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Autonomous Bee Colony Optimization for Multi-objective Function 
Fanchao Zeng, James Decraene, Malcolm Yoke Hean Low, Philip Hingston, Senior Member, IEEE,  

Cai Wentong, Zhou Suiping, Mahinthan Chandramohan 

  

Abstract—An Autonomous Bee Colony Optimization 
(A-BCO) algorithm for solving multi-objective numerical 
problems is proposed. In contrast with previous Bee Colony 
algorithms, A-BCO utilizes a diversity-based performance 
metric to dynamically assess the archive set. This assessment is 
employed to adapt the bee colony structures and flying patterns. 
This self-adaptation feature is introduced to optimize the 
balance between exploration and exploitation during the search 
process. Moreover, the total number of search iterations is also 
determined/optimized by A-BCO, according to user 
pre-specified conditions, during the search process. We evaluate 
A-BCO upon numerical benchmark problems and the 
experimental results demonstrate the effectiveness and 
robustness of the proposed algorithm when compared with the 
Non-dominated Sorting Genetic Algorithm II and the latest 
Multi-objective Bee Colony Algorithm proposed to date. 

I. INTRODUCTION 
EAL world problems typically involve the simultaneous 
optimization of conflicting objectives [1, 2]. To solve 

these multi-objective combinatorial and/or numerical 
optimization problems, numerous nature-inspired algorithms 
have been proposed to locate their Pareto fronts. These 
algorithms can be classified into two main categories: 
evolutionary algorithms (EAs) and swarm intelligence based 
algorithms (SAs). Both families of techniques are inspired by 
real phenomena occurring in nature. EAs simulate natural 
evolution through the variation of genetic material and 
selection of fittest (from a phenotypical standpoint) candidate 
solutions. SAs exploit the collective intelligence emerging 
from the crowd behavior of social entities such as fish 
schools, bird flocks and insect colonies. Recent studies [1, 2] 
suggested that SAs are more suitable in terms of convergence 
speed to solve multi-objective optimization problems when 
compared with EAs. 

Among SAs, the bee colony optimization (BCO) algorithm 
is characterized by specific behavioral features such as the 
waggle dance, task selection, collective decision making, and 
navigation. BCO has presented promising results when 
utilized to solve multi-objective problems [3, 4]. In BCO, the 
labor division properties (i.e., foraging behavior 
specifications) and self-organization dynamics are essential 
to achieve good performances. Specialized foraging-related 
tasks are conducted by differing types of bee whereas the 

self-organization dynamics are governed by four properties: 
positive feedback (waggle dance), negative feedback (food 
source exhaustion), fluctuations (random search) and social 
interactions (group discussion). Nevertheless, according to 
the taxonomy compiled by Karaboga and Akay [5], bee 
swarm algorithms are predominantly utilized to solve 
combinatorial problems such as the Traveling Salesman 
Problem, Job Shop Scheduling, Routing in Networks and 
Resource Allocation Problems. To date, only two studies [7, 
8] have been reported in the literature for multi-objective 
numerical optimization.  
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In this paper, based on a self-adaptive foraging behavior of 
honey bees, an autonomous bee colony optimization (A-BCO) 
algorithm is proposed for multi-objective numerical functions. 
Three types of bees, i.e., elite, follower and scout bees are 
devised with distinct navigation patterns and specialized tasks. 
Elite bees are selected to perform the waggle dance to 
communicate foraging information with the other bees. The 
follower bees forage around flower patches of randomly 
selected elite bees. Scout bees carry out spontaneous searches 
in nearby areas. Unlike previous bee colony optimization 
algorithms, A-BCO may automatically determine a 
satisfactory number of search iterations. Moreover, both the 
bee colony structure (ratios of different types of bee) and 
flying patterns are subjected to variation during the search 
process. These dynamic changes are performed to optimize 
the balance between exploration (early phase of the search) 
and exploitation (later and final phase of the search). These 
self-adaptive properties are driven by a diversity-based 
running performance metric of best found solutions so far. 

Indeed, A-BCO utilizes a diversity-based performance 
metric to dynamically assess the archive set. Using this 
diversity metric, A-BCO may determine the current stage of 
food foraging: either exploration or exploitation. During the 
exploration stage, the ratio of elite bees is relatively higher so 
that a wider exploration of the search space can be conducted. 
Also, the follower bees are allowed to expand their 
exploration around the flower patches found so far. During 
the exploitation stage, the bees attempt to improve/exploit the 
best found solutions. Here the ratio of elite bees is thus 
decreased; similarly the follower bees narrow even further the 
spread of their search. This final refinement stage aims at 
improving the distribution uniformity of solutions. 

The remainder of the paper is structured as follows: An 
overview of related work is first provided. Then, a detailed 
description of A-BCO is given. Series of experiments 
involving multi-objective numerical optimization problems 
are conducted and finally discussed.  
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II.  RELATED WORK 
We first present several BCO techniques applied to both 

single and multi-objective numerical functions. Then we 
identify and discuss the limitations of these techniques. 
Karaboga and Basturk [4] proposed an Artificial Bee Colony 
(ABC) algorithm which relies on modeling the foraging 
behavior of honey bees. A bee colony structure, similar to the 
one described earlier, is employed. A single-objective 
multivariable function is used to compare the performance of 
ABC and other algorithms (Particle Swarm Optimization and 
Particle Swarm Inspired Evolutionary Algorithm). This study 
suggested that ABC can outperform the other algorithms 
when considering specific benchmark problems (e.g., the 
Rastrigin function). A similar method was developed by 
Sundareswaran and Sreedevi [6] and yielded the same 
conclusions. Akbari et al. [3] improved the previous bee 
colony algorithms by modifying the bee flying patterns. This 
method introduced two novel features, a repulsion factor & 
penalizing fitness (BSO-RP) and time-varying weights 
(BSO-TVW). Both features were introduced to address the 
stagnation, exploration and exploitation balancing problems. 
The experimental results showed that Akbari et al.’s 
technique can achieve competitive results and outperform 
ABC in terms of both success rate and convergence speed. 

The above BCO algorithms were applied to single 
objective numerical functions. However, to our knowledge, 
only two BCO algorithms have been examined for 
multi-objective numerical functions.  The earliest study on 
BCO and multi-objective optimization was conducted by 
Pham and Ghanbarzadeh [7] in 2007. A bee algorithm was 
proposed and evaluated over a multi-objective non-linear 
numerical engineering problem. Experimental results were 
compared with the Non-dominated Sorted Genetic Algorithm 
II (NSGA-II) and NSGA; it was shown that a similar Pareto 
front could be obtained using BCO. The most recent work, 
reported in the literature, to date was presented by Low et al. 
[8] where the Multi-objective Bee Colony Optimization 
(MOBCO) algorithm was proposed. A comparative study 
was conducted in which MOBCO presented comparable 
performance to NSGA-II when applied to the optimization of 
numerical functions (ZDT benchmarks).  

Although previous bee colony algorithms demonstrated 
promising performances when applied to both single and 
multi-objective numerical functions, none of the algorithms 
included self-adaptive properties at both the macro (i.e., food 
forage duration) and micro level (i.e., the foraging behavior 
of bees). Self-adaptive properties may assist/relieve the user 
in setting the algorithm’s parameters to best optimize a given 
problem:  

1. The foraging/search duration is a key factor which may 
diminish the quality of solutions (when set too low) or 
waste computing resources (when set too high). 
Moreover the “optimal” search duration varies according 
to the optimization problem being addressed. We thus 
argue that the search duration should be self-adaptive 
(similarly to real bees that halt searching when they have 

discovered sufficient flower patches). 
2. In existing BCO techniques, the food foraging behavior 

is determined by the composition of the bee swarm and 
flying patterns which are both typically fixed throughout 
the search process. We propose that these properties 
should be self-adaptive to promote efficient food 
foraging. This self-adaptation would exploit and 
dynamically optimize the balance between exploration 
and exploitation during the search [9].  

The above self-adaptive methods proposed for BCO are 
described in detail in the next section. 

III. AUTONOMOUS BEE COLONY OPTIMIZATION 
This section introduces the behavior of real bees in nature 

and then provides an overview of A-BCO, finally the 
algorithm is detailed. 

A. Honey Bees in Nature 
The self-organized and collective behavior of colony 

insects enables them to solve multi-objective problems which 
cannot be addressed by single insects acting independently. In 
the case of honey bees, this behavior facilitates the search of 
flower patches in the environment. Information, with regards 
to the flower patches, is shared among the bees when they 
return to the hive. This foraging behavior remained 
mysterious until Von Frisch [10] decoded the language of the 
bee waggle dance. The latter is used as a communication 
medium to describe the quality, distance and direction of the 
flower patches to other bees in the hive. Bees are then sent to 
the patches according to their profitability ratings 
(determined by the nectar quality, nectar bounty and distance 
from the hive). Further details on the waggle dance can be 
found in [11, 12].  We utilize this waggle dance mechanism as 
an inspiration to drive the self-adaptive properties of our 
BCO. Here, through the waggle dance, our artificial bees 
communicate with each other to share information about the 
quality (i.e., the diversity-based performance metric) of found 
flower patches (i.e., solutions). This information is then 
employed to adjust the structure of the bee swarm and flying 
patterns as follows: when the diversity of solutions found is 
low then the spread of search is increased (i.e., the exploration 
stage). In contrast, when the diversity of solutions is high then 
the spread of search is decreased (i.e., the exploitation stage). 

B. Overview of A-BCO 
The A-BCO search is predominantly driven by the 

diversity-based performance of the archive set (which 
contains the best solutions found so far). This measure is used 
to dynamically adjust the structure and flying patterns of the 
bees (i.e., the micro level) and also to identify the current 
stage of the search (i.e., the macro level).  

At the micro level, three types of bee are distinguished: 
elite, follower and scout bees. The flying patterns of elite and 
follower bees are varied through the use of crossover 
operators, whereas scout bees employ a mutation operator to 
update their foraging path. The partition of the bees is 
determined by their individual fitness which represents the 
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quality of food source being foraged by the bee. Unlike 
previous approaches, the ratio of each type of bee is 
dynamically adjusted. This is conducted in accordance with 
the diversity-based performance of the solutions found so far. 
Only a relatively smaller fraction of the bees are selected as 
scout bees.  

As mentioned earlier, the diversity-based performance is 
also used to identify the current stage of the search. This 
macro level feature is utilized to adjust the search duration 
accordingly. Three stages are distinguished during which the 
search behavior is characterized as follows: 

1. Exploration, a wide search for solutions throughout the 
search space is conducted. 

2. Transition, this phase occurring between the 
exploration and exploitation stages is devised to 
determine whether the exploration phase has converged 
towards promising global optima. In other words this 
phase ensures that we do not proceed to the exploitation 
stage if the search has actually converged to local

ring areas of best found solutions are explored

e A-BCO algorithm is presented. 

The main steps of A-BCO are illustrated in Fig. 1. 

 
Fig. 1. A-BCO flowchart. 
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further. 

In the next section, th

C. The Algorithm 

 

Each step of the A-BCO algorithm is now outlined: 
1. The search process star

of the bee population.  
2. According to the numerical objective functions being 

examined, the non-dominated solution sets are stored in 
the archive. The archive is used to store the best 
estimates of the Pareto front and is updated in each 
search iteration
two sub-steps: 
a. Firstly, the newly generated solution sets are 

combined with the non-dominated solution sets 
already stored in the arc
solutions are removed.  

b. Secondly, if the archive maximal size is reached, a 
recurrent truncation method based on crowding 
distance is utilized to remove the least “promising” 

n-dominated solutions, see Section D for details.  
3. The diversity-based performance metric, given 

by α 0,1 , of the solutions stored in the archive is 
calculated. α estimates the level of uniformity in the 
distribution of solutions in the archive set, i.e., if α=1 
then the solutions are uniformly distributed, whereas 
with α=0.6 we may approximate that 40% of the 
solutions are not evenly distributed. Note that with 
α=0, the archive se
on computing α.  

4. The current stage of food forage is determined 
according to the diversity of the archive set. Three 
stages or phases are distinguished: exploration, 
transition and exploitation. More details1 Initialize bee population 
stage determination can be found in Section F.  

5. The bee colony structure (i.e., ratios of elite, follower 
and scout bees) is adjusted according to α. This 
adjustment aims at maximizing α (i.e., increase the 
distribution uniformity of the solutions). The goal is to 
make the solutions in the archive set evenly 
distributed. Note that

 
Table I lists the different bee type ratios which we
devised according to the following considerations: 
a. In typical experiments, the generated solution sets 

exhibit low diversity during the initial phase (i.e., α 
is low). In such cases the percentage of elite bees 
performing the waggle dance should be high (i.e., 
1-α to be high) so that exploration is emphasized. 
As the search proceeds, the archive set eventually 
becomes more diversified; the elite bee ratio shou
then be decreased to facilitate local fine tuning.  

b. So according to the fitness (i.e., crowding distance) 

TABLE I 
BEE COLONY STRU BASED ON DIVERSITY . 

ype 
CTURE 

Bee T Size 
Elite (1-α-s)K 

sK, s = 1/number of variables 
αK Follower 

Scout 

 

Update archive 

Compute diversity of archive set 

Determine search stage 

Stopping 
criterion 
satisfied? 

Adjust structure of bee swarm & 
Perform elite bee waggle dance 

Adjust flying patterns for all bees 

Forage 

Output archive set 

2 

3 

4 

Yes 

No 
5 

6 

7 
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of individual solutions, (1-α-s)K of the bees are 
selected as elite ones. After that, waggle dance is 
performed by the elite bees. Note that the number 

his 

depicts an overview of A-BCO where t
interactions of the l techniques involved are 
depicted. 

. Lastly, the “final crowding distance” is 
 obtained for each 

is 

the 

 converge towards an 

versity performance is 
chieved if all grids contain at least a solution. The steps to 

s: 

ariable in the 
iversity array corresponds to one particular grid i. The value 

h(i) of the ith elements is obtained using Eq. 1. 
 

  1,         ;

 grids’ h() values in the diversity array. The value 
f the i  grid is calculated according to a mapping table 

of scout bees is fixed throughout the search.  
6. The flying patterns (i.e., the bees’ search paths) are 

also subjected to variation. The scout bees use a 
polynomial mutation operator (promoting an increase 
in spread) to explore the search space further. The 
associated mutation probability is fixed. In contrast, 
elite and follower bees utilize the simulated binary 
crossover (SBX) method [14] to exploit the 
near-optimal generated solutions. The adjustment of 
flying patterns is achieved through the automated 
tuning of SBX’s distribution index. This is performed 
in each search iteration. The diversity-based 
performance metric is again utilized to drive t
adjustment. The implementation details are described 
in Section F. 

7. Then, based on the adjusted flying patterns, the bees 
carry out food foraging. 

Figure 2 he population size by the number of objectives (instead of 
requiring the user to manually define it as in [13]).  

2. We argue that Deb and Jain’s approach is limited by the 
requirement of a priori knowledge of the target 
solutions’ distribution. Using this information, the 
number of grids can be determined/fitted. Nevertheless 
in real time/life optimization problems, this information 
is usually unavailable. Here the running metric does not 
refer to any pre-specified target set of solutions. Instead 
the running metric is employed to

severa

 

 
D. Archive Management Scheme (AMS) 
Archive is commonly used to store the approximation to the 

true Pareto front of the problem. Ideally, the size of the 
archive should be infinite; however, practically, this is not 
feasible. Therefore, a limit has to be set to define the maximal 
size of the archive. When this size limit is reached, the 
multi-objective optimization algorithm should be able to 
allow only better solutions to enter the archive, whereas the 
“least” valuable solutions are removed. In addition, to 
maintain a uniformly distributed set of solutions, the AMS 
ranks the solutions within the archive set to promote the most 

valuable solutions. We utilize the crowding distance method 
to rank the solutions. The crowding distance indicator was 
proposed by Deb et al. [15]. It serves as an estimation of the 
size of the largest cuboid enclosing the solution point. It could 
be regarded as a criterion to determine the value of the 
solution point. In this scheme, “boundary solutions” or 
highest and lowest objectives are given the maximum value in 
order to retain them. The crowding distance can be calculated 
by measuring the distance between the two immediate 
neighbors of a given point along each of the objective 
dimensions
computed by adding the crowding distances
objective. 

E. Diversity-based Performance Metric 
A diversity-based performance metric is implemented to 

dynamically assess the quality of the archive. This metric 
based on the running performance metrics proposed by Deb 
and Jain [13]. Two principal modifications are introduced: 

1. The number of grids (approximating the diversity of the 
population, see Fig. 3) is derived by dividing 

Archive 
Crowding distance based 

management scheme 

Diversity-based perf. metric α 
Section E 

ideal target set of solutions where each grid would 
possess a representative solution. 

Given the minimal and maximal boundary values, the 
hyperplane is thus divided into a finite number of grids 
(population size divided by the number of objectives).  The 
diversity performance metric is based on whether each grid 
contains a solution or not. The best di

Structure adjustment  
& waggle dance 

Fl n  ying patter  
adjustment 

  Bee Type Operator 
  Elite    

  Bee Type   Size
  Elite  

  
 SBX
 SBX 

 (1-α-s)K
(α-s)K

  
  Follower  
  Scout          sK 

Section B 

  Follower  
  Scout         Mutatio

Section G 
n 

aSearch stage 
determination calculate the diversity are as follow

Bee population  Section F 

Step 1: Calculate diversity array. 
 
The number of integer variables in the diversity array is equal 
to the number of grids in the hyperplane. Each v

End search 

d

 0, .                                                                      1  

 
Step 2: Assign a value m() to each grid i depending on its 
neighboring

tho
(Table II). 
 
 For example let us consider the grid patterns p1=|0|1|0| (i.e., 
h(i-1)=0, h(i)=1 and h(i+1)=0 and p2=|1|0|1|. According to 

Fig. 2. Schematic overview of A-BCO and invo
techniques. 

lved computational
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Table II, we obtain m(p1) = m(p2) = 0.75 which represents a 
relatively good periodic spread pattern. Whereas if we 
consider p3=|1|1|0|, we ob )= 0.67 meaning that p3 
covers a aller s

T  
APPING TA E FOR  . 

h ) h( ) m( h(i-1 h(i+1) ) 

tain m(p3
 sm pread.  

ABLE II
M BL

(i-1 h(i) i+1 ), h(i), 
0 0 0 0.00 
0 0 1 0.50 
1 0 0 0.50 
0 1 1 0.67 
1 
0 

1 
1 

0 
0 

0.67 
0.75 

1 0 1 0.75 
1 1 1 1.00 

 
Step 3: For each objective, calculate the diversity measure dm 
by averaging the m() values. 
 

 
∑  1 , , 1  

       2  
where NOG stands for the number of grids. To illustrate the 
procedure to calculate the diversity measure, an example is 
presented in Fig : 

ning three 
consecutive grids. The h() values of the imaginary boundary 
grids are always 1 as shown in the shaded grids. 

 

ure 3

 
Fig. 3. Example of computing the diversity metric. 

In this example, a two-objective (f1 and f2) minimization 
problem is examined. The solutions are marked as points. The 
f2 = 0 plane is used as the reference plane and the range of f1 
values are divided into, supposing the population size is 10, 
10/2 = 5 grids. Then, for each grid, the value of h() is 
calculated based on whether the grid contains a solution point 
or not. Then, the value of m() and the diversity measure are 
calculated based on a sliding window contai

1
0.67 0.50 0.50 0.67 1

5 0.668 
 
Step 4: Calculate overall diversity performance metric, Dm by 
averaging the diversity measures of all objective spaces. 
 

 
∑

       3  

F. Food Forage Stages Determination 
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where NOO means the number of objectives. 

 
Fig. 4. Diversity metric dynamics for ZDT1 and ZDT6 using A-BCO. 

Figure 4 illustrates the diversity metric obtained using 
A-BCO for the benchmark problems ZDT1 and ZDT6. This 
metric is used to return feedback about the search space. For 
ZDT1, from the 150th iteration, the diversity metric oscillates 
around a value of 0.90. With ZDT6, this diversity metric 
reaches steady state after 200 generations. In both cases, this 
convergence indicates that the search has reached global 
optima solutions. The transition (10 search iterations) and 
exploitation phases follow.  

In general, there are two ways to identify the search stages 
(which are based upon reaching convergence):  

1. The first approach is to define a temporal sliding 
window and upon the stabilization of diversity within 
this window, the transition and exploitation stages may 
initiate. However, this approach may mistakenly return 
local optima.  

2. In A-BCO, we adopt the objective-oriented approach. 
We arbitrarily set the target transition diversity 
threshold to be 0.8. Once the diversity reaches 0.8 for at 
least 10 search iterations, then we assume that the 
search has converged and we may enter the transition 
stage. This “transition phase” is employed to prevent 
returning local optima. Once the search enters the 
exploitation stage, the number of search iterations is 
counted.  

In A-BCO, the stopping criteria is either achieving α=1.0 or 
running g=200 search iterations during the exploitation stage. 
However, it is also possible that the Pareto front is discrete 
where a high diversity metric such α=0.8 is impossible to 
achieve (this issue is discussed in the experimental section). 
As a result, we also set a maximum search iteration gmax in 
A-BCO to prevent never-ending searches from occurring. 

G. Flying Pattern Adjustment 
Elite and follower bees do not follow identical search paths 

indicated by the waggle dances. Instead, the search path is 
updated using the simulated binary crossover (SBX) operator. 
The flying patterns of follower bees are dynamically adjusted 
to optimize the balance between exploration and exploitation 
during the different stages of the search. The working 
principles of SBX are now described to emphasize the 
importance of the distribution index ŋ  in generating 
offspring solutions. Then, we present the self-adaptive 

min max
1 2 3 4 5

h()  1        1       0       0       1       1       1 
m()         0.67   0.5    0.5  0.67    1        

f2 

f1 
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mechanism (SAM) which can dynamically adjust the 
distribution index in SBX using the feedback information 
obtained from the diversity-based performance metric. 

1) Simulated Binary Crossover (SBX): The SBX crossover 
operator [14] creates two offspring solutions (represented as 
real values) from two selected parent solutions. The 
procedure deriving offspring solutions xi

(a,t+1) and xi
(b,t+1) from 

the parent solutions xi
(a,t) and xi

(b,t) (t is the generation) is  as 
follow.  

A random number is generated. Given a 
pre-specified probability distribution function (Eq. 4), the 
value of βi (Eq. 8) is determined so that the area under the 
probability curve from zero to βi is equal to u. The distribution 
index ŋc is a non-negative real number. Figure 5 illustrates the 
probability density function for creating offspring solutions 
using the SBX operator from two example parents xi

 (a,t) =3 
and xi

 (b,t) =6 with distribution indexes ŋc =2.0 and ŋc =5.0. 
Larger values of ŋc are more likely to produce “near parent” 
solutions whereas smaller values of ŋc lead to a more diverse 
search. After obtaining βi from Eq. 5, the offspring solutions 
are calculated using Eq. 6 and 7. 

0,1  

0.5 ŋ 1 ŋ  , if  1;       

0.5 ŋ 1
1
ŋ

 

, otherwise.                   4  

 

 

2 ŋ  ,              0.5; 

1
2 1

ŋ
, 0.5.

                                  5  

, 0.5 1 ,  1 ,          

, 0.5 1 ,  1 ,        7  

with fixed distribution index could not solve multi-modal 

sm (SAM) to 
dy

. A reference 
cr

s

ossove  crosso
lutio

 2,t 1,

 
6

 

 

 
Fig. 5. The probability density function for creating offspring solutions with 

the SBX operator (adapted from [14]). 

2) Self-Adaptive SBX: In most applications of SBX, the 
crossover distribution index ŋc is fixed. Specifically, a fixed 
value of ŋc=2.0 is typically chosen for single-objective 
optimization problems [16]. Whereas ŋc=20.0 is commonly 
used for ZDT benchmark problem sets. Although using a 
fixed value of ŋc can also lead to the implementation of 
self-adaptive techniques, past studies using the SBX operator 

problems such as Rastrigin’s function [14].  
We propose a self-adaptive mechani
namically update ŋc. Here we assume the optimal diversity 

performance (i.e., α=1.0) could only be achieved when the 
solution set is close to the optimal solution set. Hence, if 
optimal diversity performance is achieved, the distribution 
index ŋc should be large enough to make the offspring 
solutions very similar to their parents. On the other hand, if 
the diversity performance is poor, strong crossover operation 
should be applied to “break” the clusters of solutions. At the 
beginning stage of the search process, relatively low diversity 
metric results in strong crossover operation to explore the 
search space and in the later stage, soft crossover operation is 
applied to exploit local near-optimal solutions. Thus, this 
diversity-driven mechanism can effectively exploit the 
concept of “explore first and exploit later”.  

The SAM mechanism is now detailed
ossover distribution index ŋ  based on the diversity 

performance is computed. The pread  of the offspring 
solutions, with respect to the parent solutions, is obtained 
using Eq. 8. Based on , the crossover operation can be 
classified into three classes, namely contracting crossover 
( 1 ), stationary crossover ( 1 ), and expanding 
cr r ( 1). The expanding ver can “expand” 
the parent so ns to form more diverse offspring candidate 
solutions. Contracting crossover has the opposite effect of 
“contracting” the parent solutions. We define the value range 
of  from 0.9 to 1.1 as the close value range (CVR) where 
the generated offspring solutions are likely to be very similar 
to the parent solutions. This range was determined based on 
parametric studies carried out in [17]. 
 

2, 1 1, 1

          8  

 

 
Fig. 6. Mapping be ue in SAM. 

Here w e dex ŋc so 
th

 u

ŋ  

tween  and u val

e determine the refer nce distribution in
at the probability of  falling into the CVR i. e. ,

0.9,1.1  equals to the diversity performance metric as 
illustrated in Figure 6. For example, if the diversity-based 
performance metric is α=0.70, then we should make sure that 
70% of the time  0.9,1.1  is true. By mapping the 
random number u to   (using Eq. 5), we have  
0.15,0.85 . Then ŋc can be calculated sing Eq. 9 and 10: 

  

0.5 –

 
log 2u
log 1,                              u 0.5;          9

 1
log 2 1 u

log , u 0.5.          10
 

Contracting 
Crossover

Expanding 

0.9 1.1 
Close Value 

Crossover

Range

Diversity αDiversity/2 0.5 + Diversity/2

u

ßi

1284



 
 

 

 
ŋ  .

.
 1 10.42 and  

ŋ  1 .
.

11.63 respectively.  
 

he distribution indexes ŋ 10.42   and ŋ 11.63   are 
averaged and we obtain rence crossover distribution 
index ŋ  = 11.0 to produce of

A randomly initialized pop s poor 
iversity performance and consequently lowers the 

 the CVR.  the later 

e probability 
of

5] and MOBCO [8]. The 
following parameter setting is used for NSGA-II: ŋc = 20.0, 
ŋm = 50.0, f variables). The 
pa

T
a refe

fspring solutions. 
ulation typically yield

d
probability of  falling into During stage, 
the diversity performance stabilizes at a relatively higher 
value and the exploitation phase may start as th

  falling in the CVR is higher.  

IV. EXPERIMENTS 
The benchmark problems ZDT 1, 2, 3, 4, 6 [18] and DTLZ 

2, 4 [19] are used to evaluate the performance of A-BCO. The 
latter is compared with NSGA-II [1

pc = 1.0, pm = 1 / (number o
rametric setting for MOBCO is the same as in [8]. Each set 

of experiments (where 100,000 fitness evaluations are 
conducted in each of them) is repeated ten times. For A-BCO, 
we set a population size of 100, archive size K=100, g=200 
and gmax=1000. Therefore, the maximal number of fitness 
evaluation in A-BCO is 100,000. Two benchmark metrics, 
Inverted Generational Distance (IGD) and Spread are 
employed to measure the algorithms’ performance. IGD uses 
the true Pareto front1 as a reference and measure the distance 
of each of the solution points with respect to the front:  

 

 
∑

                                            13   
 

Where  is the Euclidean distance between the solutions and 
the respective closet members to the true Pareto front.  is the 
number of solutions contained in the Pareto front. When 

0, it indicates that the solution set is in the true Pareto 
front. The Spread indicates the extent of s read among the p
obtained solutions throughout the Pareto front and is 
computed as follows. 
 

 
∑
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Where  and  are the Euclidean distances between the 

boundary solutions (of the obtained solution set).  is the 
Euclidean distance between consecutive solution points. 
Tables IV, V, VI and VII summarize the experimental results. 

s observed in Tables IV and V, A-BC  achieved lower 
a

 

A
m

O
eans and stand rd deviations for both IGD and Spread 

diversity metrics in all benchmark problem sets compared to 
NSGA-II. When compared with MOBCO in Table VI and 
VII, A-BCO obtained better Spread performance for both 
means and standard deviation figures. In terms of IGD, 

1 The true Pareto front used in these experiments was taken from the jMetal 
website (http://jmetal.sourceforge.net). 

 

A-BCO can still produce comparable results with MOBCO. 
Note that no prior parameter-tuning was conducted for the 
runs using A-BCO. 

 
TABLE IV 

IGD  RESULTS, A-BCO VS. NSGA-II. 
Inverted Generational Distance (IGD) Metric 

  A-BCO NSGA-II 

  Mean Standard Mean Standard 
Deviation Deviation 

ZDT1 1.57E-04 6.70E-06 1.91E-04 1.08E-05  
ZDT2 1.50E-04 2.7 1.88E-04 8.36E-06 6E-06 
ZDT3 2.03E- 1.16E-05 04 1.77E-06 2.59E-04 
ZDT4 1. .86E-06 48E-04 4.59E-06 1.84E-04 9
ZDT6 1.45E-04 7E-05 1.59E-04 4E-05  1.1  1.2

DT 2 3.  4.  LZ 51E-04 2.84E-06 55E-04 3.62E-05 
DT 4 8.  1.  LZ 71E-05 5.19E-06 04E-04 8.44E-06 

 
E V 

D R CO . 
Spread Diversity M

TABL
SPREA ESULTS, A-B VS. NSGA-II

etric 
  A-BCO NSGA-II 

  Mean Standard 
Deviation Mean Standard 

Deviation 
ZDT1 1.45E-01 5.71E-03 3.83E-01 3.14E-02 
ZDT2 1.33E-01 1.1 3.52E-01 7.25E-02 4E-02 
ZDT3 7.04 1.49E-02 E-01 4.60E-03 7.49E-01 
ZDT4 1.57E-01 01 2.94E-02 9.78E-03 3.96E-
ZDT6 1.27E-01 03 -01 9E-02  7.70E- 4.80E  4.4

DTLZ2 3. 1 4.  63E-0 3.07E-02 80E-01 4.49E-02 
DT 4 1.  3.  LZ 77E-01 5.01E-02 87E-01 5.44E-02 

 
TABLE VI 

 RES O VS . 
 Gen istan

IGD ULTS, A-BC . MOBCO
Inverted erational D ce (IGD) Metric 

  A-BC OBCO M O 

  Mean Standard 
Deviation Mean Standard 

Deviation 
ZDT1 1.57E-04 6.70E-06 1.73E-04 6.50E-06  
ZDT2 1.50E-04 2.7 1.87E-04 1.73E-05 6E-06 
ZDT3 2.03E- 1.86E-05 04 1.77E-06 2.33E-04 
ZDT4 1. .92E-05 48E-04 4.59E-06 1.70E-04 1
ZDT6 1.29E-04 4E-06 1.33E-04 -06  3.9  5.66E

DTLZ2 3.  3.  51E-04 2.84E-06 72E-03 1.10E-03 
DT 4 8.  7.  LZ 71E-05 5.19E-06 27E-04 1.04E-04 

In in , the  size set 
to nd h d 500  To compare with 
consistency, reas ation CO to 
 

 VII 
D R BCO O. 

ad  

 the orig al study [8]  population for MOBCO with ZDT6 was 
 200 a  the searc uration to iterations.

 we also inc e the popul size of A-B 200. 

TABLE
SPREA ESULTS, A- VS. MOBC

Spre
  A-BCO MOBCO 

  Mean Standard 
Deviation Mean Standard 

Deviation 
ZDT1 1.45E-01 5.71E-03 1.65E-01 1.08E-02 
ZDT2 1.33E-01 1.1 1.88E-01 8.90E-03 4E-02 
ZDT3 7.04 4.06E-03 E-01 4.60E-03 7.34E-01 
ZDT4 1.57E-01 9.78E 1.89E-01 1.31E-02 -03 
ZDT6 1.47E-01 02 1.51 3E-01  1.05E- 1.7

DT 2 3.  5.  LZ 63E-01 3.07E-02 94E-01 1.66E-01 
DT 4 1.  8.  LZ 77E-01 5.01E-02 84E-01 1.34E-01 

 
B umb rch i  also th 

respect to ren ation s. T ge 
n  o ter  the ark p s 

d e V MO  NS he 
o s se and ently ch 

In A- CO, the n er of sea terations varied wi
 the diffe t optimiz  problem

b m
he avera

umber f search i ations for ench roblems i
presente  in Tabl III. For BCO and GA-II, t
populati n size wa t to 100  consequ  the sear
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erations were set to 1000 (i.e., 100,000 fitness evaluations 
w
it

ere conducted). In general, the A-BCO runs required a 
significantly lower number of search iterations when 
compared with NSGA-II and MOBCO; however, it still 
achieved better or comparable results with respect to both 
convergence and diversity.  

 
TABLE VIII 

 NUMBER OF SEARCH ITERATIONS FOR A-BCO, MOBCO, AND NSGA-II 
Number of Search Iterations 

A-BCO MOBCO NSGA-II 
ZDT1 332 1000 1000 
ZDT2 349 1000 1000 
ZDT3 1000 1000 1000 
ZDT4 305 1000 1000  
ZDT6 279 500 1000 

DTLZ2  268 1000 1000
DTLZ4 237 1000 1000 

 
A n in Table , the number rch itera

ZDT -BCO is me as the ot o. This is due to
the d ness featu  ZDT3’s Pare ont. The d
met ZDT3 us -BCO is dep  in Figur
obse  the dive  metric stabi round th

arch iteration with α≈0.60.  In this case, the diversity-b
pe

Fig. 7. Diversity metric dynamics for ZDT3 using A-BCO. 

V. CONCLUSION 
A novel A-BCO for multi-objective numerical fun

was proposed. A-BCO’s self-adaptive features were driv
by a di ptiv
feature
patterns. Th cted so as to expl
an
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