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Autonomous Bee Colony Optimization for Multi-objective Function

Fanchao Zeng, James Decraene, Malcolm Yoke Hean Low, Philip Hingston, Senior Member, IEEE,
Cai Wentong, Zhou Suiping, Mahinthan Chandramohan

Abstract—An  Autonomous Bee Colony Optimization
(A-BCO) algorithm for solving multi-objective numerical
problems is proposed. In contrast with previous Bee Colony
algorithms, A-BCO utilizes a diversity-based performance
metric to dynamically assess the archive set. This assessment is
employed to adapt the bee colony structures and flying patterns.
This self-adaptation feature is introduced to optimize the
balance between exploration and exploitation during the search
process. Moreover, the total number of search iterations is also
determined/optimized by A-BCO, according to user
pre-specified conditions, during the search process. We evaluate
A-BCO wupon numerical benchmark problems and the
experimental results demonstrate the effectiveness and
robustness of the proposed algorithm when compared with the
Non-dominated Sorting Genetic Algorithm Il and the latest
Multi-objective Bee Colony Algorithm proposed to date.

[. INTRODUCTION

EAL world problems typically involve the simultaneous

optimization of conflicting objectives [1, 2]. To solve
these multi-objective combinatorial and/or numerical
optimization problems, numerous nature-inspired algorithms
have been proposed to locate their Pareto fronts. These
algorithms can be classified into two main categories:
evolutionary algorithms (EAs) and swarm intelligence based
algorithms (SAs). Both families of techniques are inspired by
real phenomena occurring in nature. EAs simulate natural
evolution through the variation of genetic material and
selection of fittest (from a phenotypical standpoint) candidate
solutions. SAs exploit the collective intelligence emerging
from the crowd behavior of social entities such as fish
schools, bird flocks and insect colonies. Recent studies [1, 2]
suggested that SAs are more suitable in terms of convergence
speed to solve multi-objective optimization problems when
compared with EAs.

Among SAs, the bee colony optimization (BCO) algorithm
is characterized by specific behavioral features such as the
waggle dance, task selection, collective decision making, and
navigation. BCO has presented promising results when
utilized to solve multi-objective problems [3, 4]. In BCO, the
labor  division properties (i.e., foraging behavior
specifications) and self-organization dynamics are essential
to achieve good performances. Specialized foraging-related
tasks are conducted by differing types of bee whereas the
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self-organization dynamics are governed by four properties:
positive feedback (waggle dance), negative feedback (food
source exhaustion), fluctuations (random search) and social
interactions (group discussion). Nevertheless, according to
the taxonomy compiled by Karaboga and Akay [5], bee
swarm algorithms are predominantly utilized to solve
combinatorial problems such as the Traveling Salesman
Problem, Job Shop Scheduling, Routing in Networks and
Resource Allocation Problems. To date, only two studies [7,
8] have been reported in the literature for multi-objective
numerical optimization.

In this paper, based on a self-adaptive foraging behavior of
honey bees, an autonomous bee colony optimization (A-BCO)
algorithm is proposed for multi-objective numerical functions.
Three types of bees, i.e., elite, follower and scout bees are
devised with distinct navigation patterns and specialized tasks.
Elite bees are selected to perform the waggle dance to
communicate foraging information with the other bees. The
follower bees forage around flower patches of randomly
selected elite bees. Scout bees carry out spontaneous searches
in nearby areas. Unlike previous bee colony optimization
algorithms, A-BCO may automatically determine a
satisfactory number of search iterations. Moreover, both the
bee colony structure (ratios of different types of bee) and
flying patterns are subjected to variation during the search
process. These dynamic changes are performed to optimize
the balance between exploration (early phase of the search)
and exploitation (later and final phase of the search). These
self-adaptive properties are driven by a diversity-based
running performance metric of best found solutions so far.

Indeed, A-BCO utilizes a diversity-based performance
metric to dynamically assess the archive set. Using this
diversity metric, A-BCO may determine the current stage of
food foraging: either exploration or exploitation. During the
exploration stage, the ratio of elite bees is relatively higher so
that a wider exploration of the search space can be conducted.
Also, the follower bees are allowed to expand their
exploration around the flower patches found so far. During
the exploitation stage, the bees attempt to improve/exploit the
best found solutions. Here the ratio of elite bees is thus
decreased; similarly the follower bees narrow even further the
spread of their search. This final refinement stage aims at
improving the distribution uniformity of solutions.

The remainder of the paper is structured as follows: An
overview of related work is first provided. Then, a detailed
description of A-BCO is given. Series of experiments
involving multi-objective numerical optimization problems
are conducted and finally discussed.
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II. RELATED WORK

We first present several BCO techniques applied to both
single and multi-objective numerical functions. Then we
identify and discuss the limitations of these techniques.
Karaboga and Basturk [4] proposed an Artificial Bee Colony
(ABC) algorithm which relies on modeling the foraging
behavior of honey bees. A bee colony structure, similar to the
one described earlier, is employed. A single-objective
multivariable function is used to compare the performance of
ABC and other algorithms (Particle Swarm Optimization and
Particle Swarm Inspired Evolutionary Algorithm). This study
suggested that ABC can outperform the other algorithms
when considering specific benchmark problems (e.g., the
Rastrigin function). A similar method was developed by
Sundareswaran and Sreedevi [6] and yielded the same
conclusions. Akbari et al. [3] improved the previous bee
colony algorithms by modifying the bee flying patterns. This
method introduced two novel features, a repulsion factor &
penalizing fitness (BSO-RP) and time-varying weights
(BSO-TVW). Both features were introduced to address the
stagnation, exploration and exploitation balancing problems.
The experimental results showed that Akbari et al’s
technique can achieve competitive results and outperform
ABC in terms of both success rate and convergence speed.

The above BCO algorithms were applied to single
objective numerical functions. However, to our knowledge,
only two BCO algorithms have been examined for
multi-objective numerical functions. The earliest study on
BCO and multi-objective optimization was conducted by
Pham and Ghanbarzadeh [7] in 2007. A bee algorithm was
proposed and evaluated over a multi-objective non-linear
numerical engineering problem. Experimental results were
compared with the Non-dominated Sorted Genetic Algorithm
IT (NSGA-II) and NSGA,; it was shown that a similar Pareto
front could be obtained using BCO. The most recent work,
reported in the literature, to date was presented by Low ef al.
[8] where the Multi-objective Bee Colony Optimization
(MOBCO) algorithm was proposed. A comparative study
was conducted in which MOBCO presented comparable
performance to NSGA-II when applied to the optimization of
numerical functions (ZDT benchmarks).

Although previous bee colony algorithms demonstrated
promising performances when applied to both single and
multi-objective numerical functions, none of the algorithms
included self-adaptive properties at both the macro (i.e., food
forage duration) and micro level (i.e., the foraging behavior
of bees). Self-adaptive properties may assist/relieve the user
in setting the algorithm’s parameters to best optimize a given
problem:

1. The foraging/search duration is a key factor which may
diminish the quality of solutions (when set too low) or
waste computing resources (when set too high).
Moreover the “optimal” search duration varies according
to the optimization problem being addressed. We thus
argue that the search duration should be self-adaptive
(similarly to real bees that halt searching when they have

discovered sufficient flower patches).

2. In existing BCO techniques, the food foraging behavior
is determined by the composition of the bee swarm and
flying patterns which are both typically fixed throughout
the search process. We propose that these properties
should be self-adaptive to promote efficient food
foraging. This self-adaptation would exploit and
dynamically optimize the balance between exploration
and exploitation during the search [9].

The above self-adaptive methods proposed for BCO are
described in detail in the next section.

II. AUuTONOMOUS BEE COLONY OPTIMIZATION

This section introduces the behavior of real bees in nature
and then provides an overview of A-BCO, finally the
algorithm is detailed.

A. Honey Bees in Nature

The self-organized and collective behavior of colony
insects enables them to solve multi-objective problems which
cannot be addressed by single insects acting independently. In
the case of honey bees, this behavior facilitates the search of
flower patches in the environment. Information, with regards
to the flower patches, is shared among the bees when they
return to the hive. This foraging behavior remained
mysterious until Von Frisch [10] decoded the language of the
bee waggle dance. The latter is used as a communication
medium to describe the quality, distance and direction of the
flower patches to other bees in the hive. Bees are then sent to
the patches according to their profitability ratings
(determined by the nectar quality, nectar bounty and distance
from the hive). Further details on the waggle dance can be
foundin[11, 12]. We utilize this waggle dance mechanism as
an inspiration to drive the self-adaptive properties of our
BCO. Here, through the waggle dance, our artificial bees
communicate with each other to share information about the
quality (i.e., the diversity-based performance metric) of found
flower patches (i.e., solutions). This information is then
employed to adjust the structure of the bee swarm and flying
patterns as follows: when the diversity of solutions found is
low then the spread of search is increased (i.e., the exploration
stage). In contrast, when the diversity of solutions is high then
the spread of search is decreased (i.e., the exploitation stage).

B. Overview of A-BCO

The A-BCO search is predominantly driven by the
diversity-based performance of the archive set (which
contains the best solutions found so far). This measure is used
to dynamically adjust the structure and flying patterns of the
bees (i.e., the micro level) and also to identify the current
stage of the search (i.c., the macro level).

At the micro level, three types of bee are distinguished:
elite, follower and scout bees. The flying patterns of elite and
follower bees are varied through the use of crossover
operators, whereas scout bees employ a mutation operator to
update their foraging path. The partition of the bees is
determined by their individual fitness which represents the
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quality of food source being foraged by the bee. Unlike
previous approaches, the ratio of each type of bee is
dynamically adjusted. This is conducted in accordance with
the diversity-based performance of the solutions found so far.
Only a relatively smaller fraction of the bees are selected as
scout bees.

As mentioned earlier, the diversity-based performance is
also used to identify the current stage of the search. This
macro level feature is utilized to adjust the search duration
accordingly. Three stages are distinguished during which the
search behavior is characterized as follows:

1.

2.

Exploration, a wide search for solutions throughout the
search space is conducted.

Transition, this phase occurring between the
exploration and exploitation stages is devised to
determine whether the exploration phase has converged
towards promising global optima. In other words this
phase ensures that we do not proceed to the exploitation
stage if the search has actually converged to local
optima solution points.

Exploitation, optimization (i.e., increase the distribution
uniformity) of best solutions found so far is carried out.
Neighboring areas of best found solutions are explored
further.

In the next section, the A-BCO algorithm is presented.

C. The Algorithm
The main steps of A-BCO are illustrated in Fig. 1.

1 s .

|/ Initialize bee population |
2 .

I/ Update archive
IyCompute diversity of archive set |

1 )
|/ Determine search stage |

Stopping
criterion
satisfied?

Adjust structure of bee swarm &
Perform elite bee waggle dance

v

%djust flying patterns for all bees |
IV Forage l—
—PI Output archive set |

Fig. 1. A-BCO flowchart.

Each step of the A-BCO algorithm is now outlined:

1.

2.
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The search process starts with the random initialization
of the bee population.

According to the numerical objective functions being
examined, the non-dominated solution sets are stored in
the archive. The archive is used to store the best
estimates of the Pareto front and is updated in each
search iteration. The archive updating process contains
two sub-steps:

a. Firstly, the newly generated solution sets are
combined with the non-dominated solution sets
already stored in the archive. Then the dominated
solutions are removed.

b. Secondly, if the archive maximal size is reached, a
recurrent truncation method based on crowding
distance is utilized to remove the least “promising”
non-dominated solutions, see Section D for details.

The diversity-based performance metric, given
by a € [0,1], of the solutions stored in the archive is
calculated. a estimates the level of uniformity in the
distribution of solutions in the archive set, i.e., if o=1
then the solutions are uniformly distributed, whereas
with 04=0.6 we may approximate that 40% of the
solutions are not evenly distributed. Note that with
0=0, the archive set is empty, see Section E for details
on computing a.
The current stage of food forage is determined
according to the diversity of the archive set. Three
stages or phases are distinguished: exploration,
transition and exploitation. More details about the
stage determination can be found in Section F.
The bee colony structure (i.e., ratios of elite, follower
and scout bees) is adjusted according to a. This
adjustment aims at maximizing o (i.e., increase the
distribution uniformity of the solutions). The goal is to
make the solutions in the archive set evenly
distributed. Note that the archive size (K) is equal to
the population size.

TABLE1
BEE COLONY STRUCTURE BASED ON DIVERSITY a.
Bee Type Size
Elite (1-a-5)K
Follower ok
Scout sK, s = l/number of variables

Table I lists the different bee type ratios which were

devised according to the following considerations:

a. In typical experiments, the generated solution sets
exhibit low diversity during the initial phase (i.c., o
is low). In such cases the percentage of elite bees
performing the waggle dance should be high (i.e.,
1-a to be high) so that exploration is emphasized.
As the search proceeds, the archive set eventually
becomes more diversified; the elite bee ratio should
then be decreased to facilitate local fine tuning.

b. So according to the fitness (i.e., crowding distance)



of individual solutions, (1-a-s)K of the bees are
selected as elite ones. After that, waggle dance is
performed by the elite bees. Note that the number
of scout bees is fixed throughout the search.

6. The flying patterns (i.e., the bees’ search paths) are
also subjected to variation. The scout bees use a
polynomial mutation operator (promoting an increase
in spread) to explore the search space further. The
associated mutation probability is fixed. In contrast,
elite and follower bees utilize the simulated binary
crossover (SBX) method [14] to exploit the
near-optimal generated solutions. The adjustment of
flying patterns is achieved through the automated
tuning of SBX’s distribution index. This is performed
in each search iteration. The diversity-based
performance metric is again utilized to drive this
adjustment. The implementation details are described
in Section F.

7. Then, based on the adjusted flying patterns, the bees
carry out food foraging.

Figure 2 depicts an overview of A-BCO where the

interactions of the several techniques involved are

depicted.

» Archive

Crowding distance based
management scheme

v

Diversity-based perf. metric a

Section E

I
v v

Structure adjustment Flying pattern
& waggle dance adjustment
Bee Type Size Bee Type Operator
Elite (1-0-s)K Elite SBX
Follower (a-s)K Follower SBX
Scout sK Scout Mutation
Section B Section G

| | A 4

Search stage

| determination
Section F

| Bee population

| End search |

Fig. 2. Schematic overview of A-BCO and involved computational
techniques.

D. Archive Management Scheme (AMS)

Archive is commonly used to store the approximation to the
true Pareto front of the problem. Ideally, the size of the
archive should be infinite; however, practically, this is not
feasible. Therefore, a limit has to be set to define the maximal
size of the archive. When this size limit is reached, the
multi-objective optimization algorithm should be able to
allow only better solutions to enter the archive, whereas the
“least” valuable solutions are removed. In addition, to
maintain a uniformly distributed set of solutions, the AMS
ranks the solutions within the archive set to promote the most

valuable solutions. We utilize the crowding distance method
to rank the solutions. The crowding distance indicator was
proposed by Deb et al. [15]. It serves as an estimation of the
size of the largest cuboid enclosing the solution point. It could
be regarded as a criterion to determine the value of the
solution point. In this scheme, “boundary solutions” or
highest and lowest objectives are given the maximum value in
order to retain them. The crowding distance can be calculated
by measuring the distance between the two immediate
neighbors of a given point along each of the objective
dimensions. Lastly, the “final crowding distance” is
computed by adding the crowding distances obtained for each
objective.

E. Diversity-based Performance Metric

A diversity-based performance metric is implemented to
dynamically assess the quality of the archive. This metric is
based on the running performance metrics proposed by Deb
and Jain [13]. Two principal modifications are introduced:

1. The number of grids (approximating the diversity of the
population, see Fig. 3) is derived by dividing the
population size by the number of objectives (instead of
requiring the user to manually define it as in [13]).

2. We argue that Deb and Jain’s approach is limited by the
requirement of a priori knowledge of the target
solutions’ distribution. Using this information, the
number of grids can be determined/fitted. Nevertheless
in real time/life optimization problems, this information
is usually unavailable. Here the running metric does not
refer to any pre-specified target set of solutions. Instead
the running metric is employed to converge towards an
ideal target set of solutions where each grid would
possess a representative solution.

Given the minimal and maximal boundary values, the
hyperplane is thus divided into a finite number of grids
(population size divided by the number of objectives). The
diversity performance metric is based on whether each grid
contains a solution or not. The best diversity performance is
achieved if all grids contain at least a solution. The steps to
calculate the diversity are as follows:

Step 1: Calculate diversity array.

The number of integer variables in the diversity array is equal
to the number of grids in the hyperplane. Each variable in the
diversity array corresponds to one particular grid i. The value
h(i) of the i elements is obtained using Eq. 1.

1,if grid i contains a solution in the archive;
0, otherwise.

h = | €)
Step 2: Assign a value m() to each grid i depending on its
neighboring grids’ h() values in the diversity array. The value
of the i" grid is calculated according to a mapping table

(Table II).

For example let us consider the grid patterns p,=|0|1]0| (i.e.,
h(i-1)=0, h(i)=1 and h(i+1)=0 and p,=|1|0|1|]. According to
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Table II, we obtain m(p;) = m(p,) = 0.75 which represents a
relatively good periodic spread pattern. Whereas if we
consider p;=|1|1|0|, we obtain m(p;)= 0.67 meaning that p;
covers a smaller spread.

TABLE II
MAPPING TABLE FOR m().

h(i-1) h(i) h(i+1) m( h(i-1), h(Q), h(i+1))
0 0 0 0.00
0 0 1 0.50
1 0 0 0.50
0 1 1 0.67
1 1 0 0.67
0 1 0 0.75
1 0 1 0.75
1 1 1 1.00

Step 3: For each objective, calculate the diversity measure d,,
by averaging the m() values.

_ 2% m(h(i - 1), k() k(i + 1))
n = NOG 2)

where NOG stands for the number of grids. To illustrate the

procedure to calculate the diversity measure, an example is

presented in Figure 3:

A min max
- 213 4 5
°
°
°
D)
()
fz .

v

fi
gt 1 0 o 1 1 1
m() 067 05 05 067 1

Fig. 3. Example of computing the diversity metric.

In this example, a two-objective (f; and f;) minimization
problem is examined. The solutions are marked as points. The
f>=0 plane is used as the reference plane and the range of f;
values are divided into, supposing the population size is 10,
10/2 = 5 grids. Then, for each grid, the value of %() is
calculated based on whether the grid contains a solution point
or not. Then, the value of m() and the diversity measure are
calculated based on a sliding window containing three
consecutive grids. The 4() values of the imaginary boundary
grids are always 1 as shown in the shaded grids.

0.67 +0.50 + 0.50 + 0.67 + 1
5

d,(f1) = = 0.668
Step 4: Calculate overall diversity performance metric, D,, by
averaging the diversity measures of all objective spaces.

_X%dn(@)
bn="o0 ©®

where NOO means the number of objectives.

F. Food Forage Stages Determination

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Diversity Metric

0 50 100 150 200 250 300
Search iteration
Fig. 4. Diversity metric dynamics for ZDT1 and ZDT6 using A-BCO.

Figure 4 illustrates the diversity metric obtained using
A-BCO for the benchmark problems ZDT1 and ZDT6. This
metric is used to return feedback about the search space. For
ZDTI, from the 150" iteration, the diversity metric oscillates
around a value of 0.90. With ZDT6, this diversity metric
reaches steady state after 200 generations. In both cases, this
convergence indicates that the search has reached global
optima solutions. The transition (10 search iterations) and
exploitation phases follow.

In general, there are two ways to identify the search stages
(which are based upon reaching convergence):

1. The first approach is to define a temporal sliding
window and upon the stabilization of diversity within
this window, the transition and exploitation stages may
initiate. However, this approach may mistakenly return
local optima.

2. In A-BCO, we adopt the objective-oriented approach.
We arbitrarily set the target transition diversity
threshold to be 0.8. Once the diversity reaches 0.8 for at
least 10 search iterations, then we assume that the
search has converged and we may enter the transition
stage. This “transition phase” is employed to prevent
returning local optima. Once the search enters the
exploitation stage, the number of search iterations is
counted.

In A-BCO, the stopping criteria is either achieving a=1.0 or
running g=200 search iterations during the exploitation stage.
However, it is also possible that the Pareto front is discrete
where a high diversity metric such a=0.8 is impossible to
achieve (this issue is discussed in the experimental section).
As a result, we also set a maximum search iteration g, in
A-BCO to prevent never-ending searches from occurring.

G. Flying Pattern Adjustment

Elite and follower bees do not follow identical search paths
indicated by the waggle dances. Instead, the search path is
updated using the simulated binary crossover (SBX) operator.
The flying patterns of follower bees are dynamically adjusted
to optimize the balance between exploration and exploitation
during the different stages of the search. The working
principles of SBX are now described to emphasize the
importance of the distribution index n. in generating
offspring solutions. Then, we present the self-adaptive
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mechanism (SAM) which can dynamically adjust the
distribution index in SBX using the feedback information
obtained from the diversity-based performance metric.

1) Simulated Binary Crossover (SBX): The SBX crossover
operator [14] creates two offspring solutions (represented as
real values) from two selected parent solutions. The
procedure deriving offspring solutions x,**"” and x,***V from
the parent solutions x;*” and x,™" (t is the generation) is as
follow.

A random number u € [0,1] is generated. Given a
pre-specified probability distribution function (Eq. 4), the
value of f§; (Eq. 8) is determined so that the area under the
probability curve from zero to f; is equal to u. The distribution
index 7. is a non-negative real number. Figure 5 illustrates the
probability density function for creating offspring solutions
using the SBX operator from two example parents x; " =
and x; ™ =6 with distribution indexes 5. =2.0 and 5. =5.0.
Larger values of . are more likely to produce “near parent”
solutions whereas smaller values of 5. lead to a more diverse
search. After obtaining f; from Eq. 5, the offspring solutions
are calculated using Eq. 6 and 7.

0.5(n + DB ,if B; < 1;
fB) = 1 C)

0.5(n. +1) Pk otherwise.

( 1
(Qu)ne+1 <
B = L i ®)

(2(1 —u)

@D = 0.5[(1 + B)x @0 + (1= Bx D] (6)

6D = 05[(1 - B)x @ + (1+ )% D] (7)

=)

0 el o N o 1
0 1 2 3 4 5 6 7 8 9

Fig. 5. The probability density function for creating offspring solutions with
the SBX operator (adapted from [14]).

2) Self-Adaptive SBX: In most applications of SBX, the
crossover distribution index 7. is fixed. Specifically, a fixed
value of 5=2.0 is typically chosen for single-objective
optimization problems [16]. Whereas #.=20.0 is commonly
used for ZDT benchmark problem sets. Although using a
fixed value of . can also lead to the implementation of
self-adaptive techniques, past studies using the SBX operator
with fixed distribution index could not solve multi-modal

problems such as Rastrigin’s function [14].

We propose a self-adaptive mechanism (SAM) to
dynamically update .. Here we assume the optimal diversity
performance (i.e., a=1.0) could only be achieved when the
solution set is close to the optimal solution set. Hence, if
optimal diversity performance is achieved, the distribution
index y. should be large enough to make the offspring
solutions very similar to their parents. On the other hand, if
the diversity performance is poor, strong crossover operation
should be applied to “break” the clusters of solutions. At the
beginning stage of the search process, relatively low diversity
metric results in strong crossover operation to explore the
search space and in the later stage, soft crossover operation is
applied to exploit local near-optimal solutions. Thus, this
diversity-driven mechanism can effectively exploit the
concept of “explore first and exploit later”.

The SAM mechanism is now detailed. A reference
crossover distribution index 1y, based on the diversity
performance is computed. The spread f; of the offspring
solutions, with respect to the parent solutions, is obtained
using Eq. 8. Based on f3;, the crossover operation can be
classified into three classes, namely contracting crossover
(B; < 1), stationary crossover (f; =1), and expanding
crossover (f; > 1). The expanding crossover can “expand”
the parent solutions to form more diverse offspring candidate
solutions. Contracting crossover has the opposite effect of
“contracting” the parent solutions. We define the value range
of B; from 0.9 to 1.1 as the close value range (CVR) where
the generated offspring solutions are likely to be very similar
to the parent solutions. This range was determined based on
parametric studies carried out in [17].

xi(Z,t+1) _ xi(l,t+1)

Bi = (8)

1,20 — (10

0.5 — Diversity/2 0.5 + Diversity/2

Diversity ol

u

Expanding —
Crossover .
Close Value Bi

0.9  Range 1
Fig. 6. Mapping between f8; and u value in SAM.

<«<—— Contracting
Crossover

Here we determine the reference distribution index 7. so
that the probability of g; falling into the CVR (i.e.,, €
[0.9,1.1]) equals to the diversity performance metric as
illustrated in Figure 6. For example, if the diversity-based
performance metric is 0=0.70, then we should make sure that
70% of the time g, € [0.9,1.1] is true. By mapping the
random number u to g, (using Eq. 5), we have u €
[0.15,0.85]. Then 5, can be calculated using Eq. 9 and 10:

_ log2u_ u<05 (9
logp,
e = log2(1 —
=_<1+7°g ( u)>, u>05  (10)
logp,
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log 2x0.15

0, = — 1=10.42and
log0.9
_ log2(1-0.85)\ _ .
N, = (1 LT ) = 11.63 respectively.

The distribution indexes n, = 1042 and n_=11.63 are
averaged and we obtain a reference crossover distribution
index n_ = 11.0 to produce offspring solutions.

A randomly initialized population typically yields poor
diversity performance and consequently lowers the
probability of g; falling into the CVR. During the later stage,
the diversity performance stabilizes at a relatively higher
value and the exploitation phase may start as the probability
of p; falling in the CVR is higher.

IV. EXPERIMENTS

The benchmark problems ZDT 1, 2, 3,4, 6 [18] and DTLZ
2,4 [19] are used to evaluate the performance of A-BCO. The
latter is compared with NSGA-II [15] and MOBCO [8]. The
following parameter setting is used for NSGA-II: 5. = 20.0,
gm = 50.0, p. = 1.0, p,, = 1 / (number of variables). The
parametric setting for MOBCO is the same as in [8]. Each set
of experiments (where 100,000 fitness evaluations are
conducted in each of them) is repeated ten times. For A-BCO,
we set a population size of 100, archive size K=100, g=200
and g,,,=1000. Therefore, the maximal number of fitness
evaluation in A-BCO is 100,000. Two benchmark metrics,
Inverted Generational Distance (IGD) and Spread are
employed to measure the algorithms’ performance. IGD uses
the true Pareto front' as a reference and measure the distance
of each of the solution points with respect to the front:

n 2
i=1 d;

IGD = (13)

Where d; is the Euclidean distance between the solutions and
the respective closet members to the true Pareto front. n is the
number of solutions contained in the Pareto front. When
IGD = 0, it indicates that the solution set is in the true Pareto
front. The Spread indicates the extent of spread among the
obtained solutions throughout the Pareto front and is
computed as follows.

d +dy + 215 d; — d
de+d;+(N—1)d

Spread = (14)

Where d; and d, are the Euclidean distances between the
boundary solutions (of the obtained solution set). d; is the
Euclidean distance between consecutive solution points.
Tables IV, V, VI and VII summarize the experimental results.
As observed in Tables IV and V, A-BCO achieved lower
means and standard deviations for both IGD and Spread
diversity metrics in all benchmark problem sets compared to
NSGA-II. When compared with MOBCO in Table VI and
VII, A-BCO obtained better Spread performance for both
means and standard deviation figures. In terms of IGD,

" The true Pareto front used in these experiments was taken from the jMetal
website (http://jmetal.sourceforge.net).

A-BCO can still produce comparable results with MOBCO.
Note that no prior parameter-tuning was conducted for the
runs using A-BCO.

TABLE1V
IGD RESULTS, A-BCO vS. NSGA-II.

Inverted Generational Distance (IGD) Metric

A-BCO NSGA-II
Standard Standard
Mean Deviation Mean Deviation
ZDTI 1.57E-04 6.70E-06 1.91E-04 1.08E-05
ZDT2 1.50E-04 2.76E-06 1.88E-04 8.36E-06
ZDT3 2.03E-04 1.77E-06 2.59E-04 1.16E-05
ZDT4 1.48E-04 4.59E-06 1.84E-04 9.86E-06
ZDT6 1.45E-04 1.17E-05 1.59E-04 1.24E-05
DTLZ2 3.51E-04 2.84E-06 4.55E-04 3.62E-05
DTLZ4 8.71E-05 5.19E-06 1.04E-04 8.44E-06
TABLEV
SPREAD RESULTS, A-BCO vs. NSGA-II.
Spread Diversity Metric
A-BCO NSGA-II
Standard Standard
Mean Deviation Mean Deviation
ZDT1 1.45E-01 5.71E-03 3.83E-01 3.14E-02
ZDT2 1.33E-01 1.14E-02 3.52E-01 7.25E-02
ZDT3 7.04E-01 4.60E-03 7.49E-01 1.49E-02
ZDT4 1.57E-01 9.78E-03 3.96E-01 2.94E-02
ZDT6 1.27E-01 7.70E-03 4.80E-01 4.49E-02
DTLZ2  3.63E-01 3.07E-02 4.80E-01 4.49E-02
DTLZ4 1.77E-01 5.01E-02 3.87E-01 5.44E-02
TABLE VI
1GD RESULTS, A-BCO vs. MOBCO.
Inverted Generational Distance (IGD) Metric
A-BCO MOBCO
Standard Standard
Mean Deviation Mean Deviation
ZDT1 1.57E-04 6.70E-06 1.73E-04 6.50E-06
ZDT2 1.50E-04 2.76E-06 1.87E-04 1.73E-05
ZDT3 2.03E-04 1.77E-06 2.33E-04 1.86E-05
ZDT4 1.48E-04 4.59E-06 1.70E-04 1.92E-05
ZDT6 1.29E-04 3.94E-06 1.33E-04 5.66E-06
DTLZ2  3.51E-04 2.84E-06 3.72E-03 1.10E-03
DTLZ4 8.71E-05 5.19E-06 7.27E-04 1.04E-04

In the original study [8], the population size for MOBCO with ZDT6 was set
to 200 and the search duration to 500 iterations. To compare with
consistency, we also increase the population size of A-BCO to 200.

TABLE VII
SPREAD RESULTS, A-BCO vs. MOBCO.
Spread
A-BCO MOBCO

Standard Standard

Mean Deviation Mean Deviation

ZDT1 1.45E-01 5.71E-03 1.65E-01 1.08E-02
ZDT2 1.33E-01 1.14E-02 1.88E-01 8.90E-03
ZDT3 7.04E-01 4.60E-03 7.34E-01 4.06E-03
ZDT4 1.57E-01 9.78E-03 1.89E-01 1.31E-02
ZDT6 1.47E-01 1.05E-02 1.51 1.73E-01
DTLZ2  3.63E-01 3.07E-02 5.94E-01 1.66E-01
DTLZ4 1.77E-01 5.01E-02 8.84E-01 1.34E-01

In A-BCO, the number of search iterations also varied with
respect to the different optimization problems. The average
number of search iterations for the benchmark problems is
presented in Table VIII. For MOBCO and NSGA-II, the
population size was set to 100 and consequently the search
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iterations were set to 1000 (i.e., 100,000 fitness evaluations
were conducted). In general, the A-BCO runs required a
significantly lower number of search iterations when
compared with NSGA-II and MOBCO; however, it still
achieved better or comparable results with respect to both
convergence and diversity.

TABLE VIII
NUMBER OF SEARCH ITERATIONS FOR A-BCO, MOBCO, AND NSGA-II

Number of Search Iterations

A-BCO MOBCO NSGA-II
ZDT1 332 1000 1000
ZDT2 349 1000 1000
ZDT3 1000 1000 1000
ZDT4 305 1000 1000
ZDTé6 279 500 1000
DTLZ2 268 1000 1000
DTLZ4 237 1000 1000

As shown in Table VIII, the number of search iterations for
ZDT3 in A-BCO is the same as the other two. This is due to
the discreteness feature of ZDT3’s Pareto front. The diversity
metrics for ZDT3 using A-BCO is depicted in Figure 7. We
observe that the diversity metric stabilizes around the 100th
search iteration with 0~0.60. In this case, the diversity-based
performance metric does not reach the threshold value of 0.8.
Consequently the search continued until it had reached the
maximal number of search iterations g,

1

0.9
0.8
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0.6
0.5
0.4

Diversity Metric

0.3

0.2

0.1

0 100 200 300 400 500

Search iteration

Fig. 7. Diversity metric dynamics for ZDT3 using A-BCO.

V. CONCLUSION

A novel A-BCO for multi-objective numerical functions
was proposed. A-BCO’s self-adaptive features were driven
by a diversity-based performance metric. These self-adaptive
features included the bee colony structure and their foraging
patterns. This self-adaptation was conducted so as to exploit
and optimize the balance between exploration and
exploitation. Moreover, the near-optimal number of search
iterations was also determined dynamically by A-BCO during
the search process. When evaluated over several numerical
benchmark problem sets, A-BCO was found to outperform
both NSGA-II and MOBCO, without requiring the user to
fine-tune the parameters. Finally, we believe that further
investigations are required to evaluate A-BCO when applied
to real-time problems where the Pareto front is unknown and

dynamic.
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