516 research outputs found

    Graph-Based Shape Analysis Beyond Context-Freeness

    Full text link
    We develop a shape analysis for reasoning about relational properties of data structures. Both the concrete and the abstract domain are represented by hypergraphs. The analysis is parameterized by user-supplied indexed graph grammars to guide concretization and abstraction. This novel extension of context-free graph grammars is powerful enough to model complex data structures such as balanced binary trees with parent pointers, while preserving most desirable properties of context-free graph grammars. One strength of our analysis is that no artifacts apart from grammars are required from the user; it thus offers a high degree of automation. We implemented our analysis and successfully applied it to various programs manipulating AVL trees, (doubly-linked) lists, and combinations of both

    Invariant Synthesis for Incomplete Verification Engines

    Full text link
    We propose a framework for synthesizing inductive invariants for incomplete verification engines, which soundly reduce logical problems in undecidable theories to decidable theories. Our framework is based on the counter-example guided inductive synthesis principle (CEGIS) and allows verification engines to communicate non-provability information to guide invariant synthesis. We show precisely how the verification engine can compute such non-provability information and how to build effective learning algorithms when invariants are expressed as Boolean combinations of a fixed set of predicates. Moreover, we evaluate our framework in two verification settings, one in which verification engines need to handle quantified formulas and one in which verification engines have to reason about heap properties expressed in an expressive but undecidable separation logic. Our experiments show that our invariant synthesis framework based on non-provability information can both effectively synthesize inductive invariants and adequately strengthen contracts across a large suite of programs

    Automated Workarounds from Java Program Specifications based on SAT Solving

    Get PDF
    The failures that bugs in software lead to can sometimes be bypassed by the so-called workarounds: when a (faulty) routine fails, alternative routines that the system offers can be used in place of the failing one, to circumvent the failure. Existing approaches to workaround-based system recovery consider workarounds that are produced from equivalent method sequences, automatically computed from user-provided abstract models, or directly produced from user-provided equivalent sequences of operations. In this paper, we present two techniques for computing workarounds from Java code equipped with formal specifications, that improve previous approaches in two respects. First, the particular state where the failure originated is actively involved in computing workarounds, thus leading to repairs that are more state specific. Second, our techniques automatically compute workarounds on concrete program state characterizations, avoiding abstract software models and user-provided equivalences. The first technique uses SAT solving to compute a sequence of methods that is equivalent to a failing method on a specific failing state, but which can also be generalized to schemas for workaround reuse. The second technique directly exploits SAT to circumvent a failing method, building a state that mimics the (correct) behaviour of a failing routine, from a specific program state too. We perform an experimental evaluation based on case studies involving implementations of collections and a library for date arithmetic, showing that the techniques can effectively compute workarounds from complex contracts in an important number of cases, in time that makes them feasible to be used for run-time repairs. Our results also show that our state-specific workarounds enable us to produce repairs in many cases where previous workaround-based approaches are inapplicable.Fil: Uva, Marcelo Ariel. Universidad Nacional de Río Cuarto; ArgentinaFil: Ponzio, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto; ArgentinaFil: Regis, Germán. Universidad Nacional de Río Cuarto; ArgentinaFil: Aguirre, Nazareno Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto; ArgentinaFil: Frias, Marcelo Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Instituto Tecnológico de Buenos Aires; Argentin

    Automatically refining partial specifications for Program Verification

    Get PDF
    10.1007/978-3-642-21437-0_28Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)6664 LNCS369-38

    Invariant Synthesis for Incomplete Verification Engines

    Get PDF
    We propose a framework for synthesizing inductive invariants for incomplete verification engines, which soundly reduce logical problems in undecidable theories to decidable theories. Our framework is based on the counter-example guided inductive synthesis principle (CEGIS) and allows verification engines to communicate non-provability information to guide invariant synthesis. We show precisely how the verification engine can compute such non-provability information and how to build effective learning algorithms when invariants are expressed as Boolean combinations of a fixed set of predicates. Moreover, we evaluate our framework in two verification settings, one in which verification engines need to handle quantified formulas and one in which verification engines have to reason about heap properties expressed in an expressive but undecidable separation logic. Our experiments show that our invariant synthesis framework based on non-provability information can both effectively synthesize inductive invariants and adequately strengthen contracts across a large suite of programs

    A Learning-Based Approach to Synthesizing Invariants for Incomplete Verification Engines

    Get PDF

    Verification of Pointer-Based Programs with Partial Information

    Get PDF
    The proliferation of software across all aspects of people's life means that software failure can bring catastrophic result. It is therefore highly desirable to be able to develop software that is verified to meet its expected specification. This has also been identified as a key objective in one of the UK Grand Challenges (GC6) (Jones et al., 2006; Woodcock, 2006). However, many difficult problems still remain in achieving this objective, partially due to the wide use of (recursive) shared mutable data structures which are hard to keep track of statically in a precise and concise way. This thesis aims at building a verification system for both memory safety and functional correctness of programs manipulating pointer-based data structures, which can deal with two scenarios where only partial information about the program is available. For instance the verifier may be supplied with only partial program specification, or with full specification but only part of the program code. For the first scenario, previous state-of-the-art works (Nguyen et al., 2007; Chin et al., 2007; Nguyen and Chin, 2008; Chin et al, 2010) generally require users to provide full specifications for each method of the program to be verified. Their approach seeks much intellectual effort from users, and meanwhile users are liable to make mistakes in writing such specifications. This thesis proposes a new approach to program verification that allows users to provide only partial specification to methods. Our approach will then refine the given annotation into a more complete specification by discovering missing constraints. The discovered constraints may involve both numerical and multiset properties that could be later confirmed or revised by users. Meanwhile, we further augment our approach by requiring only partial specification to be given for primary methods of a program. Specifications for loops and auxiliary methods can then be systematically discovered by our augmented mechanism, with the help of information propagated from the primary methods. This work is aimed at verifying beyond shape properties, with the eventual goal of analysing both memory safety and functional properties for pointer-based data structures. Initial experiments have confirmed that we can automatically refine partial specifications with non-trivial constraints, thus making it easier for users to handle specifications with richer properties. For the second scenario, many programs contain invocations to unknown components and hence only part of the program code is available to the verifier. As previous works generally require the whole of program code be present, we target at the verification of memory safety and functional correctness of programs manipulating pointer-based data structures, where the program code is only partially available due to invocations to unknown components. Provided with a Hoare-style specification ({Pre} prog {Post}) where program (prog) contains calls to some unknown procedure (unknown), we infer a specification (mspecu) for the unknown part (unknown) from the calling contexts, such that the problem of verifying program (prog) can be safely reduced to the problem of proving that the unknown procedure (unknown) (once its code is available) meets the derived specification (mspecu). The expected specification (mspecu) is automatically calculated using an abduction-based shape analysis specifically designed for a combined abstract domain. We have implemented a system to validate the viability of our approach, with encouraging experimental results
    corecore