2,678 research outputs found

    Autonomous Bee Colony Optimization for Multi-objective Function

    Get PDF
    An Autonomous Bee Colony Optimization (A-BCO) algorithm for solving multi-objective numerical problems is proposed. In contrast with previous Bee Colony algorithms, A-BCO utilizes a diversity-based performance metric to dynamically assess the archive set. This assessment is employed to adapt the bee colony structures and flying patterns. This self-adaptation feature is introduced to optimize the balance between exploration and exploitation during the search process. Moreover, the total number of search iterations is also determined/optimized by A-BCO, according to user pre-specified conditions, during the search process. We evaluate A-BCO upon numerical benchmark problems and the experimental results demonstrate the effectiveness and robustness of the proposed algorithm when compared with the Non-dominated Sorting Genetic Algorithm II and the latest Multi-objective Bee Colony Algorithm proposed to date

    Where Should We Place LiDARs on the Autonomous Vehicle? - An Optimal Design Approach

    Full text link
    Autonomous vehicle manufacturers recognize that LiDAR provides accurate 3D views and precise distance measures under highly uncertain driving conditions. Its practical implementation, however, remains costly. This paper investigates the optimal LiDAR configuration problem to achieve utility maximization. We use the perception area and non-detectable subspace to construct the design procedure as solving a min-max optimization problem and propose a bio-inspired measure -- volume to surface area ratio (VSR) -- as an easy-to-evaluate cost function representing the notion of the size of the non-detectable subspaces of a given configuration. We then adopt a cuboid-based approach to show that the proposed VSR-based measure is a well-suited proxy for object detection rate. It is found that the Artificial Bee Colony evolutionary algorithm yields a tractable cost function computation. Our experiments highlight the effectiveness of our proposed VSR measure in terms of cost-effectiveness configuration as well as providing insightful analyses that can improve the design of AV systems.Comment: 7 pages including the references, accepted by International Conference on Robotics and Automation (ICRA), 201

    Quantum behaved artificial bee colony based conventional controller for optimum dispatch

    Get PDF
    Since a multi area system (MAS) is characterized by momentary overshoot, undershoot and intolerable settling time so, neutral copper conductors are replaced by multilayer zigzag graphene nano ribbon (MLGNR) interconnects that are tremendously advantageous to copper interconnects for the future transmission line conductors necessitated for economic and emission dispatch (EED) of electric supply system giving rise to reduced overshoots and settling time and greenhouse effect as well. The recent work includes combinatorial algorithm involving proportional integral and derivative controller and heuristic swarm optimization; we say it as Hybrid- particle swarm optimization (PSO) controller. The modeling of two multi area systems meant for EED is carried out by controlling the conventional proportional integral and derivative (PID) controller regulated and monitored by quantum behaved artificial bee colony (ABC) optimization based PID (QABCOPID) controller in MATLAB/Simulink platform. After the modelling and simulation of QABCOPID controller it is realized that QABCOPID is better as compared to multi span double display (MM), neural network based PID (NNPID), multi objective constriction PSO (MOCPSO) and multi objective PSO (MOPSO). The real power generation fixed by QABCOPID controller is used to estimate the combined cost and emission objectives yielding optimal solution, minimum losses and maximum efficiency of transmission line

    Obstacle Avoidance Scheme Based Elite Opposition Bat Algorithm for Unmanned Ground Vehicles

    Get PDF
    Unmanned Ground Vehicles (UGVs) are intelligent vehicles that operate in an obstacle environment without an onboard human operator but can be controlled autonomously using an obstacle avoidance system or by a human operator from a remote location. In this research, an obstacle avoidance scheme-based elite opposition bat algorithm (EOBA) for UGVs was developed. The obstacle avoidance system comprises a simulation map, a perception system for obstacle detection, and the implementation of EOBA for generating an optimal collision-free path that led the UGV to the goal location. Three distance thresholds of 0.1 m, 0.2 m, and 0.3 m was used in the obstacle detection stage to determine the optimal distance threshold for obstacle avoidance. The performance of the obstacle avoidance scheme was compared with that of bat algorithm (BA) and particle swarm optimization (PSO) techniques. The simulation results show that the distance threshold of 0.3 m is the optimal threshold for obstacle avoidance provided that the size of the obstacle does not exceed the size of the UGV. The EOBA based scheme when compared with BA and PSO schemes obtained an average percentage reduction of 21.82% in terms of path length and 60% in terms of time taken to reach the target destination. The uniqueness of this approach is that the UGV avoid collision with an obstacle at a distance of 0.3 m from nearby obstacles as against taking three steps backward before avoiding obstacl
    • …
    corecore