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Abstract

Glaucoma is currently the leading cause of irreversible blindness across the globe. Moreover, since
there is not much awareness about its risk factors, neither prevention and screening strategies until
severe consequences are experienced, most individuals with Glaucoma remain undiagnosed across
the entire world. For the last decade, experts developed a few approaches to tackle this problem,
which utilize Machine Learning systems such as Deep Neural Networks. Some of the developed
models show significant success in interpreting fundoscopic images and detecting the presence of
Glaucoma. However, these models are usually models that do not provide a transparent overview
of the reasoning behind their predictions, which is essential for a system to be implemented in a
real-world scenario. Explainable AI (XAI) is a very recent field where researchers aim to create
more interpretable and explainable Machine Learning models. The proposed solution will use state
of the art techniques from the XAI field to extract the critical features on a model’s prediction and
better understand the current Computer Aided Detection (CADx) pipeline prediction model.

Deep Learning models applied to Glaucoma also suffer from the lack of available data, which
is scarce and not very diverse. This is due to the absence of Glaucoma screening and privacy
issues when aiming to make a dataset public. As a result, models must be prepared to handle all
kinds of data, and it might be hard to cover most of the real case scenarios if the training data is
incomplete. Our solution to this problem will be to apply Deep Learning Generative approaches
to create new data while controlling their features. Besides improving the current CADx pipeline
performance, this generated data will support the XAI techniques by providing data for case-
based reasoning techniques, which allow clinicians to compare current cases without exposing
older patients’ clinical conditions.
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Resumo

Atualmente, o Glaucoma é a principal causa de cegueira irreversível a nível global. Devido à falta
de sensibilidade sobre os fatores de risco desta doença, e à inexistência de proatividade relativa à
saúde oftálmica, a maioria dos indivíduos com Glaucoma permanece por diagnosticar. Durante a
última década, especialistas desenvolveram várias abordagens com o objetivo de solucionar este
problema, que utilizam técnicas de Machine Learning como as redes neuronais profundas. Alguns
destes modelos demonstraram bastante sucesso na interpretação de imagens fundoscópicas da
retina e na deteção do Glaucoma. Estes modelos são muitas vezes modelos que não fornecem
uma visão transparente sobre o seu "raciocínio" por detrás das previsões, um aspeto essencial
na implementação de um sistema num cenário real. O campo de Explainable AI (XAI) é uma
das mais recentes áreas com o objetivo de criar modelos mais interpretáveis e mais explicáveis. A
solução proposta irá utilizar técnicas do estado da arte do campo de XAI para extrair of fatores mais
relevantes das previsões de um certo modelo e para explicar o modelo de Diagnóstico Auxiliado
por Computador (CADx) atual.

Um dos outros problemas surge devido aos dados disponíveis, que são escassos e pouco di-
versos devido à falta de rastreio de Glaucoma e às questões de privacidade relativas à publicação
de bases de dados. Os modelos necessitam de conseguir lidar com todo o tipo de dados, e no caso
dos dados de treino disponíves estarem incompletos, poderá fazer com que utilizar estes modelos
em situações reais seja impossível. A solução proposta para ultrapassar este problema é utilizar
abordagens de generação sintética de dados para criar novos dados, controlando as suas carac-
terísticas. Estes dados serão usados para melhorar o sistema de CADx atual. Para além disso,
também podem ser usados para suportar as técnicas de XAI adotadas, através de dados para técni-
cas de Case-based Reasoning, que permitem aos clinicos fazer comparações com casos atuais sem
comprometer informações de casos anteriores.
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iii



iv



Acknowledgements

This dissertation would not be possible without the help of particular individuals and organiza-
tions, and I would like to start by giving my thanks to each and every one of them.

Firstly, I would like to acknowledge the two institutions that collaborated to create this op-
portunity. First, to Faculdade de Engenharia da Universidade do Porto (FEUP), I would like to
thank for taking me in 5 years ago as a freshman student. It provided me until now with an aca-
demic environment that allows me to acquire a great deal of knowledge while sharing this same
knowledge with other fellow students. Second, to Fraunhofer AICOS, I would like to thank for the
opportunity to work with them in a welcoming environment, which granted me all the necessary
tools and support to complete this project throughout the tough times everyone has had to face this
past year.

To my university supervisor, Professor Jaime Cardoso, I would like to thank for all the help
given when shaping work paths and discussing solutions and for being available when I reached out
for help. To my supervisor from Fraunhofer AICOS, Senior Researcher Filipe Soares, I am very
grateful for all the support that helped me get familiarized with this new area, for the discussions
that pushed this work forward and for helping me focus on the end goal of this project.

I owe an enormous debt of gratitude to my closest friends and girlfriend, who had to listen to
my complaints and frustrations throughout this work patiently. Because of their care and support,
I was able to keep pushing forward towards the finish line, even when things were not going
according to plan.

Last but not least, I would like to give a special thanks to all my family members, my parents,
my brother, my grandparents and my uncles, who were always there from the beginning.

Pedro Lopes

v



vi



“What you aim at determines what you see.”

Jordan B. Peterson

vii



viii



Contents

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background: Glaucoma 5
2.1 Disease Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Clinical Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Retinal Imaging Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.1 Fundus Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.2 Morphological Features for Glaucoma CAD in Fundus Imaging . . . . . 9
2.4.3 Optical Coherence Tomography (OCT) . . . . . . . . . . . . . . . . . . 14

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Background: Glaucoma CAD Systems 17
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Beyond Optic Disc and Optic Cup segmentation . . . . . . . . . . . . . 21
3.4 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.6 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.7 Limitations and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.8 Glaucoma CAD systems on a Real-World Scenario . . . . . . . . . . . . . . . . 29
3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Literature Review: Generative Modelling 31
4.1 Generative Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Traditional Generative Models . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.2 Deep Generative Models . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Semantic Image Editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Literature Review: Explainability and Interpretability in Machine Learning 47
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Taxonomy of Interpretability approaches . . . . . . . . . . . . . . . . . . . . . . 49

ix



x CONTENTS

5.2.1 Model-specific vs. Model-agnostic . . . . . . . . . . . . . . . . . . . . . 49
5.2.2 Global Methods vs Local Methods . . . . . . . . . . . . . . . . . . . . . 49
5.2.3 Pre-model vs In-model vs Post-model . . . . . . . . . . . . . . . . . . . 49
5.2.4 Intrinsic vs Post-hoc . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Interpretability Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4 Interpretability Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4.2 Case-based Reasoning Approaches . . . . . . . . . . . . . . . . . . . . 52

5.5 Towards Glaucoma CAD Systems with Explainable Decisions . . . . . . . . . . 53
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Problem Definition and Proposed Solution 55
6.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3 Project Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7 Segmentation Approaches for Morphological Feature Extraction 59
7.1 Segmentation Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2 Image Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.3 Optic Disc and Optic Cup Segmentation . . . . . . . . . . . . . . . . . . . . . . 63

7.3.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.4 Parapapillary Atrophy (PPA) Segmentation . . . . . . . . . . . . . . . . . . . . 67
7.5 Fundus Image Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8 Model Explainability 75
8.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.1.1 Generative Modelling on Retinal Fundus Imaging . . . . . . . . . . . . . 76
8.2 Concept Whitening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8.2.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.3 SHAP - Post-hoc Explainable Mechanism . . . . . . . . . . . . . . . . . . . . . 83

8.3.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.4 Explainable Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

9 Conclusions and Future Work 91
9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

References 93



List of Figures

2.1 The Glaucoma severity spectrum [124]. . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Eye anatomy with a few highlighted morphological feature. . . . . . . . . . . . . 9
2.3 Digital fundus images cropped around optic disc. [34]. . . . . . . . . . . . . . . 10
2.4 Clinical assessment of the ISNT rule for a normal optic nerve [101]. . . . . . . . 10
2.5 Retinal fundus images of two different eyes [56]. . . . . . . . . . . . . . . . . . 12
2.6 PPA With Alpha-Zone And Beta-Zone On The Right Eye [108]. . . . . . . . . . 12
2.7 Fundus photograph demonstrating focal notching (white arrow) of the optic nerve

at the inferior margin of the neuroretinal rim [127]. . . . . . . . . . . . . . . . . 13
2.8 Fundus photograph demonstrating superior disc hemorrhage of the optic nerve

(white arrow) [127]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.9 (a) an example of OCT volumetric optic disc scan as well as corresponding en

face fundus image generated by linescanning ophthalmoscopy; (b) an example of
OCT volumetric macula scan as well as corresponding en face fundus image [95]. 14

2.10 The four categories of DL models with different input [95]. . . . . . . . . . . . . 15

3.1 CAD system workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Retinal images and their PPA and Disc areas [17]. . . . . . . . . . . . . . . . . . 22

4.1 Mixture of three Gaussians [46]. . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Simplified HMM with no initial and final states for the sake of simplicity [46]. . . 33
4.3 The Boltzmann machine where blue–grey nodes are hidden and maroon nodes are

visible [46]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 Generative Adversarial Networks architecture. . . . . . . . . . . . . . . . . . . . 35
4.5 Autoencoder architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.6 Variational Autoencoder architecture. . . . . . . . . . . . . . . . . . . . . . . . 38
4.7 Normalizing Flow architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.1 Gantt chart for Project Plan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.1 Retinal Fundus image before (left) and after (right) CLAHE technique. . . . . . . 61
7.2 Retinal Fundus image before (left) and after (right) Pixel Quantification technique. 61
7.3 Examples of Augmented data using the Image Quality Variation Augmentation. . 62
7.4 X-Unet architecture diagram. Adapted from [74]. . . . . . . . . . . . . . . . . . 63
7.5 X-Unet (left) and GFI-ASPP-Depth[79] (right) training losses. . . . . . . . . . . 67
7.6 Retinal images and their PPA and Disc areas [17]. . . . . . . . . . . . . . . . . . 68
7.7 Illustration of PPA area border [17]. . . . . . . . . . . . . . . . . . . . . . . . . 68
7.8 Retinal images and their PPA and Disc areas [17]. . . . . . . . . . . . . . . . . . 69
7.9 iChallenge-PM images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.10 Left: PPA ground truth, Right: Network PPA segmentation. . . . . . . . . . . . . 70

xi



xii LIST OF FIGURES

7.11 Morphological Feature Extraction pipeline. . . . . . . . . . . . . . . . . . . . . 72
7.12 GFI-ASPP-Depth Segmentation examples with ground truth masks comparison

(left side of image is ground truth and right side is the predicted mask). . . . . . . 73
7.13 Segmentation examples with ground truth masks comparison (left is ground truth

and right is predicted mask). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.1 GFI-ASPP-Depth Segmentation examples with ground truth masks comparison
(left side of image is ground truth and right side is the predicted mask). . . . . . . 77

8.2 Some top activated images visualized with empirical receptive fields (highlighted
regions). Adapted from [23]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8.3 Comparison between the Separability of Latent Representation plots. Concept
Whitening was added to the 8th layer, and the explicit concept given was VCDR. 81

8.4 Comparison between the Separability of Latent Representation plots. Concept
Whitening was added to the 8th layer, and the explicit concepts given were VCDR,
RDAR and ISNT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.5 Correlation Axes plot. Concept Whitening was added to the 8th layer, and the
explicit concepts given were VCDR, RDAR and ISNT. . . . . . . . . . . . . . . 82

8.6 XGBoost model performance on the Enhance/Degraded Features dataset. . . . . 84
8.7 XGBoost model feature importance on the Enhance/Degraded Features dataset. . 85
8.8 Summary plot for all SHAP values on the test set of Enhanced/Degraded dataset. 86
8.9 Dependence plot between CDR and VCDR on XGBoost model. . . . . . . . . . 86
8.10 Dependence plot between RDAR and VCDR on XGBoost model. . . . . . . . . 87
8.11 Waterfall plots on a Glaucoma and non-Glaucoma outcome. . . . . . . . . . . . 88
8.12 SHAP values behaviour on edge cases. (a) Waterfall plot on a 50/50 outcome

for both Glaucoma and non-Glaucoma label. (b) Waterfall plot on a Glaucoma
outcome when the image has a non-Glaucoma label. . . . . . . . . . . . . . . . . 88

8.13 Glaucoma Explainable CAD pipeline diagram. . . . . . . . . . . . . . . . . . . 89
8.14 Non-Glaucomatous Retinal Fundus image from iChallenge-GON. . . . . . . . . 90



List of Tables

3.1 Performance comparison of state-of-the-art methods trained with the ORIGA dataset
(Adapted from [42]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Performance comparison of state-of-the-art Glaucoma classification methods (Adapted
from [47]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Fundus Image Dataset Information. . . . . . . . . . . . . . . . . . . . . . . . . 25

7.1 Performance of X-Unet models, trained on datasets with different augmentation
techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.2 Performance comparison between X-Unet and state of the art methods. Seg-
mentation performance comparison with state-of-the-art methods trained with the
ORIGA dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.3 GFI-ASPP-Depth Segmentation performance on iChallenge-GON, ORIGA and
RIM-ONE r3 datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8.1 GFI-ASPP-Depth Segmentation performance on iChallenge-GON and ORIGA
datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8.2 Overview of classification datasets. . . . . . . . . . . . . . . . . . . . . . . . . . 78
8.3 Image count on each auxiliar concept dataset. . . . . . . . . . . . . . . . . . . . 79
8.4 Results for ResNet18 and Resnet50 experiments on the test set with Pre-Split

dataset. LR represents Learning Rate and BS represents Batch Size. . . . . . . . 80
8.5 Results for ResNet18 experiments on the test set with and without the enhanced/de-

graded versions of the original images. . . . . . . . . . . . . . . . . . . . . . . . 81
8.6 Hyper-parameters for best performance on XGBoost model. . . . . . . . . . . . 84
8.7 Morphological features obtained from image Figure 8.14. . . . . . . . . . . . . . 90
8.8 SHAP waterfall chart for Figure 8.14. . . . . . . . . . . . . . . . . . . . . . . . 90

xiii



xiv LIST OF TABLES



xv



xvi ABBREVIATIONS

Abbreviations

AE Autoencoder
AEE Adversarial Autoencoder
AI Artificial Intelligence
AMD Age-related Macular Degeneration
ASPP Atrous Spatial Pyramid Pooling
AUC Area Under the Curve
BM Boltzmann Machine
CAD Computer-aided Diagnosis
CAD(x) Computer-aided Detection
CBR Case-Based Reasoning
CDR Cup to Disc Ration
CGAN Conditional Generative Adversarial Network
CSLO Confocal Scanning Laser Ophthalmoscopy
CNN Convolutional Neural Network
CW Concept Whitening
DBM Deep Boltzmann Machine
DBN Deep Belief Network
DCGAN Deep Convolutional Generative Adversarial Network
DDLS Disc Damage Likelihood Scale
DL Deep Learning
DNN Deep Neural Network
DR Diabetic Retinopathy
GAN Generative Adversarial Network
GMM Gaussian Mixture Model
GradCAM Gradient-weighted Class Activation Mapping
GRI Glaucoma Risk Index
IOP Intraocular Pressure
ISNT Inferior, Superior, Nasal, Temporal
HMM Hidden Markov Model
KL Kullback–Leibler Divergence
KNN K-Nearest Neighbors
KPI Key Performance Indicator
OC Optic Cup
OCT Optical Coherence Tomography
OD Optic Disc
ONH Optic Nerve Head
MAE Mean Absolute Error
ML Machine Learning
MSE Mean Squared Error
NB Naïve Bayes
NF Normalizing Flows
NN Neural Network
NRR Neuroretinal Rim



ABBREVIATIONS xvii

PACG Primary Angle-Closure Glaucoma
POAG Primary Open-Angle Glaucoma
PPA Peripapillary Atrophy
RBM Restricted Boltzmann Machine
RF Random Forest
RNFL Retinal Fiber Layer
ROC Receiver Operating Characteristic curve
ROI Region Of Interest
SLP Scanning Laser Polarimetry
SmoothCAM Smooth Class Activation Mapping
SVM Support Vector Machine
TAMI Transparent Artificial Medical Intelligence
VAE Variational Autoencoder
XAI Explainable Artificial Intelligence





Chapter 1

Introduction

1.1 Context

Glaucoma is a group of chronic eye diseases [56] that has become the leading cause of irreversible

blindness across the globe [5]. Despite several Glaucoma variations, all of them can be charac-

terised by loss of retinal ganglion cells, retinal nerve fibre layer (RNFL) thinning, and optic disc

cupping. Moreover, intraocular pressure (IOP) is considered the major risk factor caused by the

natural flow of aqueous humour inside the human eye. When this pressure increases to abnormal

levels, it can damage the optic nerve head (ONH). Glaucoma is also known as the "silent thief of

sight" due to mainly being asymptomatic until later stages. Several studies have tried to calculate

and predict Glaucoma prevalence throughout the years. It is a common statement that the tendency

is for the number of people affected by this disease to increase. Nevertheless, Glaucoma screening

is not a common practice due to its low cost-effectiveness and the inexistence of a reliable and

accessible strategy. For that reason, the majority of patients remain undiagnosed. This is a major

concern in the healthcare community because Glaucoma can result in very severe consequences.

Still, it is also possible to slow the disease’s progression if treatment is applied at an early stage.

In a clinical environment, Glaucoma diagnosis is also a difficult task. As stated previously,

Glaucoma progress remains hidden from both patients and clinicians for a long time. Most of the

clinical procedures are focused on two eye structures, the optic nerve head and the retinal nerve

fibre layer, such as tonometry (measure the eye’s inner pressure), ophthalmoscopy (examination

of the shape and colour of the optic nerve), etc. Retinal imaging technologies are another vital tool

that allows clinicians to study the patient’s retina. The most accessible and cost-effective technique

created until today is fundus imaging, which essentially involves taking a 2D-photograph of the

retina. From this image, clinicians can identify several morphological features, such as the optic

disc and cup, and infer others relevant for the Glaucoma diagnosis, such as the Cup to Disc Ratio

(CDR) or the ISNT rule.
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2 Introduction

Several researchers have presented CAD systems for Glaucoma detection based on machine

learning techniques in the past decades. With the growth of the Deep Learning (DL) field, the state

of the art approaches are mainly based on robust and resource-demanding algorithms that require a

large amount of data to work correctly. Nevertheless, these approaches present satisfactory results

and even discuss important aspects such as the computational costs of using such networks [79].

This dissertation work is also linked with a bigger project, TAMI (Transparent Artificial Med-

ical Intelligence), focused on overcoming the lack of transparency and interpretability of AI mod-

els, not only for application in Glaucoma but also for other medical concerns and even other fields.

1.2 Motivation

Despite the enormous successes in the DL field, and more precisely in the CAD systems for

Glaucoma detection, there are still huge challenges that need to be overcome in order to deploy

these systems to a realistic scenario.

On the one hand, most of the concerns regarding DL models are related to their performance

and their metric evaluation methods. Consequently, most approaches propose "black-box" type

models that do not provide a transparent overview of the prediction’s reasoning. As a result,

researchers cannot understand and explain to others the reasons behind a models decision, making

the task of correcting the model more challenging and less clear. On the other hand, it is also

important to explain the machines’ decision; otherwise, it would be very hard to regulate their

usage. Moreover, end-users must trust the systems they use to make decisions. Namely, in a

critical scenario like the medical field, where the clinicians need to reach a diagnosis, the system

must provide clinically meaningful explanations that support its decision.

On the other hand, data obtained in the medical field can be scarce and not very diverse.

Specifically for the Glaucoma case, since there is no screening strategy, this problem is even more

prevalent. As stated previously, DL models require a considerable amount of data in order to

generalize correctly. Moreover, it is essential to have a balanced dataset since imbalanced ones

bring challenges to the learning process. A balanced dataset means having an equilibrium between

the several possible scenarios and complete, which means providing enough cases to cover almost

if not even all of the possibilities. Privacy issues are another data related drawback. Since models

and researchers must deal with data from actual patients, there is also the risk of compromising

the patients’ privacy and exposing their clinical conditions.

1.3 Objectives

This dissertation aims to develop an XAI component that can be applied to CAD systems for

Glaucoma detection to provide explainable model decisions to an expert from the healthcare do-

main. Besides, deep generative modelling will be used to obtain synthesized data that the XAI

component can use to enhance the generated explanations.
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1.4 Document Structure

This document is divided into the following Chapters: Chapter 1 describes the context of this

works, as well as its motivations, objectives and document structure. Chapter 2 provides a back-

ground overview of Glaucoma and its characteristics, screening and clinical diagnosis, and also

retinal imaging technologies relevant in the Glaucoma context. Chapter 3 describes the Glau-

coma CAD systems structure, highlights several approaches, and goes over the available datasets,

evaluation metrics, limitations and challenges of these systems, and systems applied to real-world

scenarios. Chapter 4 is a literature review on Generative Modeling, with a focus on state-of-the-art

Deep Generative Modelling approaches and on Semantic Image Editing. Chapter 5 is a literature

review on Explainability and Interpretability in Machine Learning; it starts by giving an overview

of important concepts of Explainable AI (XAI) and then gives a deeper notion of Interpretability

techniques relevant for this dissertation’s work, like Case-based Reasoning. Chapter 6 provides

the problem definition and delineates the proposed solution, taking into account all the knowledge

gathered in the previous chapters. Chapter 9 presents the conclusions for this monograph.
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Chapter 2

Background: Glaucoma

This chapter focuses on the Glaucoma disease. Section 2.1 provides a description of the disease.

Section 2.2 describes the screening strategies current status and Section 2.3 goes over the clinical

diagnosis. At last, Section 2.4 describes the two main retinal imaging techniques, Fundus Imaging

and Optical Coherence Tomography.

2.1 Disease Description

Glaucoma refers to a group of chronic eye diseases that can have different causes, risk factors,

demographics, symptoms, duration, treatment, and prognosis [56]. Moreover, it has become the

leading cause of irreversible blindness across the globe [5]. All types of Glaucoma can be char-

acterised by loss of retinal ganglion cells, retinal nerve fibre layer (RNFL) thinning, and optic

disc cupping. Intraocular pressure (IOP) is considered the primary modifiable risk factor since

lowering its value usually slows Glaucoma progression or could even stop it. The natural flow

of aqueous humour that occurs inside the human eye is the cause of such pressure. In abnormal

cases, this substance’s outflow facility is negatively affected, leading to an increase in IOP. There

are still other risk factors that have shown to be relevant in the development and progression of

Glaucoma: older age, ethnic background, positive family history for Glaucoma, stage of the dis-

ease and high myopia. Figure 2.1 shows the varying severity spectrum of Glaucoma. For most of

that spectrum, and in most patients, no pain or relevant symptoms occur, which means the disease

remains unnoticed most of the time. Only when patients start to lose their central vision ability do

they seek medical assistance. However, when such symptoms manifest, Glaucoma is already at a

late stage where irreversible damage has already occurred. Thus, Glaucoma is also known as the

"silent thief of sight" [124].

The most common type of Glaucoma is primary open-angle Glaucoma (POAG), also existing

others such as primary angle-closure Glaucoma (PACG). These two are usually the target of re-

search in Glaucoma prevalence studies. An overview of all types of Glaucoma is presented below

5
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Figure 2.1: The Glaucoma severity spectrum [124].
CCT - central corneal thickness; C/D - cup-to-disc ratio; IOP - intraocular pressure; VF - visual field.

[108].

• Primary open-angle Glaucoma (POAG): It is the most common type of Glaucoma. Its

symptoms are only noticeable when optical nerve head (ONH) damage has become irre-

versible. This is the result of a rise in IOP due to the slow clogging of the drainage canal.

With the disease’s progression, blind spots start forming from the outer part of the vision

field to its centre.

• Primary angle-closure Glaucoma (PACG): Although being less common than the previ-

ous type, it is known for being very sudden. In this type, there is a sudden blockage of the

drainage canals, leading to a rapid increase in IOP, which can cause irreversible blindness

in just two days.

• Normal tension Glaucoma: Also known as low-tension Glaucoma, the leading cause of

blindness in this type is not the increase in IOP. Although not yet proven, experts believe

that in a normal range of pressure, these eyes are more susceptible to damage due to poor

blood flow to the optic nerve. The IOP in these cases must be kept at even lower values.

• Congenital Glaucoma: This type is common amongst infants or babies, making it known

as children Glaucoma. On the one hand, primary congenital Glaucoma results from incom-

plete or abnormal development of the eye’s drainage canal. On the other hand, secondary

congenital Glaucoma is caused by disorders in the eye or body.

• Secondary Glaucoma: This type describes Glaucoma conditions (two types below this

one) that derive from other diseases.
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• Pigmentary Glaucoma: In this type, pigment granules usually present in the back of the iris

enter the aqueous humour that flows inside the eye. These flow towards the eye’s drainage

canal and slowly clog them, leading to an increase of IOP.

• Neovascular Glaucoma: the abnormal formation of blood vessels on the iris and over

the drainage canals is the main cause of neovascular Glaucoma. It is usually associated

with other diseases (e.g. diabetes), and the vessels block the fluid from draining correctly,

causing an increase in IOP.

In 2010, Glaucoma was the cause of blindness in 2.1 million individuals and resulted in vi-

sual impairment in other 4.2 million. Glaucoma is more prevalent in high-income regions with a

relatively old population than areas with a younger population. In 2013, the estimated prevalence

of Glaucoma (POAG and PACG) in people aged 40-80 years old was 3.54%, and this value could

increase by 74% to 111.8 million in 2040. From 1990 to 2010, estimates state that the number of

individuals affected by Glaucoma increased by approximately 3.1 million people [13].

2.2 Screening

Across the entire globe, most patients (50-90%) with Glaucoma remain undiagnosed, due to the

disease’s characteristics and because no screening strategy has proven to be efficient enough un-

til now. Suppose we tried to screen the entire population for Glaucoma. In that case, experts

state that the number of false-positive diagnoses would be too high, due to the relatively low

prevalence of Glaucoma (3.54% in individuals aged 40-80 years old as of 2013 [13]) and the in-

sufficiently precise diagnostic methods. Nevertheless, there have been several attempts to identify

a viable screening strategy for Glaucoma [56]. Burr et al. and colleagues [15] assessed the clinical

screening for open-angle Glaucoma in the UK and its cost-effectiveness, concluding that general

population screening at any age is not cost-effective. Furthermore, they also discovered that selec-

tive screening groups with higher prevalence (taking into account the risk factors) obtained better

results and could be a more reliable approach. Another recent approach uses opportunistic case

finding. In India [98], experts are attempting to integrate Glaucoma screening in an already ex-

isting cataract screening programme. With the results, they will calculate the costs of adding the

new screening component to the current pipeline.

2.3 Clinical Diagnosis

Glaucoma diagnosis is a very challenging task. As stated before, for most of the severity spectrum,

chronic forms of Glaucoma remain painless and measurable visual field defects do not develop at

early stages. The patient is unaware of the disease’s progress and only seek medical help when

Glaucoma is already on a late stage.

Nevertheless, clinicians can use several procedures in a clinical environment to aid the Glau-

coma diagnosis. Most of them are focused on two structures: the optic nerve head and the retinal
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nerve fibre layer. Moreover, it might be necessary to examine the patient on several occasions to

evaluate certain features, since healthy eye features can vary from patient to patient. Below there

is a list of the several exams[41] used to help detect or diagnose Glaucoma on a patient:

• Tonometry: Measure the inner pressure of the eye;

• Ophthalmoscopy: Examine the shape and colour of the optic nerve;

• Perimetry: Examine the complete visual field of the patient;

• Gonioscopy: Classify the iridocorneal angle or the anatomical angle formed between the

eye’s cornea and iris;

• Pachymetry: Measure cornea thickness;

2.4 Retinal Imaging Technologies

Typically, the clinical examinations referred to previously are only used when there is already a

suspected Glaucoma case. In addition to those, RNFL loss and OD changes can be detected using

four modalities: confocal scanning laser ophthalmoscopy (CSLO), optical coherence tomography

(OCT), scanning laser polarimetry (SLP) and fundus imaging. Besides carrying some disadvan-

tages, the first three examinations are costly and depend on the subjective evaluation of qualified

experts who manually inspect the individual retinal images. Fundus imaging is a technique that

uses more economical and portable equipment, a fundus camera, resulting in a more sustainable

method [50].

2.4.1 Fundus Imaging

Fundus imaging is one of the techniques used in retinal imaging, where the images are photographs

of the eye’s interior surface opposite to the lens. The first useful photographic images of the

retina were obtained in 1891 by the German ophthalmologist Gerloff, and in 1910, Gullstrand

developed the fundus camera. This idea maintains its popularity in retinal fundus imaging until

today, not only for its safety (which was a very relevant feature at the time of this invention

due to the prevalence of infectious diseases) but mainly for its cost-effectiveness at capturing

retinal abnormalities. When used in the Glaucoma detection, it enables experts to make an earlier

detection and settings where more expensive equipment is unusable. Furthermore, fundus images

can also be used to identify other eye conditions such as age-related macular degeneration (AMD)

or diabetic retinopathy (DR)[50].

Retinal fundus images have several features, that may vary from individual to individual, pre-

sented in Figure 2.2. Nevertheless, all individuals have the same structures, which can be identified

in this type of imaging [120].

• Optic Disc: a central round-like yellowish part and the entry point for vessels. It is also

known as the blind spot.
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Figure 2.2: Eye anatomy with a few highlighted morphological feature.
Source1

• Optic Cup: located inside the optic disc, it is a bright central depression with variable size;

• Macula: Darkly pigmented area in the centre of the retina, which experts believe absorbs

ultraviolet rays and excessive blue light;

• Fovea: Slightly concave and small area in the centre of the retina, where there are no vessels.

The darkest area of the retina (dark-red or red-brown colour) and its cells provide the central

vision for the human eye;

• Retinal Vessels: arteries and veins that carry blood throughout the eye;

• Exudates: Bright scattered patch like portions of the retina, formed after the leakage of

vessels;

2.4.2 Morphological Features for Glaucoma CAD in Fundus Imaging

By using the previously referred features, it is possible to infer others, useful for Glaucoma detec-

tion. A description of the main ones can be found below.

Cup to Disc Ratio (CDR)
This is the most commonly used feature in Glaucoma detection across several pieces of

research. CDR is the ratio between the optic cup and optic disc (illustrated in Figure 2.3 and

can be calculated across the horizontal length, the vertical length or area. This metric allows

to classify Glaucoma into mild (CDR up to 0.4), moderate (CDR between 0.5 and 0.7) and

severe (CDR above 0.7)[120].
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Figure 2.3: Digital fundus images cropped around optic disc. [34].
a Main structures of a healthy optic disc and b Glaucomatous optic disc.

ISNT rule
After identifying the optic disc, it is possible to measure the disc rim thickness in four

directions, as presented in Figure 2.4: Inferior (I), Superior (S), Nasal (N) and Temporal

(T). These measures should follow Formula 2.1. Although it cannot be used to diagnose

Glaucoma immediately, it can be used to identify suspicious cases, since this rule is affected

in most of the Glaucoma cases so far [101].

I > S > N > T (2.1)

Figure 2.4: Clinical assessment of the ISNT rule for a normal optic nerve [101].
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Neuroretinal Rim (NRR)
NRR (Figure 2.3) is the region between the edge of the optic disc and the edge of the optic

cup. Like the CDR, the ratio between two pairs of the ISNT quadrants, the temporal and

nasal quadrants and the superior and inferior quadrants, can be an indicator for Glaucoma.

[12].

Disk Damage Likelihood Scale (DDLS)
DDLS is the scale that calculates disc damage likelihood, giving the experts an idea of the

severity of the disease. It is calculated using the formula below, where MinRIMwidth is the

minimum width of the rim, and DD is the disc diameter [120]. Equation 2.2 shows the

formula.

DLLS =
MinRIMwidth

DD
(2.2)

Glaucoma Risk Index (GRI)
Bock et al. [12] proposed this feature as a novel probabilistic index, that combines several

components obtained from fundus images to get a single value. Experts can then use this

number to distinguish a Glaucoma case from a healthy one: if the range of GRI is (8.68

± 1.67) eye is considered normal and if the range is (4.84 ± 2.08), the eye is considered

abnormal. Equation 2.3 is the original formula, but other works have modified it to fit other

features. The variables PC1 to PC5 are the main components calculated using Principal

Component Analysis (PCA) [120].

GRI = 6.8375−1.1325×(PC1)+1.65×(PC2)+2.7225×(PC3)+0.675×(PC4)+0.6650×(PC5)

(2.3)

Retinal Nerve Fiber Layer (RNFL)
The RNFL is a part of the retina located outside the ONH, illustrated in Figure 2.5. It can

be distinguished by an area with a particular texture, similar to a stripped whitish pattern. In

normal cases, the RNFL is clearly visible and evenly distributed along the retina. Glaucoma

reduces this layer’s thickness, which leads to the loss of RNFL and consequent appearance

of defects in the retinal fundus image [104].
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(A) (B)

Figure 2.5: Retinal fundus images of two different eyes [56].
(A) The photograph shows a healthy retinal nerve fibre layer. (B) The photograph shows the retinal nerve fibre layer of
an eye with Glaucomatous optic-nerve damage, with localised retinal nerve fibre layer defects (light blue arrows), in

addition to a diffuse diminution of the retinal nerve fibre layer.

Peripapillary atrophy (PPA)
As it can be observed in Figure 2.6, PPA appears as a crescent-shaped part of the eye, com-

posed of an alpha-zone and a beta-zone. These zones are outside the optic disc border, being

the beta-zone closest to the disc. These zones tend to grow in size in abnormal cases[108],

and large beta-zone can be considered as a clue of glaucoma [114].

Figure 2.6: PPA With Alpha-Zone And Beta-Zone On The Right Eye [108].

Optic Nerve Notching
Optic Nerve Notching [127] is a focal loss of the neural rim width associated with a change

in the rim curvature. Contrary to OD cupping, which is due to an overall OC enlargement,

notching is the result of focal OC enlargement, and is mostly visible on the Inferior and

Superior sections of the retina. In Figure 2.7 it is possible to observe a slight focal notching

in the inferior area of the NRR.
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Figure 2.7: Fundus photograph demonstrating focal notching (white arrow) of the optic nerve at
the inferior margin of the neuroretinal rim [127].

Optic Disc Hemorrhage
Optic Disc Hemorrhages [127] are flame-shaped or splinter-shaped hemorrhages in the

RNFL at the NRR level, or close to the OD margin. Although not specific to Glaucoma,

it sill is an indicator that show signs of lesion, and thus might have been caused by this

disease. An example can be observed in Figure 2.8.

Figure 2.8: Fundus photograph demonstrating superior disc hemorrhage of the optic nerve (white
arrow) [127].
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2.4.3 Optical Coherence Tomography (OCT)

OCT is a technique which collects optical backscattering signal for cross-sectional and volumetric

imaging of the biological tissues. At the cost of being more complex and expensive, it allows

clinicians to assess with more detail Glaucoma-related anatomy (e.g. the anterior chamber angle

closure) and structural damage (e.g. reduction of RNFL thickness).

Figure 2.9: (a) an example of OCT volumetric optic disc scan as well as corresponding en face
fundus image generated by linescanning ophthalmoscopy; (b) an example of OCT volumetric
macula scan as well as corresponding en face fundus image [95].

There are mainly two types of OCT examinations useful for Glaucoma assessment. Posterior

segment OCT is the most common modality for Glaucoma detection since it is the best-suited

one to identify the most prevalent type of Glaucoma, POAG. Compared to fundus imaging, this

technique enables a top view of the retina and the ONH, while capturing a more in-depth 3D view

of the morphological features, and offering quantitative and topographical measurements. In this

case, the traditional OCT report contains a key parameters table, a thickness and a deviation map of

RNFL and its respective profiles, and specific quadrants and clock hours for Glaucoma detection.

On the other hand, the anterior segment OCT is a less commonly used modality, more focused

on detecting a less prevalent type of Glaucoma, PACG. Despite its lower prevalence, PACG still

represents half of all Glaucoma blindness worldwide and is probably considered the most visu-

ally destructive form of Glaucoma. Moreover, this Glaucoma type is also preventable to some

extent if diagnosed in the early stages. This technique allows clinicians to obtain cross-sectional

images of the anterior segment of the eye and also a few measurements regarding certain biomet-

ric parameters: angle opening distance (AOD); anterior chamber area (ACA), depth (ACD) and

width (ACW); scleral spur angle (SSA); rabecular iris space area (TISA); information about lens

(lens thickness and lens vault), iris (iris area and pupillary diameter) and cornea (central corneal

thickness and white-to-white). Due to its popularity, posterior segment OCT results are the most
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widely used in DL models based on OCT imaging techniques. There are four categories of DL

models with different input: Glaucoma classification based on traditionally measured thickness,

thickness maps, deviation maps, and en face images; Glaucoma classification from segmentation-

free OCT B-scans; Glaucoma classification from segmentation-free OCT volumetric scans; and

“Machine-to-Machine” approach for OCT measurements (i.e., RNFL thickness) prediction from

fundus photographs. An example of each of these approaches can be observed in Figure 2.10. In

all categories, the existing DL models can use the OCT and its data as a tool to enhance Glaucoma

assessment with efficiency and accuracy. The fourth category also shows fundus photographs po-

tential since it is possible to calculate OCT associated measurements without conducting an OCT

examination. Fundus imaging might substitute OCT in situations where the necessary equipment

is not available or insufficient clinical expertise.

Figure 2.10: The four categories of DL models with different input [95].

2.5 Summary

This chapter gave an overview of Glaucoma and its characteristics, risk factors, prevalence and

current screening and diagnosis workflows. Even though the disease is well-known amongst the

medical community, it is still a major cause of blindness worldwide.

Furthermore, retinal imaging was also discussed, and there are at least two techniques which

can capture features that are relevant in clinical Glaucoma diagnosis. One the one hand, there

is the more economical and accessible fundus imaging, that only requires a fundus camera and

a lower amount of expertise to obtain a retinal fundus imaging. Although some morphological

features such as the CDR and the ISNT rule can be assessed in these photographs, clinicians do

not solely rely on this technique to create the final diagnosis. As for the OCT, it is a more extensive
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technique that collects much more data about the patient’s eye by default. Nevertheless, it requires

more expensive equipment and also more expertise.



Chapter 3

Background: Glaucoma CAD Systems

This chapter contains the background research regarding Glaucoma CAD systems and highlights

state of the art techniques. After a small overview on Section 3.1, Sections 3.2,3.3 and 3.4 go

over the different CAD systems’ tasks, which are respectively Pre-Processing, Segmentation and

Classification. Section 3.5 lists the most widely known retinal imaging databases. Section 3.6

lists the evaluation metrics proposed in several methods. Section 3.7 goes over the limitations and

challenges identified by the previous literature works and Section 3.8 describes Glaucoma CAD

systems that were launched on real-world scenarios or developed with that intent.

3.1 Overview

Glaucoma screening strategies are almost nonexistent, and clinical diagnosis is an expensive and

complicated task. In recent years, there have been several attempts to create automated tools that

make both these practices more accessible, more efficient, and more cost-effective. From the

previous chapter, we know that fundus photography has shown to be very efficient at capturing

retinal features. In the current clinical practice, this technique is complementary to others referred

previously (2.3), since together they give clinicians an overall view of the patient’s eye condition

[87]. However, it is believed that the information acquired by fundus imaging still has the potential

to be exploited and used to relieve the burden from clinicians and make Glaucoma detection more

effective.

Earlier approaches for CAD systems were based mostly on traditional techniques, that fol-

lowed a specific workflow. This workflow is represented in Figure 3.1 and consists of the fol-

lowing steps: input data, pre-processing, segmentation, feature extraction, feature selection and

classification [50].

Most of these techniques are surveyed in [51], [9] and [120]. These methods have the ma-

jor drawback of dealing with hand-crafted features, which likely do not capture the variability

17
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Figure 3.1: CAD system workflow.

of the disease’s characteristics, even in relatively small datasets. On the other hand, deep learn-

ing techniques have received a lot of attention from researchers in many fields, including retinal

imaging and eye disease’s detection. These can automatically find patterns within the data, ob-

taining relevant data representations without the need for applying any manual feature extraction

techniques[87].

Convolutional Neural Networks (CNN) is the most widely implemented form of deep learning

across most fields and has proven to be very useful in retinal images. CNN learn to minimise

a loss function, an objective that scores the quality of results. Although the learning process is

automatic, losses must be effectively and carefully designed to have an efficient model.

3.2 Pre-Processing

Independently of the type of workflow used to detect Glaucoma, it is well-known that medical

images, specifically fundus images, contain noise and artefacts that harm the model’s performance.

For both normal and abnormal cases, minor details in relevant parts of the image can significantly

impact the final prediction. For that reason, the pre-processing step is essential to remove or

attenuate noise and artefacts of a single image. Moreover, it is also vital to consider inter-image

variability, since images can sometimes be obtained under different conditions (different fundus

cameras, for example). Each case is different from the other. Some techniques have been used

to make the input data more homogeneous, giving the model a more precise input data, where

essential features are enhanced [125].

Non-uniform illumination is a recurrent problem in fundus images. Normalization and stan-

dardization of RGB values, conversion from RGB to HSV values [106], illumination correction

algorithms [125], image contrast enhancement techniques such as CLAHE [116] are some of the

technique used to address this issue. Some approaches ([75], [85],[110]) also remove blood vessels

since they represent noisy pixels for segmentation tasks. More refined techniques have been used

in more recent deep learning approaches to ease the optic disc and cup segmentation. Fu et al. [42]

applied a polar transformation to obtain a pixel-wise representation of the fundus images, which

keeps flexibility in terms of data augmentation while adding spatial constraint for layer-based seg-

mentation and balancing the cup proportion. Yin et al. [131] enhanced important features by

applying Multiscale Detail Manipulation to change certain light values and applied dehazing to

the images, which revealed certain hidden features cause by a cloudy camera or cataracts. Kang

et al. [58] used pixel quantification to reduce the model’s sensitivity to colour. Images obtained

from different cameras usually come with a different colour scheme due to camera properties.
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Images are sometimes resized, because image size has an enormous impact on the computa-

tional time used to process it or because images used as input come from different datasets. If

the image is smaller, the model can more easily process it. However, if the image is too small,

there might be too much loss of details necessary to detect Glaucoma. In almost every approach

[87], images are cropped to the Region Of Interest (ROI), the region of the fundus image that

clinicians consider to contain the most relevant features for Glaucoma detection. It is shown that

this dramatically improves the model’s performance in almost all cases. One of the drawbacks of

this pre-processing technique is removing information from the input data, restricting the model

from learning alternative features [128]. Due to the low amount of data publicly available and to

reduce the probability of overfitting significantly, most approaches use data augmentation tech-

niques, such as rotations and reflections, removing the model’s sensitivity to slight changes in the

position of retinal features.

3.3 Segmentation

Segmentation is a crucial step in the CAD system workflow since it allows researchers to represent

certain features efficiently. The majority of approaches chooses to segment the optic disc (OD) and

the optic cup (OC) due to their relevance in detecting suspicious Glaucoma cases. Several methods

have been developed and approach this problem in different ways ([9], [120]). OD segmentation is

based on the "ground truth" obtained from ophthalmologists and usually consists of two different

steps: localisation and segmentation. Mitra et al. [83] proposed a methodology to localise the OD

that uses a CNN to create a bounding box that encloses the OD. Other approaches utilise intensity

values to identify the ROI since the OD represents a retina region with intense brightness.

Shantayia et al. [106] proposed two different approaches. For the OC, the green plane is

extracted and converted to a grayscale image, where the contrast between the OC and other regions

of the image is better. From that new image, a brightness threshold is set to obtain a binary image

of the OC. For the OD, both the green plane and the V-plane are used. This combination enables

a more accurate distinction of the OD from the rest of the image. Finally, the empty spaces that

cross the OC and OD areas are filled since they are blood vessels’ location. Singh et al. [110]

approach only segments the OD, since the ROI and relevant features can be inferred from it. After

detecting its location, the OD is segmented from the image and the blood vessels removed. Wavelet

feature extraction is applied to the segmented optic disc image, capturing features later used by

the classifier. Both evolutionary and discriminatory feature selection are evaluated to understand

which method would improve the classifier’s performance and accuracy.

On more recent methods, the joint segmentation of the OD and OC has shown to be very useful,

improving the segmentation component’s performance without harming the segmentation result.

Zhao et al. [139] start by using both intensity information and blood vessels to localise the OD

centre, cropping the ROI based on it. After a few pre-processing steps to improve image quality

(image enhancement, blood vessel extraction and confidence calculation of the sliding window),

both OD and OC are segmented using a U-shape convolutional architecture (U-Net). Chakravarty
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et al. [18] also proposed an approach where a U-net is used to obtain the OD and OC segmentation,

achieving a dice coefficient of 0.92 for OD segmentation and 0.84 for OC segmentation. Similarly,

Martins et al. [79] utilise a U-shaped network to build two different networks: one for the joint

OD/OC segmentation and one that only executes the OD segmentation. Both approaches were

compared to both performance and model complexity penalty when segmenting the OC. Although

the network performing the joint segmentation obtained a better IoU value of 0.91, the other

network achieved a comparable value, 0.89, with less than one-fourth of the parameters. Fu et

al. [42] proposed an M-Net Architecture constituted by four main parts: multiscale layer, U-shape

CNN (U-net like architecture), side-output layer and a multi-label loss function. Firstly, the OD is

localised, and polar transformation is used to obtain a new representation based on the previously

detected disc centre. The image is then processed by the M-Net, producing a multi-label prediction

map for the disc and cup regions. Finally, an inverse polar transformation operation is applied to

reconstruct the segmentation result into the Cartesian coordinate.

In 2019, the first edition of the "REFUGE Challenge" competition was held to develop an

evaluation framework that would ease comparison between different models and encourage inno-

vation. Teams were given two tasks: OD/OC segmentation and Glaucoma classification. In the

end, they presented several new approaches, some of them with state of the art performance [87].

Kang et al. [58] made use of an existing deep learning model for image segmentation, DeepLab

v3+, which takes advantage of atrous spatial pyramid pooling (ASPP) to segment objects at mul-

tiple scales, with filters at multiple sampling rates and effective fields-of-views. This model’s key

feature is a simple yet effective decoder module that can refine the segmentation results, mainly

along object boundaries. After obtaining a segmentation probability map from the model, it is

converted to a binary image using a threshold method, where the component with the largest area

is the optic disc. Liu and Fang et al. [73] presented an approach based on the already referenced

U-Net like architecture, adding squeeze-and-excitation blocks that recalibrate channel-wise fea-

tures responses to improve the model’s performance at a low computational cost [53]. Yin et al.

[131] used a framework that localises and segments the ROI simultaneously. Wang et al. [126]

work, which corresponds to team CUHKMED, proposes a segmentation method that minimises

the performance loss when the models need to deal with inconsistent input data, namely images

from different datasets. This is achieved by applying an Output Space Domain Adaptation, which

forces the network to learn the target image feature while knowing the current domain’s segmen-

tation mask. For both the current and target domains, the mask structure must be equivalent.

Table 3.1 shows the performance state-of-the-art OD/OC segmentation models.
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Method Iou Disc IoU Cup
R-Bend[57] 0.8710 0.6050
ASM[130] 0.8520 0.6870
Superpixel[26] 0.8980 0.7360
LRR[129] - 0.7560
QDSVM[27] 0.8900 -
U-net[97] 0.8850 0.7130
M-net[42] 0.9170 0.7440

Table 3.1: Performance comparison of state-of-the-art methods trained with the ORIGA dataset
(Adapted from [42]).

3.3.1 Beyond Optic Disc and Optic Cup segmentation

One of the difficulties in OD segmentation is the presence of peripapillary atrophy (PPA). Due to

its similar brightness and colour to the OD and also being located right outside the OD bound-

ary, it is not unusual for some segmentation models to incorrectly consider the PPA as part of

the OD region. Besides, PPA a risk indicator of Glaucoma, and manual annotation is a tedious,

time-consuming and subjective task. For that reason, it is vital to develop a method to identify this

feature in fundus images. Muramatsu et al. [84] presented a work that explored the detection of

moderate to severe PPA β -type, which is the most relevant type for the already stated reason. It

was possible to identify at least part of the PPA in some cases using texture analysis. However,

more investigation would be needed to improve the model’s sensitivity to mild and severe PPA

and detect its boundaries more precisely. Cheng et al. [24] explored the PPA problem a bit deeper,

presenting three different postprocessing PPA filters, each one with a specific function. Lu et al.

[75] also proposed a method for removing the PPA from the OD segmentation, by subtracting an

OD segmentation from an OD-plus-PPA segmentation and applying a multiseed region growing

method to fix any incorrect segmentation in the boundary of both regions. Cheng et al. [25] pre-

sented a biologically inspired feature (BIF), which mimics the cortex’s visual perception process

to identify the PPA automatically. A threshold-based segmentation localises the focal region from

where this feature will be extracted. Then the problem becomes a classification problem to deter-

mine the presence of PPA or not in that same region. The proposed approach achieved over 90%

accuracy on PPA detection. More recently, Chai et al. [17] divide the PPA segmentation task into

a two-part segmentation, the PPA-disc area and the Disc area. Since PPA can have irregular and

non-uniform shapes, as we can see from Figure 3.2, it is more efficient to segment the PPA and

Disc jointly, and then subtract from it the disc area to get only the PPA. A multi-task fully con-

volutional network is used for the segmentation task, achieving an average precision of 0.8929,

above other state-of-the-art approaches.

Although less present in literature, the retinal nerve fibre layer (RNFL) is another risk factor of

Glaucoma, and some approaches have tried to predict Glaucoma using this feature. Septiarini et al.

[104] proposed an automated detection of RNFL based on the texture feature of this region. This

proposal’s pillar uses a co-occurrence matrix derived from small areas (patches) outside the ONH,
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Figure 3.2: Retinal images and their PPA and Disc areas [17].

which shows RNFL loss. In the first stage, feature values are obtained from several images. In the

second stage, with the images divided by sectors, these features are tested to detect the presence of

RNFL. In [85], the proposed CAD system uses a polar representation of fundus images to identify

RNFL defects resulting from RNFL loss. The first stages consist of pre-processing the image by

correcting illumination and removing blood vessels before converting it to a polar representation.

Then, RNFL candidate defects are detected by Hough transformation as dark straight vertical lines.

False Positives are eliminated from these candidates by using knowledge-based rules.

Notching is another not studied morphological feature that can also be a Glaucoma indicator.

Sivaswamy et al. [112] proposed a method for automatically detecting notching from the OD and

cup segmentation, based on evaluating the rim thickness on the inferior and superior sections of

the ONH.
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3.4 Classification

Direct analysis of morphological features (e.g. CDR) is the simplest form of classification present

in literature. In [106] and [58], a threshold value for the vertical CDR is defined, allowing the

model to classify an image as a normal or abnormal case.

Other approaches use the most traditional machine learning classifiers, giving them the fea-

tures extracted and selected in the previous stages. Singh et al. [110] tested five different clas-

sifiers: Random Forest (RF), Naïve Bayes (NB), k-nearest neighbours (k-NN), Artificial Neural

Network (ANN) and Support Vector Machine (SVM). The experiments conducted consisted of a

combination of these classifiers with two feature selection methods. Every experiment obtained

an accuracy of over 85 %. RF and ANN showed better accuracy for the evolutionary feature

selection method (94.7%), while SVM and k-NN showed better results for principal component

analysis (PCA) selection method (94.7%). Maheshwari et al. [78] used a variant of a traditional

classifier, Least Squares Support Vector Machine (LS-SVM), a method already applied in previous

works in Glaucoma detection in fundus images. They obtained high accuracy values for the pri-

vate dataset (98.33% and 96.67% using three-fold and ten-fold cross-validation). They were also

able to get a sensitivity of 100%, which means the model did not predict any false negatives. Zhao

et al. [139] extracted 25 features related to the OD, OC and NRR, and after removing redundant

features using correlation analysis, used them as input to RF and SVM classifiers. Only SVM had

relevant results in the context of Glaucoma detection, obtaining 95.5% specificity and an AUC of

83.4%.

In more recent years, deep learning methods have seen a tremendous increase in popularity

and research. There are already some works that obtain state of the art or even better results than

the more classical approaches. One of these methods’ advantages is that they remove the need for

hand-crafted features and can more easily capture all features present in the dataset. Martins et al.

[79] created a classification network with MobileNetV2 as a feature extractor backbone, followed

by a global average pooling layer, and two fully connected layers, interleaved by heavy dropouts.

This architecture was able to obtain results similar to other state-of-the-art approaches, but with a

lower amount of parameters when compared to the most recent one. Xiangyu Chen et al. [128]

propose a CNN for Glaucoma detection, with a simple workflow: ROI extraction, dropout and

data augmentation, CNN with a soft-max classifier for Glaucoma prediction. Raghavendra et al.

[94] claim to have developed the first automated CNN architecture for Glaucoma CAD in digital

fundus images, presenting a robust model with state of the art performance. The model was able to

obtain 98.13% accuracy and could efficiently detect the class (normal or Glaucoma) of an unknown

image. Abbas et al. [2] also implemented a CNN model to extract features from fundus images and

classify them. Moreover, the workflow also had an extra component, responsible for optimising

deep features through a supervised deep-belief network (DBN) deep-learning algorithm.

In [30], [47] and [34], several pre-trained CNN architectures were fine-tuned to the Glau-

coma classification problem. The work shows results for two versions of each model: the native

version and another version based on transfer learning. Although each work presented slightly
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Method Datasets Accuracy Sensitivity Specificity AUC
ML-1[12] Private (336-/239+) 0.8800 - - 0.8700
ML-2[65] Private(30-/30+) 0.9167 - - -

ML-3[78]
Private(30-/30+)
RIM-ONE(255-/250+)

Private: 0.9833
RIM-ONE: 0.8132

- - -

ML-4[4] Private(132-/559+) 0.9570 - - -

DL-1[128]
ORIGA(482-/168+)
SCES(1676-/46+)

- - - 0.8310-0.8700

DL-2[7] RIM-ONE(255-/250+) 0.8820 0.8500 0.8980 -

DL-3[43]
ORIGA(482-/168+)
SCES(1676-/46+)

- 0.8478 0.8380 0.9860

DL-4[71] Private (48116) - 0.9560 0.9200 0.9860
DL-5[30] Private (9189-/5633+) - 0.8800 0.9500 0.9100
DL-6[107] Private (1768-/1364+) - - - 0.9650

Table 3.2: Performance comparison of state-of-the-art Glaucoma classification methods (Adapted
from [47].

different performance results, all concluded that models from other problems show competitive

performance when fine-tuned, even if the training data domain is different from the original one.

Although metrics are essential in assessing the effectiveness and usefulness of a method, it is

also crucial to consider the implementation environment and the end-user. The model’s complexity

and interpretability are two critical aspects that need to be taken into account. In the context of

Glaucoma assessment, when implementing a model in a realistic environment, such as a health

institution, the number of computational resources available can limit the model’s performance

and its usefulness. Moreover, for clinicians to make use of that model in a practical context, a

user-friendly and straightforward interface must be provided, as well as explanations that support

the model’s predictions.

Table 3.2 shows the methods considered relevant for the context of this work and their perfor-

mance metrics in classification.
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3.5 Datasets

Table 3.3 gives an overview of the fundus images datasets referenced in several proposed deep

learning models. Overall, there is a low amount of publicly available data compared to the amount

necessary to train a deep learning model for a realistic situation.

Table 3.3: Fundus Image Dataset Information.

Dataset Name Images Usage Availability

ACHIKO-K[141] 258 manually annotated images,

114 Glaucoma, 144 Normal

Glaucoma detection Unavailable

ACRIMA[34] 705 fundus images (396 Glauco-

matous and 309 normal images)

Glaucoma Detection Available Online

CHASE1 28 images Blood vessel segmentation Available Online

DRIONS-DB 110 images, 23.1% Chronic Glau-

coma and 76.9% Eye Hyperten-

sion

Glaucoma Detection Available Online

DRISHTI-GS[112] 101 images Glaucoma Detection Available Online

DRIVE2 40 images, 33 normal and 7 mild

DR

Vessel Segmentation Unavailable

Esperanza 1446 color fundus images Glaucoma Detection Unavailable

HRF3 45 images,15 images each of

healthy, DR, Glaucomatous pa-

tients

Glaucoma Detection Available Online

ORIGA-light[136] 650 retinal images Glaucoma Detection Available Online

iChallenge-GON4 1200 annotated images Glaucoma Detection Available Online

iChallenge-PM5 800 annotated images PPA and Myopia Labels Available Online

RIGA[8] 760 retinal fundus images Glaucoma Detection Available Online

RIM-ONE[44] 783 images OD segmentation Unavailable

SCORM 1584 retina images PPA and Myopia Detection Unavailable

SEED 235 images, 43 Glaucoma and 192

normal

Glaucoma Unavailable

STARE6 400 images, blood vessel annota-

tion on 40 images

Blood vessel segmentation Available Online

Source: [103], [47] and [87]

Below, we present a more detailed description of the datasets used throughout this work:

iChallenge-GON7 This dataset was made available through the REFUGE challenge, an online

competition organized for the MICCAI 2018 conference. The dataset contains 1200 colour

fundus photographs, split into three equally sized subsets for training, validation and testing.

Each of these subsets has the same Glaucoma presence percentage. Annotations for disc,
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cup and fovea were provided, as well as a Glaucoma label. Since this is a competition, only

the train and validation subsets were made publicly available, resulting in 800 images.

ORIGA[136] This dataset was obtained during a population-based study in Singapore (Singapore

Malay Eye Study - SiMES). It consists of 650 retinal fundus images, each one with several

annotations: eye side, CDR, ISNT rule, RNFL, Notch, Disc Haemorrhage, PPA, Glaucoma

label and others. Despite being a public dataset, the dataset is supposed to be obtained

through a request to the authors. Nevertheless, the dataset was obtained through a previous

work [79].

RIM-ONE[44] This is an open retinal fundus image dataset consisting of three different releases:

RIM-ONE r1 Published in 2011, this release is composed of 169 ROI cropped fundus im-

ages, each one with the respective optic disc boundary annotation. These are classified

into four Glaucoma labels (none, early, moderate and deep).

RIM-ONE r2 The second release is composed of 455 ROI cropped fundus images, and

also their respective optic disc boundary and a binary Glaucoma label.

RIM-ONE r3 The third version of the dataset consists of 159 stereo retinal fundus images,

with optic disc and optic cup annotations and a binary Glaucoma label. These stereo

images contain two different photographs of the same eye, taken from slightly different

angles, which allow the experts to create more accurate annotations.

ACRIMA[34] This dataset is composed of 705 ROI cropped fundus images, 396 Glaucomatous

and 309 healthy ones. Most of the images are centred in the optic disc and were annotated

with binary Glaucoma labels.

RIGA[8] This dataset contains 750 retinal fundus images, obtained from three different sources:

Messidor dataset (460 images), Bin Rushed Ophthalmic centre (195 images) and Magrabi

Eye centre (95 images). Six ophthalmologists manually annotated the dataset with the optic

disc and cup boundaries. Unlike most of the publicly available datasets, it does not contain

any Glaucoma labels.

iChallenge-PM8 Similarly to the iChallenge-GON dataset, this one was also made available

through an online competition called PALM-iChallenge. The dataset comprises 1200 reti-

nal fundus images from pathological and non-pathological myopia subjects, annotated with

optic disc boundary, fovea location and lesions boundaries. Each image is labelled with

the degree of myopia: normal image, high myopia or pathological myopia. Although the

subject of the competition is myopia, one of the diseases’ resultant lesion is also common

to Glaucoma: the PPA lesion. For that reason, this dataset is relevant for this work since it

is, to the best of our knowledge, the only PPA annotated dataset available. Since the dataset

was released for a competition, we only have access to the training subset (400 images and

respective annotations).
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3.6 Evaluation Metrics

This section describes the existing evaluation metrics used by researchers to benchmark their mod-

els, and estimating the performance for a given task. For the classification task, AUC and ROC

([42], [34], [47], [104], [70], [18]) are used to understand the model’s capability of distinguishing

between the output classes. Both sensitivity and specificity ([42], [34], [47], [104], [70], [18])

are used as a complementary metric to previous ones in cases of binary output classes. Accuracy

([42], [34], [47], [104], [70], [18]) is a classical evaluation metric for ML models, but can lead to

a biased evaluation if the dataset is highly imbalanced (as happens in the majority of literature).

For that reason, balanced accuracy ([42]) is used to overcome this issue, which averages over sen-

sitivity and specificity. For the OD/OC segmentation part, most approaches use overlap metrics in

order to understand the difference between the estimated structures and the ground truth, such as

the Intersection-over-Union ([42]) and the Dice Index ([126], [73], [58], [18]). Fu et al. [42] also

used pixel-wise sensitivity and specificity metrics.The CDR prediction can also be evaluated by

calculating the error associated using the mean absolute error (MAE) ([73], [18]). Thakur et al.

([120]) also list other metrics that are not commonly used in the most recent literature.

3.7 Limitations and Challenges

Despite the many advancements towards making Glaucoma CAD systems efficient and effective,

there are still some unsolved limitations and challenges. When training a new model, the first prob-

lem researchers find is the low amount of publicly available data, namely retinal fundus images.

It is challenging to acquire clinical data since there is no screening strategy for early Glaucoma

detection. Although some state of the art deep learning approaches can deal with a small dataset,

this does not mean their behaviour in both segmentation and classification would be the same on

large-scale datasets [120]. Having access to a large, well-labelled and balanced dataset would

have a high impact on the performance and generalisation capability of the proposed models [82],

increase data diversity and reduce model bias (due to, e.g. ethnicity/race, diseases severity, imag-

ing protocol variances) [95]. Recent literature publications show that it is possible to use more

sophisticated data augmentation methods to attenuate this limitation, such as transfer learning

techniques [47], digitally generating artificial lesions inserted into normal images, inserting real

lesions to other locations of normal or abnormal images, and generate synthetic data through gen-

erative adversarial networks (GANs) [95]. Nevertheless, even if data is balanced with regards to

Glaucoma, there are few studies related to the impact of other morphological and pathological

conditions (e.g., pathological or high myopia associated changes) in the current state of the art

approaches. Ground truth is another influential factor for DL models since it established by ex-

perts’ professional but subjective opinion. Certain borderline cases might have different diagnoses

depending on the experts’ experience [82].

Another issue is directly related to the features learned by the models, which are somewhat

dependant on the input data. Due to the amount of extracted features and their complexity, not all
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are considered for classification, since they would significantly impact both accuracy and perfor-

mance. Some models are also limited at the start of the workflow when they only receive fundus

images’ ROI, leaving out features that could be relevant for Glaucoma detection [120]. When de-

veloping a Glaucoma CAD system, its deployment should be considered since a single system can

have different practical applications, such as screening, triage, diagnosis or prognosis. Prospective

studies should also be part of the process, since they provide analysis on the cost-effectiveness,

efficiency and accuracy of the DL system in the clinical workflow during development, and ensure

model refinement and quality assurance after deployment. Moreover, patients’ data privacy and se-

curity and ethical and legal issues, are primary concerns for both the development and deployment

of CAD systems.

OD and OC segmentation is the most widely used approach for Glaucoma detection, and

researches face a few difficulties. Here, the immediate challenge is the invisible boundary between

the two structures, which becomes even more challenging to identify when the image has low

contrast. Moreover, fundus images also contain other morphological features, that even if not

considered necessary for the classification task, can difficult the OD and OC segmentation 3.3.1.

For example, the PPA has a boundary with the OD, which results in some segmentation models

considering the PPA as part of the OD. The presence of blood vessels can also lead to more

noisy segmentation results since they overlap with other structures. Nevertheless, these structures

should not be ignored and seen as only barriers for the segmentation task because they can also

be Glaucoma indicators. Consequently, several works suggest that further investigation should be

conducted to correctly segment them and understand their value for the Glaucoma classification

task.

Even though many proposed approaches state to have state-of-the-art performances, standard-

ised Key Performance Indicators (KPIs) for measuring and comparing models are still mostly

nonexistent [103]. In the past few years, some competitions have tried to create a unified frame-

work that allows experts to compare models directly and better understand how and why they

perform differently [87]. However, a lot of work is still needed.

Finally, models are also becoming more complex and challenging to understand. Interpretabil-

ity is a crucial aspect of a DL model’s implementation in a clinical scenario, not only for re-

searchers but also for clinicians. For a clinical scenario, patients, technicians and clinicians must

be familiar with DL-based clinical decision support systems. That way, they will be able to under-

stand them better and accept them in the workflow more readily. Above all, a CAD system must

be a support tool that helps clinicians reach a final diagnosis by removing certain burdens while

providing them with credible and reliable explanations. For a model to be useful in a realistic

scenario, it must be understandable by the people that will interact with it, making the field of

explainable AI a very relevant one to be explored [122].
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3.8 Glaucoma CAD systems on a Real-World Scenario

The ultimate objective of Glaucoma CAD systems is to be implemented in a realistic scenario,

where they can serve as a tool to help clinicians diagnosis process. Some implementations of such

systems have already been deployed in recent years and are available as end-to-end solutions,

either for screening or clinical environments, while others are still undergoing further studies.

Zhao et al. [139] claim to have implemented the first App specially designed for Glaucoma

screening, which can be installed on a smartphone and has shown good detection and classification

accuracy in experiments. When the user uploads a retinal fundus image from the device, the

App returns feedback in 4 parts: CDR analysis, NNR analysis, Glaucoma risk prediction and

doctor’s diagnosis display. The last one requires a professional doctor’s interpretation. There

is a DL model behind the interface that processes the uploaded image and returns its respective

feedback. Firstly, after image enhancement and blood vessel extraction is applied, the OD is

localised, and the fundus image is cropped to obtain the ROI. From the resulting image, both the

OD and OC are segmented by a U-Net network enhanced with concatenating path (CP) and fusion

loss function (FL), trained with the ORIGA dataset. Once the segmentation is complete, both CDR

and ISNT related parameters are obtained, by calculating several morphological features such as

the vertical OD and OC diameter or the ISNT-regions area and thickness. After applying feature

selection methods, the selected features are used as the classifier’s input, an SVM with 10-fold

cross-validation. This classifier outputs the Glaucoma confidence level.

More recently, Martins et al. [79] presented another Glaucoma assessment pipeline, focused

on space and time complexities. The dataset used results from merging different publicly available

datasets (Origa, Drishti-GS, iChallenge, RIM-ONE r3, and RIGA) and applying augmentation

techniques to reduce overfitting (e.g. blur and contrast normalisation). The segmentation task is

performed by two U-shaped networks, based in the MobileNet architectures. One executes joint

segmentation of OD and OC (GFI-SPP- Depth) and the other only segments the OD (GFI-SPP-

Depth-simple). From GFI-SPP- Depth network segmentation, several morphological features re-

lated to the CDR and the ISNT are calculated. After the classification stage, these are shown to

the user, contributing to the classification decision’s interpretability. The GFI-SPP-Depth-simple

network segmentation results are used as input to the classification network (GFI-C), created using

MobileNetV2 feature extractor as a backbone, obtaining a Glaucoma confidence level. Contrary to

the previous commercial solution, this one presents three interpretability measures to the end-user:

intermediate pipeline results, morphological features and model activation maps. This system runs

offline in mobile devices and achieved comparable or better results in both segmentation and clas-

sification tasks.

As for commercial solutions, Retinalize is a screening software that aids experts conduct eye

diseases screening, one of them being Glaucoma. The algorithm behind the system detects signs of

eye diseases through fundus imaging analysis, and can also be used as a clinical decision support

system. The RetinaLize Glaucoma system9 was introduced in May 2018 and the company aimed

9RetinaLize Glaucoma software web page

https://www.retinalyze.com/post/retinalyze-Glaucoma-a-revolution-in-Glaucoma-screening
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to make eye-screening accessible for the general public. This Glaucoma application asses the level

of haemoglobin in the optic disc to measure the Optic Nerve Head (ONH) damage and calculates

a Glaucoma risk index.

Eyenuk was founded in 2010 and studied since then developing a system that can be used for

autonomous detection of several eye diseases. The launched screening system has been exten-

sively validated for diabetic retinopathy, and the Glaucoma application is supposed to be launched

in 2021/2022. The Glaucoma software should enable screening, grading, and reporting for Glau-

coma directly at the point-of-care without the need for a human expert to grade the images. In a

video10 for the Glaucoma 360 event from the Glaucoma Research Foundation, Dr Kaushal Solanki,

the CEO and founder of Eyenuk, lists three ways AI can help healthcare providers: error-checking,

which means verifying the regular work done by experts for possible errors; autonomous, which

automates certain work routines to allow scaling; and superpower, which enable otherwise impos-

sible scenarios. The company’s Glaucoma software framework is divided into these categories:

EyeScreen, a component aimed at error-checking Glaucoma diagnosis; EyeArt, a component for

autonomous eye screening; and EyeMark; a component that executes abnormality analysis and

longitudinal monitoring to produce biomarkers for Glaucoma progression that would be otherwise

unachievable by human experts. Moreover, it is also possible to see the six Glaucomatous signs

that the software uses to detect a possible Glaucoma case.

3.9 Summary

This chapter describes several Glaucoma CAD systems, their limitations and challenges, the ex-

isting commercial solutions, and the known datasets. This literature review concludes that Glau-

coma CAD systems are continually evolving, since new methods are proposed, and older ones

are improved every year. Despite the approaches’ diversity, it is safe to say that DL methods are

up-and-coming and can bring Glaucoma CAD systems one step closer to a real scenario imple-

mentation. Nevertheless, these methods still have many limitations and challenges that must be

addressed, such as the available clinical data or a model’s interpretability.

10Video Link

https://www.youtube.com/watch?v=r1eIwfYp-Bk&ab_channel=Eyenuk%2CInc.


Chapter 4

Literature Review: Generative
Modelling

4.1 Generative Modelling

Discriminative models have been dominant in the Machine Learning field due to their ability to

map a high dimensional input to a class label. On the other hand, generative models are less pop-

ular for two main reasons. Firstly, there is the difficulty of approximating many intractable proba-

bilistic computations that arise in maximum likelihood estimation and related strategies. Secondly,

there is the difficulty of leveraging the benefits of piecewise linear units in the generative context

[48]. In essence, these models learn a probability distribution that resembles the original distri-

bution of a data collection. Both discriminative and generative models use different strategies to

perform the same task, calculating the target variable’s conditional probability. Mathematically

speaking, considering variables X and Y as the independent and target variables respectively, gen-

erative models estimate the distribution given by P(X |Y ) and P(Y ), and are then able to calculate

P(Y |X) using Bayes’ rule shown in Equation 4.1. In some cases, this strategy is more effective

because directly estimating the P(Y |X) can be difficult [46].

P(Y |X) =
P(X |Y )∗P(Y )

P(X)
(4.1)

The following subsections start by describing the more typical generative models: Gaussian

Mixture Models (GMM), Hidden Markov Models (HMM) and Boltzmann Machines (BM). Then

they dive into deep generative models which are more powerful and thus very relevant for this

work: Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs) and Normal-

izing Flows.

31
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4.1.1 Traditional Generative Models

4.1.1.1 Gaussian Mixture Models

In probability theory, a Gaussian distribution, also known as a normal distribution, is a continuous

probability distribution for a real-valued random variable [46]. It is defined by a mean µ and a

standard deviation σ , and is graphically shaped by a bell curve. It is possible to combine several

distributions and create a mixture of N Gaussians by adding a parameter weight π to each of them,

such that the sum of their weights is equal to 1. Equation 4.2 shows how to calculate the likelihood

of observing x in a cluster i, given that δ are cluster i parameters, πi is its weight, and b(x|uk,ρk) is

its Gaussian density. Each distribution can be considered a cluster of data, and each of the weight’s

magnitudes represents the prior probability of finding that same cluster when considering all the

data. Figure 4.1 shows an example of a Gaussian mixture.

P(x|δ ) =
N

∑
k=1

ρib(x|uk,ρk) (4.2)

Figure 4.1: Mixture of three Gaussians [46].

Where π signifies the weight associated to the Gaussian and hence also the probability of the data belonging to the ith
cluster or Gaussian, µ specifies the position of the Gaussian with the mean, ρ signifies the ‘spread’ of the Gaussian
over the overall distribution by the variance.

GMMs are considered a generalization of K-means clustering algorithm. In a 2D space, the

latter can only detect circular-shaped clusters (which are hyper-spheres in a higher-dimensional

space), while GMMs can find oblong-shaped clusters. Nevertheless, it is more accurate to call

GMMs density estimation algorithms, since they learn a formula in the shape of a distribution that

allows new data generation. GMMs have been used for language identification systems, such as

speech recognition [90] and accent recognition [123].
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4.1.1.2 Hidden Markov Models

Hidden Markov Models (HMM) are statistical models widely used to model a system which is

assumed to be a Markov process with unobservable ("hidden") states. These models generate

sequences of states named Markov chains, where each state-transition has a corresponding prob-

ability and is dependant on the transition function of the state of origin. HMMs are a possible

strategy to solve linear problems that involve time series or sequences and have similar traits to

probabilistic non-deterministic finite automata. They also describe a probabilistic distribution over

a non-finite number of possible sequences.

Figure 4.2: Simplified HMM with no initial and final states for the sake of simplicity [46].
Let there be a set of symbols defined by S = S1, S2, S3, S4. The two states that generate the Markov chain are labelled
as I and II. State I generates sequences comprising S1 and S4 more frequently, whereas state II generates sequences
comprising S2 and S3 more frequently (each state’s symbol emission probabilities are stated below the respective
state). All the state-transitions are implemented through arrows with their corresponding probabilities. Finally, the
probability of the observable symbol sequence is the product of state-transition and symbol emission probabilities.

By observing Figure 4.2, we can see a probabilistic automata where each state as a certain

probability of jumping to the next state depending on the residue or symbol emitted. Although we

can see the final sequence, it is impossible to determine the specific Markov Chain that leads to it,

hence the name, Hidden Markov Chains. HMMs have been used in several fields, as for example

speech recognition [66], optical character recognition [6] and biological sequence modelling [39].

4.1.1.3 Boltzmann Machines

Boltzmann Machines (BMs) are undirected networks composed of many nodes linked together via

weighted connections. They represent a class of unsupervised neural networks that generate data

to form a system closely resembling the original one, usually a probability distribution. Nodes are
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divided into hidden and visible ones, where the latter is used as the network’s input and output,

as we can observe in Figure 4.3. By feeding the visible nodes, hidden nodes are fed depending

on their connections’ weight throughout several iterations, which end up feeding back the visible

nodes. A Markov chain is generated at the visible nodes layer, making each iteration a single

Monte Carlo Markov Chain walk.

Figure 4.3: The Boltzmann machine where blue–grey nodes are hidden and maroon nodes are
visible [46].

The most basic BM is simple but hard to work with due to the difficulty of sampling a net-

work where all nodes are connected. For that reason, several BMs variations were proposed.

The first one is Restricted Boltzmann Machines (RBMs) which do not allow visible-visible and

hidden-hidden connections, reducing the network’s complexity. RBMs were applied to collabora-

tive filtering in the field of recommendation systems [99][45] and facial recognition [119]. Deep

Belief Networks (DBNs) are also an extension of RBMs since they are a stack of several RBMs.

However, this approach brings a few training problems, one of them being the "explaining away

"1phenomenon. Some of DBNs applications are in breast cancer classification [3] and voice ac-

tivity detection [135]. Deep Boltzmann Machines (DBMs) are networks where not connections

are undirected, capturing hidden complex underlying features in the data such as speech and ob-

ject recognition. Contrary to DBNs, these models use an approximate inference procedure that
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accelerates learning and has a top-down feedback structure that allows them to deal well with

ambiguous inputs. DBMs have shown success in state-of-the-art 3D model recognition [67], face

modelling [28], etc.

4.1.2 Deep Generative Models

4.1.2.1 Generative Adversarial Networks

Generative Adversarial Networks (GANs) [48] are among the most well-known approaches for

Deep Generative Modelling, being widely used in many fields of study. This method introduces

an innovative internal adversarial training mechanism, composed of two neural networks, a dis-

criminator and a generator, that compete in a minimax game. The generator learns how to create

synthetic images that are as realistic as possible from a data distribution. The discriminator learns

the distinction between a real image and a synthetic one. The generator’s goal is to output synthetic

images that trick the discriminator into considering them as authentic images. In contrast, the dis-

criminator works as a classifier that outputs an image’s probability of being real or fake. A great

practical example of this architecture is the following. Consider the generator as a counterfeiter,

whose purpose is to create fake make, and the discriminator is the police, which must distinguish

legitimate money from counterfeit money. The counterfeit must make money that is as similar as

possible to genuine money to succeed so that the police cannot correctly identify the fake money.

Figure 4.4 shows the most basic GAN architecture, and we can observe that the discriminator’s

output is fed back into both models.

Figure 4.4: Generative Adversarial Networks architecture.

The value function for both players is shown in Equation 4.3, where x represents the real

data, z and pz(z) denote the random noise input and its distribution respectively, E represents

the expectation, G(z) is the generator’s output data, D(x) is the probability of the discriminator

considering x as real data, and D(G(z)) is the probability that the discriminator identifies the

synthetically generated data. Both the discriminator and the generator are trained simultaneously,

and the former tries to maximize the function, while the latter tries to minimize it. Once D(G(z))=

1"Explaining away" occurs when one of the causes of an effect explains the effect entirely, which in turn reduces
the probability of other reasons [46].



36 Literature Review: Generative Modelling

0.5, the discriminator cannot differentiate both distributions, and the model achieves the desired

global optimum solution.

minGmaxDV (D,G) = Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))] (4.3)

Despite their versatility in several applications and proved successes, GANs still present a few

limitations that are not completely surpassed:

• Mode Collapse: GANs need to produce a wide variety of outputs. However, if the generator

produces an especially plausible output or group of outputs, it might start to produce only

that output. As a consequence, if at the same time, the discriminator gets stuck on a local

minimum and is not able to find the best strategy, the generator will keep generating the

same kind of output. Both conditions result in mode collapse, that is, a generator that rotates

through a small group of output and a discriminator that is unable to get out of that "trap".

• Nash Equilibrium: In game theory, Nash Equilibrium refers to a solution of a non-cooperative

game involving two or more players, where none have an incentive to change their strategy

given what other players are doing. Although the original GANs definition stated that the

generator and discriminator are competing until they reach a local minimum, they compete

until the Nash Equilibrium is achieved. The Nash Equilibrium can coincide with a mini-

mum, but it is not guaranteed that it always happens. For that reason, and since GANs are

trained with Gradient Descent, which is designed to find a local minimum, the model might

fail in convergence.

• Model Evaluation: Although there have been several proposals regarding metrics, GANs

are challenging to evaluate due to their complexity. Moreover, since there is a large diver-

sity of GANs applied to very different tasks, it is difficult for researches to find universal

evaluation metrics.

Since Goodfellow et al. [48] proposal, several GANs derived models, and improvement tech-

niques were published to solve the limitations of the original model. Pan et al. [88] published a

survey with the recent progress on GANs and proposed three categories to distinguish different

architectures. Nevertheless, researchers combine various aspects of these variants into a single

network, to remove some limitations that a single variant might have.

• Convolution Based GANs: make use of Convolutional Neural Networks (CNN) to struc-

ture both the generator and the discriminator, having better performance in image feature

extraction when compared to the original GANs that adopted Multi-Layer Perception (MLP)

instead. Radford et al. [93] proposed a Deep Convolutional Generative Adversarial Network

(DCGAN) that replaces the typical fully connected layers of the generator with deconvolu-

tion layers to increase performance in image generation tasks. Other examples are BigGAN

[14], StackGAN [133] and InfoGAN [22].
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• Condition Based GANs: introduce a conditional variable c, which could be additional

labels, text, or other relevant data, that condition the generation process in both generator

and discriminator. This helps solve the Mode Collapse problem described before since it

gives some control to the researcher on the network input, usually a single random noise

vector. StyleGAN [59] is an example of this architecture.

• Autoencoder Based GANs: merge two different generative modelling technique into a joint

architecture, to maintain the advantages of both and remove their limitations. BiGAN [37]

is an example of this architecture.

4.1.2.2 Variational Autoencoders

Before diving into Variational Autoencoders (VAE), it is vital to understand how Autoencoders

(AE) work [46]. As we can observe in Figure 4.5, The basic architecture is comprised of 3 main

components: an encoder; a middle layer z, known as bottleneck layer; and a decoder. The in-

put flows through the encoder, transforming it into a lower dimensionality latent representation

given by Z. The decoder uses that encoded representation to re-regenerate the original input. The

Equation 4.4 represents the mapping function for encoding, where b is the bias, and W is the

vector of weights. The reconstruction error is the distance between the original and synthetic

data and is used as the loss value for improving the network by using backpropagation to adjust

the weights. This results in the encoder having to condensate enough relevant information in the

lower dimensionality representation, to improve the decoder capability of reconstructing the data.

Autoencoders have several uses and are mainly used for compression tasks. They could also be

used in supervised classification situations since the decoder can be replaced by a classifier that

utilizes the encoded features extracted on Z.

Figure 4.5: Autoencoder architecture.

Z = f (WX +b) (4.4)

VAE [62] follow the same process as AE, but instead of mapping the input to a fixed vector,

they map it to a distribution, as we can see in Figure 4.6. This means that the bottleneck Z layer

is replaced by two vectors, one representing the mean µ and the other representing the standard

deviation σ of the distribution. In this case, the decoder starts with a sampled vector layer that
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samples from the previous bottleneck one. Due to this modification, it is no longer possible to use

backpropagation due to the new sampling layer. The reparameterization trick solves this issue by

adding a new parameter ε , which allows us to calculate the sampled vector layer without blocking

backpropagation. This layer is given by Equation 4.5, where ε ∼ Normal(0,1).

Figure 4.6: Variational Autoencoder architecture.

Z = µ +σ � ε (4.5)

It is also necessary to update the original loss function, which results in Equation 4.6. The first

term is still the reconstruction loss, which guarantees that the encoder outputs enough information

to the bottleneck layer, allowing the decoder to reconstruct the original data correctly. The second

term is the regularization loss, given by the KL divergence, ensuring that the generated distribution

does not deviate too much from the Gaussian distribution.

Λ(θ ,φ ;x,z) = Eqφ (z|x)[logpθ (x|z)]−DKL(qφ (z|x)||p(z)) (4.6)

Disentangled Variational Autoencoders [52] are one of the classes of VAE. The basic idea

for disentanglement is to have independent neurons, each one learning a different feature. These

models introduce a new adjustable hyperparameter β to the loss function that influences the latent

channel capacity and independence constraints with reconstruction accuracy. In other words, this

would make the model use a specific latent variable only if it benefits the training. Otherwise,

the latent variable would remain equal to the initial distribution. Moreover, it is possible to eval-

uate how manual changes on latent variables are reflected in the network output by adopting a

disentanglement strategy. This aspect can be investigated from an interpretability perspective.

4.1.2.3 Normalizing Flows

Normalizing Flows (NF) [96] are a technique used in ML that builds complex probability dis-

tributions from simple ones. They have been applied in generative modelling since they have

appropriate properties for this scenario, as will be described below. As we can see from Fig-

ure 4.7, these models start with a simple probability distribution, for example, a Gaussian, which



4.1 Generative Modelling 39

flows through a sequence of invertible and differentiable transformation to create a more complex

one.

Figure 4.7: Normalizing Flow architecture.

From a formal perspective, consider a continuous random variable z that follows a distribution

pθ (z) according to a Gaussian distribution (N(0,1)), and a function f such that a new random

variable x = f (z). Then, fθ (z) represents a sequence of N invertible (bijective) transformations,

like the one in Equation 4.7, which make the overall transformation also invertible. It is possible

to compute the probability density function of the random variable x according to Equation 4.8,

using the change of variables formula, where the second term is the magnitude of the Jacobian of

f−1. The equation can be simplified to Equation 4.9 by replacing the invertible function by z, and

it is easier to understand that the equation maps x to its inverse z, evaluating the magnitude of z

over its distribution and multiplying it by some scalar magnitude. The magnitude of the Jacobian

shows how the distribution expands and contracts along with the transformations.

f = f1 ◦ ...◦ fN−1 ◦ fN (4.7)

pθ (x) = pθ ( f−1(x))|det(
δ f−1(x)

δx
)| (4.8)

pθ (x) = pθ (z)|det(
δ z
δx

)| (4.9)

In the generative modelling context, the function f−1, which will be referred to as g, is con-

sidered a generator, since it moves from a simple base density pθ to a final complicated one. To

generate a new data point x′, one can sample a value from the base distribution of z, and apply the

generator: x= g(z). Contrary to the generative direction, we have the normalizing direction, which
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moves from a complex distribution to a simpler one through the function f , both represented in

Figure 4.7.

In general, NF should at least satisfy the following three conditions to ensure they are practical

to work with:

• Be invertible: This allows researchers to use both the normalizing direction to compute the

likelihood and the generative direction to sample and generate data;

• Be expressive: This ensures that the model can transform the simple distribution and ap-

proximate it as much as possible to the original one;

• Be computationally efficient: This is important for both computing f and g, but also crucial

when calculating the determinant of the Jacobian.

The two most widely used NF architectures are Coupling and Autoregressive flows, which

have their popularity due to their architecture, allowing invertible non-linear transformations. An

overview of these and other variations is given in the list below [63]:

• Elementwise Flows: apply non-linear elementwise transformations, which means that each

element in the flow is independently processed. They do not take into account possible

correlations between elements;

• Linear Flows: apply linear transformations to a combination of variables, but have due to

that linear restriction, they have limited representational power;

• Planar and Radial Flows: apply non-linear transformations but are not widely used in

practice, since their inverses are hard to compute;

• Coupling Flows and Autoregressive Flows: use coupling functions has buildings blocks

and have high expressive power;

• Residual Flows: use invertible residual networks that try to discretize the continuous dy-

namical system;

• Infinitesimal Flows: contrary to the residual flows, these flows try to learn the continuous

dynamical system in two ways: infinitesimal, which comes from ordinary differential equa-

tions (ODE) and continuous, which comes from stochastic differential equations (SDE).

Glow [61] is a recent work that proposes a new flow built on the NICE [35] and RealNVP [36]

flows. The models adopt a multi-scale architecture. Each step of flow consists of an actnorm layer,

which increases performance for large images; an invertible 1 x 1 convolution layer; and a coupling

layer. The authors concluded that these last two aspects contributed to a faster model convergence

and a lower negative log-likelihood during the evaluation. Compared to its precursors, Glow is also

stated to be the first likelihood-based model that can efficiently generate high-resolution natural

images, such as human faces.
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Lugmayr et al. [76] applies flows to the super-resolution problem and proposes SRFlow, a

network capable of accurately learning the distribution of realistic high-resolution images from

low-resolution ones. Besides presenting the state-of-the-art super-resolution quality, the model is

can also be used for image denoising and restoration. The authors also developed techniques for

image manipulation and editing and evaluated the approach with perceptual and reconstruction-

based metrics.

4.1.2.4 Generative Modelling Techniques Comparison

From the previous sections, one can conclude that generative modelling has very diverse tech-

niques, each with specific advantages and disadvantages, that make them more suitable for par-

ticular situations and individual goals. On a higher level, both traditional and deep generative

modelling techniques are useful on different occasions. Although one might be tempted to use

DL approaches’ latest fashion, that is not always the best and most efficient solutions. Both cate-

gories should remain relevant depending on the context where they are used. Nevertheless, deep

generative modelling techniques are the ones that have a more significant potential of showing

greater results when used in contexts of complex input data, since they have the mechanisms and

computational power needed to deal with higher dimensionality feature spaces (such as images),

and also higher amounts of data. Although more powerful, the technique complexity brings is-

sues regarding the understanding of those same models. In a realistic situation, it is not enough

to provide useful quantitative and qualitative evaluation metrics; it is also necessary to give the

reasoning behind model predictions. This is crucial when models are applied in critical contexts,

such as the healthcare field.

Nevertheless, deep generative modelling approaches seem to hold the most potential in the

context of retinal fundus images, since it involves high-resolution retinal images, that contain

complex and delicate structures, essential for the models’ performance. From this premise, the

three previously presented deep generative modelling techniques are further compared below.

Starting with the most widely researched of the three techniques, GAN bring several advan-

tages to the table. Adversarial training applied in GAN is very useful because it means the net-

work can model the underlying distribution of plausible images only from training data without

manually interacting with complex parameters. Moreover, GAN are the technique that generally

produces the best quality images, being less blurry when compared to others. GAN also have

probably the most considerable amount of published literature work, which resulted in many im-

provements compared to their initial version. With all the new variations, it is possible to generate

images with even higher quality and have more stable training. However, GAN are prone to suffer

from the mode collapse in certain situations and relying on the discovery of the Nash Equilib-

rium to reach convergence is harder than minimizing a typical objective function. Isola et al. [55]

also showed that for image-to-image tasks, the generator ignores the random vector given as net-

work input, which signifies that GAN mappings are deterministic. Moreover, explainability and

interpretability are not of this technique’s strengths, and density can only be estimated implicitly.
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On the other hand, VAE allows explicit density estimation, and the latent representation can

be precisely controlled to fit a specific context. Furthermore, this technique can achieve a high

value for the data likelihood and for that value to be very similar to the true posterior distribution.

Compared to GAN, VAE have the likelihood lower bound, which can be used as a measurable

objective during the model training. Despite all the pros, VAE are not able to produce images with

the level of quality of GAN images, and even with a high likelihood value, images are not guaran-

teed to be realistic. Another limitation imposed by VAE is the posterior distribution modelling. It

is limited from the beginning to some specific distribution, which might not be similar to the true

data distribution.

Normalizing Flows are the most recent technique applied to generative modelling from all

three and have received little attention than the previous methods. Nevertheless, it has shown

remarkable results, some even more promising than state-of-the-art GAN or VAE [76]. If we con-

sider the case of conditional generation, Normalizing Flows are more stable than their equivalent

CGAN. Zhu et al. [140] proposed CycleGAN having to carefully tune the eight loss function

terms and balance the generator and discriminant. Normalizing flows only have a single network

and a single loss, simplifying the hyperparameter tuning and the training. Furthermore, as shown

in [76], the output in flows is usually more consistent with the input than in GANs, due mainly

to the later unsupervised loss that encourages image hallucination. Flows are also the only tech-

nique from the three that allow explicit tractable density since a bijective function defines each

transformation. This is very relevant to understand how the network models the distribution.

As for evaluating generated images, independently of the technique used, visual inspection is

one of the immediate evaluation techniques used. Even if a human observes a sharp image and

considers it as visually "realistic", it does not mean the model does a good job generating realistic

images in the training data context. For example, let’s consider a model trained on a dataset of

trees and houses. If the model ends up only generating images with trees and with no houses, but

with high quality and that "look" realistic, the human evaluator would not be able to identify that

issue if he was not aware of the training data. For that reason, it is essential to invest not only in

higher-quality generated images but also in new ways of unbiasedly evaluating models.

Finally, combining these techniques to eliminate one or more limitations of using a single

approach is possible. BiGAN [37] are an example where VAE were combined with GAN. This

work also shows that it is possible to improve VAE using Normalizing Flows [118].

4.1.2.5 Deep Generative Modelling for Retinal Imaging

CAD systems in the healthcare field have progressed a lot in the past decade, mainly due to their

potential to help clinicians detect or diagnose diseases. Medical image interpretation is one of

these systems’ uses, which is very relevant in Ophthalmology. In this area, state-of-the-art tech-

niques revolve around DL architectures, which have achieved acceptable performance levels in

several tasks, such as retinal imaging segmentation and eye diseases classification. However,

these models require large, diverse and high-quality datasets that help training them and play an

essential role in the approaches’ validation. Specific pathologies have a relatively low prevalence,
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reflecting in the datasets as a class imbalance. Moreover, since we are dealing with real patient

data, legal and privacy limitations need to be considered when designing such models.

Generative Modelling, and more specifically Deep Generative Modelling, is one of the most

recent and innovative solutions that has shown success in several fields, including in retinal imag-

ing in Ophthalmology. Due to their popularity, GANs and their derivations are the most common

architecture in retinal imaging synthesis literature. Still, a few approaches also include VAE mod-

ules that improve overall performance. Despite being a challenging task due to the complexity

of the eye’s anatomy, these approaches have provided valuable and consistent results in image

synthesis [11, 31, 132, 138], segmentation [105, 115, 77, 111, 49, 137] and super-resolution [77]

tasks.

Costa et al. [32] approach involved using pairs of real vessel networks and their correspond-

ing retinal fundus images to train a model so that it could learn how to generate new data from

a given vessel network. The model employed a GAN, which combined the adversarial loss with

a global L1 to produce sharper results and was trained with 614 pairs of images from the MES-

SIDOR dataset. They used a general U-net architecture to segment the vessel networks from

those images, trained with images from the DRIVE dataset. Image quality was evaluated using

Qv score, focused on the contrast around vessel pixels, and Image Structure Clustering (ISC) met-

rics, focused on a global evaluation. Costa et al. [31] proposed a follow-up work that removed

the model’s dependence on the vessel network availability. This was achieved by implement-

ing an Adversarial Autoencoder (AEE), which would learn a distribution representing the vessel

networks by sampling it into a multi-variate Gaussian distribution. This allowed creating an end-

to-end system composed of an AAE and the previously created GAN that would generate the

vessel networks and use them to generate a retinal image. Both models were trained jointly. To

evaluate the synthetic images, besides using metrics to look into their quality, they were also used

to prepare the AEE for the segmentation task. If trained with only synthetic images, the model

showed a slight decrease in performance relative to a real image trained. When trained with both

natural and artificial images, the model’s performance decreased considerably.

Guibas et al. [49] also proposed a two-stage pipeline, which generated retinal networks from

noise using a DCGAN architecture, and then created colour fundus images using a Conditional

GAN (cGAN). The first GAN was trained using the DRIVE dataset, while the second one was

trained using images from the MESSIDOR dataset. A U-net segmentation network was trained

with that same data and evaluated synthetic images reliability using F1 score on images from the

DRIVE dataset. Variability between the original images and synthetic ones was assessed using a

Kullback-Leibler (KL) divergence score.

Beers at al. [11] applied Progressive Growing GAN (PGGAN) to the retinal imaging syn-

thesis task, more specifically images associated with retinopathy of prematurity. Initial training

resulted in low-resolution images (4 x 4 pixels) that progressed into 512 x 512 pixel images. The

network employed the Wasserstein loss. Segmentation maps were also used as network input, and

they enhanced the final images detail level. Vessels quality was evaluated using a segmentation

technique trained on reading images. The image variability was also assessed through a network
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that encoded the synthetic images to predict a latent vector for each image, enabling latent space

evaluation while interpolating between images.

Zhao et al. [138] proposed a network called Tub-sGAN that can synthesize several realistic-

looking retinal images from the same vessel network. This model can learn from a minimal set

of images, 10-20; hence the authors trained it with 20 DRIVE images, 10 STARE images and 22

HRF images, resized to fit the network and improve performance. The generator is built using an

encoder-decoder strategy paired with U-net style skip connections, which inherently introduces

a noise code and allows the model to retain the main vessels structure. The authors also added

image style transfer to the network by adding another training input, which conditions the resultant

image to a "particular style". Consequently, the model’s loss was based on the style, content and

total variation loss. The network was extensively evaluated using Patch-based CNN baseline and

DRIU baseline segmentation methods, and the authors state that 90% of the generated images are

realistic. The same authors also published another work [137] that was specifically focused on

generating retinal images suited for the segmentation task.

Iqbal et al. [54] proposed another GAN architecture called MI-GAN, which generated both

medical images and the respective segmented masks. Similarly to Zhao et al. [138], the authors

applied a style transfer variant. The models were trained using the DRIVE and STARE datasets.

The generator convergence and overall training time were reduced by updating it twice as much

as the discriminator.

Yu et al. [132] proposed a new preprocessing pipeline named multiple-channels-multiple-

landmarks (MCML), which improves image synthesis by combining vessel network, optic disc

and optic cup images. The performance was evaluated by comparing it to a single vessel mask in-

put on the DRIVE and DRISHTI-GS datasets, implementing several Pix2Pix and Cycle-GAN

architectures. The authors concluded that the Pix2Pix based model with ResU-net generator

achieved superior performance compared to other GAN, and it can synthesize realistic fundus

images. Moreover, the MCML preprocessing pipeline also seems promising in the context of

Glaucoma CAD systems.

Diaz-Pinto et al. [33] investigated retinal image synthesis applied to Glaucoma assessment

based on DCGAN. 86926 images were merged from fourteen public datasets, not all annotated for

the Glaucoma classification task. All the images were cropped around the optic disc since that is

the ROI most relevant for Glaucoma assessment. Besides a DCGAN, the authors also trained an

SS-GAN based on recommendations from another source [29]. For both quantitive and qualitative

evaluation, a new dataset was created, composed of 100 synthetic images from the DCGAN, 100

synthetic images from the SS-DCGAN, 100 images from a state-of-the-art method [31]. Real and

artificial images were compared with t-SNE to evaluate the feature differences, pixel proportion

of vessels, optic disc and background, and Mean-Squared-Error (MSE) comparison. The authors

concluded that SS-GAN shows lower performance than the DCGAN for the image synthesis task,

but they still evaluated the discriminator for the Glaucoma assessment task.
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4.2 Semantic Image Editing

Semantic image synthesis and manipulation is a popular research topic in ML and Computer

Vision. Recent advances in generative modelling led to the creation of power image editing tools.

The image-to-image translation problem is one of the sub-fields of this topic. It consists of having

a set of source images, like horses, and a set of target images, like zebras, but they are not explicitly

paired with one another in the training set. The goal here is to translate one possible representation

of an image to another, given sufficient training data.

Qiu et al. [91] explored the impact of semantic manipulation on Deep Neural Networks (DNN)

predictions by generating "unrestricted adversarial examples". The authors proposed Semanti-

cAdv algorithm that utilizes disentangled semantic factors to generate adversarial perturbation,

that induces the learner towards "adversarial" targets. These perturbations are more controlled

since semantic attributes guide them. The experiments involved testing the method in the face

recognition and street-view images domains. Regarding the former, targeted attacks at real-world

face verification services were performed, showing a high success rate.

Isola et al. [55] investigated the use of Conditional GAN (CGAN) to solve the image-to-image

translation problem. This is a condition-based generative model, with a "U-Net" based architecture

for the generator, and a convolutional PatchGAN classifier for the discriminator. The approach was

evaluated in different experiments in various tasks and datasets, to test how widely applicable it

would be. Results show that this is a promising approach for various image-to-image translation

tasks, especially those involving highly structured graphical outputs. However, this approach has

a considerable limitation: it requires paired training data between the source and target domains,

which is very rare and hard to get.

Cycle Consistency appears as a solution that can enable Unpaired Image-to-Image translation

techniques. It is based on the idea of using transitivity as a way to regularize structured data, and it

has been used for many decades in other situations, such as visual tracking or language translation.

Practically speaking, cycle consistency involves going back and forward between domains to force

consistency when moving from one to another.

Zhang et al. [134] proposed a network called HarmonicGAN that learns bi-directional trans-

lations between the source and the target domains. The goal is to use similarity-consistency to

have inherently consistent samples, in a similar setting to CycleGAN. The algorithm behaves har-

monically along with the circularity and adversarial constraints to learn dual translation between

domains, resulting in improved CycleGAN due to better transformation consistency.

Zhu et al. [140] also investigated the unpaired image-to-image translation problem using cycle

consistency. Still, their proposal was not task-specific, nor demanded the input and output to

lie on the same low-dimensional space. The proposed algorithm is compared with paired and

unpaired image-to-image translation state-of-the-art approaches and obtains better classification

performance in various applications.

Contrastive Learning is an alternative approach to Cycle Consistency, which does not rely

on going back and forwards between the source and target image. Instead, it uses image patches
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from the entire dataset as positive or negative patches. It applies patchwise comparisons to ensure

that the patches from different images on the same location are similar to one another but different

from the others.

Park et al. [89] proposed a method that uses contrastive learning to encourage two elements

(corresponding patches) to map a similar point in a learned feature space. Patches are compared

by comparing the different resolution of the feature maps as they are processed by the generator’s

encoder, using a patch noise contrastive estimation (PatchNCE) loss.

Chen et al. [23] present SimCLR is an algorithm that uses contrastive self-supervised to lever-

age unlabeled datasets for representation learning. Self-supervised learning is a subtype of un-

supervised learning based on the idea of creating a supervised learning task automatically from

unlabelled data. According to contrastive learning, SimCLR compares the differences between

positive and negative pairs. The positive pairs are generated through Composition of Data Aug-

mentation. This technique chooses the adequate traditional augmentation techniques to apply to an

image, while negative pairs are the dataset’s remaining images. This method outperformed other

unsupervised learning methods and even reached ResNet50 supervised learning level performance

when scaled up four times.

4.3 Summary

This chapter shows state-of-the-art Generative Modelling, focusing on Deep Generative Modelling

approaches relevant to this dissertation’s work due to their potential with image data. Semantic

Image Editing techniques were also described, and there are very promising approaches that fit

this dissertation work.



Chapter 5

Literature Review: Explainability and
Interpretability in Machine Learning

This chapter describes the current status of Explainability and Interpretability in Machine Learn-

ing, paired with a state-of-the-art research about approaches relevant to this dissertation. Sec-

tion 5.1 gives an overview of the Explainable AI (XAI) field. Section 5.2 lists the different lit-

erature taxonomies to classify Interpretability approaches, while Section 5.3 lists a few of the

existing interpretability evaluation metrics. Section 5.4 describes the state-of-the-art interpretabil-

ity techniques, with a highlight for Case-based reasoning approaches in the context of this world.

Section 5.5 discusses the idea of a Glaucoma CAD system with Explainable Decisions.

5.1 Overview

Machine Learning (ML) is becoming more prevalent in society, not only for research purposes but

also for real scenario applications. Significantly, Deep Learning (DL) methods are gaining ground

due to increased computational power and available data collections. Not only do these systems

show better results, but theyhave also grown in complexity. In a few fields, failure is considered

critical, since it can lead to catastrophic consequences [38], such as in the healthcare industry.

Despite ML systems’ current success, other questions have grabbed researchers’ attention, one

of them being the interpretability and explainability of these systems. Questions like "who is

accountable if things fail?" and "How can we explain why something went wrong?" still don’t

have a sure answer. For that reason, the topic of Explainable Artificial Intelligence emerged as a

new field of study and has become one of the hotspots in the research community.

The first necessary step that needs to be addressed is the notion of concepts around explainable

artificial intelligence. Firstly, "explainability" and "interpretability" are two core terms that do not

have an agreed-upon meaning, and are used interchangeably across the literature. Nevertheless,

they are tied concepts: "interpretable systems are explainable if their operations can be understood
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by humans" [16]. Doshi-Velez et al. [38] defined interpretability as "the ability to explain or

to present in understandable terms to a human". Miller et al. [80] defines it as "the degree to

which an observer can understand the cause of a decision". One could also try and use other

concepts such as "transparency" or "accountability" to define the previous ones, but then those

would have to be defined in the context of ML as well. For that reason, it is relatively safe to

assume that interpretability is related to the perception human have over some information and

how they reason about it. Moreover, interpretability is also not a "quantifiable" metric, as common

performance measures such as accuracy are. Other auxiliary criteria [38] also depend on the notion

of interpretability to be evaluated:

• Fairness/Unbiasedness: Ensure there is no explicit or implicit discrimination against cer-

tain groups;

• Privacy: Ensure that the methods protect any sensitive information in the data;

• Reliability and Robustness: Ensure that algorithms can have a satisfiable performance with

perturbation in parameters or inputs;

• Causality: Ensure that a certain perturbation leads to a certain output in the real system;

• Usability: Ensure methods provide information that aid users to accomplish a given task;

• Trust: Ensure systems have the confidence of human users that interact with them.

A question that could be asked is "Why interpretability?", "Where does the necessity for inter-

pretability come from?". Doshi-Velez et al. [38] start by stating that explanations are not necessary

in every scenario, for one of two reasons: (1) a system does not have significant consequences in

case of unacceptable results or (2) the problem is well-studied and validated in real scenarios, and

the decisions made are trusted even if the system is imperfect. On the other hand, the authors

also argue that interpretability necessity comes from incompleteness in the problem formalisation,

which either blocks further optimisation or evaluation of a system. One should not confuse incom-

pleteness with uncertainty though: "the fused estimate of a missile location may be uncertain, but

such uncertainty can be rigorously quantified and formally reasoned about". Explanations are an

interpretation tool that allows us to understand the gaps in problem formalisation, ensuring they

are visible.

CAD systems’ interpretability is of major interest in the healthcare field due to a clinical

diagnosis’s critical nature. A system must be transparent, understandable and explainable to gain

clinical experts, regulators and even patients. A new barrier was recently imposed on the typical

"black-box" models: the new regulations like the European General Data Protection Regulation

(GDPR), which requires a system to have re-traceable decisions. [109].
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5.2 Taxonomy of Interpretability approaches

Several taxonomies have been proposed to classify interpretability methods, using different criteria

[16, 109]. Not only are non of these criteria absolute, but also can lead to an overlapping or non-

overlapping classification of specific methods.

5.2.1 Model-specific vs. Model-agnostic

Model-specific interpretability involves methods built for a specific model because they use par-

ticular parameters on the model. Model-agnostic interpretability is applied in a post-hoc manner.

Its use is not restricted to one specific model architecture, relying on such a model’s input and

output.

5.2.2 Global Methods vs Local Methods

Global methods are focused on understanding the overall model’s knowledge, its training and the

data. On the other hand, local methods are specific for a single outcome of the model and explain

a particular prediction.

5.2.3 Pre-model vs In-model vs Post-model

Pre-model interpretability techniques are only applicable to the data collection, thus being model-

independent. This mode is focused on analysing the available data to understand fundamental

properties that can be relevant in the future model choice.

In-model interpretability is closely related to intrinsic interpretability. This refers to models

that inherently provide explanations for their decisions, without the need of an external method or

tool to interpret them.

Post-model interpretability is applied after building the model, similar to the Post-Hoc meth-

ods. In this case, the methods used are external to the model and improve it by providing explana-

tions.

5.2.4 Intrinsic vs Post-hoc

Intrinsic interpretability refers to inherently interpretable models; that is, they explain their de-

cision by themselves. One could say that the explanations presented are a consequence of the

model’s learning and help answer "how a model works". On the other hand, Post-hoc interpretabil-

ity involves explanations generated outside of the model, usually by a model specifically designed

for that effect. These explanations result from a "replication" of the original model’s behaviour.
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5.3 Interpretability Evaluation

As we could see from the previous sections, there are no mathematical definitions for interpretabil-

ity, neither absolute criteria to categorise its methods. Consequently, there is no uniform frame-

work to evaluate such methods and compare them fairly to each other. Nevertheless, some works

try to list useful metrics to measure and evaluate the current ML systems’ "interpretability level".

Doshi-Velez et al. [38] proposed a framework that splits interpretability evaluation into three

distinct levels:

• Application-grounded evaluation: implicates conducting user experiments within a real

application. Evaluating a system on-site is probably the best way to ensure it works accord-

ing to expectations and provides useful input to the domain expert involved, regarding the

intended task;

• Human-grounded evaluation: involves conducting simpler user experiments that maintain

the essence of the real application. This evaluation model is handy when the target scenario

entails challenging evaluation conditions. Moreover, domain expertise is not needed, which

means the candidate tester population is broader than the previous point.

• Functionally-grounded evaluation: does not require human experiments. It is executed

using a formal definition of interpretability as a proxy for explanation quality. It is most

appropriate for systems that are still under development, or end-user experiments are uneth-

ical.

5.4 Interpretability Techniques

Several surveys in the literature summarise ML interpretability techniques, each using a different

or several taxonomies to classify them. The approach used to highlight these techniques is also

varied. Tjoa and Guan et al. [122] provide a more technical overview of each existing method.

Stiglic et al. [117] use the global vs local and specific vs agnostic taxonomies to distinguish several

techniques and then presents their usage in the healthcare context. Singh et al. [109] also reviews

these techniques and goes even further when describing their real-world applications, giving spe-

cific examples of each one. Section 5.4.1 provides an overview of more generic interpretability

techniques, and Section 5.4.2 explains case-based reasoning approaches.

5.4.1 Overview

Elshawi et al. [40] proposed four quantitative indicators for measuring the quality of explanations

in various interpretability techniques, that can be used as a unified quantitative measure frame-

work: similarity, bias detection, execution time and trust. To evaluate these indicators, six popular

local model agnostic interpretability techniques were employed: LIME, Anchors, SHAP, LORE,



5.4 Interpretability Techniques 51

ILIME and MAPLE. Moreover, three other axioms were used to relate an instance to its corre-

sponding explanation: identity, stability and separability. Definitions for these concepts can be

found in the published paper and an overview of each technique. The experiments involved two

types of datasets, tabular and text datasets, divided into different experiments according to the

data domain. The results showed no particular technique that achieves the best performance in all

the metrics across all datasets. For that reason, the authors conclude that it is essential to specify

the focus of each evaluation metric and to understand its strengths and weaknesses on different

scenarios.

Selvaraju et al. [102] proposed a method to localise input regions relevant to model predic-

tions, Gradient-weighted Class Activation Mapping (Grad-CAM), which produces visual expla-

nations. These explanations result from the combination of the localisation technique’s output and

high-resolution visualisations. The results were compared with Guided Backpropagation, which

could also be combined with the proposed technique to improve the method. The experiments also

involved testing the technique’s ability the help investigate and explain classification mistakes.

Smilkov et al. [113] proposed Smooth Class Activation Mapping (SmoothGRAD), a method

based on gradient interpretation that improved gradient-based sensitivity maps sharpness. This

technique is beneficial in image classification systems, where sensitivity maps are regularly used

to identify the image regions that were the most influential to the final classification [102]. The

authors present two complementary strategies that can improve these maps: the first one is averag-

ing maps made from small perturbation of a particular image, followed by a new training on data

perturbed with random noise. The results were promising and also suggested other avenues for

future research, such as investigating the reasoning behind noisy gradients or methods to create

systems with smoother class score functions.

Chen et al. [23] introduced Concept Whitening (CW), a mechanism that alters a given layer

to force latent space disentanglement, which is useful at the bottleneck layer of a network. This

method falls under the intrinsic interpretability category and does not hurt the predictive perfor-

mance of the model. The CW module can be applied to any layer in a CNN to align the latent

space axes with interest concepts. This allows researchers to understand how the model gradually

learns those concepts along several layers. The authors also conducted a quantitative evaluation

of the resulting concept axes and compared them to other concept-based NN methods. The adop-

tion of CW resulted in a higher value of concept purity than other posthoc methods, which means

it provided better latent space disentanglement, and consequently can improve practical insights

executed on the network.

Schutte et al. [100] highlighted that the popular heatmaps or sensitivity maps are a limited

explanation method since they provide the location of predictive features without explaining how

they contribute to it. They presented a new method that can be applied to any "black-box" model

with image data, showing how a particular image can be modified to produce different predictions.

Like the StyleGAN architecture, this technique identifies the optimal direction in the latent space

that can create a change in the prediction, enabling more powerful explanations than the ones

provided by typical heatmaps like Grad-CAM [102]. The authors developed a StyleGAN that
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generates small synthetic transformations in the original images, which allows the user to observe

the possible progression towards a different outcome. Besides building clinicians’ trust in the

model’s predictions, the method can discover new relevant bio-markers and even reveal potential

biases.

5.4.2 Case-based Reasoning Approaches

Case-based Reasoning (CBR) systems provide explanations from previous examples or cases us-

ing a retrieval, reuse, revise and re-train cycle [64]. The simplest implementation of this strategy

starts with a query-case, which is the data entry that will be classified, which is used by the re-

trieval step to match features from other cases using an ML algorithm like k-nearest-neighbor

(k-NN). These retrieved cases can be used as similar examples, which are from the same class

as the query-case and have similar features, or counterfactual examples (also counterexamples),

which are from a different class of the query-case but have enough distinct features not to be con-

sidered of the same class as the query-case. CBR is claimed to have "natural" transparency since

its reasoning is similar to a human expert since it is frequent to use past cases to understand new

ones.

Keane and Smyth et al. [60] proposed an approach focused on counterfactual cases generation,

exploring the ideas of counterfactual potential and explanatory coverage of a case-base. Authors

claim that counterfactual explanation is intuitively more explanatory that the popular factual one,

and supports this affirmation with works from fields outside of XAI such as Psychology. The

technique identifies useful candidate counterfactuals and reuses their patterns to generate even

better counterfactuals adapted to the original query-case, which helps deal with challenge like

conterfactual sparsity and plausibility.

More recent approaches do not limit themselves to the direct feature comparison. Prototypes

are a concept that can also be used as an explanation tool. Li et al. [69] proposed an architec-

ture that contained an autoencoder and a particular prototype layer, which stores a weight vector

that serves as an encoded version of the input. The encoder is used for comparisons within the

latent space while the decoder is used to evaluate the learned prototypes. The training objective

encourages both prototypes and encoded inputs to be similar. Since the prototypes are learned

during training, the final explanations result from the natural learning process and are therefore

faithful to the network computations. Experiments showed that prototypes are very useful because

they give essential insight into the network decision process, the relationship between different

outcome classes, and in the learned latent space.

Ming et al. [81] also presented a model with natural explanations derived from CBR called

ProSeNet, aimed explicitly at sequential data. The prediction is obtained by comparing the in-

puts and prototypes, enabling the model to provide interpretable representations. Similar to the

previous work, ProSeNet architecture comprises three parts, the recurrent sequence encoder net-

work, the prototype layer and two more layers (fully connected and softmax layer) to output the

probabilities in the multi-class classification task. The significant difference is on the prototype in-

terpretation since instead of using a decoder, this network has a projection step which ensures that
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the prototypes are meaningful. Moreover, the network and the prototypes can be refined by domain

experts if they find the need to, without being necessary to have any underlying model knowledge.

The experimental evaluation consisted of four case studies, each one with a real-world sequence

dataset from a different domain. These experiments confirm the prototypes’ reliability quantita-

tively, and user experiments show that they provide understandable and accurate prototypes for

predictive explanations.

Chen et al. [20] also proposed a network similar to the previous ones called prototypical

part network (ProtoPNet), which finds prototypical image parts and combines evidence to reach

a classification outcome. The method was tested in two domains, bird species and car model

identification, not sequential type datasets as the previous network. The authors claim that this

network provides a level of interpretability that surpasses other interpretable deep models and

compares with other baseline models trained with the same augmented dataset of cropped bird

species images to ensure fairness.

5.5 Towards Glaucoma CAD Systems with Explainable Decisions

From Chapter 3, one can conclude that Glaucoma CAD systems have progressed throughout the

last decade, and can achieve remarkable performance results by applying state-of-the-art ML tech-

niques. However, there have not been many advances concerning those same systems’ explain-

ability, which are crucial for deploying such systems in realistic scenarios. We consider that one

of the ways a model can become more "explainable" is by providing explainable decisions that

can be understood by clinical experts and help them in the Glaucoma diagnosis. The question

that could be asked is, what are the requirements for Glaucoma CAD systems to have explainable

decisions?

There are very few works that are solely focused on exploring explainability in Glaucoma

CAD systems. Chang et al. [19] proposed an adversarial explanation based method to explain

the reasoning behind the "black-box" model, applied to Glaucoma detection, along with critical

morphological features such as Cup to Disc Ratio (CDR), disc rim narrowing (DRN) and Reti-

nal Nerve Fiber Layer (RNFL). This was achieved by generating Adversarial Example (AE) that

would remove (negative AE) or add (positive AE) pathologic features to explain the model’s de-

cision. Gradient-weight class activation mapping was also provided using GradCAM but offered

low levels of explainability for normal images. On the other hand, the generated AE provided

logic explanations for both pathological and normal images. The method output was evaluated

by specialists from a location and rationale explainability perspective, whose reviews showed that

the explanations provided were successful for the aspects mentioned above (Glaucoma, CDR and

DRN). This work shows the potential of Adversarial Explanations and shows that they can be

applied for Glaucoma CAD systems.

Oh et al. [86] proposed a machine learning model for Glaucoma prediction, which also pro-

vides explanations for individual predictions. Firstly, 22 clinical features from several examina-

tions were collected from a group of patients. These feature were filtered through the chi-square
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feature selection measure and a combination test, which resulted in the 5 final features that were

going to used on the prediction model. The authors tested several algorithms for the model, from

which XGBoost showed the best performance with regards to AUC, Sensitivity and Specificity.

Furthermore, three graphical charts (gauge, radar and SHAP charts) were suggested to explain the

model’s predictions. These tools provide an insight on the model’s prediction and help understand

that each feature contributes differently towards a prediction. Authors also claim that since fea-

tures are not completly independent, they cooperate with each other, creating and interaction that

affects the final prediction.

As we could see from Section 3.8, a few systems that have undergone a lot of testing and have

been fully launched for commercial use (or are going to do so soon). These systems also address

the explainability issue and are adapted for specific uses. These cases prove that it is possible to

create such systems and make them accessible to the health care industry. The Eyenuk solution

seemed to be one of the most promising in eye disease CAD systems so far, and their three-part

CAD(x) system shows how AI can be used to help clinicians in the healthcare industry.

A more detailed description of the scope and future work of this dissertation regarding devel-

oping a Glaucoma CAD system with explainable decisions can be found in Section 6.2.

5.6 Summary

This chapter gives an overview of the current state of Explainability and Interpretability in Ma-

chine Learning. We can conclude that the XAI field is still very "fresh" and there are many steps

that need to be taken to solidify our knowledge fully. Nevertheless, a few literature works are use-

ful for this dissertation’s work, mainly Interpretability techniques such as Case-based Reasoning.

Their proven success in other applications can be transferred to the Glaucoma context.



Chapter 6

Problem Definition and Proposed
Solution

6.1 Problem Definition

From Chapter 2 we know that there is no current efficient strategy for Glaucoma screening and that

most Glaucoma patients remain undiagnosed. Moreover, several studies show that Glaucoma has

been one of the most prevalent causes of irreversible blindness and visual impairment [92, 121].

This condition was also the second individual cause that mostly contributed to visual impairment in

2020, with 3.6 million known cases. We can expect this number is, in fact, more significant due to

the asymptomatic nature of the disease. Varma et al. [124] studied the Glaucoma’s economic and

individual burdens by reviewing literature published from 1991 to 2010, showing that Glaucoma

prevalence contributes to high direct and indirect costs. As the disease progresses, the financial

burden increases even more. Glaucoma will also impact patients’ health-related quality of life, not

only in daily physical tasks as driving, walking and reading but also in their mental health. For

these reasons, it is essential to create efficient and useful techniques to aid the Glaucoma diagnosis

and screening.

Section 3.7 describes the several limitations and challenges of state-of-the-art CAD systems.

This work proposed a solution that tackles mainly two of those applied to the context of Glaucoma.

The first and most important one is interpretability, one of the Achilles’ heels of "black-box" deep

learning models in several fields. The majority of literature focuses on obtaining new models with

better performance than the already published ones, which left explanations in the shadows. As

explained in Section 5.1, explainability has gained a lot of interest in the ML field, not just because

there are new regulatory barriers imposed on ML real-world applications, but mainly because

systems’ end users do not have "out-of-the-box" trust over them, namely in critical decisions like

disease diagnosis. The second limitation we propose to address is the scarcity and imbalance of

retinal datasets directed towards Glaucoma diagnosis.
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6.2 Proposed Solution

As already stated in Section 1.3, this dissertation aims to create an Explainability Module to im-

prove Glaucoma CAD systems with methods that provide explainable decisions to the system’s

end-user. One could even say that the target outcome is to create a system that can be compared

to a "diagnosis companion" that would provide reasoning for a particular Glaucoma prediction

as another clinician would do. Adopting the taxonomy used by the Eyenuk CEO, described in

Section 3.8, this system would fit more in the Autonomous AI category, with the benefit of also

providing explanations for its decisions.

Moreover, the objective is to provide those explanations using retinal fundus imaging data

since it is the most accessible and cost-effective technique for both Glaucoma diagnosis and

screening 2.4. Nevertheless, we should not exclude the OCT technique’s exploration since it

might provide valuable information that can be transferred to the fundus imaging scope.

This dissertation combines two distinct fields. On the one hand, there is Explainable AI (XAI),

a vast area with minimal uniform frameworks. For that reason, explainability tasks would be

mainly focused on providing explainable decisions to a Glaucoma domain expert, not necessarily

on having an intrinsically interpretable classification model.

Chapter 2 describes several morphological features present in fundus images and their rele-

vance on the Glaucoma diagnosis, while Chapter 3 highlights several CAD systems that use those

features for the Glaucoma classification task. Although the most explored features are the Optic

Disc and Optic Cup, several works refer others such as the PPA, RNFL and Macula as relevant

for Glaucoma detection and diagnosis. Section 3.3.1 describes a few of the approaches that ex-

plored the PPA and RNFL segmentation. Besides, as stated in Section 5.5, these structures are

already being studied to be used as an explainability tool. Due to their importance and lack of

exploration in literature, we propose investigating the potential of using these "secondary" mor-

phological features (PPA, RNFL, Notching and Macula) as decision explanations for a Glaucoma

expert.

As for Generative Modelling, the objective is to generate synthetic data to improve the quality

of explanations. Therefore, we propose to explore image generation with specific morphological

structures (PPA, for example) that are less prevalent in the available datasets but can be essential

for the above mentioned XAI component. From the collected database information on Section 3.5,

only ACHIKO-K and SCROM claimed to have the PPA annotated, but they are not publicly avail-

able. To generate such images, literature works like [55, 140] are relevant since they explored

the paired and unpaired image-to-image translation problem respectively and proposed methods

which showed successful results.

Chapter 4 presents three possibilities for the deep generative model that could be developed.

GAN, VAE and Normalizing Flows each have their strengths and weaknesses and could even be

used to create a hybrid solution. We propose to use GAN in this work. This technique is the

one that usually generates images with higher quality, which is crucial when working with retinal

fundus images since they are challenging images to segment and classify due to the nature of
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morphological features. Besides, even though GAN have a very high literature prevalence within

this topic, few works have applied this technique to retinal fundus image generation, particularly

for the Glaucoma classification task [33]. Moreover, a few works developed for privacy-preserving

methods in GAN, which is also relevant since fundus images contain the vessel network of the

retina, which works like a fingerprint as a biometric authentication technique.

Ophthalmology experts were available during this work to both evaluate and validate the re-

sults. Although they could be asked to annotate morphological features of fundus imaging, we

expect that there is be more value in obtaining their feedback in either evaluating synthetically

generated images, correcting their segmentation, and validating the explainability methods pro-

posed.

6.3 Project Plan

This dissertation work is divided into two semesters. The first semester was focused on back-

ground and literature reviews regarding Glaucoma and respective CAD systems and state-of-the-

art in Generative Modelling and Explainability fields. This review continued through the first

months of the second semester. Furthermore, the second semester’s primary focus was the devel-

opment of the XAI component, as well as its validation on existing datasets. Before implement-

ing this component, the tasks involved data aggregation, pre-processing and augmentation, deep

generative learning and morphological feature extraction. Finally, the last month of work was

concentrated on writing this dissertation.

Figure 6.1: Gantt chart for Project Plan.

6.4 Summary

This chapter defines both the problem that gives this work motivation, which is related to the

current state of Glaucoma CAD Systems and their lack of explainability. Moreover, the proposed

solution is also described, and the project plan for the second part of the dissertation’s work.
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Chapter 7

Segmentation Approaches for
Morphological Feature Extraction

As stated in Chapter 3, it is possible to extract morphological features from retinal images, which

could be potentially used as an explainability tool on Glaucoma Risk CAD Systems. Therefore,

these features must be correctly obtained from the data since their quality and correctness will

influence the validity and quality of the explanations for the clinical context. The first step in this

work was to explore several segmentation approaches and evaluate which one should extract the

most relevant structures from retinal fundus images.

7.1 Segmentation Datasets

In general, deep learning approaches require a large amount of data to achieve successful results.

This aspect is even more relevant when working with retinal fundus images because image quality

varies considerably, depending on the device used to obtain them and what conditions they were

taken in (for example, lighting, position). For this reason, the majority of literature only evaluate

their approaches on a single dataset, which reduces the high variability between images from

different datasets. The major drawback of this choice is that the model might not achieve the same

performance on other datasets.

In this section, only public datasets were used. Similar to Martins et al.[79], several datasets

were merged to obtain a new dataset that better represents real-world retinal fundus images. De-

spite resulting in a more complex and challenging dataset, the end model could have a better

generalization capability.

A dataset was built using the iChallenge-GON, ORIGA, RIGA and RIM-ONE r3 datasets for

the OD/OC segmentation task because all possessed OD/OC annotations. When several annota-

tions were given for the same image, for example, the RIGA dataset, the ground truth was cal-

culated as the region of agreement between the annotations. This dataset contained 2517 images:

59



60 Segmentation Approaches for Morphological Feature Extraction

396 Glaucomatous cases, 1372 healthy cases and 749 unlabeled cases (from the RIGA dataset).

The RIM-ONE r3 dataset consisted of stereo images, with two side-by-side retina photographs

of the same eye. Each image was split into two and considered a separate case, duplicating the

dataset size. This dataset is very similar to the dataset used to train the GFI-ASPP-Depth network

from Martins et al. [79], the only difference being the DRISHTI-GS dataset not being included.

7.2 Image Pre-processing

Since the datasets used in this work are collected from different datasets, it is vital to ensure

that a few aspects are consistent across all images. Furthermore, there are a few pre-processing

techniques that enhance the existing images, which can lead to a better and more robust system.

The first aspect that needs to be taken into consideration is the image aspect ratio. Photographs

from different datasets are usually obtained from different devices, which means they have differ-

ent aspect ratios. In order to normalize this situation, the first step should be to crop the images.

Of course, one could also resize the images, but that would modify retinal structures’ shape. Con-

sequently, we would not be able to obtain correct values for some of the features described in

Section 2.4.2, since they are dependant on widths and areas. As for the aspect ratio chosen, since

most state-of-the-art architectures for deep learning use a 1:1 ratio as the input, that same value

was used to crop the data. Furthermore, a second crop was performed around the ROI. As stated

in Section 3.2, the ROI contains the most relevant information for Glaucoma risk assessment and

allows deep learning models to obtain better results in general. This crop is done around the optic

disc boundary, annotated in the majority of datasets.

Image quality enhancement techniques became popular in the Computer Vision field to im-

prove the model’s performance. Previous works that utilize data from retinal fundus images apply

one or more of these techniques, independently of the exact task at hand.

Data Normalization is a common pre-processing technique used across several machine learn-

ing approaches, which consists of scaling an image’s pixel values to be between 0 and 1.

The Contrast Limited Adaptive Histogram Equalization (CLAHE) is one of those techniques

[142], used not only the retinal fundus images but also in other contexts. It is an improvement

to a more traditional technique called Histogram Equalization, which improved the contrast of an

image by stretching the image histogram to both ends of the spectrum. Although this technique

yields good results for when the histogram is restricted to a particular region, the performance

decreases when the histogram variability covers a broader part of the spectrum, for example, an

image with both very bright and very dark areas. For this reason, adaptive histogram equalization

is used by dividing the image into smaller tiles and equalizing them individually. However, ap-

plying this technique alone will also increase the noise present in a noisy image. Then, contrast

limiting is applied beforehand to clip specific pixels above a certain threshold on the histogram

bin. The result of this combination resulted in the CLAHE technique. An example is presented in

Figure 7.1.
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Figure 7.1: Retinal Fundus image before (left) and after (right) CLAHE technique.

Pixel quantification is a recent technique proposed by one of the REFUGE Challenge partici-

pants, which applied it in the pre-processing stage of a segmentation task. This technique aimed to

reduce the colour variability between the training and validation datasets, thus improving model

robustness. For an (RGB) image x where each pixel of x belongs to [0,255], the pixel quantification

method can be formulated as follows:

x′ = ceil(x/r)∗ r

r is a hyper-parameter that controls the quantification impact on the image, and x′ is the output

image. In general, after applying pixel quantification, pixel values that belong to [r+ 1,kr] will

share the same pixel value of k. An example is presented in Figure 7.2.

Figure 7.2: Retinal Fundus image before (left) and after (right) Pixel Quantification technique.

Data augmentation techniques can also be handy for increasing the outcome value obtained

from an existing dataset. Creating an augmentation pipeline makes it possible to have a controlled

creation of new images that are still representative of real data. This is even more beneficial for

deep learning approaches due to their dependence on a large amount of diverse and representative

data. Applying these techniques usually leads to a more robust model with a better generalization

capability and thus is more useful in a real scenario.

An important aspect to consider when augmenting retinal fundus images is that the positioning,
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orientation, and width/height scaling of an image are relevant for a clinical evaluation. When

geometric transformations such as rotation, scaling or flipping are applied to these images, they

can lead to errors in extracting certain morphological features. For example, if we rotated or

flipped an image, we would be introducing errors when calculating the width of the ISNT sectors

since they would no longer be in the position clinicians expect them to be. For this reason, this

kind of augmentation techniques should be used with caution. This augmentation pipeline will be

referred to as Traditional Augmentation from now on.

However, another type of augmentation was explored to introduce variability in the image

quality without changing the image’s properties mentioned above. In a real scenario, photos are

taken with different devices that possess different resolutions and light conditions are not the same.

By introducing this variability by changing contrast, brightness or other aspects, we are supposedly

enhancing the dataset by making it more representative of real data.

A real-time augmentation pipeline was adopted from a previous work with retinal fundus im-

ages datasets [79], which does not demand more disk space for storing the augmented images. It

is implemented using the imgaug library 1, and it composed of 4 steps that are applied in random

order with a certain probability. The steps are the following: blur addition (Gaussian, Average

or Median), contrast normalization, brightness changes and sharpness modifications through a

sharpening kernel. This augmentation pipeline will be referred to as Image Quality Variation

Augmentation from now on. Figure 7.3 show a few of the examples generated by this pipeline.

Figure 7.3: Examples of Augmented data using the Image Quality Variation Augmentation.

1https://imgaug.readthedocs.io/en/latest/

https://imgaug.readthedocs.io/en/latest/
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Figure 7.4: X-Unet architecture diagram. Adapted from [74].

7.3 Optic Disc and Optic Cup Segmentation

The Optic Disc and Optic Cup segmentation task can be seen as two separate tasks for each

structure or a single joint segmentation task. The majority of state-of-the-art approaches opt for

joint segmentation. It is reasonable to assume that since both structures are closely related to

one another (Optic Disc contains in the Optic Cup), it makes sense to have the model train on both

segmentations simultaneously. Moreover, it also simplifies the entire task since there is only a need

to train and fine-tune a single model. For these reasons, this work explores joint segmentation.

Based on Section 3.3, two architectures were compared in this work. One of them was the GFI-

ASPP-Depth network proposed by [79]. Not only are the results reported on pair with the state of

the art performance, but the pre-trained model for the Joint segmentation task was also available.

The architecture is based on the MobileNet architecture, which reduces time and space complexity

compared to other state-of-the-art networks without compromising predictions performance.

Secondly, this work also explores the X-Unet network proposed by [74] for the REFUGE Chal-

lenge. Figure 7.4 shows this network’s architecture. While the GFI-ASPP-Depth network only

requires 1.152.131 parameters, the X-Unet architecture requires 13.889.506 parameters, which

makes the latter more complex and computationally heavy. On the paper, the authors only reported

results for the individual segmentation task of the Optic Disc and Optic Cup. For that reason, the

network’s performance was tested for the joint segmentation task in this work to be compared with

other networks. The implementation of this network was based on the source code2 provided by

the authors. The network has a U-Net [97] like architecture, with squeeze-and-excitation blocks

that recalibrate channel-wise features responses to improve the model’s performance at a low com-

putational cost. Although more complex and computationaly heavy than the previously mentioned

GFI-ASPP-Depth network, its performance with retinal fundus images is promising.

Since most resources were implemented using Tensorflow, this framework was used for this

part of the work.

2https://github.com/cswin/RLPA

https://github.com/cswin/RLPA
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7.3.1 Training

Regarding the GFI-ASPP-Depth network, the pre-trained Tensorflow Lite model and source code

were available, so there was no need to train the network from scratch.

As for the X-Unet network, there is access to the source code but not to any pre-trained mod-

els. The first step was to replicate the setup described in the paper as much as possible to evaluate

the network’s performance. The initial dataset used was only composed of the iChallenge-GON

images from the Train and Validation sets. Train, validation and test subsets were created accord-

ing to a 70/15/15 split proportion from the 800 images available. The full fundus images were

also cropped into the region of interest (ROI) patches around the Optic Disc, using the network

(DEnet) provided by the authors for that purpose. A pre-trained model of this network is available

on the source code repository.

While the authors create and store the augmented data before training, a real-time augmenta-

tion pipeline was adopted due to hardware memory limitations. Since this is a segmentation task,

it is possible to use geometric transformations as augmentation techniques. They do not modify

the ratio between retinal structures in very abrupt ways (for example, scaling only one dimension

of an image by a significant amount). The images were resized to 128x128 pixels before being

used as input on the network. The network outputs two values per pixel resulting from the final

sigmoid activation layer, each representing either the Optic Disc or the Optic Cup probabilities.

The ADAM optimizer was used across all experiments due to the good results widely presented

across the literature. The paper authors used the Mean Absolute Error (MAE) as the loss function

because they were focused on calculating the pixel-wise difference between label and prediction

of a single structure (either optic cup or disc). However, the joint segmentation is a multi-label

segmentation, so the cross-entropy was used as the loss function, with equal weights for both

classes (Optic Disc and Optic Cup). Besides the loss, two other metrics were used to track the

training session: Intersection over Union (IoU) and the Dice Coefficient.

Nested hyperparameter optimization was adopted, allowing for tuning parameters one at a

time and finding the optimal value for each one individually. This strategy is more efficient than

a "guess-based" strategy since it is a more systematic method while not being as time-consuming

as a grid search strategy. Moreover, callbacks were used to automate certain procedures during

training. Every training session had a checkpoint callback to store the last best model according

to an evaluation metric, a learning rate reduction callback and an early stopping callback to halt

training when the validation loss was not improving for several epochs. The training session was

configured to run a maximum of 200 epochs, but almost every single one stopped training before

reaching that number due to the callbacks.

As stated previously, the first experiments were performed with the iChallenge-GON dataset,

without any augmentation and resized to a 128 ∗ 128 dimension. The learning rate was the first

tuned parameter, using a starting value of 0.0001 since it is used on the original paper. Other

values were explored by reducing or increasing the initial value by a factor of 10. Still, the optimal

value remained 0.0001 since it obtained the best performance on the test set with a dice coefficient
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of 0.8717. As for the batch size, 16 was chosen from an interval of values that varied by a factor

of 2 since it presented the best performance relative to lower values. It was not possible to use

higher values due to hardware limitations. The model had a good performance on the test set at

this stage, with an IoU and Dice Coefficient of 0.7666 and 0.8649, respectively. Consequently, the

learning rate used from now on is 0.0001, and the batch size is 16.

The second part of the experiments consisted of testing the impact of two preprocessing tech-

niques that have been used in previous literature to enhance the original data. When applying

CLAHE, the performance greatly improved, leading to an increase in IoU to 0.9404 and in Dice

Coefficient to 0.9678. When using Pixel Quantification (r = 5), performance resulted in an IoU of

0.8909 and a Dice Coefficient of 0.9380. As a result of these experiments, the CLAHE technique

was chosen as a preprocessing technique for future experiments.

Another training experiment verified that the original architecture’s input, which was tripled

when fed to the network, did not bring value compared to having a single input. On the test set,

the triple input strategy decreased the IoU value by 0.05 and the Dice Coefficient by 0.02. For that

reason, the network was simplified, and a single input was used.

At last, the complete segmentation dataset described in Section 7.1 was used to retrain the

model. Images were also cropped to the same ROI image as performed by Martins et al. [79],

and a CLAHE preprocessing technique was applied. The data was split across three subsets, train,

validation and test, with an 80/10/10 split proportion. By minimizing the difference between the

data used to train different networks, we can compare their performance more fairly.

Dataset Augmentation Loss Iou Disc IoU Cup Dice Disc Dice Cup
No Augmentation 0.2002 0.9015 0.7129 0.9473 0.8230
Image Quality Variation 0.2014 0.9041 0.7318 0.9486 0.8354
Image Quality Variation + Traditional 0.2021 0.8762 0.6586 0.9330 0.7812

Table 7.1: Performance of X-Unet models, trained on datasets with different augmentation tech-
niques.

The first model was trained using the previously mentioned dataset without any augmentation

techniques. The model converged after 42 epochs, reaching an IoU of 0.8603 and a Dice Coef-

ficient of 0.9235 on the test set. A second model was trained using the same dataset, augmented

using the Image Quality Variation Augmentation pipeline. IoU had a slight increase of 0.008, and

the Dice Coefficient improved by 0.004. Another model was trained with data augmented with

the previous pipeline and also traditional augmentation techniques. The parameters used were a

rotation up to 90º, horizontal and vertical flipping and width and height shift of 0.02. In this case,

the model performance decreased on all sets by a considerable amount (test set IoU decreased by

0.04 and Dice Coefficient decreased by 0.02).

Table 7.1 provides the segmentation performance for each of the segmented structures, allow-

ing for a more detailed analysis. Image Quality Variation Augmentation seems to enhance the

dataset better, leading to better performance. As expected, the optic disc segmentation is more
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accurate than the optic cup, which is an issue that can also be observed on manual clinical an-

notations. Since the intensity difference between the optic cup and optic disc is often shallow,

it is hard to accurately draw the boundary between both structures, even for clinicians. For this

reason, annotations produced by different experts can have significant differences in the optic cup

boundary.

The results were compared with other state-of-the-art approaches, which include the GFI-

ASPP-Depth network proposed by Martins et al. [79]. The IoU was used as the comparison

metric since it was the most available one across the literature. Nevertheless, one must consider

that a direct comparison between models does not lead to absolute truths. Most models are not

trained with the same dataset, which could also be subject to different pre-processing techniques,

leading to an unfair comparison in some cases. Table 7.2 was adapted from Fu et al. [42] and

contains a performance comparison between the state-of-the-art models. As we can observe, the

X-Unet network performance is on par with other successful approaches, outperforming most of

them and almost reaching the performance of the top two methods: M-net and GFI-ASPP-Depth.
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Method Iou Disc IoU Cup
Adapted from [42]

R-Bend[57] 0.8710 0.6050
ASM[130] 0.8520 0.6870
Superpixel[26] 0.8980 0.7360
LRR[129] - 0.7560
QDSVM[27] 0.8900 -
U-net[97] 0.8850 0.7130
M-net[42] 0.9170 0.7440

Achieved results
GFI-ASPP-Depth[79] 0.9100 0.8260
X-Unet 0.9040 0.7310

Table 7.2: Performance comparison between X-Unet and state of the art methods. Segmentation
performance comparison with state-of-the-art methods trained with the ORIGA dataset.

For a more in-depth comparison, Figure 7.5 shows the loss evolution over the epochs for

both the X-Unet and the GFI-ASPP-Depth networks. In both cases, loss converges rapidly in the

beginning before stabilizing, and early stopping is performed.

Figure 7.5: X-Unet (left) and GFI-ASPP-Depth[79] (right) training losses.

7.4 Parapapillary Atrophy (PPA) Segmentation

As Section 3.3 shows, the majority of literature work on Glaucoma Risk Detection and Retinal

Fundus Imaging Segmentation is deeply focused on the ROI region, more specifically on the Op-

tic Cup and Disc, and its respective characteristics. Although not very present, there are a few

approaches focused on the PPA segmentation, which are further described on Section 3.3.1.

Two strategies were used to obtain the PPA mask. On the one hand, a network was trained

using the masks containing only the PPA segmentation. On the other hand, the PPA and Disc

masks were merged to obtain a single mask, and the model was trained to predict the PPA-Disc

region. The PPA has an irregular and non-uniform shape that can vary significantly depending on
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the lesion progression, as shown in Figure 7.6. While (a) and (b) have a circular shape, (c) has

a semicircular shape and (d) an almost crescent one. Moreover, the PPA does not always have

an obvious boundary since pixels around the PPA gradually change colour, as we can observe in

Figure 7.7. These factors make the PPA extraction task very challenging. Chai et al. [17] proposed

a new strategy to overcome this issue by transforming the complex segmentation object to be a

new object with a more uniform shape, which eases the overall complexity of the task. Figure 7.8

shows two retinal images where the green area represents the PPA region, and the purple area

represents the Disc region. By calculating the Union between both regions, the PPA-Disc area

obtained has an almost oval shape and is easier to extract than the PPA area. Afterwards, one only

needs to subtract the Disc area from the PPA-Disc area to obtain the PPA area. The Disc area

is a well-known and explored task across literature, with several approaches obtaining successful

results. Consequently, we can assume that for most cases, the disc segmentation error will not

affect the final PPA mask greatly.

Figure 7.6: Retinal images and their PPA and Disc areas [17].

Figure 7.7: Illustration of PPA area border [17].

The data used for this task is from a single subset of the only publicly available dataset: the

training set from the iChallenge-PM dataset. Moreover, not all retinal images showed the PPA le-

sion, and there is another lesion called "Detachment", which is also present on myopic eyes, which
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Figure 7.8: Retinal images and their PPA and Disc areas [17].

is not a symptom of Glaucoma. Depending on the myopia degree of each image (normal, high or

pathological), the PPA had a different appearance. In Figure 7.9, the PPA lesion is much larger

and irregular on the pathological labelled image than on both high myopia and normal images.

Regarding literature work on Glaucoma and the Terminology and Guidelines for Glaucoma[1]

published by the European Glaucoma Society [114], the PPA typical of Glaucoma always appears

much similar to the one shown on high myopia and normal cases, then to the one shown on patho-

logical images. Furthermore, it is much more beneficial to use just the retinal images’ ROI for

the segmentation task in the Glaucoma context. If pathological images were used, they could not

be cropped to the ROI because the PPA can appear outside of that area. For these reasons, and in

order to simplify the learning process during training, the pathological myopic images were not

used to train and test the model. Instead, empty masks were added to the dataset as masks for the

images where PPA does not happen. This addition will help the model learn when an image has

PPA or not since not all Glaucomatous retinal images have PPA presence necessarily. Similarly to

the Joint Segmentation task, since the PPA is located near the Optic Disc, an ROI crop was per-

formed on the retinal images. The final dataset used during training contained 145 images, split

into three subsets, training, validation and test, with an 80/10/10 proportion.

The same X-Unet architecture used for joint segmentation was also tested on the PPA segmen-

tation task, and the same fine-tune strategy was also adopted. While joint segmentation meant that

a single pixel could have multiple labels, only a single label is needed in the PPA segmentation.

For that reason, the network’s last activation layer was a sigmoid activation. No significant re-

sults were achieved after performing several training sessions with binary cross-entropy loss and

varying the learning rate and batch size. Both IoU and Dice Coefficient values for PPA only were

never higher than 0.15 and 0.2, respectively. Figure 7.10 presents an example of the segmentation,

with a network trained with a learning rate of 0.0001 and a batch size of 8, which shows how

inaccurate the segmentation is. From these results, three possible issues were identified. The first

one is regarding the dataset. Contrary to the previous task, the PPA dataset is very small. Thus

it might not contain enough information for the model to learn anything significant. The second
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(a) Normal Case (b) High Myopia Case (c) Pathological Myopia Case

Figure 7.9: iChallenge-PM images

problem could be related to the PPA and background ratio of each image. The loss used does not

consider how little area the PPA lesion occupies in the retinal image, giving equal importance to

all "classes" (PPA and background). Finally, the PPA shape is more complex and more variable

than the oval shape of the ONH, which means it demands more effort from the network’s learning

process.

Figure 7.10: Left: PPA ground truth, Right: Network PPA segmentation.

The first step was to change the loss function to a function that could give more weight to the

PPA lesion and not so much to the background. The Focal loss [72] function addresses the class

imbalance problem during training. This function is a dynamically scaled cross-entropy loss,

which reduces the weight of easy examples during training and focuses on predicting the hard

examples. Formally, this function adds factor (1− pt)γ to the standard cross-entropy formula,

where pt represents the probability for a certain class, and γ is a tunable focusing parameter.

Equation 7.1 defines focal loss. In this case, the easy examples would be the background pixels,

while the hard ones would be the PPA pixels.

FL(pt) =−(pt)
γ log pt (7.1)

A custom focal loss was implemented and used to retrain the model. Several values for γ were
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tested. The Image Quality Variation Augmentation and the Traditional Augmentation were used.

Contrary to what was expected, results obtained were even worse than with cross-entropy loss,

with both IoU and Dice Coefficient dropping below 0.1.

Despite the unsuccessful PPA segmentation results, it is still possible to reach a few conclu-

sions and infer possible causes. Firstly, even if the PPA is visually similar for clinicians on both

myopia and Glaucoma, it might be wrong to assume that a model trained on one domain could

have similar performance on the other. Moreover, models evaluate the entire retinal image, not

just the segmentation goal, which means these different domains demand different strategies and

techniques due to the retina having different characteristics (colour, textures, artefacts). In order

to investigate whether these differences were plausible, the optic disc was segmented from the

myopia dataset. Although the model was not trained for this domain, the results could indicate if

the ROI has similar characteristics to the one from Glaucoma images and if the model can seg-

ment the optic disc accurately. The optic disc segmentation network proposed by Martins et al.

(GFI-ASPP-Depth-simple), trained with Glaucoma domain image was accurate, obtaining an IoU

of 0.8763 and the Dice Coefficient was 0.9329 on the entire dataset.This outcome supports shows

that despite having different diseases, the ROI region of retional images is still similar and does

not affect the already accurate segmentation of the OD.

The dataset size is another aspect to take into consideration. Since there is a relatively low

amount of images, there might not be enough data for the model to learn how to distinguish

the PPA from the rest of the image. As previously stated in this section, PPA segmentation is a

challenging task. In addition, certain aspects such as the lesion’s unclear boundaries or proximity

to other structures separate it from a simpler segmentation task.

For this reason, one of the ways clinicians could contribute to this work would be to annotate

the PPA structure in one of the public datasets considered in this work. Since there was this

possibility, a dataset was built combining two types of images. One the one hand, a smaller

portion of images consisted in images with already available PPA annotations. On the other hand,

images from datasets with Glaucoma labels were also included in a larger portion, since there is a

high probability that PPA also appears on images with a positive Glaucoma label.

7.5 Fundus Image Feature Extraction

The previously described models generate segmentation masks that can be used to extract several

morphological features. These features are listed in Section 2.4.2, and are not only relevant for

the Glaucoma risk detection but can also be helpful as an explainability tool that increases the

transparency of the system. This will be further described in Chapter 8.

Before calculating all the morphological features, the following values are calculated from the

segmentation mask: the area and vertical diameter of the optic cup and optic disc; the Neuro-

Retinal rim (NRR) widths in each of the four quadrants of a fundus image (Inferior, Superior,

Nasal and Temporal). From these values, eight morphological features are calculated. Firstly, the

CDR is calculated using the area ratio between the optic cup and optic disc. Then, the VCDR
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follows the same principle but utilizes the vertical diameter of each structure. Then the Rim-to-

Disc Area Ratio is obtained using the NRR widths and the disc area. The ratio between each NRR

width and the longest NRR width is also stored as a morphological feature. Finally, these values

are compared to each other to evaluate the ISNT rule compliance.

For this task, a feature extraction pipeline was adapted from [79], which can receive two kinds

of input. When given a full fundus image, it starts by cropping the image to a 1:1 aspect ratio and

then uses a pre-trained model called GFI-ASPP-Depth-simple (also proposed by [79]) to locate the

disc region. The ROI region is cropped from the original image after localizing the disc region,

and CLAHE preprocessing is applied. Next, the processed image is used as input for a joint

segmentation model to obtain the optic disc and optic cup segmentation mask. From this mask,

all of the above features are extracted. If the input is an image already cropped to the ROI region,

then the first part of the pipeline can be skipped, and the image is resized and used on the joint

segmentation model. A diagram of this pipeline is presented in Figure 7.11.

Figure 7.11: Morphological Feature Extraction pipeline.

The joint segmentation model used in the feature extraction pipeline must be as robust and

accurate as possible to minimise the error on the morphological feature calculus, which is done

from the segmentation masks. For this reason, the GFI-ASPP-Depth was used on the pipeline,

which is the model with the best performance. To evaluate if it was possible to segment other

datasets than those used in the network’s training, each one was segmented, and the output was
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visually analysed. Figure 7.12 shows segmentation examples from three datasets where the ground

truths masks are available.

(a) iChallenge-GON (b) ORIGA

(c) RIM-ONE r3

Figure 7.12: GFI-ASPP-Depth Segmentation examples with ground truth masks comparison (left
side of image is ground truth and right side is the predicted mask).

The output masks for the iChallenge and ORIGA datasets are very accurate by visually com-

paring the output with the ground truth masks and evaluating the model’s performance through

metrics (see Table 7.3). However, the performance with the RIM-ONE r3 dataset decreases con-

siderably. Despite being able to segment both structures, the mask compromises the morphological

feature calculus.

Dataset Disc IoU Cup IoU
iChallenge-GON 0.7703 0.7350
ORIGA 0.7952 0.7579
RIM-ONE r3 0.7831 0.4969

Table 7.3: GFI-ASPP-Depth Segmentation performance on iChallenge-GON, ORIGA and RIM-
ONE r3 datasets.

Figure 7.13 shows segmentation examples for the remaining datasets. In the ACRIMA, RIM-

ONE r1 and RIM-ONE r2, it is obvious that the segmentation is inaccurate due to the irregular and

unnatural shape of the optic cup (white pixels) and optic disc (grey pixels). A possible explanation

for this is the different zoom between the images. The ROI is much more zoomed on these three

datasets, occupying more area than on the iChallenge-GON and ORIGA datasets. The network

might only work on images where the ROI crop is similar to the one used on the training dataset.
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(a) ACRIMA (b) RIM-ONE r1

(c) RIM-ONE r2

Figure 7.13: Segmentation examples with ground truth masks comparison (left is ground truth and
right is predicted mask).

7.6 Summary

This chapter illustrated the work developed on segmentation of important retinal structures, which

is crucial for developing and implementing Glaucoma CAD systems. On the one hand, the new

Optic Disc and Optic Cup segmentation architecture achieved state-of-the-art results, proving its

potential with retinal fundus image data. On the other hand, PPA segmentation was not as suc-

cessful and still needs more research to create a robust segmentation model. Lastly, morphological

feature extraction was studied and is a reliable way to obtain more information from retinal fundus

images, which can be used in other tasks involving retinal data analysis.



Chapter 8

Model Explainability

As already stated in Chapter 5, there is a wide variety of explainability techniques in ML, some

with more nuances than others, that can be divided into several categories depending on the chosen

criteria.

This work aimed at improving Glaucoma Risk Detection CAD systems by enhancing their

classification outcome with meaningful explanations for clinicians. In Chapter 7, the morphologi-

cal features extraction pipeline was described. The clinical relevance of these features makes them

suitable to be used as an explainability tool. Contrary to what is stated on the initial proposed so-

lution (Section 6.2), the most valuable explanations we could provide to a clinician would be the

ones that describe the what features the model considered important in a particular classification.

For this reason, one of the techniques explored was Concept Whitening, described in Section 8.2.

Nevertheless, several Post-hoc explainability techniques can provide a decent insight into the data.

SHAP is a very recent and popular technique used to explain the output of any machine learning

model, which was also explored in this work.

8.1 Datasets

Before applying any explainability technique, it was necessary to define what model would be

used for the classification task. The only requirement for this was that the dataset much have

Glaucoma labels. A pre-split dataset was used for this part, which was built using the ACRIMA,

iChallenge-GON and ORIGA datasets (80/10/10 split proportion). The images were obtained by

processing the datasets on the morphological feature extraction pipeline (see Section 7.5), which

cropped the images to the ROI and applied the CLAHE technique.

In order to utilize fundus images morphological features as a basis for any explainability com-

ponent, these features must be as close to ground truth as possible. Since the feature extraction

occurs on the segmentation masks, the more accurate the segmentation model is, the more precise

features will be. According to Section 7.5, the datasets where segmentation is the most accurate

75
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are iChallenge-GON and ORIGA, making them the best candidates for the explainability task.

Furthermore, this task is part of a classification task, meaning the data also must have Glaucoma

labels. That is the case with both of these datasets.

8.1.1 Generative Modelling on Retinal Fundus Imaging

One of the objectives of this work was to take advantage of Generative Modelling to enhance

the quality of explanations and increase the amount of data to be used in this component. A

lot of research was done about this field (see Chapter 4), and Generative Adversarial Networks

(GAN) were one of the approaches used in the context of retinal imaging. In parallel with this

dissertation, Fraunhofer is developing a Generative Model approach focused on evaluating the

impact of generative modelling on Glaucoma CAD systems. Leonardo et al. [68] proposed a

model based on CycleGAN architecture that transforms retinal images by improving/degrading

their quality to augment the original data. This transformation process is part of the Unpaired

Image-to-Image translation problem, which involves generating an image on domain Y from an

input image on domain X. In this case, this translation occurs between domains with different

levels of image quality, evaluated through the presence or absence of defects such as blurring,

over/under-exposure, etc. The generated images were validated using a Retina Quality Evaluator

also proposed by the authors, which showed there are tangible improvements in image quality

using the proposed generative model. Furthermore, the new images were used to train a Glaucoma

CAD system that presented a considerable gain in Sensitivity, Specificity and Accuracy after image

data augmentation compared with state-of-the-art methods targeted at offline inference in mobile

devices. These results support the statement that image quality diversity and realistic augmentation

are crucial aspects that can increase the model performance on other tasks.

One of the tasks described in the proposed solution in Chapter 6 is to use a Generative Mod-

eling approach (namely GAN) to augment the available data, with the ultimate goal of improving

the value of explanations. Moreover, it is also stated that image quality is a crucial aspect when

working with retinal imaging due to the level of detail of retinal structures used to calculate cer-

tain morphological features. Despite GAN experiments conducted on a preliminary stage, it was

impossible to fully explore and develop a satisfiable data augmentation approach using a genera-

tive model due to task prioritization and time constraints. However, the generated data from the

previously described work was available to use, even though the work had not been published

yet. By taking advantage of this opportunity, it was possible to create a more extensive and robust

classification dataset and evaluate the benefits this type of data could bring to this work’s explain-

ability segment. The generated data available from these experiments resulted in a dataset with

an improved and a degraded version of each input image, which essentially triples the size of the

input dataset. The input dataset consisted of the iChallenge-GON, ORIGA, ACRIMA, DRISHTI

and RIM-ONE datasets.

Initially, the final classification dataset would consist of iChallenge-GON and ORIGA only

since they are the models where the optic disc and cup are the most accurate. By adding the

improved and degraded versions of each of these images from the GAN generated dataset, the
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size would go from 1450 to 4350 images. The generated images segmentation was evaluated for

each improved and degraded version of each dataset on the GFI-ASPP-Depth segmentation model

compared with the regular version of the images. Figure 8.1 shows an example of each version of

images from the iChallenge and ORIGA datasets.

(a) iChallenge-GON (b) ORIGA

(c) Enhanced iChallenge-GON (d) Enhanced ORIGA

(e) Degraded iChallenge-GON (f) Degraded ORIGA

Figure 8.1: GFI-ASPP-Depth Segmentation examples with ground truth masks comparison (left
side of image is ground truth and right side is the predicted mask).

Dataset Disc IoU Cup IoU
Regular iChallenge-GON 0.7703 0.7350
Enhanced iChallenge-GON 0.7738 0.7265
Degraded iChallenge-GON 0.7867 0.7241
Regular Origa 0.7952 0.7579
Enhanced Origa 0.7911 0.7194
Degraded Origa 0.7533 0.7184

Table 8.1: GFI-ASPP-Depth Segmentation performance on iChallenge-GON and ORIGA
datasets.

As it is possible to observe in Table 8.1, there is not a significant decrease in segmentation

performance when using the enhanced or degraded images, which means that they can be used on

the Explainability module.

Table 8.2 sumarizes the datasets used in this section.
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Dataset Name Datasets Used Glaucoma Non Glaucoma Total
Pre-Split ACRIMA, iChallenge-GON and ORIGA 644 1511 2155
Enhaced/Degraded iChallenge-GON and ORIGA 744 3606 4350

Table 8.2: Overview of classification datasets.

8.2 Concept Whitening

Concept Whitening is a mechanism introduced by Chen et al. [23] that can alter a network’s layers

to allow us to understand better the computation leading to that layer. This mechanism shapes the

latent space through training, imposing its axes to be aligned along with certain concepts. In this

case, our concepts are the morphological features extracted from retinal fundus imaging, which

are clinically relevant for Glaucoma risk detection.

After applying concept whitening a network’s layer, target concepts can be extracted in several

ways. In order to obtain the concepts relevant for an individual classification, the authors employ

empirical receptive fields, which highlight the regions of the image relevant for target concepts.

Figure 8.2 show several examples in a grid, where each row represents the most activated image

for a specific concept axis, as well as the respective receptive field for each of the concepts learned

by the network. As a general rule, these fields tend to be more prominent on image regions relevant

to recognizing the correct concept.

Figure 8.2: Some top activated images visualized with empirical receptive fields (highlighted
regions). Adapted from [23].
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Concept Whitening source code is publicly available on a GitHub repository1, and contains a

Pytorch implementation of the mechanism. For that reason, this part of the work was developed

in Pytorch.

Similarly to the original paper, a classification network was used to evaluate the Concept

Whitening mechanism’s efficiency on the Glaucoma Risk Detection task. The ResNet architecture

was used for the classification network, particularly ResNet50, due to achieving good performance

in literature[30] when compared to other architectures. Nevertheless, a ResNet18 network was also

trained since it is based on the same building blocks but is a simpler network that converges faster

while still obtaining satisfactory results.

Regarding the data, explicit concepts that the network should learn must be explicitly pro-

vided to it. These concepts are inferred from the morphological features previously extracted.

Datasets images were split into an auxiliary concept dataset, using criteria based on the risk fac-

tors described in Chapter 2. Each image was evaluated according to these criteria and copied to a

particular concept folder. The criteria used are the following:

• Cup-to-Disc ratio is greater than 0.5;

• Vertical Cup-to-Disc ratio is greater than 0.7;

• Rim-to-Disc Area ratio is less than 0.5;

• ISNT rule is True;

Initially, there was also the intention to add the "PPA presence" as another concept. However,

since it was not possible to train a model with good PPA segmentation, it was decided not to

include this concept. Table 8.3 shows the size of each auxiliary concept dataset.

Concept Dataset Glaucoma Non-Glaucoma Total
CDR 185 32 207

VCDR 251 83 334
RDAR 196 35 231
ISNT 30 154 184

Table 8.3: Image count on each auxiliar concept dataset.

8.2.1 Training

Training is divided into two stages. The first one consists of training a baseline model, without the

concept whitening layers, on the classification task only. The second one retrains the network in a

transfer learning fashion, only replacing the Batch Normalization layers with Concept Whitening

ones where necessary.

The first stage started with evaluating which network showed the best performance. A Resnet50

and a ResNet18 were trained with the Pre-Split dataset. Images were resized to 244x244 before
1https://github.com/zhiCHEN96/ConceptWhitening

https://github.com/zhiCHEN96/ConceptWhitening
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being input in the networks, and no augmentation technique was applied. Nested hyperparam-

eter tuning was used to find the optimal values for the parameters. The ADAM optimizer and

Cross-Entropy loss were used across all experiments. Class weights were used to minimize the

impact of the class imbalance on the loss since there are many more cases of Glaucoma than non-

Glaucoma. The number of epochs was set to 50, with an early stopping callback is the validation

loss hadn’t improved for a certain amount of epochs. Networks were also initialized with Ima-

geNet weights. In each training session, accuracy, precision, recall, area under the curve and F1

score were tracked.

Table 8.4 reports the results on the test set for the most relevant experiments. Since we are

in the context of a disease diagnosis, it is vital to minimize the number of Glaucomatous cases

classified as non-Glaucomatous. Recall or sensitivity is the metric that tells us the proportion of

Glaucomatous cases classified as such. At the same time, the model should have good overall

accuracy. Despite the ResNet50 with a learning rate of 0.01 and a batch size of 4 having the best

recall value, it also presents the second-worst AUC value. ResNet18 models show a lower Recall

value by 0.01 approximately but have a higher AUC value. Since we are looking for a balance

between these two metrics, the ResNet18 model is more suitable. The two highlighted models are

very similar, so opting for either one should not significantly impact the following experiments.

Therefore, the second model, with a learning rate of 0.001 and batch size of 8 was chosen.

Model LR BS Loss Accuracy Precision Recall AUC F1 Score
ResNet18 0.01 4 0.0424 0.8711 0.8632 0.9820 0.8711 0.9188
ResNet18 0.001 8 0.0429 0.8711 0.8632 0.9820 0.8751 0.9188
ResNet50 0.01 4 0.0536 0.8667 0.8513 0.9940 0.7932 0.9171
ResNet50 0.001 8 0.0532 0.8489 0.8482 0.9701 0.8188 0.9050
ResNet50 0.001 16 0.0636 0.8578 0.8524 0.9760 0.7870 0.9106

Table 8.4: Results for ResNet18 and Resnet50 experiments on the test set with Pre-Split dataset.
LR represents Learning Rate and BS represents Batch Size.

At a later part of this stage, the network was trained using the Enhanced/Degraded dataset,

augmented with the Image Quality Variation pipeline from the segmentation task. Since the dataset

is much larger than the previous one, the model parameters were tuned once again. The optimal

learning rate found was 0.0001 and a batch size of 32. Table 8.5 presents the most relevant results

on the test set and also compares the model trained with and without the enhanced and degraded

versions of the original images (only with the iChallenge-GON and ORIGA datasets). The model

trained with the entire dataset presented a better performance than the other one, proving that the

enhanced/degraded versions of the images are helpful for the Glaucoma classification task.

After settling with a robust classification model, the work moved on to the second stage to

evaluate the concept whitening mechanism. Firstly, the model weights are initialised with the pre-

trained weights from previous training sessions. Then, the architecture is modified by replacing

the Batch Normalisation layers with Concept Whitening ones, which have their implementation

in the source code provided by the authors. Not all layers need to be replaced, and each one will
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Dataset Loss Accuracy Precision Recall AUC F1 Score
Without Enhanced/Degraded 0.1654 0.6332 0.6920 0.7885 0.6719 0.7371

With Enhanced/Degraded 0.0737 0.8113 0.9328 0.8346 0.8623 0.8810
Table 8.5: Results for ResNet18 experiments on the test set with and without the enhanced/de-
graded versions of the original images.

have a different whitening result depending on its position on the network. Earlier layers tend

to focus more on more generic features of an image, like colour or brightness, while later layers

focus on shapes or patterns. The modified network was then trained for a single epoch as stated in

the original paper, using the same learning rate and batch size as on the previous training stage.

As for the concepts, different combinations of the following morphological combinations were

used: Vertical Cup-to-Disc Ratio (VCDR), Rim-Disc Area Ratio (RDAR) and ISNT rule. Two

important plots allow us to analyse the behaviour of Concept Whitening. First, the Separability

of Latent Representations plot shows the correlation between the different axes of the latent space

learned by the network. The objective is to have as little correlation as possible between the axes.

Second, the Correlation Axes plot shows the correlation between the explicit concepts showed to

the network.

Figure 8.3, Figure 8.4 and Figure 8.5 show the resulting plots. Both of them show results

contrary to what is stated in the paper. Instead of creating a more decorrelated latent space, it

seems that by adding concept whitening, the axes of the latent space are becoming even more

correlated. Moreover, from the Correlation Axes plot, even the explicit concepts given to the

network seem to be correlated.

(a) Baseline Network (b) Concept Whitening Network

Figure 8.3: Comparison between the Separability of Latent Representation plots. Concept Whiten-
ing was added to the 8th layer, and the explicit concept given was VCDR.

From these results, other experiments were executed, where the learning rate, batch size, train-

ing epochs, explicit concepts and whitened layers were varied across several tries. Unfortunately,

none of them resulted in a successful latent space whitening. It is possible to list a few possible

reasons for these results. The first reason could be related to the type of data not being suited for

this whitening mechanism. Examples presented in the original paper are from a different context,
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(a) Baseline Network (b) Concept Whitening Network

Figure 8.4: Comparison between the Separability of Latent Representation plots. Concept Whiten-
ing was added to the 8th layer, and the explicit concepts given were VCDR, RDAR and ISNT.

where images from different classes have evident visual differences. Retinal images are much

more similar between them in geometry, colour and textures, which might create an additional

challenge for the concept whitening mechanism when trying to disentangle the latent space.

Regarding the explicit concepts, one could also argue that they are indeed closely related to one

another. Their values are calculated from the same structures or from metrics that are inferred from

those same structures. This means that the mechanism might look at those concepts as different

versions of the same characteristics of the image.

Figure 8.5: Correlation Axes plot. Concept Whitening was added to the 8th layer, and the explicit
concepts given were VCDR, RDAR and ISNT.
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8.3 SHAP - Post-hoc Explainable Mechanism

As explained in Chapter 5, SHAP is an explainability method focused on providing insights on

individual predictions. There are several choices regarding the classification model from where

SHAP charts could be obtained. Although neural network models are the most common approach

for Glaucoma classification, this work is directed towards building an explainable model that does

not need to be the most accurate. For that reason, it was decided to explore other types of models

that could take advantage of the potential of retinal morphological features. As described in Sec-

tion 5.5, Oh et al. [86] proposed a Glaucoma classification model based on this same algorithm,

trained on features obtained from clinical data from several eye examinations. Although this work

also explores the XGBoost algorithm and SHAP values as an explainability mechanism, there is

little overlap between both works. The use of morphological features extracted solely from retinal

fundus images is the distinctive factor of this work, not only from Oh et al. work, but also from

other works in the Glaucoma classification task.

This work will explore a similar model but will only use the morphological features extracted

from a fundus image. A classification model was built based on the XGBoost algorithm, a very

popular method that has shown great success on structured or tabular data.

XGBoost is a scalable tree boosting system proposed by Chen et al.[21], which was built

to deal with large amounts of strucutured or tabular data while still being highly efficient. The

authors combined out-of-core computation, cache aware and sparsity-away learning to optimize

the algorithm and provide a novel solution for real-world use cases.

The features used to train and test the model were obtained from the Enhanced/Degraded

dataset described in Section 8.1 using the feature extraction pipeline described in Section 7.5.

Since there was a low number of features and all of them hold importance on the Glaucoma

detection in a clinical environment, no feature selection was performed, resulting in the following:

CDR, VCDR, RDAR, ISNT and each rim sector width (I, S, N and T). The data was split into a

train/test set with an 80/20 proportion. The model used the log loss to evaluate training, but both

AUC and Classification error were tracked on the training session. Early stopping was set to 50

epochs to halt training when no significant loss improvements were verified.

8.3.1 Training

Parameter tuning was performed to improve and fully leverage the potential of the XGBoost

model. A nested strategy was adopted to tune parameters on several stages. The parameters

were tunned in the following order by training the model several times with parameters values

from a defined interval: learning rate, max_depth and min_child_weight, gamma, subsample and

colsample_bytree and alpha regularization parameter. Table 8.6 lists the hyperparameters for the

model with the best performance (any non-list parameters had the default value).
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Hyper Parameter Value
’learning_rate’ 0.01
’n_estimators’ 766
’max_depth’ 2

’min_child_weight’ 3
’gamma’ 0.4

’subsample’ 0.75
’colsample_bytree’ 0.8

’reg_alpha’ 0.01
’objective’ ’binary:logistic’
’nthread’ 4

’scale_pos_weight’ 1
’seed’ 27

’eval_metric’ ’logloss’
’use_label_encoder’ ’False’

Table 8.6: Hyper-parameters for best performance on XGBoost model.

8.3.2 Results

The initial model where parameters assumed the default values already showed good performance,

with an AUC of 0.8895 on the test set. After model tuning, the AUC increased slightly to 0.8962,

showing that parameter tuning did not significantly impact performance. Figure 8.6 shows the

log loss and AUC evolution along the epochs for the best-trained model. Despite being a sim-

pler model compared to the state-of-the-art approaches for Glaucoma classification, which mainly

adopt deep learning models, this particular model was able to obtain a solid performance.

(a) Loss Evolution over Epochs (b) AUC evolution over epochs

Figure 8.6: XGBoost model performance on the Enhance/Degraded Features dataset.

Figure 8.7 shows the importance given by the XGBoost model to each feature, which is eval-

uated using the average gain of splits that use each feature. The features "S", "N", and "ISNT" do

not appear because they have no impact on the model’s classifications.

A feature’s SHAP value on a specific classification represents how much the outcome changes

when looking at that feature. The feature leads the model towards a positive label (Glaucoma
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Figure 8.7: XGBoost model feature importance on the Enhance/Degraded Features dataset.

case) when SHAP values are positive and leads to a negative label (normal case) when SHAP

values are negative. Figure 8.8 shows the SHAP values for all features on each classification

outcome, providing a summary view on how each feature tends to impact the model’s output.

Each row represents the SHAP values for a single feature, and the x-axis is the SHAP value itself.

Each dot is coloured with the value of that feature from high to low, and it is possible to analyse

the outcome density around a particular SHAP value by observing the vertical dots stack. Features

are also ordered from the highest impacting one to the lowest. The VCDR is the feature with the

highest impact, followed by the RDAR and the CDR.

Moreover, these features significantly impact the output when their values are either on the

higher or lower ends of their possible values. As for the remaining features, all dots tend to stack

near 0, which means that independently of their value, they have little to no impact on the model’s

output. The SHAP values support the XGBoost feature importance graph in Figure 8.7.

Nevertheless, one must take into account the interaction that might exist between each feature.

For example, the VCDR value is related to the CDR value since the former uses 2 out of 4 rim

sectors’ widths, and the latter uses all of them. For this reason, dependence plots are an essential

tool to analyse the interaction between the variables and evaluate how it might impact feature

importance. These plots show the distribution of a feature value and the respective SHAP value

for all data entries while providing the value for another feature by colouring each dot. The

interaction between these two features is captured by the vertical dispersion of the data points and

the colour variability on that same dispersion.

Figure 8.9 shows the dependence plot for CDR and VCDR. Firstly, by observing the dots

positioning only, there is a clear trend of higher CDR values having a stronger influence on the
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Figure 8.8: Summary plot for all SHAP values on the test set of Enhanced/Degraded dataset.

model’s output. In comparison, lower values point towards a non-Glaucoma label but with less

impact since they represent smaller absolute SHAP values. If we analyse the dots’ colours, it is

clear that both variables are correlated since the higher the CDR, the higher the VCDR also is.

Figure 8.9: Dependence plot between CDR and VCDR on XGBoost model.

Figure 8.10 is a dependence plot between two other features, RDAR and VCDR. Similarly to

the previous plot, RDAR also seems to have a higher impact on the classification towards a positive

label the lower the value is. Higher values also have some influence, but not as much as the other

end. Looking at the dots, when RDAR is approximately 0.5 or 0.6, there is a considerable vertical

dispersion of dots without them changing the colour. This behaviour demonstrates that although

the RDAR remains constant, other features affect this feature’s importance on the classification
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outcome. The inverse behaviour represented at the extremes of RDAR values shows that the

context of other features in these situations does not significantly impact the RDAR importance.

Figure 8.10: Dependence plot between RDAR and VCDR on XGBoost model.

Lastly, SHAP can also be very useful for explaining individual outcomes, which provides

the importance certain features had on the Glaucoma classification. This analysis is provided by

waterfall plots that show how each feature contributes to pushing the model away from the model’s

base value (average output on the training set) towards the final output. The x-axis represents the

log-odds of the positive class, while each row shows the influence of each feature in the outcome

log-odds.

Figure 8.11 shows two waterfall plots that describe the importance of each feature on Glau-

coma and non-Glaucoma case where the model predicted correctly with relatively high certainty

(predicted class probability was higher than 0.60). The three features that have the most impact,

whether the labels are positive or negative, are RDAR, VCDR and CDR, which confirms once

again that these features are the ones that influence the outcome the most.

On the other hand, Figure 8.12 (1) shows a waterfall plot for a classification outcome where

the model predicted approximately the same probability for both classes. Although each feature

SHAP values point the model towards predicting a Glaucoma label, the final log-odds value (x-

axis) is approximately 0. Thus, the features for this specific case do not have enough information

that can push the model towards a more confident outcome. This is an important takeaway from

SHAP since it can still be helpful to understand how much support certain features give to an

uncertain outcome, not only from a development perspective but also from a system end-user one.

Lastly, there are cases where the model predicts incorrectly. Figure 8.12 (b) illustrates the

SHAP values for a Glaucoma classification when the label is non-Glaucoma. Even in these sce-

narios, SHAP values support the model’s decision, proving that this technique reflects the model’s



88 Model Explainability

(a) Glaucoma Label (b) Non-Glaucoma Label

Figure 8.11: Waterfall plots on a Glaucoma and non-Glaucoma outcome.

"reasoning" process for reaching an output. Although these cases are valuable to help debug the

model or signal outliers, SHAP values still provide crucial information about the image features

and how relevant they are towards an outcome, independently of its correctness. Furthermore, this

also shows that models are not foolproof, even if they include individual explanations.

(a) (b)

Figure 8.12: SHAP values behaviour on edge cases. (a) Waterfall plot on a 50/50 outcome for
both Glaucoma and non-Glaucoma label. (b) Waterfall plot on a Glaucoma outcome when the
image has a non-Glaucoma label.
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8.4 Explainable Pipeline

A pipeline for Glaucoma assessment was created by merging the work developed on segmenta-

tion and classification with the explainability techniques explores. This pipeline, illustrated on

Figure 8.13, is based on the morphological feature extraction pipeline described in Section 7.5,

which was inspired on the CAD pipeline proposed by Martins et al.[79]. Not only does it provide

a Glaucoma classification label, but it also provides insights on retinal fundus image’s features.

Figure 8.13: Glaucoma Explainable CAD pipeline diagram.

The pipeline starts with a full fundus image, which is centre cropped to a 1:1 aspect ratio.

Then, step (1) is to segment the optic disc using the GFI-SPP-Depth-simple model. Next, the

segmentation output is used to locate and crop the image ROI, where the CLAHE transforma-

tion is applied to complete step (2). On step (3) the optic disc and cup are segmented using the

GFI-ASPP-Depth network. Then, in step (4), the morphological features are calculated from the

segmentation mask. Finally, from these morphological features, step (5) consists in using the XG-

Boost model to obtain a Glaucoma classification together with a chart similar to the waterfall plots

presented before (Figure 8.11), which described how each feature influenced the model’s output.

This pipeline can also log intermediate results, since they allow us to verify if all steps are exe-

cuted correctly. Figure 8.8 and Table 8.7 shows the pipeline output for a non-Glaucomatous image

(Figure 8.14) from the iChallenge-GON dataset.

The PPA segmentation was not included in this pipeline since it was not possible to obtain a

good performance on a segmentation model.
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Figure 8.14: Non-Glaucomatous Retinal Fundus image from iChallenge-GON.

Feature Values
Glaucoma Confidence 0.3285

CDR 0.1648

VCDR 0.4182

RDAR 0.8299

"i" sector width 0.7368

"s" sector width 1.0

"n" sector width 0.6316

"t" sector width 0.9474

ISNT 0
Table 8.7: Morphological fea-
tures obtained from image Fig-
ure 8.14. Table 8.8: SHAP waterfall chart for Figure 8.14.

8.5 Summary

This chapter presented the work developed around Explainable Artificial Intelligence, where two

approaches were explored: an intrinsic interpretability one and a post-hoc explainability. Their

efficiency and clinical value were compared in the context of Glaucoma Risk Detection. The

experiments allowed the creation of an Explanation pipeline that uses features extracted from

other models, such as the segmentation model, and improved the interpretability of individual

classifications.



Chapter 9

Conclusions and Future Work

9.1 Conclusions

Explainable Artificial Intelligence (XAI) is a crucial field in the Machine Learning world that can

open new opportunities for AI systems to be deployed in a real-world application. The Inter-

pretability of these systems is an essential and exceptionally highly valued asset in critical indus-

tries such as the healthcare domain, where current state-of-the-art approaches lack transparency.

Furthermore, the XAI field is a growing research topic that will need a fair amount of time to

solidify its concepts.

This work achieved results that showed the behaviour of two techniques in the context of

Glaucoma classification by CAD systems. Firstly, the Concept Whitening mechanism could not

successfully constrain the deep learning model into learning the target concepts, which meant it

was not possible to extract meaningful explanations from the final model. Secondly, SHAP values

showed promising results that complemented the Glaucoma Risk individual classification with

retinal feature-based explanations, which provide clinically relevant information. Moreover, this

tool provided insights on the classification outcome, even if it was incorrect or if the model was

uncertain.

Although one of the focus of this work was Glaucoma Risk CAD systems’ explainability,

it was necessary to research and develop algorithms for other related tasks. Morphological fea-

tures were extracted from retinal fundus images to provide meaningful explanations on individual

predictions. The feature extraction process needs to be as accurate and robust as possible since

the explanations’ quality depends on how precise these features are calculated. The proposed X-

Unet architecture for Optic Disc and Cup segmentation showed results similar to state-of-the-art

approaches but could not achieve the same performance on the PPA segmentation task. Never-

theless, the research and segmentation of other structures besides the OD and OC is a factor that

distinguishes this work from the majority of literature. Besides, there is a clear indication that

91
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Glaucoma CAD systems research must expand outside the OD/OC towards other regions of the

retina that might contain relevant information.

The proposed explainability pipeline is a proof-of-concept that gathers all the components

developed across this dissertation. The pipeline can segment retinal structures, infer clinically

relevant morphological feature and provide a Glaucoma risk classification enhanced with mean-

ingful explanations, everything using a single full fundus image. This pipeline is an essential step

towards more interpretable CAD systems, a concern not very common in other state-of-the-art

proposals, but that is very valuable to society.

9.2 Future Work

Although the proposed pipeline achieves its intended purpose, several improvements could still be

implemented in the future.

Firstly, the morphological features utilised by the network are still very focused on the Op-

tic Nerve Head. However, clinical experts also analyse other structures and lesions around that

region, such as the PPA and the RNFL. Therefore, the research should begin with localising and

segmenting these structures as accurately as possible. Furthermore, multi-modal data could also

benefit the Glaucoma risk classification and the quality of explanations since it would be possible

to produce more informative explanations from a wider variety of data. The OCT examination was

pointed out in the proposed solution as a potential good source of new and more detailed features

about the patients’ eye health condition, but was not further explored in this work. Finally, longi-

tudinal data is another possibility since clinical experts usually may use several stages of disease

detection and diagnosis to define the patient’s condition.

Secondly, the pipeline could still be improved by adding an image quality evaluator that would

indicate whether the image complies with specific quality standards that guarantee the pipeline

works correctly. This work showed how image quality is critical when extracting morphological

features from retinal fundus images.

Furthermore, other explainability techniques could also achieve good performance and pro-

vide acceptable explanations. Since Glaucoma CAD systems are classified as critical systems,

research about intrinsic interpretability techniques should be the priority topic since they provide

explanations based on the input’s feature importance in a particular classification. For example,

Barnett et al.[10] proposed a prototype-based network for Classification of Mass Lesions in Dig-

ital Mammography, achieving good performance and meaningful explanations. Although out of

the scope of this work, this could be one of the possible work paths.

Finally, the least explored topic from a practical perspective on this work was Generative

Modeling. From the data obtained through Fraunhofer’s work, one could assume that there is

potential in applying Generative Modeling techniques to retinal fundus images. Known problems

like Unpaired Image to Image Translation and Semantic Editing are not very present in retinal

fundus imaging, thus being necessary to explore these technique’s potential for Glaucoma and

other medical data.
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