1,384 research outputs found

    Tahap penguasaan, sikap dan minat pelajar Kolej Kemahiran Tinggi MARA terhadap mata pelajaran Bahasa Inggeris

    Get PDF
    Kajian ini dilakukan untuk mengenal pasti tahap penguasaan, sikap dan minat pelajar Kolej Kemahiran Tinggi Mara Sri Gading terhadap Bahasa Inggeris. Kajian yang dijalankan ini berbentuk deskriptif atau lebih dikenali sebagai kaedah tinjauan. Seramai 325 orang pelajar Diploma in Construction Technology dari Kolej Kemahiran Tinggi Mara di daerah Batu Pahat telah dipilih sebagai sampel dalam kajian ini. Data yang diperoleh melalui instrument soal selidik telah dianalisis untuk mendapatkan pengukuran min, sisihan piawai, dan Pekali Korelasi Pearson untuk melihat hubungan hasil dapatan data. Manakala, frekuensi dan peratusan digunakan bagi mengukur penguasaan pelajar. Hasil dapatan kajian menunjukkan bahawa tahap penguasaan Bahasa Inggeris pelajar adalah berada pada tahap sederhana manakala faktor utama yang mempengaruhi penguasaan Bahasa Inggeris tersebut adalah minat diikuti oleh sikap. Hasil dapatan menggunakan pekali Korelasi Pearson juga menunjukkan bahawa terdapat hubungan yang signifikan antara sikap dengan penguasaan Bahasa Inggeris dan antara minat dengan penguasaan Bahasa Inggeris. Kajian menunjukkan bahawa semakin positif sikap dan minat pelajar terhadap pengajaran dan pembelajaran Bahasa Inggeris semakin tinggi pencapaian mereka. Hasil daripada kajian ini diharapkan dapat membantu pelajar dalam meningkatkan penguasaan Bahasa Inggeris dengan memupuk sikap positif dalam diri serta meningkatkan minat mereka terhadap Bahasa Inggeris dengan lebih baik. Oleh itu, diharap kajian ini dapat memberi panduan kepada pihak-pihak yang terlibat dalam membuat kajian yang akan datang

    RFID-based indoor positioning of autonomous aid for disable people

    Get PDF
    Nowadays, global positioning system (GPS) is widely used in localization area because it's very capable and reliable. However, in indoor positioning, GPS capabilities are very limited since the satellite signals are typically strongly attenuated by walls and ceiling. Thus, this project introduced the concept which presents a self-localization of a mobile robot by fusing radio frequency identification (RFID) system and wireless communication using XBee module to be used in indoor environment. Two Xbee devices will be used to transfer data from the remote control unit to mobile robot. Aims of this project are to create a mobile robot that reacts to the remote control to go to the desired position as command. To meet the desired aim of this project, practical and compact design technique are emphasized in order to create a mobile robot and the remote control. Sixteen RFID cards are arranged in a fixed pattern on the floor. A unique code of each RFID card provides the position data to the mobile robot. An RFID reader act as antenna will be installed to read the card data on the below of the mobile robot. The user can make it come by easily pressing the remote control by informing the user location

    Helmsman, Set a Course : Using a Compass and RFID Tags for Indoor Localisation and Navigation

    Get PDF
    Localisation and navigation are still two of the most important issues in mobile robotics. In certain indoor application scenarios RFID (radio frequency identification)-based absolute localisation has been found to be especially successful in supporting navigation. In this paper we evaluate the feasibility of an RFID and compass based approach to robot localisation and navigation for indoor environments that are dominated by corridors. We describe our system and evaluate its performance in a small, but full-scale, test environment

    Navigating the Corridors of Power : Using RFID and Compass Sensors for Robot Localisation and Navigation

    Get PDF
    Localisation and navigation are still of the most important issues in mobile robotics. In certain indoor application scenarios Radio frequency identification (RFID) based absolute localisation has been found to be especially successful in supporting navigation. In this paper we examine the feasibility of an RFID and compass based approach to robot localisation and navigation for indoor environments that are dominated by corridors. We present a proof of concept system and show how it can be used to localized within and navigate through an environment

    Signage System for the Navigation of Autonomous Robots in Indoor Environments

    Get PDF
    In many occasions people need to go to certain places without having any prior knowledge about the environment. This situation may occur when the place is visited for the first time, or even when there is not any available map to situate us. In those cases, the signs of the environment are essential for achieving the goal. The same situation may happen for an autonomous robot. This kind of robots must be capable of solving this problem in a natural way. In order to do that, they must use the resources present in their environment. This paper presents a RFID-based signage system, which has been developed to guide and give important information to an autonomous robot. The system has been implemented in a real indoor environment and it has been successfully proved in the autonomous and social robot Maggie. At the end of the paper some experimental results, carried out inside our university building, are presented.Comunidad de Madri

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    Indoor Localization System based on Artificial Landmarks and Monocular Vision

    Get PDF
     This paper presents a visual localization approach that is suitable for domestic and industrial environments as it enables accurate, reliable and robust pose estimation. The mobile robot is equipped with a single camera which update sits pose whenever a landmark is available on the field of view. The innovation presented by this research focuses on the artificial landmark system which has the ability to detect the presence of the robot, since both entities communicate with each other using an infrared signal protocol modulated in frequency. Besides this communication capability, each landmark has several high intensity light-emitting diodes (LEDs) that shine only for some instances according to the communication, which makes it possible for the camera shutter and the blinking of the LEDs to synchronize. This synchronization increases the system tolerance concerning changes in brightness in the ambient lights over time, independently of the landmarks location. Therefore, the environment’s ceiling is populated with several landmarks and an Extended Kalman Filter is used to combine the dead-reckoning and landmark information. This increases the flexibility of the system by reducing the number of landmarks required. The experimental evaluation was conducted in a real indoor environment with an autonomous wheelchair prototype
    corecore