9 research outputs found

    Implementation of an Autonomous Small-scale Car with Indoor Positioning using UWB and IMU

    Get PDF
    Robotics have had a major impact in the current generation as they have a wide range of uses in manufacturing and automation; therefore, researching new technology related to robotics is currently at a high demand. Indoor robotics, such as automatic guided vehicles or humanoids, is a section of robotics that are mobile and need accurate positioning in order to navigate properly. Thus, research into indoor positioning systems (IPS) has become an interesting research topic to be able to provide a standard in indoor positioning. This thesis tests an ultrawideband (UWB) based IPS and fuses the data from an inertial measurement unit (IMU) using an extended Kalman lter (EKF). The testing platform was implemented using Robot Operating System (ROS) and a Beaglebone Black as the microcontroller for the sensors. However, the main processing was done on a separate laptop. As a result, a proposed smoothing technique was able to provide consistent velocity commands to the vehicle platform without a ecting the data output rate of the UWB based IPS. In line-of-sight (LOS) conditions and a travel length of about 13 m, the best results produced an error of only 0:111 m at the nal point, and an error of up to 0:603 m during travel

    Inertial Navigation and Mapping for Autonomous Vehicles

    Full text link

    Modified Iterated Extended Kalman Filter for Mobile Cooperative Tracking System

    Get PDF
    Tracking a mobile node using wireless sensor network (WSN) under cooperative system among anchor node and mobile node, has been discussed in this work, interested to the indoor positioning applications. Developing an indoor location tracking system based on received signal strength indicator (RSSI) of WSN is considered cost effective and the simplest method. The suitable technique for estimating position out of RSSI measurements is the extended Kalman filter (EKF) which is especially used for non linear data as RSSI. In order to reduce the estimated errors from EKF algorithm, this work adopted forward data processing of the EKF algorithm to improve the accuracy of the filtering output, its called iterated extended Kalman filter (IEKF). However, using IEKF algorithm should know the stopping criterion value that is influenced to the maximum number iterations of this system. The number of iterations performed will be affected to the computation time although it can improve the estimation position. In this paper, we propose modified IEKF for mobile cooperative tracking system within only 4 iterations number. The ilustrated results using RSSI measurements and simulation in MATLAB show that our propose method have capability to reduce error estimation percentage up to 19.3% , with MSE (mean square error) 0.88 m compared with conventional IEKF algorithm with MSE 1.09 m. The time computation perfomance of our propose method achived in 3.55 seconds which is better than adding more iteration process.     

    Tracking and Estimation Algorithms for Bearings Only Measurements

    No full text
    The Bearings-only tracking problem is to estimate the state of a moving object from noisy observations of its direction relative to a sensor. The Kalman filter, which provides least squares estimates for linear Gaussian filtering problems is not directly applicable because of the highly nonlinear measurement function of the state, representing the bearings measurements and so other types of filters must be considered. The shifted Rayleigh filter (SRF) is a highly effective moment-matching bearings-only tracking algorithm which has been shown, in 2D, to achieve the accuracy of computationally demanding particle filters in situations where the well-known extended Kalman filter and unscented Kalman filter often fail. This thesis has two principal aims. The first is to develop accurate and computationally efficient algorithms for bearings-only tracking in 3D space. We propose algorithms based on the SRF, that allow tracking, in the presence of clutter, of both nonmaneuvering and maneuvering targets. Their performances are assessed, in relation to competing methods, in highly challenging tracking scenarios, where they are shown to match the accuracy of high-order sophisticated particle filters, at a fraction of the computational cost. The second is to design accurate and consistent algorithms for bearings-only simultaneous localization and mapping (SLAM). The difficulty of this problem, originating from the uncertainty in the position and orientation of the sensor, and the absence of range information of observed landmarks, motivates the use of advanced bearings-only tracking algorithms. We propose the quadrature-SRF SLAM algorithm, which is a moment-matching filter based on the SRF, that numerically evaluates the exact mean and covariance of the posterior. Simulations illustrate the accuracy and consistency of its estimates in a situation where a widely used moment-matching algorithm fails to produce consistent estimates. We also propose a Rao-Blackwellized SRF implementation of a particle filter, which, however, does not exhibit favorable consistency properties

    Simultaneous Localization and Mapping (SLAM) for Autonomous Driving: Concept and Analysis

    Get PDF
    The Simultaneous Localization and Mapping (SLAM) technique has achieved astonishing progress over the last few decades and has generated considerable interest in the autonomous driving community. With its conceptual roots in navigation and mapping, SLAM outperforms some traditional positioning and localization techniques since it can support more reliable and robust localization, planning, and controlling to meet some key criteria for autonomous driving. In this study the authors first give an overview of the different SLAM implementation approaches and then discuss the applications of SLAM for autonomous driving with respect to different driving scenarios, vehicle system components and the characteristics of the SLAM approaches. The authors then discuss some challenging issues and current solutions when applying SLAM for autonomous driving. Some quantitative quality analysis means to evaluate the characteristics and performance of SLAM systems and to monitor the risk in SLAM estimation are reviewed. In addition, this study describes a real-world road test to demonstrate a multi-sensor-based modernized SLAM procedure for autonomous driving. The numerical results show that a high-precision 3D point cloud map can be generated by the SLAM procedure with the integration of Lidar and GNSS/INS. Online four–five cm accuracy localization solution can be achieved based on this pre-generated map and online Lidar scan matching with a tightly fused inertial system

    Localization and Mapping for Autonomous Driving: Fault Detection and Reliability Analysis

    Full text link
    Autonomous driving has advanced rapidly during the past decades and has expanded its application for multiple fields, both indoor and outdoor. One of the significant issues associated with a highly automated vehicle (HAV) is how to increase the safety level. A key requirement to ensure the safety of automated driving is the ability of reliable localization and navigation, with which intelligent vehicle/robot systems could successfully make reliable decisions for the driving path or react to the sudden events occurring within the path. A map with rich environment information is essential to support autonomous driving system to meet these high requirements. Therefore, multi-sensor-based localization and mapping methods are studied in this Thesis. Although some studies have been conducted in this area, a full quality control scheme to guarantee the reliability and to detect outliers in localization and mapping systems is still lacking. The quality of the integration system has not been sufficiently evaluated. In this research, an extended Kalman filter and smoother based quality control (EKF/KS QC) scheme is investigated and has been successfully applied for different localization and mapping scenarios. An EKF/KS QC toolbox is developed in MATLAB, which can be easily embedded and applied into different localization and mapping scenarios. The major contributions of this research are: a) The equivalence between least squares and smoothing is discussed, and an extended Kalman filter-smoother quality control method is developed according to this equivalence, which can not only be used to deal with system model outlier with detection, and identification, can also be used to analyse, control and improve the system quality. Relevant mathematical models of this quality control method have been developed to deal with issues such as singular measurement covariance matrices, and numerical instability of smoothing. b) Quality control analysis is conducted for different positioning system, including Global Navigation Satellite System (GNSS) multi constellation integration for both Real Time Kinematic (RTK) and Post Processing Kinematic (PPK), and the integration of GNSS and Inertial Navigation System (INS). The results indicate PPK method can provide more reliable positioning results than RTK. With the proposed quality control method, the influence of the detected outlier can be mitigated by directly correcting the input measurement with the estimated outlier value, or by adapting the final estimation results with the estimated outlier’s influence value. c) Mathematical modelling and quality control aspects for online simultaneous localization and mapping (SLAM) are examined. A smoother based offline SLAM method is investigated with quality control. Both outdoor and indoor datasets have been tested with these SLAM methods. Geometry analysis for the SLAM system has been done according to the quality control results. The system reliability analysis is essential for the SLAM designer as it can be conducted at the early stage without real-world measurement. d) A least squares based localization method is proposed that treats the High-Definition (HD) map as a sensor source. This map-based sensor information is integrated with other perception sensors, which significantly improves localization efficiency and accuracy. Geometry analysis is undertaken with the quality measures to analyse the influence of the geometry upon the estimation solution and the system quality, which can be hints for future design of the localization system. e) A GNSS/INS aided LiDAR mapping and localization procedure is developed. A high-density map is generated offline, then, LiDAR-based localization can be undertaken online with this pre-generated map. Quality control is conducted for this system. The results demonstrate that the LiDAR based localization within map can effectively improve the accuracy and reliability compared to the GNSS/INS only system, especially during the period that GNSS signal is lost

    Nonlinear Gaussian Filtering : Theory, Algorithms, and Applications

    Get PDF
    By restricting to Gaussian distributions, the optimal Bayesian filtering problem can be transformed into an algebraically simple form, which allows for computationally efficient algorithms. Three problem settings are discussed in this thesis: (1) filtering with Gaussians only, (2) Gaussian mixture filtering for strong nonlinearities, (3) Gaussian process filtering for purely data-driven scenarios. For each setting, efficient algorithms are derived and applied to real-world problems

    Autonomous Integrated Navigation for Indoor Robots Utilizing On-Line Iterated Extended Rauch-Tung-Striebel Smoothing

    Get PDF
    In order to reduce the estimated errors of the inertial navigation system (INS)/Wireless sensor network (WSN)-integrated navigation for mobile robots indoors, this work proposes an on-line iterated extended Rauch-Tung-Striebel smoothing (IERTSS) utilizing inertial measuring units (IMUs) and an ultrasonic positioning system. In this mode, an iterated Extended Kalman filter (IEKF) is used in forward data processing of the Extended Rauch-Tung-Striebel smoothing (ERTSS) to improve the accuracy of the filtering output for the smoother. Furthermore, in order to achieve the on-line smoothing, IERTSS is embedded into the average filter. For verification, a real indoor test has been done to assess the performance of the proposed method. The results show that the proposed method is effective in reducing the errors compared with the conventional schemes

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen
    corecore