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Abstract. The failures that bugs in software lead to can sometimes be
bypassed by the so called workarounds: when a (faulty) routine fails,
alternative routines that the system offers can be used in place of the
failing one, to circumvent the failure. Previous works have exploited this
workarounds notion to automatically recover from runtime failures in
some application domains. However, existing approaches that compute
workarounds automatically either require the user to manually build an
abstract model of the software under consideration, or to provide equiv-
alent sequences of operations from which workarounds are computed,
diminishing the automation of workaround-based system recovery.

In this paper, we present two techniques that automatically compute
workarounds from Java code equipped with formal specifications, avoid-
ing abstract software models and user provided equivalences. These tech-
niques employ SAT solving to compute workarounds on concrete program
state characterizations. The first employs SAT solving to compute tra-
ditional workarounds, while the second directly exploits SAT solving to
circumvent a failing method, building a state that mimics the (correct)
behaviour of this failing routine. Our experiments, based on case studies
involving implementations of collections and a library for date arith-
metic, enable us to show that the techniques can effectively compute
workarounds from complex contracts in an important number of cases,
in time that makes them feasible to be used for run time repairs.

1 Introduction

Even in software systems that are built with high quality standards using rigor-
ous software development techniques, bugs still make it through to deployment.
Various issues contribute to this situation: the intrinsic complexity of software,
the constant adaptation and extension that software systems undergo during
maintenance, and the increasing pressure to shorter time to market, among other
factors. These circumstances, combined with demands for availability on soft-
ware, make techniques that help systems tolerate bug-related failures highly
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relevant. A mechanism that has been useful for bypassing failures led to by pro-
gram bugs is the so called workaround : when a call to a (faulty) routine leads
to a failure, alternative routines or combinations of routines that the software
system offers can be used in place of the failing one, to circumvent the failure.
Previous works have exploited the workaround notion to automatically recover
from runtime failures in some application domains, notably web applications [5].
However, while existing approaches compute workarounds automatically, they
do so from an abstract, state machine like model of the software being consid-
ered [4, 5], that needs to be manually provided, or require the user to provide
equivalent alternative sequences of operations [7], from which workarounds are
computed, diminishing the automation of workaround-based system recovery.

In this paper, we propose two techniques that, through the use of state-of-
the-art SAT-based technology, can automatically compute workarounds directly
from formal specifications accompanying Java source code in the form of JML
contracts, thus avoiding the need for more abstract, manually built software
models or user provided alternatives to system routines. These techniques have
similar requirements for their application, but differ in the actual mechanism to
compute, and provide, workarounds. The first technique employs SAT solving
to compute traditional workarounds, in the sense that these exploit the intrinsic
redundancy of the module holding the failing routine. The second technique
directly exploits SAT solving to circumvent the failing method, automatically
building a state that mimics the (correct) behaviour of this failing routine. This
second technique is then closer to work on constraint-based repair, e.g., [26, 30,
31], although it differs in the approaches used to improve scalability. In order
to assess the applicability of the presented techniques, we develop a number of
case studies based on contract-equipped collection classes and a Java library for
date arithmetic, combined with randomly generated program state scenarios for
these classes, where methods of these are assumed to fail, and workarounds for
them, of the two kinds just described, are computed. These case studies show
that the techniques can effectively compute workarounds from complex contracts
in an important number of concrete state situations, in times that makes them
feasible to be used for run time repairs.

2 Background

Workarounds and Run Time Repair. The concept of workaround was initially
defined in the context of self-healing systems [4]. Intuitively, a workaround ex-
ploits the implicit redundancy present in system modules in order to overcome a
fault in the module. Given an initial state Si, a routine m (failing when invoked
in state Si), and a desired final state Sf , a workaround is a procedure P com-
posed of a sequence of other routines in the module that contains m, that leads
from Si to Sf . If the intended behaviour of a given system module is captured
through a finite state machine abstraction, then a method or routine failing in
a specific state is represented by a particular transition from a source state (the
initial state) to the desired target state. Workarounds composed of sequences of



one sig Null { }

sig Node {
    elem: Int,
    next: Node+Null
}

sig List {
    head: Node+Null,
    size: Int
}

fact acyclicLists {
    all l: List | all n: Node | n in 
l.head.*next => not (n in n.^next)
} 

pred getFirst[l: List, result’: Int] {
    l.head != Null and result’ = l.head.elem
} 

assert getFirstEqGetLast {
all l: List | all n1, n2: Int |
  l.size = 1 and getFirst[l,n1] and getLast[l, 
n2] => n1 = n2
}

run getFirst for 5 but 1 List, 5 Int
check getFirstEqGetLast for 5 but 1 List, 5 Int

act removeAll[thiz: List,
              head: List -> one (Node+Null),
              size: List -> one Int] {
  pre { } 

  post { head’ = head ++ (thiz -> Null) and 
size’ = size ++ (thiz -> 0) }

}

program choose[l: List, result: Int] {
  local [chosen: Boolean, curr: Node+Null]
  chosen := false;
  curr := l.head;
  ( [curr!=Null]?;
  (
   (result:=curr.elem; chosen:=true)+(skip));
    curr:=curr.next
  )*;
  [chosen = true]?
} 

assertCorrectness chooseIsCorrect[l: List, 
result: Int]
{
 pre { l.size>0 and repOK[l] }
 program = choose[l, result]
 post { some e: l.head.*next.elem | e=result’ }
} 

run choose for 5 but 1 List, 5 Int, 5 lurs
check chooseIsCorrect for 5 but 1 List, 5 Int, 5 
lurs

(a) (b)

Fig. 1: Alloy and DynAlloy specifications for linked lists.

other routines can be systematically explored by traversing the state machine,
from the initial state, attempting to reach the final state without traversing
through transitions labeled with the failing routine. This is in fact the process
employed for automated workaround computation presented in [4, 6].

Other approaches employing workarounds (although not computing them au-
tomatically) have been developed in the context of self-healing systems. A distin-
guishing approach is that presented in [7], where an architecture for self healing
systems, composed of a mechanism to monitor system execution and automat-
ically recover via rollbacks and the application of (user provided) workarounds,
is introduced. The concept of workaround has been successfully applied in real
software systems through the above described approaches, with demonstrating
case studies involving complex software systems such as Google Maps and Flickr
[5]. Moreover, further experimental analyses have been performed, showing that
the redundancy exploited by the workarounds mechanism is actually inherent to
many component based systems [8].

The Alloy and DynAlloy Modeling Languages. In Alloy [18], datatypes are de-
fined by signatures. For instance, assuming that we want to model the behaviour



of linked lists, their structure can be defined through signatures Null, Node
and List in Figure 1(a). Int (integers) is the only predefined signature. Every
signature defines a set of atoms, i.e., a domain. The modifier one forces the cor-
responding signatures to have exactly one element, i.e., to be singletons, which
is useful to define constants to be used in specifications (in our case, Null is
such a “constant”). Signatures can have fields. For instance, signature List has
two fields, head and size. Field head is in fact a relation (more precisely, a
function) from List atoms to Node atoms or Null.

Alloy also features facts, predicates, and assertions. Facts define properties
assumed to be true of the models, and are written in relational logic (first-
order logic with relational operators, including transitive and reflexive-transitive
closures). For instance, if one would want to restrict analysis to acyclic lists,
one may impose acyclicity via fact acyclicLists in Fig. 1(a). In this fact,
dot (.) is relational composition (which can be intuitively seen as a navigational
operator), * and ˆ represent reflexive-transitive and transitive closures; so, the
formula expresses that, for every list l and every node n reachable from the list’s
head, n cannot be reached from n navigating through (one or more) “next” links.

Predicates are formulas with potentially free variables, and can be used to
express properties, and in particular to capture operations. For instance, predi-
cate getFirst in Fig. 1(a) captures the “get first” operation on lists. Finally,
assertions are intended properties, i.e., properties that should be implied by
facts, but must be checked for. For instance, one may check that, when lists
have size one, getFirst and getLast return the same value, expressed in
assertion getFirstEqGetLast in Fig. 1(a). Both predicates and assertions
can be subject to automated analysis using Alloy Analyzer, a tool that employs
off-the-shelf SAT solvers to build satisfying instances of predicates or violat-
ing instances for assertions, under user provided scopes. Fig. 1(a) shows some
sample commands running Alloy Analyzer. These will use SAT solving to build
instances involving at most 1 list, 5 nodes and using integers with bit-width 5,
that satisfy getFirst, and violate getFirstEqGetLast, respectively. In the
first case it will serve as a sample execution of getFirst. In the second case,
if a violation is found it exhibits a problem regarding a property that the user
thought it would be valid; if on the other hand no counterexample is found, it
helps gaining confidence on the correctness of the model and the validity of the
property (although it is clearly not a proof of validity).

Alloy is a convenient, simple and expressive language for building static mod-
els of software. Dealing with dynamic models, i.e., models that capture system
execution elements such as state change, is less straightforward. DynAlloy [12] is
an extension of Alloy that incorporates convenient constructs to easily capture
state change. DynAlloy’s syntax and semantics is based on dynamic logic. The
language extends Alloy with basic actions, programs, and partial correctness as-
sertions. Basic actions are defined through pre and postconditions. For instance,
an action that removes all elements of a list can be defined as removeAll in
Fig. 1(b). This atomic action updates the head and size of the list, using rela-
tional overriding (++). A few things are worth noticing. First, action removeAll



has List’s fields head and size as explicit parameters, instead of being at-
tributes of argument thiz. This is a necessary part of our mutable model of
the heap (see [13] for details). Second, as opposed to Alloy predicates, which
require parameters for post-state variables, these are implicit in DynAlloy’s ac-
tions. Indeed, notice that the postcondition refers to primed variables head’
and size’, which are not listed explicitly as action arguments. Moreover, when
a primed variable is not mentioned in the postcondition, it is assumed to be
left unchanged by the action; that is, variable thiz (the list object to which
removeAll is applied) is not changed by this atomic action. DynAlloy pro-
grams are built using assignment (:=), skip, tests and atomic actions as base
cases, combined using sequential composition (;), nondeterministic choice (+)
and iteration (*). A sample program that nondeterministically returns some el-
ement of a linked list is program choose in Fig. 1(b). DynAlloy programs can
be equipped with partial correctness assertions. For instance, one may specify
the intended behaviour of the choose program as a partial correctness asser-
tion, as illustrated in Fig. 1(b), where we assume repOK to be a provided Alloy
predicate characterizing the representation invariant of lists (e.g., acyclicity).
DynAlloy programs are subject to SAT-based analysis, via a translation into Al-
loy [12]. They can be run (i.e., producing instances that correspond to program
executions), and when they are equipped with partial correctness assertions,
they can be verified against their specifications. For instance, the first command
in Fig. 1(b) produces an execution of choose on a list with at most 5 nodes
with at most 5 iterations; the second command checks whether every terminat-
ing execution of at most 5 iterations of choose, on valid and non-empty lists
with at most 5 nodes and integers of bit-width 5, returns an element of the list.

Alloy and DynAlloy are sufficiently expressive to capture Java programs and
JML specifications, and have been used as intermediate languages for various
analyses, including bounded verification and test generation of JML-annotated
Java programs [14, 15, 2] (although the SAT-based analysis of Alloy/DynAlloy
is intrinsically incomplete). Our translation is based on [14, 15], and relies on
symmetry breaking and tight field bounds as optimizations. More precisely, we
use the symmetry breaking technique introduced in [14, 15], which automatically
builds predicates that force canonical orderings in heap allocated structures, al-
lowing the analysis to remove structures which are isomorphic to others already
considered. Tight field bounds, on the other hand, are used to reduce the number
of variables and clauses in the propositional encodings of the memory heap, for
Java program analysis [14, 15]. They are automatically computed from assumed
properties, such as preconditions and invariants, and are employed to restrict
structures in states that are assumed to satisfy such properties. These optimiza-
tions are crucial to our analysis’ efficiency, especially because we use the encoding
for numerical datatypes originally introduced in [2] (extended to support some
Alloy functions, notably cardinality), enabling us to support increased precision
in numerical characterizations of Java basic datatypes. We refer the reader to
[14, 15, 2] for further details.



3 Computing Workarounds from Program Specifications

Let us now turn our attention to our first technique for computing automated
workarounds for Java program specifications, employing the SAT based auto-
mated analysis described in the previous section. The approach exploits the
translation of JML contracts of Java programs into DynAlloy, and the bounded
iteration (*) and non-deterministic choice (+) operators from this language, to
build a partial correctness assertion involving a (nondeterministic) program,
whose counterexamples correspond to workarounds.

The overall approach works as follows. Let C be a class, and m1,m2, . . . ,mk

the public methods in C. Each method mi is accompanied by its pre and post-
condition in JML, say premi and postmi , respectively. Notice that, as explained
in the previous section, from the JML formulas corresponding to the contract of
mi, we can obtain corresponding Alloy formulas, using the translation embedded
in TACO [14]. This process leads to Alloy formulas preAmi

and postAmi
. According

to DynAlloy’s syntax, we can, with these formulas, define a DynAlloy atomic ac-
tion ai: actai {pre{ preAmi

}post{ postAmi
}}. Notice that the behaviour of

DynAlloy atomic action ai is defined by its pre and postcondition, i.e., it is as-
sumed that ai behaves exactly as its specification prescribes. Now, given actions
a1, a2, . . . , ak, corresponding to the translation of methods m1,m2, . . . ,mk into
DynAlloy, we can build the DynAlloy program (a1 + a2 + · · ·+ ak)∗. According
to the semantics of nondeterministic choice and iteration, this program repre-
sents all sequential compositions of actions a1, a2, . . . , ak, and consequently, of
methods m1,m2, . . . ,mk.

Now, let us suppose that method mi fails at run time, in a concrete program
state si. Again, we can capture state si as an Alloy predicate sAi , as shown in
the previous section. Thus, we have all the elements to construct the following
partial correctness assertion:

{ sAi } (a1 + a2 + · · ·+ ai−1 + ai+1 + · · ·+ ak) ∗ { ¬postAmi
}

which can be automatically analyzed using DynAlloy Analyzer. A counterexam-
ple of the above assertion would consist of a sequence of Alloy states sA0

, . . . , sAj

such that: (i) sA0
is state sAi ; (ii) there is a sequence ap(1); ap(2); . . . ; ap(j) of op-

erations such that 〈sAi
, sAi+1

〉 are related by ap(i) transition relation; and (iii)
sAj is a state sAf that does not satisfy ¬postAmi

, i.e., that satisfies postAmi
. Tak-

ing into account that sAi and postAmi
are Alloy representations of state si and

the postcondition of method mi, respectively, such counterexample is indeed a
workaround: it provides a sequence of actions, representing methods of class C,
that take the system from state si to a state that satisfies postmi . Moreover,
if DynAlloy Analyzer does not find a counterexample to the above assertion,
within a provided scope, it is guaranteed that there are no workarounds in that
scope (with workarounds understood as simple sequences of other methods, not
more complex programs).

Dealing with Parameterized Methods. When looking for a workaround involving
methods that receive parameters, we have an additional problem, namely how



to choose appropriate values to pass as parameters so that these lead to work-
arounds. To do so, we define atomic actions that nondeterministically assign a
value to a variable. For instance, for integer-typed variables such an action is
defined as follows:

1 act nonDetAssign[x: Int] {
2 pre { }
3 post { x’ in Int }
4 }

Then, if a method m(int i) is involved when attempting to build workarounds
for another method, it will participate in the iteration of nondeteministic choice
of methods, as program: nonDetAssign[i] ; m[i]. Notice that this nonde-
terministic assignment is inside the iteration *, to allow for the possibility of
using m[i] more than once, with different parameters. Also, in this example we
are using Alloy’s Int signature, for illustration purposes. In our case studies we
use the custom-built signatures for Java precision integers defined in [2].

An Example. Consider a simple Java implementation of tuples, with methods
setFirst(int value), setSecond(int value) and swap() (swaps first
and second elements of a tuple). Suppose that method setFirst(3) fails on
a tuple object t with values t.first: 4 and t.second: 3. Then, the Dy-
nAlloy program that is built to produce workarounds from is the following:

1 assertCorrectness computeWorkaround[ t: Tuple+Null, first: Tuple -> one Int,
2 second: Tuple -> one Int ] {
3 pre { t!=Null and t.first=4 and t.second=3 }
4 program { local i: Int;
5 ( t.swap() + (nonDetAssign[i] ; t.setSecond[i]) )*
6 }
7 post { !(t.first’=3 and t.second’=t.second)}
8 }

For this program, the analysis would return, for instance, the following work-
around: swap(); nonDetAssign(i); setSecond(i), where nonDetAssign
assigned 3 to variable i (these values can be recovered from the counterexample
instance built by DynAlloy Analyzer). The minimum scope to provide to find
such workaround is 2 loop unrolls, 1 tuple and 2 32-bit integers.

It is important to notice that in the above described approach to compute
workarounds, methods are seen as atomic, i.e., we do not take into account the
code of method implementations, only their specifications. This simplification is
made for scalability reasons, since there is no technical limitation in translating
methods as programs (rather than doing so as atomic actions, as in our case).

The technique that we introduce in the following section tackles the work-
around computation problem in a different way, by resorting to the use of SAT
solving to directly build a recovery program state, rather than a recovery se-
quence of methods.

4 Program State Repair using SAT

The technique in the previous section computes standard workarounds, and dif-
fers from other workaround approaches in that it applies to contract specifica-



tions at the level of detail of source code, and it computes workarounds fully
automatically. In this section we present a different approach, which attempts
to repair the failing routine by directly producing the expected post state using
the specification of the routine and SAT solving.

While this technique has in principle the same constraints as the previous
one, i.e., that contracts must be available for the programs being subject to the
analysis, it can be better explained (and exploited) through the use of abstraction
functions. Data representations often attempt to capture more abstract models.
For instance, binary search trees are often used as an implementation of sets of
elements. The abstraction function is part of a data representation specification,
that indicates how concrete data representation instances map to the corre-
sponding abstract elements. Going back to our example of binary search trees,
the abstraction function would indicate, for each binary search tree, which is the
set is represents (i.e., it essentially returns the set of values held in the AVL).
Contract languages such as JML [9] support the definition of model variables
and abstraction functions; abstraction functions can also be captured directly
in Java, as shown in [21]. In our case, to simplify the presentation, we will use
Alloy to express abstraction functions. For instance, the abstraction function of
binary search trees, we just referred to, is captured in Alloy (in this case, using
a predicate) as follows:

1 pred absFunction[thiz: Tree, root: Tree -> one (Node+Null),
2 left: Node -> one (Node+Null), right: Node -> one (Node+Null),
3 key: Node -> one Int, result: set Int] {
4 result = thiz.root.*(left+right).key
5 }

So, let us assume that, besides the pre and post-conditions for all class meth-
ods, and the class invariant, we have the Alloy specification of the abstraction
function (this may be given in JML, and then translated to Alloy). Now, as in
the previous technique, assume that method mi breaks at run time in a concrete
program state si. We would want to recover from this failure, reaching a state sf
that satisfies the postcondition postmi

(si, sf ) (notice that the postcondition in
languages such as JML and DynAlloy is actually a postcondition relation, that
indicates the relationship between precondition states and postcondition states).
We can build a formula that characterizes these “recovery” states, as follows:

1 pred recoveryStates[s_f: State] {
2 some x, y | alpha[s_i, x] and alpha[s_f, y] and post_m_i [x, y] and repOK[s_f]
3 }

where repOK is the class invariant translated to Alloy, post m i is the postcon-
dition relation of method mi, translated to Alloy from JML, and alpha is the
abstraction function. Finding satisfying instances of this predicate will produce
valid post-states, in the sense that they satisfy the class invariant, that mimic
the execution of method mi.

An Example. Consider a binary search tree representation of sets. Assume that
the JML invariant for binary search trees and the JML postcondition of method



remove have already been translated into Alloy predicates repOK and post -
rem, respectively. These would look as follows:

1 pred repOK[thiz: Tree, root: Tree -> one(Node+Null), left: Node -> one(Node+Null),
2 right: Node -> one (Node+Null), key: Node -> one Int] {
3 all n : Node | n in thiz.root.*(left + right) implies (n.key != null and
4 (no (((n.left).*(left+right) & (n.right).*(left+right)) -Null)) and
5 (n !in n.ˆ(left+right)) and
6 (all m: Node | m in n.left.*(left+right) implies n.key>m.key) and
7 (all m: Node | m in n.right.*(left+right) implies m.key>n.key) )
8 }
9 pred post_rem[elems, elems’: set Int, elem: Int] {

10 elem in elems and elems’ = elems - elem
11 }

Now, consider the left-hand side binary search tree in Figure 2, and suppose
that method remove(x) failed on this tree, for x = 3. By looking for models
of the following Alloy predicate:

1 pred recoveryStates [thiz: Tree, root,root’: Tree -> one (Node+Null),
2 left,left’: Node -> one (Node+Null), right,right’: Node -> one(Node+Null),
3 key,key’: Node -> one Int ] {
4 thiz = T0 and root = (T0->N0) and
5 left = (N0->N1)+(N1->N3)+(N2->Null)+ (N3->Null)+(N4->Null) and
6 right =. . . and . . . key =. . . and . . .
7 some x, y : set Int | absFunction[thiz,root,left,right,key,x] and
8 absFunction[thiz’,root’,left’,right’,key’,y] and post_rem[x, y, 3]
9 }

we will be searching for a valid binary search tree that represents the set resulting
from removing 3 from the left-hand side tree of Figure 2. The right-hand side
binary tree in Figure 2 is an instance satisfying the predicate. Notice how this
returned structure does not perform the expected change that a removal method,
of a leaf in this case, would produce. But as far as the abstract datatype instance
that the structure represents, this resulting structure is indeed a valid result of
removing key 3.

Predicate recoveryStates above makes some simplifications, for presen-
tation purposes. First, it uses Alloy Int signature, whereas in our experiments
we use a Java precision integer specification. Second, notice the use of higher-
order existential quantification (some x, y: set Int). Such quantifications
are skolemized for analysis (a “one” signature declares x and y as set Int
fields, which are then used directly in the recoveryStates predicate), a stan-
dard mechanism to deal with existential higher-order quantification in Alloy,
since Alloy Analyzer does not directly support it (see [18] for more details). Fi-
nally, and more importantly, two elements are also part of recoveryStates,
though not explicitly mentioned in the predicate. One is the addition of an au-
tomatically computed symmetry breaking predicate, as put forward in [14, 15],
which forces a canonical ordering in the structures and has a substantial impact
in analysis. Second, we use tight bounds [14, 15] computed from class invariants
(these reduce propositional state representations by removing propositional vari-
ables that represent field values deemed infeasible by the invariants) to constrain
post-condition states, since these states are assumed to satisfy the corresponding
invariants, as shown in the above predicate.
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Fig. 2: Two binary search trees, and the sets they represent.

5 Evaluation

Our evaluation consists of an experimental assessment of the effectiveness of
the two presented techniques for automatically computing workarounds, and
repairing faulty states, respectively. The evaluation is based on the following
benchmark of collection implementations (accompanied by their corresponding
JML contracts including requires/ensures clauses, loop variant functions and
class invariants): (i) two implementations of interface java.util.List, one
based on singly linked lists, taken from [15], the other a circular double linked
list taken from AbstractLinkedList in Apache Commons.Collections; (ii)
three alternative implementations of java.util.Set, one based on binary
search trees taken from [28], another based on AVL trees taken from [3], and
the red-black trees implementation TreeSet from java.util; and (iii) one
implementation of java.util.Map, based on red-black trees, taken from class
TreeMap in java.util. This benchmark is complemented with the analysis
of a Java library, namely library JodaTime for date arithmetic. All the exper-
iments were run on a PC with 3.40Ghz Intel(R) Core(TM) i5-4460 CPU, with
8GB of RAM. We used GNU/Linux 3.2.0 as the OS. The workaround repair pro-
totypes together with the specifications used for the experiments can be found in
[1]. Experiments can be reproduced following the instructions provided therein.
Also, further experimental data are presented in [1].

In order to assess our workaround techniques, we artificially built repair sit-
uations, i.e., situations in which it was assumed that a method m has failed.
These situations were randomly and automatically constructed, using Randoop
[22]. For each data structure interface, we ran Randoop for 1 hour, producing
116000 list traces, 136000 set traces, and 138000 map traces, leading to the
same number of instances of the corresponding data structure. We sampled one
every 1000 structures (number 1000, number 2000, number 3000, etc., since Ran-
doop tends to produce structures of increasing size due to its feedback driven
generation policy based on randomly extending previously obtained sequences
[22]), obtaining 116 lists, 136 sets and 138 maps. We proceeded in a similar way
for class TimeOfDay of JodaTime, producing 50 scenarios. For each method



Table 1: Workaround Computation for Lists.
Lists: 116 structs.; min. size: 6; max. size: 25; avg. size: 14.85
Singly Lkd Lists: 116 structs.; min. size: 6; max. size: 25; avg. size: 14.85
Abst. Lkd Lists: 116 structs.; min. size: 6; max. size: 25; avg. size: 14.85

Lists Singly Lkd Lists Abst. Lkd Lists
Method Total Avg. Avg # Total Avg # Total Avg #
to fix Time Rep.Time wa. TOs Time Rep.Time TOs Time Rep.Time TOs

add 0:36:06 0:0:18 1 0 0:08:01 0:0:04 0 0:11:18 0:0:05 0
addfirst 0:36:05 0:0:18 1 0 0:08:09 0:0:04 0 0:11:20 0:0:05 0
clear 19:20:00 - - 116 0:07:50 0:0:04 0 0:10:22 0:0:05 0
contains 0:36:16 0:0:18 1 0 0:07:44 0:0:04 0 0:10:36 0:0:05 0
get 0:36:25 0:0:18 1 0 0:07:42 0:0:04 0 0:11:19 0:0:05 0
getfirst 0:36:14 0:0:18 1 0 0:09:52 0:0:05 0 0:11:11 0:0:05 0
indexof 0:35:18 0:0:18 1 0 0:09:20 0:0:04 0 0:12:23 0:0:06 0
isempty 0:36:05 0:0:18 1 0 0:07:40 0:0:04 0 0:11:12 0:0:05 0
lastindexof 0:35:29 0:0:18 1 0 0:09:00 0:0:04 0 0:12:23 0:0:06 0
offer 0:36:18 0:0:18 1 0 0:08:16 0:0:04 0 0:11:17 0:0:05 0
peek 0:36:35 0:0:18 1 0 0:08:00 0:0:04 0 0:11:23 0:0:05 0
poll 0:36:14 0:0:18 1 0 0:08:32 0:0:04 0 0:11:31 0:0:05 0
pop 0:36:07 0:0:18 1 0 0:08:24 0:0:04 0 0:10:28 0:0:05 0
push 0:36:25 0:0:18 1 0 0:08:33 0:0:04 0 0:11:26 0:0:05 0
remove 0:36:05 0:0:18 1 0 0:08:40 0:0:04 0 0:10:58 0:0:05 0
removem 1:34:34 0:0:48 1,732 0 0:11:18 0:0:06 0 0:11:12 0:0:05 0
setelement 1:48:38 0:0:56 1,948 0 0:07:54 0:0:04 0 0:10:42 0:0:05 0
size 0:36:24 0:0:18 1 0 0:08:04 0:0:04 0 0:10:39 0:0:05 0

m in the corresponding class, we assumed it failed on each of the structures,
and attempted a workaround based repair using the remaining methods. So, for
instance, for method removeLast from List, we attempted its workaround
repair using the remaining 32 methods of the class, in 116 different repair situ-
ations. Notice that for the first technique, and since workarounds are computed
at the interface level from method specifications (not implementations), we have
one experiment per interface (e.g., AVL and TreeSet set implementations are
equivalent from the specification point of view, so computing workarounds for
one implementation also work for the others). For the second technique, on the
other hand, each implementation leads to different experiments, since the tech-
nique depends on the structure implementation.

We summarize the experimental results of the evaluation of the first technique
in columns Lists, Sets and Maps of Tables 1, 2 and 3. Tables report: (i) method
being fixed (the fix is computed from the iteration of nondeterministic choice
of remaining methods); (ii) total time, the time spent in fixing all 100 faulty
situations; time is reported in h:mm:ss format; (iii) average repair time, i.e., the
time that in average it took to repair each faulty situation; again, time is reported
in h:mm:ss format; (iv) average workaround length, i.e., number of routines
that the found workaround had, in average; and (v) number of timeouts, i.e.,
faulty situations that could not be repaired within 10 minutes. It is important to
remark that, in the tables, we only count the repairs that actually ended within
the timeout, to compute the total and average repair times. Also, each table
reports, for the corresponding structure, the minimum, maximum and average
size for the randomly generated structures (see table headings).

Regarding the second technique, we evaluated its performance on producing
recovery structures on the same scenarios as the first technique. Recall that



Table 2: Workaround Computation for Sets and Trees.
Sets: 136 structs.; min. size: 11; max. size: 22; avg. size: 13.17
TreeSet: 136 structs.; min. size: 11; max. size: 22; avg. size: 13.17
AVL Tree: 136 structs.; min. size: 11; max. size: 22; avg. size: 13.17
Search Tree: 136 structs.; min. size: 11; max. size: 22; avg. size: 13.17

Sets TreeSet AVL Tree Search Tree
Method Total Avg. Avg. # Total Avg # Total Avg # Total Avg #
to fix Time Rep.T. wa. TOs Time Rep.T. TOs Time Rep.T. TOs Time Rep.T. TOs

add 3:03:48 0:1:21 2 0 2:30:13 0:1:02 1 1:18:07 0:0:30 1 0:49:11 0:0:17 1
ceiling 1:00:11 0:0:26 1 0 0:19:15 0:0:08 0 0:19:27 0:0:08 0 0:18:48 0:0:08 0
clear 22:40:00 0:0:00 - 136 0:10:19 0:0:04 0 0:11:33 0:0:05 0 0:10:48 0:0:04 0
contains 22:40:00 0:0:00 - 136 0:10:33 0:0:04 0 0:11:44 0:0:05 0 0:10:51 0:0:04 0
first 1:04:50 0:0:28 1 0 1:33:50 0:0:37 1 0:57:40 0:0:21 1 0:49:26 0:0:13 2
floor 1:05:06 0:0:28 1 0 2:01:34 0:0:49 1 1:00:19 0:0:22 1 0:27:46 0:0:12 0
higher 0:51:24 0:0:22 1 0 1:55:17 0:0:42 2 0:58:13 0:0:21 1 1:10:47 0:0:27 1
isEmpty 1:13:01 0:0:22 1 2 1:42:15 0:0:41 1 1:00:26 0:0:22 1 1:14:17 0:0:24 2
last 1:09:14 0:0:30 1 0 1:19:27 0:0:30 1 0:53:02 0:0:19 1 0:35:47 0:0:15 0
lower 0:52:03 0:0:22 1 0 1:29:02 0:0:35 1 0:57:28 0:0:21 1 1:11:47 0:0:18 3
pollFirst 1:09:52 0:0:30 1 0 1:23:57 0:0:37 0 0:51:05 0:0:22 0 0:47:43 0:0:12 2
remove 1:00:29 0:0:26 1 0 1:41:19 0:0:40 1 0:51:38 0:0:22 0 0:34:28 0:0:15 0

Table 3: Workaround Computation for Maps.
Maps: 138 structs.; min. size: 11; max. size: 22; avg. size: 13.68
Tree Maps: 138 structs.; min. size: 11; max. size: 22; avg. size: 13.68

Maps Tree Maps
Method Total Avg. Avg # Total Avg #
to fix Time Rep.Time wa. TOs Time Rep.Time TOs

ceilingkey 0:48:38 0:0:21 1 0 0:34:38 0:0:15 0
clear 23:00:00 - - 138 0:29:53 0:0:12 0
containsvalue 0:47:01 0:0:20 1 0 0:30:45 0:0:13 0
firstentry 0:51:09 0:0:22 1 0 0:31:29 0:0:13 0
get 23:00:00 - - 138 0:29:37 0:0:12 0
higherentry 1:17:04 0:0:33 1 0 0:32:44 0:0:14 0
isempty 1:20:19 0:0:34 1 0 0:27:16 0:0:11 0
lastkey 1:20:10 0:0:34 1 0 0:30:02 0:0:13 0
lowerentry 1:17:03 0:0:33 1 0 0:32:57 0:0:14 0
polllastentry 7:26:46 0:3:14 1 0 7:54:33 0:2:55 10
put 23:00:00 - - 138 16:36:33 0:5:55 44
remove 23:00:00 - - 138 9:27:27 0:3:03 21

scenarios were produced using, for all implementations of the same data type,
the same interface, so these are shared among different implementations of the
same datatype. The timeout is set in 10 minutes. Results are reported in the
remaining columns of Tables 1, 2 and 3. Notice that for this technique we do not
report workaround size, since it “repairs” the failing method by directly building
a suitable post-execution state. Regarding the results of both techniques on the
JodaTime date arithmetic library, these are summarized in a single table (Table
4) due to space restrictions, for varying bitwidths in numeric datatypes.

Assessment. Notice that our first technique performed very well on the presented
experiments. Many methods could be repaired within the timeout limit of 10
minutes (see the very small number of timeouts in the tables), and with small
traces; in fact, the great majority could be repaired by workarounds of size 1
(i.e., by calling only one alternative method), and some with workarounds of
size up to 3, confirming the observations in [8]. It is important to observe that
some methods are difficult to repair. For instance, method clear, that removes
all elements in the corresponding collection, cannot be solved alternatively by
short workarounds. In fact, this method requires performing as many element



Table 4: Workaround Computation for JodaTime.
Technique 1 Technique 2

Int.16 bits Int.32 bits Int.16 bits Int.32 bits
Method # Total Avg. # Total Avg. # Total Avg. # Total Avg.
to fix wa. Time Rep. wa. Time Rep. wa. Time Rep. wa. Time Rep.

minusHours 48 0:08:23 0:00:10 48 0:13:12 0:00:16 48 0:01:18 0:00:01 48 0:02:32 0:00:03
minusMillis 1 7:50:09 0:00:09 48 1:21:53 0:01:42 1 0:01:46 0:00:02 48 0:05:27 0:00:06
minusMinutes 9 6:31:30 0:00:10 46 1:00:00 0:00:52 9 0:01:30 0:00:01 48 0:05:37 0:00:07
minusPeriodHours 48 0:08:41 0:00:01 48 0:13:12 0:00:16 48 0:01:18 0:00:01 48 0:02:31 0:00:03
minusPeriodMillis 1 7:50:09 0:00:09 45 1:48:05 0:01:44 1 0:01:45 0:00:02 48 0:05:26 0:00:06
minusPeriodMinutes 9 6:31:32 0:00:10 46 1:01:53 0:00:54 9 0:01:34 0:00:01 48 0:04:38 0:00:05
plusHours 48 0:08:57 0:00:11 48 0:12:38 0:00:15 48 0:01:18 0:00:01 48 0:02:32 0:00:03
plusMillis 1 7:50:12 0:00:12 47 1:12:01 0:01:19 1 0:01:39 0:00:02 48 0:04:55 0:00:06
plusMinutes 29 3:13:21 0:00:09 48 0:13:00 0:00:16 29 0:01:30 0:00:01 48 0:02:51 0:00:03
plusPeriodHours 48 0:08:45 0:00:01 48 0:12:50 0:00:16 48 0:01:17 0:00:01 48 0:02:31 0:00:03
plusPeriodMillis 1 7:50:12 0:00:12 47 1:06:41 0:01:12 1 0:01:44 0:00:02 48 0:05:01 0:00:06
plusPeriodMinutes 29 3:14:41 0:00:09 48 0:12:42 0:00:15 29 0:01:31 0:00:01 48 0:02:53 0:00:03
withHourOfDay 48 0:09:21 0:00:11 48 0:13:18 0:00:16 48 0:01:07 0:00:01 48 0:02:22 0:00:02
getHourOfDay 0 8:00:00 - 0 8:00:00 - 48 0:01:07 0:00:01 48 0:02:41 0:00:03
getMillisOfSecond 0 8:00:00 - 0 8:00:00 - 48 0:01:06 0:00:01 48 0:02:39 0:00:03

removals as the structure holds, which went beyond the 10-minute timeout in all
cases. This technique also performed well on our arithmetic-intensive case study.
Notice that, as bit-width is increased, analysis becomes slightly more expensive,
but more workarounds arise (since some workarounds are infeasible with smaller
bit-widths). Our second technique features even more impressive experimental
results. Most of the repair situations that we built with Randoop were repaired
using this technique. This included repairing methods that, from many program
states, could not be repaired by the first technique.

These techniques scaled for the evaluated classes beyond some SAT based
analysis techniques, e.g., for test generation or bounded verification [2, 14]. The
reason for this increased scalability might at first sight seem obvious, since the
analysis starts from a concrete program state. However, the nondeterminism of
the (DynAlloy) program used in the computation of the workarounds, formed
by an iteration of a nondeterministic choice of actions (representing methods),
makes the analysis challenging and the obtained results relatively surprising. A
technical detail that makes the results interesting is the fact that the translation
from Java into Alloy and Dynalloy that we use encodes numerical datatypes with
Java’s precision. That is, integers are encoded as 32-bit integers (in the case of
JodaTime, where arithmetic is heavily used, we assessed our techniques with
different bit-widths), as opposed to other works that use Alloy integers (very
limited numerical ranges). The approach is that presented in [2], extended to
make some Alloy functions, notably cardinality (#), work on these numerical
characterization of Java basic datatypes.

Threats to Validity. Our experimental evaluation involved implementations ac-
companied by corresponding abstract datatypes. When available, these were
taken from previous work, that used them in a benchmark for automated analy-
sis. We did not formally verify that these implementations and specifications are
correct, and they may contain errors that affect our results. We manually checked
that the obtained workarounds were correct, confirming that, as far as our tech-
niques required, the specifications were correct. Our experiments involved ran-



domly generated scenarios (program states), from which workaround computa-
tions were launched. Different randomly picked scenarios may of course lead to
different results. We attempted to build a sufficiently varied set of such program
states, while at the same time keeping the size of the sample maneagable. In all
cases we performed workaround computations, for each method under analysis,
on more than 100 scenarios. These were selected following an even distribution,
and taking into account how Randoop (the random testing tool used to produce
the scenarios) performed the generation, reporting our results as an average.
We took as many measures as possible to ensure that the selection of the cases
did not particularly favor our techniques. Our workaround computation tools
make use of optimizations, such as tight bounds [14, 15]. These may introduce
errors, e.g., making the exploration for workarounds not bounded exhaustive.
We experimentally checked consistency of our prototypes with/without these
optimizations, to ensure these did not affect the outcomes.

6 Related Work

Existing approaches to workaround computation are among the closest work
related to our first technique. We identify two lines, one that concentrates in
computing workarounds, as in [4, 6], and another that focuses on applying work-
arounds [7]. Our work is closer to the former. As opposed to [4, 6], requiring
a state transition system abstraction, our workarounds are computed directly
from source code contracts. Workarounds of the kind used in [7] are alternative
equivalent programs to that being repaired. Thus, workarounds can be thought
of as automated program repair strategies. In this sense, the work is related to
the works on automated program repair, e.g., [10, 20, 29]. The workarounds that
we compute can repair a program in a specific state, i.e., they are workarounds as
in the original works [4, 6], that do not constitute “permanent” program repairs,
but “transient” ones, i.e., that only work on specific situations. Program repair
techniques often use tests as specifications and thus can lead to spurious fixes
(see [23, 27] for detailed analyses of this problem).

Our second technique for workarounds directly manipulates program states,
as opposed to trying to produce these indirectly via method calls. This tech-
nique is closely related to constraint-based and contract-based structure repair
approaches, e.g. [11, 17, 19], in particular the approach of Khurshid and collab-
orators to repair complex structures, reported in [30, 31]. While Khurshid et al.
compute a kind of structure “frame” (the part of the structure that the fail-
ing program modified), and then try to repair structures by only modifying the
frame, we allow modifications on the whole structure. Also, in [30, 31], Alloy
integers are used, instead of integers with Java precision. Thus, a greater scal-
ability can be observed in their work (in that work the authors can deal with
bigger structures, compared to our approach), whereas in our case the program
state characterization is closer to the actual Java program states. Moreover, our
technique can repair structures that the approach in [31] cannot. A thorough
comparison cannot be carried out, because the tool and experiments from [31]



are not available. Nevertheless, we have followed that paper’s procedure, and
attempted to repair some of the randomly produced structures of our experi-
ments. For instance, in cases where a rotation is missing (in a balanced tree),
the approach in [31] cannot produce repairs, since the fields that are allowed
to change are restricted to those visited by the program, and since the rotation
is mistakenly prevented, the technique cannot modify fields that are essential
for the repair. If, instead, we allow the approach in [31] to modify the whole
structure, then the approach is similar to ours without the use of tight bounds
and symmetry breaking, which we already discussed in the previous section.
The approaches are however complementary, in the sense that we may restrict
modifiable fields as proposed in [31], and they could exploit symmetry breaking
predicates and tight bounds, as in our case. Our work uses tight field bounds
to improve analysis. Tight bounds have been exploited in previous work, to im-
prove SAT-based automated bug finding and test input generation, e.g., in [14,
15, 2, 24], and in symbolic execution based model checking, to prune parts of the
symbolic execution search tree constraining nondeterministic options, in [16, 25].

7 Conclusions and Future Work

The intrinsic complexity of software, the constant adaptation/extension that
software undergoes and other factors, make it very difficult to produce soft-
ware systems maintaining high quality throughout their whole lifetime. This
fact makes techniques that help systems tolerate bug-related failures highly rele-
vant. In this paper, we have presented two techniques that contribute to tolerate
run-time bug related failures. These techniques propose the use of SAT-based au-
tomated analysis to automatically compute workarounds, i.e., alternative mech-
anisms offered by failing modules to achieve a desired task, and automated pro-
gram state repair. These techniques apply directly to formal specifications at the
level of detail of program contracts, which are exploited for workaround and state
repair computations. Our program state characterizations are closer to the actual
concrete program states than some related approaches, and can automatically
deal with program specifications at the level of detail of source code, as opposed
to alternatives that require the engineer to manually produce high level state
machine program abstractions. We have performed an experimental evaluation
that involved various contract-equipped implementations (including arithmetic-
intensive ones), and showed that our techniques can circumvent run time failures
by automatically computing workarounds/state repairs from complex program
specifications, in a number of randomly produced execution scenarios.

As future work, we plan to evaluate the techniques’ performance in software
other than our case studies, as well as to develop more sophisticated optimiza-
tion techniques, e.g., by further exploiting tight bounds. Moreover, while the
repairs produced by workarounds are in principle “transient”, many of the com-
puted workarounds are instances of “permanent” workarounds; we plan to study
ways to automatically produce “permanent” workarounds from “transient” can-
didates, as a proposal of a program repair technique.
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