1,456 research outputs found

    Review. Monitoring the intermodal, refrigerated transport of fruit using sensor networks

    Get PDF
    Most of the fruit in Europe is transported by road, but the saturation of the major arteries, the increased demand for freight transport, and environmental concerns all indicate there is a need to change this means of transport. A combination of transport modes using universal containers is one of the solutions proposed: this is known as intermodal transport. Tracking the transport of fruit in reefer containers along the supply chain is the means by which product quality can be guaranteed. The integration of emerging information technologies can now provide real-time status updates. This paper reviews the literature and the latest technologies in this area as part of a national project. Particular emphasis is placed on multiplexed digital communication technologies and wireless sensor networks

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    A hybrid sensor network for watershed monitoring

    Get PDF
    This thesis discusses the Hydrological Hybrid Communication Sensor Network (HHCSN), which is designed for in situ measurement of various hydrological properties of a watershed. HHCSN is comprised of a network of sensor strings, each of which connects up to 100 sensing nodes on a communication line as long as 100 m. Each node includes sensors that measure soil attributes of interest, as well as a microcontroller with basic communication and processing capabilities. A relay point at the surface compresses data from the nodes and wirelessly transmits it to a base station that serves as a gateway to the outside world. The base station compresses data from multiple strings and utilizes the GSM cellular infrastructure to communicate the data to a remote server and to receive software updates to be disseminated to the sensor strings. Ultra-low power design and remote maintenance result in an unattended eld life of over ve years. The system is scalable in area and sensor design modality, as covering a larger area would only entail the addition of sensor strings, and the nodes are designed to facilitate the interfacing of additional sensors. The system is robust, as the only exposed portion is the relay point. Data collection and transmission can be event-driven or time-driven. Battery power, which is supplemented by solar harvesting, and wireless short- and long-range communication, eliminate the need for surface wiring, signicantly reducing the cost of system deployment. Currently, the estimate is a cost of less than $40 for each sensor string, which compares very favorably to the price of existing systems, most of which oer very limited in situ measurement capabilities, yet cost tens of thousands of dollars --Abstract, page iii

    Analysis of key aspects to manage Wireless Sensor Networks in Ambient Assisted Living environments

    Get PDF
    Wireless Sensor Networks (WSN) based on ZigBee/IEEE 802.15.4 will be key enablers of non-invasive, highly sensitive infrastructures to support the provision of future ambient assisted living services. This paper addresses the main design concerns and requirements when conceiving ambient care systems (ACS), frameworks to provide remote monitoring, emergency detection, activity logging and personal notifications dispatching services. In particular, the paper describes the design of an ACS built on top of a WSN composed of Crossbow's MICAz devices, external sensors and PDAs enabled with ZigBee technology. The middleware is integrated in an OSGi framework that processes the acquired information to provide ambient services and also enables smart network control. From our experience, we consider that in a future, the combination of ZigBee technology together with a service oriented architecture may be a versatile approach to AAL services offering, both from the technical and business points of view

    The web of things and database management systems

    Get PDF
    The Web of Things (WoT) is slowly gaining grounds and through the properties of barcodes, QR codes, RFID, active sensors and IPv6, objects are fitted with some form of readability and traceability. People are becoming part of digital global network driven by personal interests. The feeling being part of a community and the constant drive of getting connected from real life finds it continuation in digital networks. This paper investigates the concepts of the internet of things from the aspect of the autonomous mobile robots with an overview of the performances of the currently available database management systems

    Development of a long range wireless sensor platform

    Get PDF
    Wireless Sensor Networks have emerged as an exciting field in recent years. There have been numerous studies on how to improve and standardise different aspects of wireless sensor networks. This paper aims to develop a wireless sensor network suitable for environmental monitoring applications. More specifically this paper aims to address the limited communication range of the existing wireless sensor technology. In order to achieve the desired objectives, we have initially developed a hardware platform and then integrated the hardware with a long range RF radio module to achieve the goals. The system is further enhanced with mesh networking capabilities to increase the communication range and overall reliability of the network. The developed wireless sensor network is composed of sensors, microcontroller, RF radio module, antenna and expansion connectors for additional sensors and peripheral devices. The developed wireless sensor network has been rigorously tested under three different scenarios to ensure the correct operation of the mesh network, communication range and effect of environmental obstacles such as vegetation and trees. The developed wireless sensor network has been proven to be a suitable platform for environmental monitoring applications and the modular design has made it very easy to optimise it for different applications

    Intelligent Personal Assistants Solutions in Ubiquitous Environments in the Context of Internet of Things

    Get PDF
    Internet of Things (IoT) will create the opportunity to develop new types of businesses. Every tangible object, biologic or not, will be identified by a unique address, creating a common network composed by billions of devices. Those devices will have different requirements, creating the necessity of finding new mechanisms to satisfy the needs of all the entities within the network. This is one of the main problems that all the scientific community should address in order to make Internet of Things the Future Internet. Currently, IoT is used in a lot of projects involving Wireless Sensor Networks (WSNs). Sensors are generally cheap and small devices able to generate useful information from physical indicators. They can be used on smart home scenarios, or even on healthcare environments, turning sensors into useful devices to accomplish the goals of many use case scenarios. Sensors and other devices with some reasoning capabilities, like smart objects, can be used to create smart environments. The interaction between the objects in those scenarios and humans can be eased by the inclusion of Intelligent Personal Assistants (IPAs). Currently, IPAs have good reasoning capabilities, improving the assistance they give to their owners. Artificial intelligence (AI), new learning mechanisms, and the evolution assisted in speech technology also contributed to this improvement. The integration of IPAs in IoT scenarios can become a case of great success. IPAs will comprehend the behavior of their owners not only through direct interactions, but also by the interactions they have with other objects in the environment. This may create ubiquitous communication scenarios where humans act as passive elements, being adequately informed of all the aspects of interest that surrounds them. The communication between IPAs and other objects in their surrounding environment may use gateways for traffic forwarding. On ubiquitous environments devices can be mobile or static. For example, in smart home scenarios, objects are generally static, being always on the same position. In mobile health scenarios, objects can move from one place to another. To turn IPAs useful on all types of environments, static and mobile gateways should be developed. On this dissertation, a novel mobile gateway solution for an IPA platform inserted on an IoT context is proposed. A mobile health scenario was chosen. Then, a Body Sensor Network (BSN) is always monitoring a person, giving the real time feedback of his/her health status to another person responsible by him (designated caretaker). On this scenario, a mobile gateway is needed to forward the traffic between the BSN and the IPA of the caretaker. Therefore, the IPA is able to give warnings about the health status of the person under monitoring, in real time. The proposed system is evaluated, demonstrated, and validated through a prototype, where the more important aspects for IPAs and IoT networks are considered

    Anturidatan lähettäminen fyysiseltä kaksoselta digitaaliselle kaksoselle

    Get PDF
    A digital twin is a digital counterpart of a physical thing such as a machine. The term digital twin was first introduced in 2010. Thereafter, it has received an extensive amount of interest because of the numerous benefits it is expected to offer throughout the product life cycle. Currently, the concept is developed by the world’s largest companies such as Siemens. The purpose of this thesis is to examine which application layer protocols and communication technologies are the most suitable for the sensor data transmission from a physical twin to a digital twin. In addition, a platform enabling this data transmission is developed. As the concept of a digital twin is relatively new, a comprehensive literature view on the definition of a digital twin in scientific literature is presented. It has been found that the vision of a digital twin has evolved from the concepts of ‘intelligent products’ presented at the beginning of the 2000s. The most widely adopted definition states that a digital twin accurately mirrors the current state of its corresponding twin. However, the definition of a digital twin is not yet standardized and varies in different fields. Based on the literature review, the communication needs of a digital twin are derived. Thereafter, the suitability of HTTP, MQTT, CoAP, XMPP, AMQP, DDS, and OPC UA for sensor data transmission are examined through a literature review. In addition, a review of 4G, 5G, NB-IoT, LoRa, Sigfox, Bluetooth, Wi-Fi, Z-Wave, ZigBee, and WirelessHART is presented. A platform for the management of the sensors is developed. The platform narrows the gap between the concept and realization of a digital twin by enabling sensor data transmission. The platform allows easy addition of sensors to a physical twin and provides an interface for their configuration remotely over the Internet. It supports multiple sensor types and application protocols and offers both web user iterface and REST API.Digitaalinen kaksonen on fyysisen tuotteen digitaalinen vastinkappale, joka sisältää tiedon sen nykyisestä tilasta. Digitaalisen kaksosen käsite otettiin ensimmäisen kerran käyttöön vuonna 2010. Sen jälkeen digitaalinen kaksonen on saanut paljon huomiota, ja sitä ovat lähteneet kehittämään maailman suurimmat yritykset, kuten Siemens. Tämän työn tarkoituksena tutkia, mitkä sovelluskerroksen protokollat ja langattomat verkot soveltuvat parhaiten anturien keräämän datan lähettämiseen fyysiseltä kaksoselta digitaaliselle kaksoselle. Sen lisäksi työssä esitellään alusta, joka mahdollistaa tämän tiedonsiirron. Digitaalisen kaksosesta esitetään laaja kirjallisuuskatsaus, joka luo pohjan työn myöhemmille osioille. Digitaalisen kaksosen konsepti pohjautuu 2000-luvun alussa esiteltyihin ajatuksiin ”älykkäistä tuotteista”. Yleisimmän käytössä olevan määritelmän mukaan digitaalinen kaksonen heijastaa sen fyysisen vastinparin tämän hetkistä tilaa. Määritelmä kuitenkin vaihtelee eri alojen välillä eikä se ole vielä vakiintunut tieteellisessä kirjallisuudessa. Kirjallisuuskatsauksen avulla johdetaan digitaalisen kaksosen kommunikaatiotarpeet. Sen jälkeen arvioidaan seuraavien sovelluskerroksen protokollien soveltuvuutta anturidatan lähettämiseen kirjallisuuskatsauksen avulla: HTTP, MQTT, CoAP, XMPP, AMQP, DDS ja OPC UA. Myös seuraavien langattomien verkkojen soveltuvuutta tiedonsiirtoon tutkitaan: 4G, 5G, NB-IoT, LoRaWAN, Sigfox, Bluetooth, Wi-Fi, Z-Wave, ZigBee ja WirelessHART. Osana työtä kehitettiin myös ohjelmistoalusta, joka mahdollistaa anturien hallinnan etänä Internetin välityksellä. Alusta on pieni askel kohti digitaalisen kaksosen käytän-nön toteutusta, sillä se mahdollistaa tiedon keräämisen fyysisestä vastinkappaleesta. Sen avulla sensorien lisääminen fyysiseen kaksoseen on helppoa, ja se tukee sekä useita sensorityyppejä että sovelluskerroksen protokollia. Alusta tukee REST API –rajapintaa ja sisältää web-käyttöliittymän
    corecore