87 research outputs found

    An effective deep learning network for detecting and classifying glaucomatous eye

    Get PDF
    Glaucoma is a well-known complex disease of the optic nerve that gradually damages eyesight due to the increase of intraocular pressure inside the eyes. Among two types of glaucoma, open-angle glaucoma is mostly happened by high intraocular pressure and can damage the eyes temporarily or sometimes permanently, another one is angle-closure glaucoma. Therefore, being diagnosed in the early stage is necessary to safe our vision. There are several ways to detect glaucomatous eyes like tonometry, perimetry, and gonioscopy but require time and expertise. Using deep learning approaches could be a better solution. This study focused on the recognition of open-angle affected eyes from the fundus images using deep learning techniques. The study evolved by applying VGG16, VGG19, and ResNet50 deep neural network architectures for classifying glaucoma positive and negative eyes. The experiment was executed on a public dataset collected from Kaggle; however, every model performed better after augmenting the dataset, and the accuracy was between 93% and 97.56%. Among the three models, VGG19 achieved the highest accuracy at 97.56%

    IMPROVED AUTOMATIC DETECTION OF GLAUCOMA USING CUP-TO-DISK RATIO AND HYBRID CLASSIFIERS.

    Get PDF
    Glaucoma is one of the most complicated disorder in human eye that causes permanent vision loss gradually if not detect in early stage. It can damage the optic nerve without any symptoms and warnings. Different automated glaucoma detection systems were developed for analyzing glaucoma at early stage but lacked good accuracy of detection. This paper proposes a novel automated glaucoma detection system which effectively process with digital colour fundus images using hybrid classifiers. The proposed system concentrates on both Cup-to Disk Ratio (CDR) and different features to improve the accuracy of glaucoma. Morphological Hough Transform Algorithm (MHTA) is designed for optic disc segmentation. Intensity based elliptic curve method is used for separation of optic cup effectively. Further feature extraction and CDR value can be estimated. Finally, classification is performed with combination of Naive Bayes Classifier and K Nearest Neighbour (KNN). The proposed system is evaluated by using High Resolution Fundus (HRF) database which outperforms the earlier methods in literature in various performance metrics

    Deep learning in ophthalmology: The technical and clinical considerations

    Get PDF
    The advent of computer graphic processing units, improvement in mathematical models and availability of big data has allowed artificial intelligence (AI) using machine learning (ML) and deep learning (DL) techniques to achieve robust performance for broad applications in social-media, the internet of things, the automotive industry and healthcare. DL systems in particular provide improved capability in image, speech and motion recognition as well as in natural language processing. In medicine, significant progress of AI and DL systems has been demonstrated in image-centric specialties such as radiology, dermatology, pathology and ophthalmology. New studies, including pre-registered prospective clinical trials, have shown DL systems are accurate and effective in detecting diabetic retinopathy (DR), glaucoma, age-related macular degeneration (AMD), retinopathy of prematurity, refractive error and in identifying cardiovascular risk factors and diseases, from digital fundus photographs. There is also increasing attention on the use of AI and DL systems in identifying disease features, progression and treatment response for retinal diseases such as neovascular AMD and diabetic macular edema using optical coherence tomography (OCT). Additionally, the application of ML to visual fields may be useful in detecting glaucoma progression. There are limited studies that incorporate clinical data including electronic health records, in AL and DL algorithms, and no prospective studies to demonstrate that AI and DL algorithms can predict the development of clinical eye disease. This article describes global eye disease burden, unmet needs and common conditions of public health importance for which AI and DL systems may be applicable. Technical and clinical aspects to build a DL system to address those needs, and the potential challenges for clinical adoption are discussed. AI, ML and DL will likely play a crucial role in clinical ophthalmology practice, with implications for screening, diagnosis and follow up of the major causes of vision impairment in the setting of ageing populations globally

    Towards PACE-CAD Systems

    Get PDF
    Despite phenomenal advancements in the availability of medical image datasets and the development of modern classification algorithms, Computer-Aided Diagnosis (CAD) has had limited practical exposure in the real-world clinical workflow. This is primarily because of the inherently demanding and sensitive nature of medical diagnosis that can have far-reaching and serious repercussions in case of misdiagnosis. In this work, a paradigm called PACE (Pragmatic, Accurate, Confident, & Explainable) is presented as a set of some of must-have features for any CAD. Diagnosis of glaucoma using Retinal Fundus Images (RFIs) is taken as the primary use case for development of various methods that may enrich an ordinary CAD system with PACE. However, depending on specific requirements for different methods, other application areas in ophthalmology and dermatology have also been explored. Pragmatic CAD systems refer to a solution that can perform reliably in day-to-day clinical setup. In this research two, of possibly many, aspects of a pragmatic CAD are addressed. Firstly, observing that the existing medical image datasets are small and not representative of images taken in the real-world, a large RFI dataset for glaucoma detection is curated and published. Secondly, realising that a salient attribute of a reliable and pragmatic CAD is its ability to perform in a range of clinically relevant scenarios, classification of 622 unique cutaneous diseases in one of the largest publicly available datasets of skin lesions is successfully performed. Accuracy is one of the most essential metrics of any CAD system's performance. Domain knowledge relevant to three types of diseases, namely glaucoma, Diabetic Retinopathy (DR), and skin lesions, is industriously utilised in an attempt to improve the accuracy. For glaucoma, a two-stage framework for automatic Optic Disc (OD) localisation and glaucoma detection is developed, which marked new state-of-the-art for glaucoma detection and OD localisation. To identify DR, a model is proposed that combines coarse-grained classifiers with fine-grained classifiers and grades the disease in four stages with respect to severity. Lastly, different methods of modelling and incorporating metadata are also examined and their effect on a model's classification performance is studied. Confidence in diagnosing a disease is equally important as the diagnosis itself. One of the biggest reasons hampering the successful deployment of CAD in the real-world is that medical diagnosis cannot be readily decided based on an algorithm's output. Therefore, a hybrid CNN architecture is proposed with the convolutional feature extractor trained using point estimates and a dense classifier trained using Bayesian estimates. Evaluation on 13 publicly available datasets shows the superiority of this method in terms of classification accuracy and also provides an estimate of uncertainty for every prediction. Explainability of AI-driven algorithms has become a legal requirement after Europe’s General Data Protection Regulations came into effect. This research presents a framework for easy-to-understand textual explanations of skin lesion diagnosis. The framework is called ExAID (Explainable AI for Dermatology) and relies upon two fundamental modules. The first module uses any deep skin lesion classifier and performs detailed analysis on its latent space to map human-understandable disease-related concepts to the latent representation learnt by the deep model. The second module proposes Concept Localisation Maps, which extend Concept Activation Vectors by locating significant regions corresponding to a learned concept in the latent space of a trained image classifier. This thesis probes many viable solutions to equip a CAD system with PACE. However, it is noted that some of these methods require specific attributes in datasets and, therefore, not all methods may be applied on a single dataset. Regardless, this work anticipates that consolidating PACE into a CAD system can not only increase the confidence of medical practitioners in such tools but also serve as a stepping stone for the further development of AI-driven technologies in healthcare

    The upcoming role of Artificial Intelligence (AI) for retinal and glaucomatous diseases

    Get PDF
    : In recent years, the role of artificial intelligence (AI) and deep learning (DL) models is attracting increasing global interest in the field of ophthalmology. DL models are considered the current state-of-art among the AI technologies. In fact, DL systems have the capability to recognize, quantify and describe pathological clinical features. Their role is currently being investigated for the early diagnosis and management of several retinal diseases and glaucoma. The application of DL models to fundus photographs, visual fields and optical coherence tomography (OCT) imaging has provided promising results in the early detection of diabetic retinopathy (DR), wet age-related macular degeneration (w-AMD), retinopathy of prematurity (ROP) and glaucoma. In this review we analyze the current evidence of AI applied to these ocular diseases, as well as discuss the possible future developments and potential clinical implications, without neglecting the present limitations and challenges in order to adopt AI and DL models as powerful tools in the everyday routine clinical practice

    Machine Learning Approaches for Automated Glaucoma Detection using Clinical Data and Optical Coherence Tomography Images

    Full text link
    Glaucoma is a multi-factorial, progressive blinding optic-neuropathy. A variety of factors, including genetics, vasculature, anatomy, and immune factors, are involved. Worldwide more than 80 million people are affected by glaucoma, and around 300,000 in Australia, where 50% remain undiagnosed. Untreated glaucoma can lead to blindness. Early detection by Artificial intelligence (AI) is crucial to accelerate the diagnosis process and can prevent further vision loss. Many proposed AI systems have shown promising performance for automated glaucoma detection using two-dimensional (2D) data. However, only a few studies had optimistic outcomes for glaucoma detection and staging. Moreover, the automated AI system still faces challenges in diagnosing at the clinicians’ level due to the lack of interpretability of the ML algorithms and integration of multiple clinical data. AI technology would be welcomed by doctors and patients if the "black box" notion is overcome by developing an explainable, transparent AI system with similar pathological markers used by clinicians as the sign of early detection and progression of glaucomatous damage. Therefore, the thesis aimed to develop a comprehensive AI model to detect and stage glaucoma by incorporating a variety of clinical data and utilising advanced data analysis and machine learning (ML) techniques. The research first focuses on optimising glaucoma diagnostic features by combining structural, functional, demographic, risk factor, and optical coherence tomography (OCT) features. The significant features were evaluated using statistical analysis and trained in ML algorithms to observe the detection performance. Three crucial structural ONH OCT features: cross-sectional 2D radial B-scan, 3D vascular angiography and temporal-superior-nasal-inferior-temporal (TSNIT) B-scan, were analysed and trained in explainable deep learning (DL) models for automated glaucoma prediction. The explanation behind the decision making of DL models were successfully demonstrated using the feature visualisation. The structural features or distinguished affected regions of TSNIT OCT scans were precisely localised for glaucoma patients. This is consistent with the concept of explainable DL, which refers to the idea of making the decision-making processes of DL models transparent and interpretable to humans. However, artifacts and speckle noise often result in misinterpretation of the TSNIT OCT scans. This research also developed an automated DL model to remove the artifacts and noise from the OCT scans, facilitating error-free retinal layers segmentation, accurate tissue thickness estimation and image interpretation. Moreover, to monitor and grade glaucoma severity, the visual field (VF) test is commonly followed by clinicians for treatment and management. Therefore, this research uses the functional features extracted from VF images to train ML algorithms for staging glaucoma from early to advanced/severe stages. Finally, the selected significant features were used to design and develop a comprehensive AI model to detect and grade glaucoma stages based on the data quantity and availability. In the first stage, a DL model was trained with TSNIT OCT scans, and its output was combined with significant structural and functional features and trained in ML models. The best-performed ML model achieved an area under the curve (AUC): 0.98, an accuracy of 97.2%, a sensitivity of 97.9%, and a specificity of 96.4% for detecting glaucoma. The model achieved an overall accuracy of 90.7% and an F1 score of 84.0% for classifying normal, early, moderate, and advanced-stage glaucoma. In conclusion, this thesis developed and proposed a comprehensive, evidence-based AI model that will solve the screening problem for large populations and relieve experts from manually analysing a slew of patient data and associated misinterpretation problems. Moreover, this thesis demonstrated three structural OCT features that could be added as excellent diagnostic markers for precise glaucoma diagnosis

    The application of artificial intelligence in glaucoma diagnosis and prediction

    Get PDF
    Artificial intelligence is a multidisciplinary and collaborative science, the ability of deep learning for image feature extraction and processing gives it a unique advantage in dealing with problems in ophthalmology. The deep learning system can assist ophthalmologists in diagnosing characteristic fundus lesions in glaucoma, such as retinal nerve fiber layer defects, optic nerve head damage, optic disc hemorrhage, etc. Early detection of these lesions can help delay structural damage, protect visual function, and reduce visual field damage. The development of deep learning led to the emergence of deep convolutional neural networks, which are pushing the integration of artificial intelligence with testing devices such as visual field meters, fundus imaging and optical coherence tomography to drive more rapid advances in clinical glaucoma diagnosis and prediction techniques. This article details advances in artificial intelligence combined with visual field, fundus photography, and optical coherence tomography in the field of glaucoma diagnosis and prediction, some of which are familiar and some not widely known. Then it further explores the challenges at this stage and the prospects for future clinical applications. In the future, the deep cooperation between artificial intelligence and medical technology will make the datasets and clinical application rules more standardized, and glaucoma diagnosis and prediction tools will be simplified in a single direction, which will benefit multiple ethnic groups

    Automatic CDR Estimation for Early Glaucoma Diagnosis

    Get PDF
    • …
    corecore