenta), and two
Hummingbirds (green and blue) - Perspective View

Figure 7.7: Trajectories for formation reconfigurations for homogeneous (a) and hetero-
geneous (b) quadrotor teams. The colored boxes represent the quadrotor positions at an
intermediate time during the trajectories. The colored lines represent the actual quadrotor
trajectories while the dotted black lines represent the desired trajectories.
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Figure 7.8: Snapshots of a four quadrotor reconfiguration within a line formation at the
beginning (top), an intermediate time (middle), and the final time (bottom). The four
quadrotors used are the kQuad1000 (red), the kQuad65 (magenta), and two Hummingbirds
(green and blue). See the attached video or http://tinyurl.com/multiquad.
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Chapter 8

Concluding Remarks

8.1 Summary of Contributions

This thesis has presented contributions to the state-of-the-art in quadrotor control, payload

transportation with single and multiple quadrotors, and trajectory generation for single and

multiple quadrotors. In Ch. 2 we described a controller capable of handling large roll and

pitch angles that enables a quadrotor to follow trajectories requiring large accelerations

and also recover from extreme initial conditions. In Ch. 3 we described a method that

allows teams of quadrotors to work together to carry payloads that they could not carry

individually. In Ch. 4 we discussed an online parameter estimation method for quadrotors

transporting payloads which enables a quadrotor to use its dynamics in order to learn

about the payload it is carrying and also adapt its control law in order to improve tracking

performance.

In Ch. 5 we presented a trajectory generation method that enabled quadrotors to fly

through narrow gaps at various orientations and perch on inclined surfaces. Chapter 6

discussed a method for generating dynamically optimal trajectories through a series of

predefined waypoints and safe corridors and Ch. 7 extended that method to enable het-

erogeneous quadrotor teams to quickly rearrange formations and avoid a small number of

obstacles.
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8.2 Future Work

The extension of the methods described here to work outside of the controlled lab environ-

ment will make quadrotors useful in many practical scenarios. Quadrotors are beginning

to be used in commercial applications for surveillance and aerial videography by simply

using GPS to sense the position of the vehicle. While these vehicles probably shouldn’t

fly at large roll and pitch angles often they could certainly benefit from the Large-Angle

controller described in this thesis. This controller would make the vehicles more robust to

disturbances from wind and also collisions.

GPS alone is not enough to precisely position a quadrotor to pick up a payload. How-

ever, with the addition of an onboard camera the quadrotor could precisely position itself

relative to objects on the ground and pick them up. This could be used for activities like

roadside litter pickup, soil sampling for agriculture applications, and deployment and re-

trieval of lightweight sensors. A camera could also aid in landing the vehicle on small

targets for perch and stare missions.

The trajectory generation methods described here are primarily for generating short

time-span, fast motions where the largest constraints come from the dynamic constraints

of the vehicles. One could accomplish a great deal of practical tasks without these type

of maneuvers as many basic tasks require only near-hover flight. However, trajectory

generation methods like the ones described here will be required in situations where fast

maneuvers are required such as quickly avoiding dynamic obstacles (or other vehicles)

or flying through gaps that the near-hover state will not allow. In order to fully realize

this goal outside of a motion capture setup, methods for precise position and velocity

estimation that allow for large roll and pitch angles and fast linear and angular velocities

will be required.

All these challenges are not impossible, they just require more work. It shouldn’t be

too long before teams of quadrotors can fly into burning buildings through narrow gaps in

walls, dodge falling debris, and cooperatively use their onboard grippers to lift babies and

carry them to safety.
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