739 research outputs found

    Low-Cost Conversion of Single-Zone HVAC Systems to Multi-Zone Control Systems Using Low-Power Wireless Sensor Networks

    Get PDF
    This paper presents a novel approach to convert a conventional house air conditioning installation into a more efficient system that individually controls the temperature of each zone of the house through Wi-Fi technology. Each zone regulates the air flow depending on the detected temperature, providing energy savings and increasing the machine performance. Therefore, the first step was to examine the communication bus of the air conditioner and obtain the different signal codes. Thus, an alternative Controller module has been designed and developed to control and manage the requests on the communication bus (Bus–Wi-Fi gateway). A specific circuit has been designed to adapt the signal of the serial port of the Controller with the communication bus. For the acquisition of the temperature and humidity data in each zone, a Node module has been developed, which communicates with the Controller through the Wi-Fi interface using the Message Queuing Telemetry Transport (MQTT) protocol with Secure Sockets Layer / Transport Layer Security (SSL/TLS) certificates. It has been equipped with an LCD touch screen as a human-machine interface. The Controller and the Node modules have been developed with the ultra-low power consumption CC3200 microController of Texas Instruments and the code has been implemented under the TI-RTOS real-time operating system. An additional module based on the Raspberry Pi computer has been designed to create the Wi-Fi network and implement the required network functionalities. The developed system not only ensures that the temperature in each zone is the desired one, but also controls the fan velocity of the indoor unit and the opening area of the vent registers, which considerably improves the efficiency of the system. Compared with the single-zone system, the experiments carried out show energy savings between 75% and 94% when only one of the zones is selected, and 44% when the whole house is air-conditioned, in addition to considerably improving user comfort

    Investigating Concurrency in the Co-Simulation Orchestration Engine for INTO-CPS

    Get PDF
    There is a tendency to expect, that taking advantage of multicore systems by using concurrency improves the performance of an application. To investigate if this is true, a case study was performed where different concurrency principles were applied to an existing application called the Co-Simulation Orchestration Engine (COE), which did not utilize concurrency. This was explored in the context of Co-Simulation using the Functional Mock-up Interface, as applications executing Co-Simulations should be performant to enable the use of increasingly complex models.Co-Simulation can be useful in the development of Cyber-Physical Systems, as it can be used to simulate coupled technical systems or models and thereby examine the behavior of the systems.The investigation was carried out by refactoring the COE to make it suitable for implementing concurrency by limiting the spawning of threads and synchronization between threads, along with maximizing the workload for each thread. Three different concurrency features were used in three different implementations: Parallel collections, futures, and actors, which were evaluated based on selected quality attributes. These implementations were tested against the non-refactored sequential COE and each other by performing different simulations using different models.The case study showed, that concurrency can be used to increase the performance of the COE in some cases. Based on the analysis carried out in this thesis project, a set of guidelines were created to generalize the process of applying concurrency to an existing application

    Sensor function virtualization to support distributed intelligence in the internet of things

    Get PDF
    It is estimated that-by 2020-billion devices will be connected to the Internet. This number not only includes TVs, PCs, tablets and smartphones, but also billions of embedded sensors that will make up the "Internet of Things" and enable a whole new range of intelligent services in domains such as manufacturing, health, smart homes, logistics, etc. To some extent, intelligence such as data processing or access control can be placed on the devices themselves. Alternatively, functionalities can be outsourced to the cloud. In reality, there is no single solution that fits all needs. Cooperation between devices, intermediate infrastructures (local networks, access networks, global networks) and/or cloud systems is needed in order to optimally support IoT communication and IoT applications. Through distributed intelligence the right communication and processing functionality will be available at the right place. The first part of this paper motivates the need for such distributed intelligence based on shortcomings in typical IoT systems. The second part focuses on the concept of sensor function virtualization, a potential enabler for distributed intelligence, and presents solutions on how to realize it
    • …
    corecore