5,147 research outputs found

    Smartening the Environment using Wireless Sensor Networks in a Developing Country

    Get PDF
    The miniaturization process of various sensing devices has become a reality by enormous research and advancements accomplished in Micro Electro-Mechanical Systems (MEMS) and Very Large Scale Integration (VLSI) lithography. Regardless of such extensive efforts in optimizing the hardware, algorithm, and protocols for networking, there still remains a lot of scope to explore how these innovations can all be tied together to design Wireless Sensor Networks (WSN) for smartening the surrounding environment for some practical purposes. In this paper we explore the prospects of wireless sensor networks and propose a design level framework for developing a smart environment using WSNs, which could be beneficial for a developing country like Bangladesh. In connection to this, we also discuss the major aspects of wireless sensor networks.Comment: 5 page

    Autonomous monitoring framework for resource-constrained environments

    Get PDF
    Acknowledgments The research described here is supported by the award made by the RCUK Digital Economy programme to the dot.rural Digital Economy Hub, reference: EP/G066051/1. URL: http://www.dotrural.ac.uk/RemoteStream/Peer reviewedPublisher PD

    Architecture for Mobile Heterogeneous Multi Domain Networks

    Get PDF
    Multi domain networks can be used in several scenarios including military, enterprize networks, emergency networks and many other cases. In such networks, each domain might be under its own administration. Therefore, the cooperation among domains is conditioned by individual domain policies regarding sharing information, such as network topology, connectivity, mobility, security, various service availability and so on. We propose a new architecture for Heterogeneous Multi Domain (HMD) networks, in which one the operations are subject to specific domain policies. We propose a hierarchical architecture, with an infrastructure of gateways at highest-control level that enables policy based interconnection, mobility and other services among domains. Gateways are responsible for translation among different communication protocols, including routing, signalling, and security. Besides the architecture, we discuss in more details the mobility and adaptive capacity of services in HMD. We discuss the HMD scalability and other advantages compared to existing architectural and mobility solutions. Furthermore, we analyze the dynamic availability at the control level of the hierarchy

    Robotic ubiquitous cognitive ecology for smart homes

    Get PDF
    Robotic ecologies are networks of heterogeneous robotic devices pervasively embedded in everyday environments, where they cooperate to perform complex tasks. While their potential makes them increasingly popular, one fundamental problem is how to make them both autonomous and adaptive, so as to reduce the amount of preparation, pre-programming and human supervision that they require in real world applications. The project RUBICON develops learning solutions which yield cheaper, adaptive and efficient coordination of robotic ecologies. The approach we pursue builds upon a unique combination of methods from cognitive robotics, machine learning, planning and agent- based control, and wireless sensor networks. This paper illustrates the innovations advanced by RUBICON in each of these fronts before describing how the resulting techniques have been integrated and applied to a smart home scenario. The resulting system is able to provide useful services and pro-actively assist the users in their activities. RUBICON learns through an incremental and progressive approach driven by the feed- back received from its own activities and from the user, while also self-organizing the manner in which it uses available sensors, actuators and other functional components in the process. This paper summarises some of the lessons learned by adopting such an approach and outlines promising directions for future work

    Wireless Sensor/Actuator Networks in Precision Agriculture: Recent Trends and Future Directions

    Get PDF
    Agricultural production and water has critical importance for socio-economic development of the societies. Unfortunately, the underground water level is slowly falling down and forests are being cut which reduces the rainfall as well. Technological advances on sensor technology and wireless communication are leading to the appearance of wireless sensor/actuator networks (WSANs) in a variety of commercial, industrial and military applications. There is no doubt merging wireless sensor technology into agricultural facilities will make farming activities much easier. In this paper, we look at the role of WSANs in agricultural production. We also investigate the communication architecture of WSAN based large scale irrigation management system and explain the key issues that are faced in the system design. Thanks to the easy installation and maintenance of WSANs, lots of water can be saved by giving timely feedback from field to improve the agricultural irrigation efficiency. This kind of solution can greatly help farmers to monitor the amount of water applied to a fiel

    A Framework for Providing E-Services to the Rural Areas using Wireless Ad Hoc and Sensor Networks

    Get PDF
    In recent years, the proliferation of mobile computing devices has driven a revolutionary change in the computing world. The nature of ubiquitous devices makes wireless networks the easiest solution for their interconnection. This has led to the rapid growth of several wireless systems like wireless ad hoc networks, wireless sensor networks etc. In this paper we have proposed a framework for rural development by providing various e-services to the rural areas with the help of wireless ad hoc and sensor networks. We have discussed how timely and accurate information could be collected from the rural areas using wireless technologies. In addition to this, we have also mentioned the technical and operational challenges that could hinder the implementation of such a framework in the rural areas in the developing countries.Comment: 5 page

    Communication Infrastructures for Distributed Control of Power Distribution Networks

    No full text
    Accepted versio

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial

    Airborne Directional Networking: Topology Control Protocol Design

    Get PDF
    This research identifies and evaluates the impact of several architectural design choices in relation to airborne networking in contested environments related to autonomous topology control. Using simulation, we evaluate topology reconfiguration effectiveness using classical performance metrics for different point-to-point communication architectures. Our attention is focused on the design choices which have the greatest impact on reliability, scalability, and performance. In this work, we discuss the impact of several practical considerations of airborne networking in contested environments related to autonomous topology control modeling. Using simulation, we derive multiple classical performance metrics to evaluate topology reconfiguration effectiveness for different point-to-point communication architecture attributes for the purpose of qualifying protocol design elements
    corecore