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Abstract

Improving System Reliability for Cyber-Physical Systems

Leon Li Wu

Cyber-physical systems (CPS) are systems featuring a tight combination of, and coordi-

nation between, the system’s computational and physical elements. Cyber-physical systems

include systems ranging from critical infrastructure such as a power grid and transportation

system to health and biomedical devices. System reliability, i.e., the ability of a system to

perform its intended function under a given set of environmental and operational conditions

for a given period of time, is a fundamental requirement of cyber-physical systems. An

unreliable system often leads to disruption of service, financial cost and even loss of human

life. An important and prevalent type of cyber-physical system meets the following criteria:

processing large amounts of data; employing software as a system component; running

online continuously; having operator-in-the-loop because of human judgment and an ac-

countability requirement for safety critical systems. This thesis aims to improve system

reliability for this type of cyber-physical system.

To improve system reliability for this type of cyber-physical system, I present a system

evaluation approach entitled automated online evaluation (AOE), which is a data-centric

runtime monitoring and reliability evaluation approach that works in parallel with the

cyber-physical system to conduct automated evaluation along the workflow of the sys-

tem continuously using computational intelligence and self-tuning techniques and provide

operator-in-the-loop feedback on reliability improvement. For example, abnormal input

and output data at or between the multiple stages of the system can be detected and flagged



through data quality analysis. As a result, alerts can be sent to the operator-in-the-loop. The

operator can then take actions and make changes to the system based on the alerts in order

to achieve minimal system downtime and increased system reliability. One technique used

by the approach is data quality analysis using computational intelligence, which applies

computational intelligence in evaluating data quality in an automated and efficient way in

order to make sure the running system perform reliably as expected. Another technique

used by the approach is self-tuning which automatically self-manages and self-configures

the evaluation system to ensure that it adapts itself based on the changes in the system and

feedback from the operator. To implement the proposed approach, I further present a system

architecture called autonomic reliability improvement system (ARIS).

This thesis investigates three hypotheses. First, I claim that the automated online evalua-

tion empowered by data quality analysis using computational intelligence can effectively

improve system reliability for cyber-physical systems in the domain of interest as indicated

above. In order to prove this hypothesis, a prototype system needs to be developed and

deployed in various cyber-physical systems while certain reliability metrics are required

to measure the system reliability improvement quantitatively. Second, I claim that the

self-tuning can effectively self-manage and self-configure the evaluation system based on

the changes in the system and feedback from the operator-in-the-loop to improve system

reliability. Third, I claim that the approach is efficient. It should not have a large impact

on the overall system performance and introduce only minimal extra overhead to the cyber-

physical system. Some performance metrics should be used to measure the efficiency and

added overhead quantitatively.

Additionally, in order to conduct efficient and cost-effective automated online evaluation

for data-intensive CPS, which requires large volumes of data and devotes much of its

processing time to I/O and data manipulation, this thesis presents COBRA, a cloud-based

reliability assurance framework. COBRA provides automated multi-stage runtime reliability

evaluation along the CPS workflow using data relocation services, a cloud data store, data



quality analysis and process scheduling with self-tuning to achieve scalability, elasticity and

efficiency.

Finally, in order to provide a generic way to compare and benchmark system reliability

for CPS and to extend the approach described above, this thesis presents FARE, a reliability

benchmark framework that employs a CPS reliability model, a set of methods and metrics

on evaluation environment selection, failure analysis, and reliability estimation.

The main contributions of this thesis include validation of the above hypotheses and

empirical studies of ARIS automated online evaluation system, COBRA cloud-based relia-

bility assurance framework for data-intensive CPS, and FARE framework for benchmarking

reliability of cyber-physical systems. This work has advanced the state of the art in the CPS

reliability research, expanded the body of knowledge in this field, and provided some useful

studies for further research.
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Chapter 1

Introduction

Cyber-physical systems (CPS) are engineered systems that are built from, and depend upon,

the seamless integration of computational algorithms and distributed physical components

[163]. Unlike small, single-sourced embedded systems, modern cyber-physical systems

incorporate components from different providers using explicit interface standards that

specify communication protocols, physical operation characteristics, real-time sensing and

human operators informed by real-time data from the cyber-physical sensors.

As Prof. Edward A. Lee at UC Berkeley explains, “Applications of CPS arguably have

the potential to dwarf the 20-th century IT revolution. They include high confidence medical

devices and systems, assisted living, traffic control and safety, advanced automotive systems,

process control, energy conservation, environmental control, avionics, instrumentation, criti-

cal infrastructure control (electric power, water resources, and communications systems for

example), distributed robotics (telepresence, telemedicine), defense systems, manufacturing,

and smart structures. It is easy to envision new capabilities, such as distributed micro power

generation coupled into the power grid, where timing precision and security issues loom

large. Transportation systems could benefit considerably from better embedded intelligence

in automobiles, which could improve safety and efficiency. Networked autonomous vehicles

could dramatically enhance the effectiveness of our military and could offer substantially

1
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more effective disaster recovery techniques. Networked building control systems (such as

HVAC and lighting) could significantly improve energy efficiency and demand variability,

reducing our dependence on fossil fuels and our greenhouse gas emissions [134].”

System reliability, i.e., the ability of a system to perform its intended function under a

given set of conditions for a period of time, is widely recognized as a critical requirement for

cyber-physical systems. An unreliable system often leads to disruption of service, financial

cost and even loss of human life. Ideally, cyber-physical systems should not be deployed

into certain mission critical applications such as traffic control, automotive safety and health

care without improved reliability and predictability [134]. Barnum et al. put together a

roundtable discussion on the reliability of embedded and cyber-physical systems [24]. It

lists “a precursor generation of cyber-physical systems in areas as diverse as aerospace,

automotive, chemical processes, civil infrastructure, energy, healthcare, manufacturing,

transportation, entertainment, and consumer appliances” and “a complicated set of quality-

based attributes (dependable, trustworthy, available, maintainable, fault-tolerant, robust,

failure immune, secure, confidential, data integrity, safe, resilient, reliant, and several others)

that are layered on top of a highly complicated base system.”

It is a daunting challenge to make sure a system’s computational and physical elements

perform and maintain their functions in both routine circumstances and in hostile and

unexpected circumstances. Many cyber-physical systems deployed in the field are evidently

and even increasingly unreliable. For example, the electric power grid cyber-physical system

has become less reliable and more outage-prone in the past years. According to two data

sets, one from the U.S. Department of Energy and the other one from the North American

Electric Reliability Corp., the number of power outages greater than 100 Megawatts or

affecting more than 50,000 customers in the U.S. has nearly doubled every five years over

the past fifteen years, resulting in about $49 billion in outage costs per year [8].
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1.1 Definitions

Before I further discuss the problem statement, requirements, and approach, this section

first formalizes some of the terms used throughout this thesis. Some of these definitions are

similar to what is defined in the ANSI/ISO/ASQ standards [105, 14].

• A cyber-physical system (CPS) is a system featuring a tight combination of, and coor-

dination between, the system’s computational and physical elements. The applicable

domains of cyber-physical systems include critical infrastructure such as power grids

and highway transportation systems, health and biomedical systems, energy and in-

dustrial automation systems, automated defense and combat systems, and agricultural

automation systems [54].

• Failure is the inability of a system or component to perform its required function

within the specified performance requirements [13]. It is the manifestation of a fault

in the system or human error.

• System reliability is defined as the ability of a system to perform its intended function

under a given set of environmental and operational conditions for a given period of

time. It includes all parts of the system, including hardware, software, supporting

infrastructure, operators and procedures. For quantitative comparison, it is often

reported as a probability.

• Component reliability is the ability of a component to perform a required function

under stated conditions for a period of time [105]. The term ‘reliability’ is also used

as a reliability characteristic denoting a probability of success or a success ratio.

• Software reliability is the probability of failure-free software operation for a specified

period of time in a specified environment [13]. For cyber-physical systems, software

reliability is an integral part of system reliability.
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• Robustness is the ability of a computer system to cope with errors during execution.

Robustness can also be defined as the ability of an algorithm to continue operating

despite abnormalities in input, calculations, etc. In this thesis, robustness is considered

one of the aspects of the overall system reliability.

• Fault or defect is an incorrect step, process, or data definition in a system [13]. In a

software system, this can be a programming or design error that leads to an erroneous

result during execution.

• Fault density is the number of faults, usually expressed as faults per thousand lines of

code. This is a common software reliability metric.

• Software bug is the common term used to describe a fault in a software program that

produces an incorrect or unexpected result, or causes it to behave in unintended ways.

• Error is the difference between a computed, observed, or measured value or condition

and the true, specified, or theoretically correct value or condition.

• Data quality is an assessment of data’s fitness to serve its purpose in a given context.

Some aspects of data quality include: accuracy, completeness, update status, relevance,

consistency across data sources, appropriate presentation, and accessibility [231, 229,

181, 116, 170, 218]. Cyber-physical systems’ data quality is an important factor for

its system reliability.

• Autonomic is a system characteristic that means being able to monitor its operational

context as well as its internal state and being able to control and change its internal

operations (i.e., its configuration, state and functions) [122]. The purpose is to assess

whether or not the system’s current operation serves its purpose and possibly make

self-adjustments accordingly.

• Operator-in-the-loop or human-in-the-loop is defined as a model that requires human

interaction [121]. This allows the user to change the outcome of an event or process.
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• An actuator is a component or separate device that is responsible for taking physical

actions on cyber-physical systems. It can be a type of motor that is responsible for

moving or controlling a mechanism or equipment.

1.2 Problem Statement

It is difficult to make cyber-physical systems reliable. Modern cyber-physical systems are

becoming more and more complex and distributed, incorporating components from different

providers using explicit interface standards that specify communication protocols, physical

operation characteristics, real-time sensing and human operators informed by real-time data

from the cyber-physical sensors [163]. The increasing complexity and the trend towards

distribution make it difficult to ensure all parts of the system, including hardware, software,

supporting infrastructure, operators and procedures, work together reliably, especially for

those mission-critical online systems, e.g., electric power grid, that require continuous

system uptime.

Also, cyber-physical systems deployed in the field have to run in live environments,

which are not controlled. The running environments are often unpredictable with abnormal

conditions, thus posting challenges for cyber-physical systems to run smoothly.

Furthermore, for those deployed cyber-physical systems that process large amounts of

real-time data on the fly, erroneous data is a significant problem when it comes to system

reliability. For example, a data sensor may record some extreme measurements due to a

power surge or an electronic component failure. The erroneous input data and incorrect

output data from software components may lead to failure of subsequent system components,

causing system malfunction and execution disruption. It is a challenge to ensure the data

quality such as consistency and accuracy for better system reliability.
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1.3 Requirements

A solution to these problems must meet the following requirements:

1. The approach should be able to improve system reliability for cyber-physical systems

to ensure their reliable execution.

2. The system reliability improvement brought by the approach should be able to be

measured and verified quantitatively and compared to the baseline derived from the

system without implementation of the approach.

3. The approach should be able to process large amounts of real-time system data,

deal with erroneous data input and abnormal data output from software and other

components, and derive useful information from them intelligently for reliability

analysis and improvement.

4. The approach should be efficient and not add significant overhead to the existing

systems. The overhead caused by the approach should be measured quantitatively.

1.4 Scope

One example of a cyber-physical system are the energy control systems, in which the sensors

and actuators physically monitor and control the energy processes; the computer-based

systems analyze and store data; and the communication networks interconnect the process

and computer systems [166]. Another example are the defense systems that are more attuned

to their environments, receiving and processing massive amounts of data, to determine

courses of action [166]. These systems will not be operating in a controlled environment,

and must work reliably and continuously under the unexpected conditions and the subsystem

failures [54]. Also, these systems commonly employ operator-in-the-loop because of human

judgment and accountability requirement for safety critical systems. It is often not possible
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to perform robust tests on these cyber-physical systems prior to actual deployment because

the physical devices are so expensive that they cannot be replicated in a testing lab and

the external environments are impossible to replicate. It is imperative to have an online

reliability evaluation and improvement process to ensure the live system in the field is

running as expected.

This thesis is limited to cyber-physical systems in these domains and aims to improve

system reliability for cyber-physical systems that meet following criteria:

• Processing large amounts of system data including input data and output data from

different components such as data collected from sensors and output from software

• Employing software as a system component, e.g., software components used to support

or control other system components

• Running online continuously, which demands as few failures as possible and the

minimum system downtime during each failure

• Having operator-in-the-loop, i.e., operator can take actions on the system to make

changes to the system execution

These types of cyber-physical systems are important and becoming more prevalent [54].

Systems that meet these criteria include smart power grids, smart building systems, highway

transportation systems, defense systems, and factory automation systems.

1.5 State of the Art

CPS Summit 2008 at Carnegie Mellon University stated in its executive summary that

architectures and tools are needed in order to build reliable and resilient cyber-physical

systems [54]. The report also described software reliability affects the overall system

reliability. For architectural design of reliable cyber-physical systems, Sha et al. proposed
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a hybrid approach that combines fault-tolerant architectures with formal verification to

support the design of safe and robust cyber-physical systems [203]. La et al. proposed a

service-based cyber-physical system based on service-oriented architecture (SOA) to achieve

dynamic composition, dynamic adaptation, and high confidence [127]. Göhringer et al.

described an approach of a reliable and adaptive network-on-chip architectures (NoC) for

CPS such as FPGA-based system [88]. Sanislav and Miclea presented the analysis-to-design

procedure for the event-driven multi-agent model development for CPS with dependability

features [199]. One real-world constraint of these approaches is that many cyber-physical

systems such as power grids have expansive infrastructure already built and these legacy

systems are often too hard and expensive to replace. Additionally, the running environments

of cyber-physical systems are often unpredictable and simulating all kinds of abnormal

conditions in a test environment is almost impossible. Improving the reliability of these

systems entails working with the software, hardware and physical devices that have already

been deployed.

Another research direction is to achieve CPS reliability through workflow design.

Leonardi et al. proposed a methodology, and its embodiment into a design flow, to re-

alize execution platforms for high-performance building applications, in order to solve

the design-space exploration problems by progressing through a sequence of refinement

steps from specification to detailed implementation [135]. Wang et al. proposed a reliable

workflow for CPS service substitution according to service compatibility and time/space

operation in order to ensure CPS components’ reliable replacement [230]. These workflow-

based approaches also do not deal with deployed cyber-physical systems running in the

field.

Some prior work has been done on monitoring wireless sensor network (WSN), a type of

CPS, because of the sub-optimal end-to-end reliability that is intrinsic to wireless technolo-

gies. Bapat et al. presented a stabilizing protocol called Chowkidar that provides accurate

and efficient network health monitoring in wireless sensor networks using message-passing
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rooted spanning tree construction and its use in propagation of information with feedback

(PIF) [23]. Doherty and Teasdale described a centralized monitoring time division multiple

access (TDMA) network with policies chosen to maximize the number of received packets

while maintaining low power characteristics using a method for detecting and diagnosing

packet loss [63]. These monitoring techniques are targeting certain communication proto-

cols specific to wireless network and do not provide a mechanism based on data-centric

evaluation.

For cyber-physical transportation systems, Clarke et al. proposed some of the demanding

challenges in applying formal analysis technique on autonomous transportation control for

cars, trains, and aircraft. Their paper listed scalable analysis with respect to complexity

and dimensionality, large-scale verification architectures, dynamic networks, probabilistic

effects in cyber-physical transportation as some of the main challenges [46]. Their work

explained the difficulty of applying formal analysis on the complex cyber-physical systems.

For electric power grid cyber-physical systems, Singh et al. concluded that the current

techniques for power system reliability are insufficient because they focus mainly on the

current carrying part of the power grid with some work done in the inclusion of protection

systems. The paper also points out that the literature on the reliability of the cyber part is

practically non-existent and the analysis of the power system as a cyber-physical system

appears to be a challenging task because of the dimensionality and complexity issues [207].

Their work suggested that a holistic evaluation approach encompassing all parts of the

cyber-physical systems is needed.

Security for cyber-physical systems has also been an important research topic in recent

years. Vaseashta et al. described some vulnerabilities and countermeasures for sensor

network, a type of cyber-physical system [226]. Walters et al. gave a general overview on

wireless sensor network security: obstacles, requirements, attacks, and defenses [228]. An

unreliable system may pose more security vulnerabilities that can be exploited by malicious

attackers. “A system can’t be reliable if it’s not secure, and to some degree, if it’s not reliable,
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at least in a security context, it can’t be secure, either [24].” While the focus of this thesis

is not to target potential security issues or defend the possible malicious attacks, instead I

try to improve system reliability for the cyber-physical system so that the system can run

reliably with or without a security attack.

1.6 Proposed Approach

To solve the problems mentioned in section 1.2, I propose a system evaluation approach

entitled automated online evaluation (AOE), as illustrated in Figure 1.1, that is able to

improve reliability for cyber-physical systems effectively and efficiently in the domain of

interest as indicated above. AOE is a data-centric runtime monitoring and reliability evalua-

tion approach that works in parallel with the cyber-physical system to conduct automated

evaluation at the multiple stages along the workflow of the system, continuously using

computational intelligence and self-tuning techniques and provide operator-in-the-loop

feedback for taking actions to achieve reliability improvement. For example, abnormal

input and output data can be detected and flagged through data quality analysis. As a result,

alerts can be sent to the operator-in-the-loop. The operator can then take actions and make

changes to the system based on the alerts in order to achieve minimal system downtime and

higher system reliability.

Cyber-Physical 

System

Automated Online 

Evaluation

DATA

ACTIONS

EXTERNAL DATA

Figure 1.1: Automated online evaluation, a “big data” approach.

The evaluation is online, which differs from many statically analyzed systems that often
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employ a pre-deployment or postmortem evaluation and analysis, although they can be used

to compare results achieved by my approach. The evaluation is also autonomic because it

works in parallel with the cyber-physical system to automatically alert the operator when

abnormal events happen and it is able to self-tune the evaluation system adaptively. To

implement the proposed approach, I further propose a system architecture called Autonomic

Reliability Improvement System (ARIS).

One technique used by the approach is data quality analysis using computational

intelligence that applies computational intelligence in evaluating data quality in an automated

and efficient way to ensure data quality and make sure the running system perform as

expected. It employs machine learning, data mining, statistical and probabilistic analysis,

and other intelligent techniques. In a cyber-physical system, the data collected from the

system, e.g., input and output data, software error reports, system status logs and performance

reports, are stored in some databases. This data is analyzed via data mining and other

intelligent techniques so that useful information on system reliability including erroneous

data and abnormal system states can be analyzed for recommended actions. This reliability

related information is directed to operators so that proper actions can be taken, sometimes

proactively based on the predictive results, in order to ensure the proper and reliable

execution of the systems.

Another technique used by the approach is self-tuning which automatically self-manages

and self-configures the evaluation system itself to ensure its proper functioning, which leads

to a more robust evaluation system and hence improved system reliability. For example,

the self-tuning adapts the evaluation system based on the changes in the system such as

software models or thresholds and feedback from the operator to ensure that the evaluation

system runs reliably.

Additionally, in order to conduct efficient and cost-effective automated online evaluation

for data-intensive CPS, which requires large volumes of data and devotes much of its

processing time to I/O and data manipulation, I propose COBRA, a cloud-based reliability



CHAPTER 1. INTRODUCTION 12

assurance framework that provides automated multi-stage runtime reliability evaluation

along the system workflow using data relocation service, cloud data store, parallel data

quality analysis and process scheduling with self-tuning to achieve scalability and efficiency.

Finally, in order to provide a generic way to compare and benchmark system reliability

for CPS and to extend the approach described above, I propose FARE, a generic framework

for benchmarking the reliability of cyber-physical systems with or without implementation

of the automated online evaluation. The framework provides a generic CPS reliability

model, a set of methods and metrics on evaluation environment selection, failure analysis,

and reliability estimation for benchmarking CPS system reliability. It not only provides a

retrospective evaluation and estimation of the CPS system reliability using the past data,

but also provides a mechanism for continuous monitoring and evaluation of CPS system

reliability for runtime enhancement.

1.7 Hypotheses

In this thesis, I will present the research for following hypotheses.

The foremost hypothesis is that the approach is effective, i.e., the automated online

evaluation empowered by data quality analysis using computational intelligence can work

effectively to improve system reliability for cyber-physical systems in the domain of interest

as indicated above. In order to prove this hypothesis, a prototype system needs to be

developed and deployed in complex cyber-physical systems to measure the system reliability

improvement that the approach brings to the system.

The second hypothesis is that the self-tuning can effectively self-manage and self-

configure the evaluation system based on the changes in the system and feedback from

the operator-in-the-loop to improve system reliability.

The third hypothesis is that the approach is efficient and does not add too much

overhead. The evaluation system should not have a large impact on the overall system
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performance and only introduce minimal extra overhead to the cyber-physical system.

The main objective of this thesis research is to validate the hypotheses outlined above

by exploring the automated online evaluation approach for improving system reliability for

CPS in the domain of interest. The research will advance the state-of-the-art research in

system reliability for cyber-physical systems not only in its novel architectural design and

capability in improving system reliability, but also in the new techniques developed and

employed.

1.8 Outline

The rest of this thesis is organized as follows:

• Chapter 2 describes motivation, previous work and the systems in the domain of

interest.

• Chapter 3 describes automated online evaluation (AOE) and an example of AOE

architecture called ARIS (autonomic reliability improvement system), along with

empirical studies of the approach on the smart power grids and the smart building

systems.

• Chapter 4 describes a cloud-based reliability assurance framework called COBRA for

data-intensive CPS and the experiments on the smart building systems.

• Chapter 5 describes a reliability benchmark framework called FARE and the experi-

ments on the smart building systems.

• Chapter 6 describes further related work and compares them with my approach.

• Chapter 7 summarizes the main contributions of this work, discusses future research

directions, and concludes the thesis, followed by a bibliography and appendix.



Chapter 2

Background

In this chapter, I will describe motivation and the systems in the domains of interest.

2.1 Motivation

This line of research began with work in which I addressed the data quality assurance and

performance measurement of machine learning and data mining for preventive maintenance,

i.e., maintenance of equipment or systems before fault occurs, of power grid [242]. A

power grid is the electricity distribution and transmission system that connects electricity

generators and consumers. It is a power and information network consisting of power plants,

transformers, high-voltage long-distance power transmission lines, substations, feeders,

low-voltage local power lines, meters, and consumer appliances.

One of the main causes of power grid failure is electrical component failure. The

electrical component failures may even lead to catastrophic cascading system failures. In

2004, the U.S.-Canada Power System Outage Task Force released their final report on the

2003 U.S. Northeast blackout, naming some strained high-voltage power lines in Ohio as

the main cause of the blackout. These power lines later went out of service, which led to the

cascading effect that ultimately forced the shutdown of more than 100 power plants [80].

For cyber-physical systems with high reliability requirements such as critical infrastruc-

14
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tures including a power grid, preventive maintenance is often employed to improve system

reliability. In New York City, underground primary feeders are one of the most failure-prone

types of electrical components. To ensure the power grid is running smoothly, the electrical

components including feeders, which are a type of transmission lines, are proactively taken

offline for maintenance or replacement according to their susceptibility to failure. In order

for power companies to benefit from the use of knowledge discovery methods and statistical

machine learning for preventive maintenance, Rudin et. al introduced a general process for

transforming historical electrical grid data into models that aim to predict the risk of failures

for components and systems [197]. These models can be used directly by power companies

to assist with prioritization of maintenance and repair work.

2.2 Systems in the Domain of Interest

Typical applications of CPS with operator-in-the-loop include sensor-based systems and

intelligent control systems. Sensor-based systems such as smart building management

systems and wireless sensor networks utilize many distributed sensors to measure and

collect system or environmental data and transmit this information to a centralized system

for processing. Intelligent control systems utilize some mechanisms to make intelligent

decisions and use them to manage or operate the systems. Some examples of intelligent

control systems include smart power grid operation control systems, railway transportation

control systems, air traffic control systems, industrial process control systems, and distributed

robotics.

These systems are different from CPS without operator-in-the-loop, such as avionics,

which are the electronic systems used on aircraft, artificial satellites, and spacecraft. Avionic

systems include communications, navigation, the display and management of multiple

systems, and the varied systems that are fitted to aircraft to perform individual functions.

Because these systems perform their functions without operator-in-the-loop, they do not fall
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into the scope of this study.

In this section, I will provide background information on several systems in the domain

of interest including smart power grid CPS and smart building CPS. These are the cyber-

physical systems used in my experiments.

2.2.1 Smart Power Grid CPS

A power grid is a typical continuously running cyber-physical system that processes large

amount of data, uses software as a system component, and has operator-in-the-loop. In the

last few years, the power grid has been transitioning to smart grid, which is an automated

electric power system that monitors and controls grid activities, ensuring the two-way flow of

electricity and information between power plants and consumers—and all points in between

[79]. As one of the critical infrastructures, a smart grid puts information and communication

technology into electricity generation, delivery, and consumption, making systems cleaner,

safer, and more reliable and efficient [47]. Without the smart grid, many emerging clean

energy technologies such as electric vehicles and solar, wind or cogeneration power could

not be adopted on a large scale [10].

A typical smart grid is illustrated in Figure 2.1. It consists of power generation, green

energy sources, transmission networks, transformers, substations, electricity consumers,

plug-in electric vehicle charging stations, grid control centers, and other electrical and

intelligent systems. Smart meters are installed at various joints and customer locations to

provide accurate reporting of the electricity consumption and power network status.

It is a critical challenge to ensure power grid reliability. In fact, the power grid has

become less reliable and more outage-prone in past years. According to two data sets, one

from the U.S. Department of Energy and the other one from the North American Electric

Reliability Corp., the number of power outages greater than 100 Megawatts or affecting

more than 50,000 customers in the U.S. nearly doubled every five years during the past

fifteen years, resulting in about $49 billion in outage costs per year [8].
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Figure 2.1: A smart grid [47].

One of the causes of the power grid failure is electrical component failure. The smart

grid of the future will have to operate efficiently in order to satisfy the increasing capacity

demand, and should use the current legacy grid as much as possible to keep costs lower. The

legacy grid often contains old and unreliable electrical components.

To tackle this electrical component failure problem, researchers at Columbia University

have collaborated with the Consolidated Edison of New York, the main power utility provider

of New York City, and developed several machine learning and data mining systems to rank

some types of electrical components such as feeders, i.e., transmission lines with radial

circuit of intermediate voltage, by their susceptibility to impending failure. MartaRank

[91, 25] and ODDS [197, 90] are two of these feeder-ranking systems. The rankings are

then used for planning fieldwork aimed at preventive maintenance, where the components

are proactively inspected and/or repaired in order of their estimated susceptibility to failure

[197, 205, 72, 177, 247, 176, 195, 196, 91, 175, 67].

MartaRank employs an ensemble-based approach using three different algorithms for
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particularly high-summer temperatures) can affect failure
rates of feeders.

We have focused on the most serious failure type for
distribution feeders where the entire feeder is automatically
taken offline by emergency substation relays due to some
type of fault being detected by sensors. Our current system
for generating data sets attempts to address the challenge of
learning with rare positive examples (feeder failures). An
actual feeder failure incident is instantaneous, so a snapshot
of the system at that moment will have only one failure
example. To better balance the number of positive and
negative examples in the data, we tried the rare event
prediction setup shown in Fig. 6, labeling any example that
had experienced a failure over some time window as
positive. However, the dynamic features for these examples
are constructed from the time frame before the prediction
period, and thus do not represent the precise conditions at
the time of failure. This was problematic, as the domain
experts believed that some of the dynamic data might only
have predictive value in the period right before the failure.

To solve this problem, we decided to switch to “time-
shifted” positive examples, where the positive examples are
still created from the past outages within the prediction
period, but the dynamic features are derived only from the
time period shortly before the failure happened. This allows
our model to capture short-term precursors to failures. The
features of nonfailures (negative examples) are character-
istics of the current snapshot of all feeders in the system. Not
only does this approach, which we call “ODDS” for Outage
Derived Data Sets, capture the dynamic data from right
before the failure, but it also helps to reduce the imbalance
between positive and negative examples. Fig. 7 shows an
example of the periods used to train and test the model.

Another challenge raised by our feeder failure ranking
application is pervasive “concept drift,” meaning that
patterns of failure change fairly rapidly over time, so that a
machine learning model generated on data from the past
may not be completely representative of future failure
patterns. Features can become inactive or change in quality.
Causes of this include: repairs being made on components,
causing the nature of future failures to change; new
equipment having different failure properties than current
equipment; and seasonal variation in failure modes (e.g., a
greater likelihood of feeder failure in the summer). To

address this challenge, ODDS creates a new model every
4 hours on the current data set. (See also [20], [21], [22].)

An outline of the overall process is shown in Fig. 8. A
business management application called the Contingency
Analysis Program (CAP), discussed in Section 7, uses the
machine learning results to highlight areas of risk through
graphical displays and map overlays.

As in many real-life applications, our application suffers
from the problem of missing data. Techniques such as mean
imputation are used to fill in missing values.

5.2 Cables, Joints, Terminators, and Transformers
Ranking in NYC

The main challenges to constructing rankings of feeder
components overlap somewhat with those faced in con-
structing rankings for feeders: the use of historical data and
the data imbalance problem.

Ideally, we should be able to construct a consistent and
complete set of features for each component and also its
connectivity, environmental, and operational contexts at the
time of failure. At Con Edison, the cable data used for cable,
joint, and terminator rankings resides in the “Vision
Mapping” system and are designed to only represent the
current layout of cables in the system, and not to provide
the layout at particular times in the past. We began to
archive cable data starting in 2005 and also relied on other
snapshots of cable data that Con Edison made, for example,
cable data captured for Con Edison’s “Network Reliability
Indicator” program that allowed us to go back as far as 2002
configurations.

Generating training data for joints is especially challen-
ging. Joints are the weakest link in feeders with certain
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Fig. 7. Example illustrating the training and test time windows in
ODDS. The current time is 8/13/2008, and failure data for training
was derived from the prediction period of 7/30/2007—8/27/2007 and
7/30/2008—8/13/2008.

Fig. 8. Process diagram for feeder ranking, using ODDS.

Figure 2.2: Example illustrating the training and test time windows in ODDS. The current
time is 8/13/2008, and failure data for training was derived from the prediction period of

7/30/2007–8/27/2007 and 7/30/2008–8/13/2008 [197].

ranking: (1) SVM Score Ranker, which ranks objects by sorting the decision values of a

linear Support Vector Machines (SVM) [225]. Typically, the SVM produces a classifier that

labels examples x with y = sign(wtx + b), but MartaRank does not threshold the outputs

so it can sort and rank the examples by how strongly the linear classifier predicts the class

of each example. (2) RankBoost, which is a set of weak rankings that can be “boosted”

to obtain a final ranking [81]. (3) MartiRank, which is a boosting-style ranking algorithm

[143] that greedily selects the attribute that is most correlated with the positive examples (in

this case power outages).

The ODDS, which stands for Outage Derived Data Sets, ranking system uses ranked

lists obtained from a linear SVM. ODDS captures the dynamic data from right before the

failure using “time-shifted” positive examples, as illustrated in Figure 2.2, where the positive

examples are still created from the past outages within the prediction period, but the dynamic

features are derived only from the time period shortly before the failure happened. It helps

to reduce the imbalance between positive and negative examples. ODDS also creates a

new model every 4 hours on the current data set to address the pervasive “concept drift,”
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particularly high-summer temperatures) can affect failure
rates of feeders.

We have focused on the most serious failure type for
distribution feeders where the entire feeder is automatically
taken offline by emergency substation relays due to some
type of fault being detected by sensors. Our current system
for generating data sets attempts to address the challenge of
learning with rare positive examples (feeder failures). An
actual feeder failure incident is instantaneous, so a snapshot
of the system at that moment will have only one failure
example. To better balance the number of positive and
negative examples in the data, we tried the rare event
prediction setup shown in Fig. 6, labeling any example that
had experienced a failure over some time window as
positive. However, the dynamic features for these examples
are constructed from the time frame before the prediction
period, and thus do not represent the precise conditions at
the time of failure. This was problematic, as the domain
experts believed that some of the dynamic data might only
have predictive value in the period right before the failure.

To solve this problem, we decided to switch to “time-
shifted” positive examples, where the positive examples are
still created from the past outages within the prediction
period, but the dynamic features are derived only from the
time period shortly before the failure happened. This allows
our model to capture short-term precursors to failures. The
features of nonfailures (negative examples) are character-
istics of the current snapshot of all feeders in the system. Not
only does this approach, which we call “ODDS” for Outage
Derived Data Sets, capture the dynamic data from right
before the failure, but it also helps to reduce the imbalance
between positive and negative examples. Fig. 7 shows an
example of the periods used to train and test the model.

Another challenge raised by our feeder failure ranking
application is pervasive “concept drift,” meaning that
patterns of failure change fairly rapidly over time, so that a
machine learning model generated on data from the past
may not be completely representative of future failure
patterns. Features can become inactive or change in quality.
Causes of this include: repairs being made on components,
causing the nature of future failures to change; new
equipment having different failure properties than current
equipment; and seasonal variation in failure modes (e.g., a
greater likelihood of feeder failure in the summer). To

address this challenge, ODDS creates a new model every
4 hours on the current data set. (See also [20], [21], [22].)

An outline of the overall process is shown in Fig. 8. A
business management application called the Contingency
Analysis Program (CAP), discussed in Section 7, uses the
machine learning results to highlight areas of risk through
graphical displays and map overlays.

As in many real-life applications, our application suffers
from the problem of missing data. Techniques such as mean
imputation are used to fill in missing values.

5.2 Cables, Joints, Terminators, and Transformers
Ranking in NYC

The main challenges to constructing rankings of feeder
components overlap somewhat with those faced in con-
structing rankings for feeders: the use of historical data and
the data imbalance problem.

Ideally, we should be able to construct a consistent and
complete set of features for each component and also its
connectivity, environmental, and operational contexts at the
time of failure. At Con Edison, the cable data used for cable,
joint, and terminator rankings resides in the “Vision
Mapping” system and are designed to only represent the
current layout of cables in the system, and not to provide
the layout at particular times in the past. We began to
archive cable data starting in 2005 and also relied on other
snapshots of cable data that Con Edison made, for example,
cable data captured for Con Edison’s “Network Reliability
Indicator” program that allowed us to go back as far as 2002
configurations.

Generating training data for joints is especially challen-
ging. Joints are the weakest link in feeders with certain
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Fig. 7. Example illustrating the training and test time windows in
ODDS. The current time is 8/13/2008, and failure data for training
was derived from the prediction period of 7/30/2007—8/27/2007 and
7/30/2008—8/13/2008.

Fig. 8. Process diagram for feeder ranking, using ODDS.Figure 2.3: Process diagram of ODDS feeder ranking ML system [197].

meaning that patterns of failure change fairly rapidly over time, so that a machine learning

model generated on data from the past may not be completely representative of future failure

patterns. Features can become inactive or change in quality. Causes of this include: repairs

being made on components, causing the nature of future failures to change; new equipment

having different failure properties than current equipment; and seasonal variation in failure

modes (e.g., a greater likelihood of feeder failure in the summer) [197, 90]. Figure 2.3

outlines of the overall process of ODDS.
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Previous Work in Smart Power Grid Reliability

As a critical infrastructure, smart power grids demand high reliability. NERC, an interna-

tional regulatory authority established to evaluate reliability of the bulk power system in

North America, reported the reliability considerations from the integration of smart grid

[165]. Their report stated that current reliability engineering tools, although effective for

today’s electric power systems, cannot thoroughly capture the effect of integrating smart

technologies.

“As the reliance on communication and control increases, systems can be operated

closer to their physical limits to increase asset efficiency, although this potentially makes

them vulnerable to system and device defects/attacks/failures. The challenges ahead for

developing systematic analytical tools that can properly model the impact of new technology

include: coupling between cyber and physical components; coupling between system

dynamics and component stress; and uncontrolled and unpredictable changes to demand

and supply [165].” Some of these challenges are what my approach is trying to meet.

Bose discussed the models and methods of reliability analysis for the smart grid [28]. He

pointed out that the failure modes of the relays and controls in the smart grid are no longer

independent but are causally connected to each other through software and communications.

These make it difficult to develop models required to conduct reliability analysis because

these models are often complex and the techniques for analysis can be very cumbersome.

Faza et al. described the use of software fault injection combined with physical failures in

identifying integrated cyber-physical failure scenarios for the Smart Grid [76]

Dominguez-Garcia proposed a framework for developing systematic reliability analysis

tools to address planning and operation challenges of future electric power systems [64].

The paper recognized that current reliability analysis tools are inadequate for capturing the

impacts of the increased system complexity due to new technologies and the introduction

of new sources of uncertainty in systems already inherently complex. This work further

supports the importance of developing new technology for improving reliability of smart
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power grids.

Another factor related to power grid reliability is power quality (PQ), which determines

the fitness of electrical power to consumer devices. It includes proper synchronization of

the voltage frequency and phase that allows electrical systems to function in their intended

manner without significant loss of performance or life. Without the proper power, an electri-

cal device (or load) may malfunction, fail prematurely or not operate at all. Modern systems

use sensors called phasor measurement units (PMU) distributed throughout their network

to monitor power quality and in some cases respond automatically to them. Using smart

grids features such as rapid sensing and automated self healing of anomalies in the network

promises to bring higher quality power and less downtime while simultaneously supporting

power from intermittent power sources and distributed generation, which would degrade

power quality if left unchecked. The root mean square (RMS) mathematical operation

is widely used in power engineering, especially in representing PQ system measurement

[71]. The PQ RMS process has a frequency response characteristic and an associated time

constant which is important especially for short term signals [4]. The approach described in

this thesis is also applicable to smart power grid PQ RMS systems and is complementary to

the existing PMU related electrical engineering techniques.

2.2.2 Smart Building CPS

As defined by Smart Buildings LLC, a US-based engineering and design firm, “A smart

building is the integration of building, technology, and energy systems. These systems

may include building automation, life safety, telecommunications, user systems and facility

management systems. Smart buildings recognize and reflect the technological advancements

and convergence of building systems, the common elements of the systems and the additional

functionality that integrated systems provide. Smart buildings provide actionable information

about a building or space within a building to allow the building owner or occupant to manage

the building or space [140].” IBM also offers its definition of smart building: ”Smarter



CHAPTER 2. BACKGROUND 22

buildings are well managed, integrated physical and digital infrastructures that provide

optimal occupancy services in a reliable, cost effective, and sustainable manner. Smarter

buildings help their owners, operators and facility managers improve asset reliability and

performance that in turn reduces energy use, optimizes how space is used and minimizes the

environmental impact of their buildings [101].”

A typical smart building is illustrated in Figure 2.4. Within the physical building,

there are various sub-systems including lighting, ventilation, entry and exit control, air-

conditioning, elevators, security surveillance, energy storage and alternate power genera-

tion, electric vehicle charging stations, and building management system (BMS). Installed

throughout the building are many smart sensors such as temperature, humidity and CO2

sensors, which provide building operators with information regarding the current state of

the building.

According to the U.S. Department of Energy (DOE), commercial office buildings lead

the industrial and transportation sectors in total energy consumption [222]. Although new

buildings are often designed with energy efficiency and system reliability in mind, the use

of energy-efficient materials and advanced building management systems does not always

guarantee efficient or reliable building operation. A high percentage of new buildings

consume energy at levels that exceed specifications and experience system failures after

being put into use [224]. This problem is even worse for older buildings.

One promising approach applies machine learning (ML) to historical and real-time build-

ing Supervisory Control and Data Acquisition (SCADA) data and other building information

such as weather information and data from utilities to improve the efficiency of building

systems without requiring large amounts of additional capital investment. Researchers at

Columbia University have developed a prototype of this application and implemented it in a

large multi-tenant office building in New York City [209, 244].

The ML approach, termed predictive building energy optimization, uses a model to

produce accurate building energy demand forecasts as well as automated analyses that can
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Figure 2.4: A smart building [164].

aid in the tuning of building systems and operations schedules. It applies Support Vector

Regression (SVR) on historical energy use of the building, along with temperatures and wet-

bulb humidity data from the building’s interior and exterior, in order to predict performance

for each day. The building information collected from sensors can serve as input to the ML

predictor. This does not require knowledge of the building’s physical properties, such as size,

heating, ventilation, air conditioning (HVAC) or electrical systems. It employs time-delay

coordinates as a representation of past data in order to create the feature vectors for Support

Vector Machine (SVM) training. The experiments show that the predictive model closely
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approximates the actual values of energy usage with some seasonal and occupant-specific

variability. The dependence of the data on the day of the week makes the model easily

applicable to different types of buildings with minimal adjustments.

Predictive Building Energy Optimization

Data Aggregator Data Preprocessor Machine Learning Predictor

Building Systems

Building Operator

BMS

Control Actuator

Business Rule EngineBuilding Energy Data

Weather Data

Power Grid Data

Energy Use 

Prediction

Energy Use 

Prediction

Recommendation

Operation Actions

Figure 2.5: Predictive building energy optimization.

As illustrated in Figure 2.5, predictive building energy optimization starts with data

aggregation and preprocessing. External data, such as weather and power grid data, is

combined with building energy data in the data aggregator, which passes the aggregated data

to the data preprocessor for cleaning, formatting and normalization. The ML predictor uses

historic energy use data as training data to build a model, which is then used to predict energy

use in the present. This prediction is then passed to the building management and business

rule engine. The business rule engine processes the aggregated data and the ML prediction

in order to generate a set of recommended operation actions. The building management

(i.e., building operators or BMS or automatic control actuators) can then take action on

the building systems, such as adjusting its HVAC schedule and set-points to achieve more
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efficient building operation. The modified building data will then be fed back to the data

aggregator, thereby closing the loop.

Building Energy, Weather, Power Grid Data

Building energy use is measured by total electricity consumption over a period of time,

typically kilowatt-hours (kWh) per month. The kilowatt-hour is most commonly known as a

billing unit for energy delivered to consumers by electric utilities. The energy demand of a

building is the rate of energy consumption by the building. Because energy use fluctuates

during the week due to tenant activities and building operation schedule, energy demand

is a more fine-grained measure of building energy use than the aggregate kilowatt-hours

consumed during the whole period.

Large buildings commonly use Building Management Systems (BMS) to manage the

interior environment and control mechanical and electrical equipment such as ventilation,

lighting, power systems, fire systems and security systems. BMS provides a way to retrieve

building energy-related data, such as data readings from sub-meters and sensors.

Climate factors include temperature, humidity, pressure, wind and cloud cover. In a

highly condensed urban environment like New York City, different areas can have different

weather measurements. This is often called micro-weather. The most commonly used

weather data for New York City are collected from a weather station located in Central

Park, because of its accuracy and stability. Historic hourly weather data can be obtained

from some public websites, such as National Climatic Data Center [162] and Weather

Underground [234].

Relative humidity and dew point temperature are also important weather data for build-

ings. Relative humidity is the ratio of the partial pressure of water vapor in the air to the

saturated vapor pressure of water under given temperature and pressure conditions. Dew

point is the temperature at which the air can no longer hold all of its water vapor, such that

some of the water vapor must condense into water. The dew point is always lower than
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(or equal to) the air temperature. If the air temperature cools to the dew point, or if the

dew point rises to equal the air temperature, then dew begin to form. When the dew point

temperature equals the air temperature, the relative humidity is 100%.

Power grid data from utilities include electrical load, peak load, fluctuating electricity

pricing during the day and power failure warning. The power grid data from the utilities is

often communicated electronically via client web portal or email.

Data Preprocessing

The data preprocessor receives various data streams from the data aggregator and restructures

them so that all the data fits the format required by the ML predictor and business rule

engine. For the specific predictive modeling technique used in the experiments, all the data

needs to be normalized to a value between 0 and 1 for equal weighting.

Figure 2.6: Sample training and test dataset.

As illustrated in Figure 2.6, the training set is used to build the predictive model (i.e.,

a function that can be used for predicting unknown values). The test set includes data for

every column except energy demand, which needs to be predicted. The training set is laid

out in descending order, such that one hour before prediction is top-most, two hours before

prediction is next, and so forth. Some data rows at the bottom of the training set will lack

‘prior value’ data due to the ordering system, and those rows are ignored. For any given

column, such as temperature, it is possible to expand it such that multiple prior temperatures

over a sequential series of time-points become properties of the same data row. In this way,
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it is possible to construct a normalized dataset with time-delayed coordinates for use by the

ML predictor.

ML Predictive Modeling

Predictive analytics or predictive modeling deals with extracting information from data and

using it to predict future trends and behavior patterns. An SVM is a supervised learning

method for predictive modeling. It constructs a hyperplane or set of hyperplanes in a high or

infinite-dimensional space, which can be used for classification, regression or other tasks

[225]. An SVR is a version of SVM for regression [66]. The model produced by SVR

depends only on a subset of the training data, because the cost function for building the

model ignores any training data close to the model prediction.

A Gaussian radial basis function (RBF), K(Xi, X j) is selected as the SVM kernel function:

K(Xi, X j) = e−(ε ||Xi−X j ||)2
, (ε > 0).

The RBF kernel nonlinearly maps samples into a higher dimensional space and can

handle the case where the relationship between class labels and attributes is nonlinear

[65]. It is a nonlinear kernel function and allows the algorithm to fit the maximum-margin

hyperplane in a transformed feature space. The nonlinear, dynamic nature of the influence

of weather and other data on energy demand in building systems excludes the possibility of

using a linear kernel.

In order to measure how well future outcomes are likely to be predicted by the model,

the coefficient of determination R2 is used. Frequently used in the context of statistical

models, the main purpose of R2 is a measurement of the prediction of future outcomes on

the basis of other related information. This statistical model accounts for the proportion of

variability in a dataset [211].
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R2 = 1 −
S S err

S S tot
= 1 −

∑
i

(yi − fi)2

∑
i

(yi − ȳ)2
,

where values yi are the observed values and values fi are the modeled values or predicted

values in the dataset. S S err is called the residual sum of squares and S S tot is called the total

sum of squares. The closer the R2 is to 1, the more accurate the predicted values are and the

better the predictive model is.

Business Rule Engine

The business rule engine receives aggregated data and ML prediction output. It then

applies the business knowledge that supports rules, constraints, priority, mutual exclusion,

preconditions and other functions onto the data to derive executable recommendations such

as work schedule and preventive actions. The business rule engine consists of a BPM

(Business Process Management) component and a BRM (Business Rules Management)

component. Both components interact with each other responding to events or executing

business judgments that are defined by business rules.

The set of business rules is initially defined and incrementally improved by experienced

building operators and property managers. It includes both forwarding-chaining (e.g. IF

something happens THEN do something) and backward-chaining rules (e.g., IF it is intended

to achieve this goal THEN something has to happen). These collected rules can also serve

as the learning metrics for the more advanced adaptive stochastic controller (ASC) driven

by approximate dynamic programming (ADP) to derive action or policy recommendations

[11].

Some other research has also been done to predict and analyze the energy demand of

buildings. Dong et al. used SVM to predict building energy consumption in a tropical

region [65]. The DOE-2 model, created by the U.S. Department of Energy, uses physical

aspects of the building such as construction materials to predict its energy needs [206].
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The ML approach, on the other hand, makes exclusive use of operational building data

to model building energy demand. A measurement and actuation profile for building

information based on sensor systems was discussed by Dawson-Haggerty et al. [56]. These

measurements can add to the data available for the ML system.

Previous Work in Smart Building Reliability

Some prior research has been done on smart buildings, especially in the embedded system,

wireless sensor networks and energy efficiency. Kleissl and Agarwal treated modern build-

ings entirely as a cyber-physical energy system and examined the opportunities presented

by the joint optimization of energy use by its occupants and information processing equip-

ment [124]. Schor et al. presented a web services-based approach to integrate resource

constrained sensor and actuator nodes into IP-based networks to achieve automatic service

discovery and zero configuration [202].

Agarwal et al. described a presence sensor platform that can be used for accurate

occupancy detection at the level of individual offices to achieve energy efficiency of building

operation [2]. Savvides et al. described how cyber-physical systems that provide rapid

access to information and decision-making can enable intelligent buildings to autonomously

interact with the power grid [200].

For reliability of building systems, Schein and Bushby developed a rule-based system-

level fault detection and diagnostic method for HVAC systems [201]. Alekseeva et al. did

reliability analysis and comparison of long-distance HVAC and HVDC power transmission

lines [6]. Kamilaris and Pitsillides examined the use of request queues as a mechanism to

manage the communication with embedded devices for smart homes to achieve enhanced

reliability and fault tolerance [119]. Irwin et al. studied using home automation protocols,

such as X10 and Insteon for accurate electric load monitoring in smart buildings [104].

These approaches have different applicable domains than my approach.
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2.3 Summary

This chapter describes motivation of the research, some previous work and the applications

in the domain of interest including smart building and smart power grid CPS.



Chapter 3

Automated Online Evaluation for CPS

In this chapter, I will describe the automated online evaluation (AOE) approach for improv-

ing reliability for cyber-physical systems. For empirical study, I will describe prototype

implementation and evaluation of an example of AOE architecture called the Autonomic

Reliability Improvement System (ARIS).

In the following section, I will describe an overview. In section 3.2, I will describe

my approach of automated online evaluation, followed by the system architecture and

implementation in section 3.3 and 3.4. In section 3.5, I will describe my empirical study

before the conclusion in section 3.6.

3.1 Overview

A common type of cyber-physical system meets the following criteria: it can process large

amounts of data; employ software as a system component; run online continuously; maintain

an operator-in-the-loop because of human judgment and accountability requirements for

safety-critical systems [54]. Systems that meet these criteria include power grids, building

systems, energy systems, transportation systems, defense systems and factory automation

systems. These systems do not operate in a controlled environment, and must be robust to

unexpected conditions and adaptable to subsystem failures [54]. It is often not possible to

31
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perform robust tests on these cyber-physical systems prior to actual deployment because

the physical devices are so expensive that they cannot be replicated in a testing lab and the

external environments are impossible to replicate. Thus, it is imperative to have a mechanism

that can continuously evaluate the deployed system during runtime in the field to ensure that

it is performing reliably.

3.2 Automated Online Evaluation

To meet these challenges, I introduce automated online evaluation (AOE), which is a data-

centric runtime monitoring and reliability evaluation approach that works in parallel with

the cyber-physical system to perform continuous assessment at multiple stages along the

system workflow and provide operator-in-the-loop feedback for reliability improvement.

3.2.1 Model

As illustrated in Figure 3.1, automated online evaluation (AOE), consisting of data quality

analysis and self-tuning, works in parallel with the CPS and the operator-in-the-loop. AOE

performs continuous assessment on the data received from the CPS at multiple stages along

the system workflow and provides operator-in-the-loop feedback so that actions can be taken

for improving system reliability of CPS. This approach enables ongoing evaluation of data

from cyber-physical systems. For example, abnormal input and output data can be detected

and flagged based on data quality analysis. As a result, alerts can be sent out that enable the

operator-in-the-loop to take actions and make changes to the system in order to minimize

system downtime and maximize system reliability.

One technique employed by AOE is data quality analysis, wherein computational

intelligence is applied to evaluate data quality in an automated and efficient way. AOE also

makes use of self-tuning, automatically self-managing and self-configuring the evaluation

system to ensure that it adapts itself to both changes in the system and feedback from the
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operator. This self-tuning continuously adapts the evaluation system itself (not the CPS) to

ensure its proper function, which leads to a more robust, accurate and efficient evaluation

system.

Operator-in-the-Loop Cyber-Physical System (CPS)

Automated Online Evaluation

External 

Data 

Input

Output

Data Quality Analysis

Self-Tuning

Figure 3.1: Automated online evaluation.

System Agnostic

This approach is system agnostic in that it only looks into the availabe CPS data and it can

work with different systems without requiring any special adaptations or prior knowledge

about the specific systems. This design attribute requires the approach works comparably

well across more than one type of CPS so that it can be applied to a broad range of different
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types of CPS.

3.2.2 Assumptions

The approach has two assumptions. First, it assumes that the data from the CPS can be

obtained in parallel with the running CPS without causing much disturbance to the CPS.

This requirement is usually met in the typical CPS of our interest, as described in 3.1.

Second, the approach assumes that the operator-in-the-loop is able to exercise some

change actions onto the CPS following the reliability improvement feedback generated by

the AOE. Although this is usually the case for the typical CPS of our interest, there are

some types of CPS that do not allow any kind of actions taken by the human operators.

For example, some medical cyber-physical systems have tightly coupled fully autonomic

computational and physical components which do not enable human operator to take any

actions in between.

3.2.3 Data Quality Analysis

AOE uses computational intelligence to perform data quality analysis in an automated

and efficient way and thereby ensure that the running system performs reliably. This

computational intelligence is enabled by machine learning, data mining, statistical and

probabilistic analysis and other intelligent techniques. In a cyber-physical system, data

collected from the system (e.g., sensor data points, software bug reports, system status

logs and error reports) are often stored in databases. AOE analyzes this data so that useful

information on system reliability, such as erroneous data or abnormal system states, can be

obtained. This reliability-related information is in turn directed to system operators so that

proper actions can be taken–in some cases, proactively based on predictive results–to ensure

proper and reliable execution of the system.
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Data Quality Dimensions

The data quality dimensions have been studied in prior research [231, 232, 116, 170, 181,

229]. Table 3.1 lists some data quality dimensions AOE evaluates to derive useful informa-

tion and recommendation for reliability improvement. This list only includes those aspects

that have potential impact on system reliability.

Data Quality Dimension Description

Accuracy
Are all the data within the acceptable range?
Do data fit into the usual profile?

Accessibility
Do data exist?
Can data be accessed?

Timeliness Do data arrive on time?
Completeness Is there any data gap?
Representation Consistency Are all the data in the same format?

Table 3.1: Data quality dimensions.

Among all the dimensions of the data quality, accuracy of the data is one of the most

common problematic aspects and the hardest ones to evaluate. The following sections will

describe some examples of data quality analysis techniques that can be used by AOE to

evaluate the accuracy of the data for CPS reliability improvement, including:

1. Thresholds

2. Profiling and Anomaly Detection

3. Automated Diagnosis

Identifying Data Quality Issue Using Thresholds

The thresholds define the normal working range for specific data-points. Usually operators

determine the thresholds based on heuristics from operation and recommendations by the

system providers. If data readings exceed these thresholds at either the lower or upper

bound, the data record will be flagged as anomalous and a corresponding warning will be

communicated back to the operator electronically.
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Identifying Data Quality Issue Using Profiling and Anomaly Detection

Anomaly detection is used to find data instances that are unusual and do not fit any estab-

lished pattern or profile. This type of anomaly is different than exceeding the thresholds. It

concentrates on modeling normal behavior in order to identify atypical data-points. Data

anomaly does not necessarily indicate that failure has already occurred. For the cyber-

physical systems of interest in this study, time-series data usually arrive continuously in

parallel at a varied pace.

One example implementation for identifying data quality issue can process the continu-

ously updated data-streams to detect anomalies for single data-points, using a customized

incremental Local Outlier Factor (LOF) algorithm [182]. The algorithm uses the k-nearest

neighbor [52, 48] on each inserted data record to instantly compute LOF value, which is the

degree to which a data record represents an outlier or an indicator of abnormality. Figure

3.2 shows the general framework for insertion of a data record and computing its LOF value.

A sudden increase in LOF value indicates that a data record is likely to be an outlier. LOF

values for existing data records can be updated on the fly if necessary. Because each data

series represents an individual data source with low data dimensionality, such as a sensor’s

reading of (time, value) tuples, the incremental LOF algorithm is computationally efficient.

Furthermore, multiple LOF value time series can be processed for different data sources

and displayed in parallel via a sparkline graph, a type of information graphic characterized

by its small size and high data density [220], for more fine-grained checks. As shown in

Figure 3.3, data series B and C both experience a sudden increase of LOF value at around

the 38th hour after the start of observation. This spike indicates a strong likelihood of a data

anomaly at that time-point. This visualization technique provides an easy way to obtain

additional verification of a data anomaly. It is also a useful communication channel to help

the operator understand where issues are arising.
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Figure 3.2: General framework for insertion of a data record and computing its LOF value
via incremental LOF algorithm [182].

Analyzing Data Quality Issue Using Automated Diagnosis

After a data anomaly is detected, further automated diagnosis or reasoning is needed to infer

what physical and computational/software component the data anomaly relates to, what

reliability issue this anomaly might cause, and the recommended action (or work order)

for the operator to take in order to correct the problem. This can be solved as a supervised

learning problem and a classification model trained on existing data can predict unknown
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Figure 3.3: LOF value time series displayed using sparkline graph.

values (i.e., the component having issues and the corresponding corrective/preventive action).

For example, Support Vector Machines (SVMs) [225, 51] can be used as the classifier.

SVMs formulate the classification modeling process as a quadratic minimization problem

and find hyperplanes in a high-dimensional space that separate data instances of different

categories while maximizing the margins between categories. First, a set of historic data

records (e.g., each one with N attributes) is used as training data to build a linear SVM

model as a classifier. For a new data record with one unknown data field A (i.e., N − 1

attributes available and one attribute or class label unknown), the trained SVM model and

the available N − 1 attributes are used to predict the value of the unknown A field for this

data record. In cases where multiple data fields need to be determined for a data record (e.g.,

N − M attributes available and M attributes unknown), the SVM model and the available

N − M available attributes are used to predict the unknown fields one by one.

Using SVM classification as the basis for data anomaly diagnosis has some advantages
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over rule-based reasoning systems, i.e., a type of systems that use a list of rules, an inference

engine, temporary working memory and user interface to store and manipulate knowledge

in order to interpret information in a useful way [93]. SVM classification does not require

a lot of prior knowledge of the system because it works solely based on the data itself.

Rule-based systems require derivation of the rules, including both forwarding-chaining rules

(e.g., IF something happens THEN do something) and backward-chaining rules (e.g., IF I

want to achieve this goal THEN something has to happen), based on extensive heuristics

and in many cases expert domain knowledge. Also, SVM classification is adaptive based

on updated training data, while rule-based logics are often rigid and not easy to change. In

some unexpected real-world situations, rule-based systems are often unable to reach any

conclusion whereas machine-learning approaches may be able to derive partially useful

information for the operator, such as a rank list with scores based on probability and

susceptibility.

3.2.4 Self-Tuning

Autonomic computing is an approach to self-managed computing systems with minimal

human interference [100] and refers to the self-managing characteristics of distributed

computing resources, adapting to unpredictable changes whilst hiding intrinsic complexity

to operators and users. Self-tuning is an aspect of autonomic computing. A self-tuning

system is capable of optimizing its own internal running parameters in order to maximize or

minimize the fulfillment of an objective function; typically the maximization of efficiency

or error minimization.

AOE also makes use of self-tuning to self-manage and self-configure the evaluation

system itself (not the CPS) to ensure that it adapts itself to changes in the system and

feedback from the operator. This self-tuning is used to improve accuracy, efficiency and

robustness of data quality analysis, and also minimizes the burden imposed on the operator.

Self-tuning is used to improve the automated online evaluation. One example is how to



CHAPTER 3. AUTOMATED ONLINE EVALUATION FOR CPS 40

make the evaluation system automatically adapt to the anomaly of input data, such as the

seasonality of the weather data, as shown in Figure 3.4 and 3.5. The self-tuning process

is important to make sure the evaluation system can learn from the system changes or

operator’s feedback and self-manage the evaluation system.

Figure 3.4: Outside temperature in Central Park, New York City in 2014.

Figure 3.5: Outside humidity in Central Park, New York City in 2014.

As illustrated in Figure 3.6, self-tuning employs a Measure-Identify-Tune (MIT) process

in order to achieve the following results:
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Measure

Tune Identify

Figure 3.6: MIT self-tuning process.

• use performance metrics such as R2 (coefficient of determination), ROC (receiver

operating characteristic) and AUC (area under the curve) to measure and improve the

accuracy of the data analysis models [242]

• use statistical trend detection and curve fitting, such as Weibull distribution and

parameters estimation [246, 190], to reduce variability and eliminate overshoot

• prioritize updates from operators and adjust system parameters such as set-points,

thresholds and machine learning model parameters when abnormal exogenous situa-

tions happen in order to reduce false alarms

• use dynamic load balancing and failover switch, which applies to the parallel pro-

cessing of the large amount of time series data coming from different data sources, to

maximize efficiency and reliability

An example self-tuning approach employs the following techniques:

1. data classification, which helps to determine or predict some unknown data based on

historic data.
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2. redundancy checking, which helps to determine if the data instance is a duplicate of

some prior data.

3. trend detection, which helps to find the trend pattern for the data set.

These techniques help make self-tuning possible, which in turn self-manages the eval-

uation system to improve system reliability. The following subsections will describe the

details for each of the techniques.

Data Classification

In a live system, the input data sometimes may have missing values. To determine or predict

these unknown data based on historic data helps automated online evaluation to work more

accurately, which leads to better evaluation. The data classification can be solved as a

supervised learning problem. By training a classification model on existing data, the missing

values can be predicted. Support Vector Machines (SVM) and other machine learning

methods can be used as the classifier [225, 51].

Redundancy Checking

Redundant data often leads to duplicate processing and even skewed or abnormal results. It

is helpful for self-tuning to effectively detect the data redundancy so that proper adjustment

to evaluation system can be done accordingly, which leads to improved system reliability

because of less skewed and abnormal results. For redundancy checking, dataset can be

represented in a vector space model (i.e., term vector model), an algebraic model for

representing text documents as vectors of identifiers, such as index terms [198]. The

similarity between two data instances can be measured based on Cosine similarity, i.e., the

Cosine of the angle between the two vectors that represent these two data instances, as

shown in the following formula:
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DistanceCOS (a, b) =

∑
i ai × bi√∑

i a2
i ×

√∑
i b2

i

,

where a and b represent two vectors. Its result equals 1 when the angle between two

vectors is 0 (i.e., two vectors are pointing in the same direction), and its result is less than 1

otherwise.

In addition to Cosine similarity, all prior data instances can be ranked based on their

relevance to the new instance using probability distribution. Kullback-Leibler (i.e., KL)

divergence [53, 147] is an effective relevance metric that assumes each data instance in a

high dimensional feature space is characterized by a probability distribution. KL divergence

measures the dissimilarity between two probability distributions, as shown in the following

formula:

DKL(a||b) =
∑
t∈V

P(t|Ma)log
P(t|Ma)
P(t|Mb)

,

where Ma and Mb represent the probability distributions for vector a and b respectively. V

is the vocabulary of all terms and t is a term in V . KL divergence measures how bad the

probability distribution Ma is at modeling Mb.

Trend Detection

To detect data trend is important for self-tuning to adjust the evaluation system effectively,

which leads to improved system reliability. For example, the change of the data trend curve

may indicate overall system state change, which requires self-tuning to act on the evaluation

system. One way to model the trend pattern is using Weibull distribution [190], which

provides the basis for trend detection and analysis. First, historic data is used to fit the

Weibull function and derive the λ and k parameters. Then for any given time t, the number of

instances that may happen during that t-th time period can be estimated using the Weibull’s

density function f (t). Similarly, the instantaneous incidence rate can be estimated using
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the hazard function h(t). Other semiparametric approach may be used to provide similar

estimation [245].

3.3 Architecture

An example of AOE architecture called the Autonomic Reliability Improvement System

(ARIS) is illustrated as a seven-step process in Figure 3.7. ARIS evaluates the cyber-physical

system via three stages of data quality analysis (steps 1-3): first, evaluation of the input

data; second, evaluation of the data output; and third, evaluation of feedback from the

cyber-physical system.

Step 1: The initial evaluation checks to see if the input data meets the quality specifica-

tions pre-defined by the application developer and the system operator. Examples of data

quality specification include data existence, up-to-date, conforming to certain distribution,

time-synchronization across different sources, variation and pattern.

Step 2: The output data evaluation checks the quality of the results of the application.

For example, for a machine learning-based prediction system, data output quality relates

to the accuracy or confidence level of the prediction. For a non-machine learning-based

system, such as a building energy management system, the quality of the data output relates

to the extent to which results can be used to guide subsequent actions (e.g., building energy

use adjustment).

Step 3: The evaluation of the feedback from the cyber-physical system checks the

outcome resulting from the previous steps. This evaluation is important to ensure that the

data output in fact leads to the desired system outcome.

In step 4, the results from the data quality analysis are directed to a user interface for

system operators, who may take control or recovery actions when abnormal and erroneous

situations happen. These actions ensure proper execution of the system and lead to improved

system reliability.
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Figure 3.7: ARIS system architecture.
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At steps 5 and 6, the self-tuning component receives feedback from both the operator-in-

the-loop and changes in the system.

Finally, in step 7, the self-tuning component self-manages and self-configures the

evaluation system based on the feedback from the operator and the changes in the system.

This self-tuning adapts the evaluation system to ensure proper functioning, which leads to

a more robust evaluation system and improved system reliability. The ARIS is autonomic

while the CPS is not necessarily autonomic.

To further illustrate the proposed architecture, here is a hypothetical use case wherein

multiple steps and actions were managed using ARIS. A Building Management System

(BMS) is a type of cyber-physical system consisting of both software and hardware compo-

nents that controls and monitors a building’s mechanical and electrical equipment, such as

ventilation, lighting, power systems, fire systems and security systems. The building energy

control system is an important component of the BMS that reads data feeds representing

internal and exogenous conditions (e.g., temperature, humidity, electrical load, peak load,

fluctuating electricity pricing and building work schedule) and takes control actions (e.g.,

adjust lighting, turn on/off the air-conditioning and shut off partial elevators) accordingly.

Building operators usually have the ability to change or override control actions taken by the

BMS to accommodate special situations such as severe weather or changes in the building’s

work schedule.

To ensure that the building energy control system works reliably, input data, output

data (i.e., control actions) and the result of actions taken are evaluated using ARIS (Figure

3.7, steps 1–3). In one example scenario, a malfunction of the digital thermostat caused a

temperature reading to stay at a fixed level without changing for a long time. The building

energy control system was designed to accept any value within a certain temperature range

and would not be able to handle this type of input data error (i.e., constant temperature). In

contrast, ARIS’s intelligent data quality analysis component can quickly detect this type of

input data error (Figure 3.7, step 1), and give feedback to the building operator (Figure 3.7,
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step 4). After receiving an automated notification from ARIS, the building’s operator can

then take appropriate action.

In another example scenario, building management notifies the operator of the need to

keep the building fully functioning for a special, one-time-only event during the coming

weekend. The operator then notifies ARIS about the abrupt change (Figure 3.7, step 5).

The self-tuning component of the ARIS takes this signal and uses it to adjust data quality

analysis (Figure 3.7, steps 6 and 7), thus avoiding possible false-positive system warnings

due to the abnormal energy use data during this specific weekend.

3.4 Implementation

I have developed a prototype application of ARIS using Java programming language,

MATLAB [87], and some machine learning libraries such as Weka [237]. The standalone

application is able to run on various operating systems with Java Virtual Machine [173]

enabled and has been tested on Windows Server 2008 R2 and Ubuntu Linux Server 12.04.2

[221]. It mainly uses a JDBC [172] database connection component to access relational

database. There is no dependency on other third party or off-the-shelf software component.

Software Design

As shown in Figure 3.8, the software consists of a secure IP-based data connector, a

data quality analysis and self-tuning module with back-end database, several feedback

mechanisms (including alert emails, warning messages, and reports, ) and a user interface

enhanced by real-time visualization.

3.5 Empirical Studies

In this section, I will describe empirical studies including evaluation methodology and

experiments.



CHAPTER 3. AUTOMATED ONLINE EVALUATION FOR CPS 48

Database

Data Quality 

Analysis
Self-tuning

Web User 

Interface

Secure 

IP-based 

Data 

Connector

Alert E-mail, 

Warning Message,

Report

CPS 

Data Feedback

Figure 3.8: ARIS software components and data flow.

3.5.1 Evaluation Methodology

The experiments are conducted not only in a controlled lab environment, but also in some

real-world cyber-physical systems. Some reliability metrics are used to quantitatively

measure the system reliability improvement.

Reliability Metrics

Reliability may be measured in different ways depending on the particular situation [189].

The following are some commonly used reliability metrics for CPS [241]. These metrics are

also used in my experiments.

• Failure rate is defined as the total number of failures within an item population divided

by the total time expended by that population during a particular measurement interval

under stated conditions [139].

• Mean time between failures (MTBF) is the mean expected time between system

failures. It is the predicted elapsed time between inherent failures of a system during

operation [113].

• Mean time to failure (MTTF) is sometimes used instead of MTBF in cases where a

system is replaced after a failure, since MTBF denotes time between failures in a
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system that is then repaired.

• Mean time to repair (MTTR) is the mean time required to repair a failed component

or device.

• Availability or mission capable rate is the proportion of time a system is in functioning

condition. It takes repair and restart times into account and is relevant for non-stop

continuously running systems. This is also called system uptime (x%). Using a simple

representation, it can be calculated as a ratio of the expected value of the uptime of a

system to the aggregate of the expected values of up and down time.

• Rate of fault occurrence reflects failure rate in the system. It is useful when system

has to process a large number of similar requests that are relatively frequent.

• Probability of failure on demand is the probability system will fail when a service

request is made. It is useful when requests are made on an intermittent or infrequent

basis.

• Power-on hours (POH) is the length of time (in hours), during which electrical power

is applied to a device.

• Availability at time t is the probability that the item is able to function at time t [189].

• Survival probability is the probability that the item will not fail in a time interval (0, t]

[189].

3.5.2 Controlled Experiments

Experimental Requirements

The controlled experiments are based on lab or benchmark environment. The experimental

data includes the data that is available to general public via Internet download while the
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software environments are the ones that are commonly used. These controlled experi-

ments are important for proving the hypotheses. They are intended to prove first and

second hypotheses described in section 1.7, i.e., effectiveness of the automated online

evaluation approach using data quality analysis and self-tuning. The controlled experi-

ments in the lab are good for initial proof-of-concept prior to real-world deployment and

experiments.

Methodology

As illustrated in Figure 3.9, in any experiment, two independent cyber-physical systems are

used in parallel: one without the ARIS implemented and the other one with ARIS. Both

systems are supplied faulty input data. And then measurement and validation are performed

to compare both systems’ reliability to see if they can continue reliable execution without

problem. The faulty conditions in output data and physical system effect are also simulated

for evaluating the system reliability of the two cyber-physical systems.

The cyber-physical systems used in the experiments are smart building HVAC (Heating,

Ventilation, and Air Conditioning) start-up control system, a subsystem of BMS (Building

Management System). Operator bases on space temperature and start-up time forecasting to

decide start-up time and BMS target temperature set-points.

Figure 3.10 shows a typical summer day’s space temperature and start-up time forecasts

for a commercial building in New York City. The colored horizontal bands indicate the

desired space temperature range during work hours. I used a prototype ARIS system imple-

mented as described in section 3.4 for the experiments. Figure 3.11 shows the experiment

workflow.

Target

As illustrated in Figure 3.12, with faults injected into CPS data, three experiments are

conducted to compare the system reliability (R0) for baseline CPS without any additional
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Figure 3.9: Experimental setup of two parallel CPS, one without ARIS and one with ARIS.

technique, system reliability (R1) for CPS with ARIS, and system reliability (R2) for CPS

with some state of the art technique. The target is to validate that reliability metric R1 > R0

and R1 > R2. The specific reliability metric for this illustration is Mean time between failures

(MTBF), as defined in section 3.5.1, which shows on average how long before another failure

may happen.

The first target of the controlled experiments is to compare the system reliability between

the CPS without ARIS and the CPS with ARIS to validate the system reliability improvement

brought by the implementation of ARIS.

The second target of the controlled experiments is to compare the system reliability

between the CPS without ARIS and the CPS with some state of the art technique. According

to the best of my knowledge, the state of the art technique for this specific domain is the

rule-based control system defined by ASHRAE (American Society of Heating, Refrigerating

and Air-Conditioning Engineers) Standard 90.1-2013, which lists latest requirements for
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Figure 3.10: Space temperature and start-up time forecasts.

Figure 3.11: Experiment Workflow.

HVAC and Service Water Heating systems, along with insights on how to comply during

building design and construction [99]. In my experiments, the ARIS is compared with

the rule-based system to see which one can lead to better system reliability. This type of

comparative study shows the advancement of the state of the art research by the approach.

Figure 3.13 illustrates the workflow of the rule-based system implemented and used in
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Figure 3.12: Comparison of experiments.

my experiments. The operator uses rules to determine whether to take the suggested actions

or not. Specifically, the rules include: if the historic similar weather day’s start-up time

is over 30 minutes away from the forecasting results, then take the past action ignoring

the suggestion; and if the historic similar weather day’s temperature set-points are over 10

degrees away from the forecasting results, then take the past action ignoring the suggestion.

These rules help to reduce some system failures, mostly those extreme cases where results

happen to be too far away from the historic normal values. This kind of rule-based system is

commonly used by building operations.

In my experiments, the similar weather day is selected using a Euclidean distance-based

ranking upon past three years of data [62, 21]. First, historic days with the same season,

which is determined by the same month or the adjacent months, the same day of week,

and the same holiday status are chosen. Second, calculate the n−dimensional Euclidean

distance between the weather forecast for the coming day and the weather of the historic

days selected in the first step. Last, the distance scores are sorted at an ascending order and

the top one with the lowest score is selected as the similar weather day. As an example, if

p = (p1, p2, ..., pn) and q = (q1, q2, ..., qn) are two points in Euclidean n−space with pi and
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Check Rules 

Figure 3.13: Rule-based system used in the experiment.

qi to be the day’s highest temperature, lowest temperature, highest dew point temperature,

lowest dew point temperature, highest humidity, lower humidity, and wind speed, then the

distance (d) from p to q, or from q to p is given by the formula:

Definition of Failure

As defined in section 1.1, failure is the inability of a system or component to perform its

required function within the specified performance requirements. It is the manifestation

of a fault in the system or human error. In my controlled experiments, failure is defined
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as the erroneous result, e.g., out of range, produced by the forecasting system and also

physical system’s failure to meet operation and lease requirement, which often requires

interior temperature to be within certain range, e.g., 70 to 77 degrees Fahrenheit (◦F), during

work hours.

Data

Data used by the smart building start up control system includes internal data such as

building energy data, space temperature, equipment settings, occupancy, and exogenous

data such as weather information, day of the week, holiday, and utilities data. Most of the

data are time series data with every 15 minutes update frequency.

Large buildings commonly use Building Management Systems (BMS) to manage the

interior environment and control mechanical and electrical equipment such as ventilation,

lighting, power systems, fire systems, access control (also as people counter) and security

systems. BMS provides a way to retrieve building energy-related data, such as data readings

from sub-meters and sensors. Building energy use is measured by total electricity consump-

tion over a period of time, typically kilowatt-hours (kWh) per month. The kilowatt-hour

is most commonly known as a billing unit for energy delivered to consumers by electric

utilities. The energy demand of a building is the rate of energy consumption by the building;

because energy use fluctuates during the week due to tenant activities and building operation

schedule, energy demand is a more fine-grained measure of building energy use than the

aggregate kilowatt-hours consumed during the whole period.

Climate factors include temperature, humidity, pressure, wind and cloud cover. In a

highly condensed urban environment like New York City, different areas can have different

weather measurements. This is often called micro-weather. The most commonly used

weather data for New York City are collected from a weather station located in Central Park,

because of its accuracy and stability. Historic hourly weather data can be obtained from some

public websites, such as National Climatic Data Center [162] and Weather Underground
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[234]. Relative humidity and dew point temperature are also important weather data for

buildings. Relative humidity is the ratio of the partial pressure of water vapor in the air to

the saturated vapor pressure of water under given temperature and pressure conditions. Dew

point is the temperature at which the air can no longer hold all of its water vapor, such that

some of the water vapor must condense into water. The dew point is always lower than

(or equal to) the air temperature. If the air temperature cools to the dew point, or if the

dew point rises to equal the air temperature, then dew begin to form. When the dew point

temperature equals the air temperature, the relative humidity is 100%.

Power grid data from utilities include electrical load, peak load, fluctuating electricity

pricing during the day and power failure warning. The power grid data from the utilities are

often communicated electronically via client web portal or email.

Fault Injection

In my experiments, the input and output data anomaly are simulated using fault injection,

a software testing technique for improving the coverage of a test by introducing faults to

test code paths or mutations to code or data [17, 37, 238, 239]. In the following, I will

describe three types of faults injected in my experiments. These three types of faults are the

most common types of faults in the real-world environments [55, 250]. Each day’s data is

susceptible to all three types of faults. All the faults are simulated automatically using SQL

scripts with adjustable parameters because all these operations are executed against data

tables inside database, i.e., Microsoft SQL Server. Each type of faults is likely to be injected

by the automatic process.

The first type of faults injected is data gaps, which means some data for certain period

are missing or nonexistent. Figure 3.14 illustrates an example fault injection with missing

data. In this example, the wind speed for period from January 17, 2014 to January 24, 2014

have null value.

The second type of faults injected is constant values, which is usually unreasonable in
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Figure 3.14: Fault injection with data gap.

real-world environment, e.g., for some sensor reading. Figure 3.15 illustrates an example

fault injection with constant values. The electric meter reading for the period from January

16 to January 24, 2014 remains exactly the same as 3060.80, which is erroneous. The chart

at the right hand side shows the horizontal line for this period.

The third type of faults injected is random values simulated using data randomization.

This type of faults happen when unreasonable spikes occur during the trendy movement.

Figure 3.16 illustrates an example fault injection with random values. At around 10am, the

reading dropped to zero and then went back to the normal.

Operator Actions

Operator actions in my experiments include starting up HVAC system (on/off) and adjusting

BMS (building management system) temperature set-points points in the heating/cooling

system based on the forecast produced by the space temperature forecasting/recommendation

application. The operator usually follows the forecasts/recommendations to start up the

building’s HVAC, in this case cooling, and set target space temperature set-points. If the

operator takes incorrect action, the building system would not work properly and may lead

to excess cooling or heating, or even system blowout.
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Figure 3.15: Fault injection with constant value.

The assumption of the controlled experiments is that operator usually follows the

forecasts/recommendations to take actions. And in the case of ARIS giving different

recommendation, the operator takes the actions suggested by the ARIS.

Physical System Simulator

As illustrated in Figure 3.17, a building’s heating and cooling system consists of many

different physical components such as incoming (return) air fan, outgoing air fan, heating

coils, cooling units, and pumps etc.

In my experiments, the effects of the output results and the operator actions on the

cyber-physical system are simulated using a thermal response model simulator [137]. The

simulator can represent the physical components of the cyber-physical system. Buildings

do not respond instantaneously to fluctuations in heat input, whether from external (e.g.
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Figure 3.16: Fault injection with random spike.

sunlight, outside temperature) or internal sources such as occupancy level and human activity.

The rate at which a building or parts of a building, such as a floor, will heat up or cool

down depends largely on its thermal mass and the capacity of the HVAC system. The

degree to which comfort conditions can be achieved depends not only on internal ambient

temperatures, but also on the temperature of the internal masses.

Thermal response model can be used to accurately estimate space temperature change,

i.e., effects on the physical system, using following formula [137]:

T = T0 − ∆T (1 − e−
t

RC ),
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Figure 3.17: An example building heating and cooling system.

where T is the estimated temperature, T0 is the temperature at start-up time, ∆T is

the difference between T0 and the steady state temperature indicated by the BMS target

temperature set-points, t is the time from when the chiller/heater is turned on, RC is a

building specific constant.

An example simulation result for a building’s temperature change using thermal response

model is illustrated in Figure 3.18, which shows that the model’s output closely resembles

the real outcome in the physical system. The prediction, in red line, in this case is the

simulation results using the thermal response model. This figure illustrates the closeness

between the simulation temperature results and the actual temperature. This simulator was

implemented by X. Li using python and its source code is in the report [137].

Reliability Metrics

In the control experiments, three reliability metrics as defined in section 3.5.1 are used to

measure the system reliability:
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From above,  the time constant for the northeast quadrant of 2nd floor is 2.5*15min=37.5min. This is 
because the resolution of original data is 15 min, so the real RC constant is the output times 15 min. 

The following figure shows how the RC constant fits the actual data – only the data between daily start-
up and steady state is scissored and pasted together. That is to say, it shows the actual step response 
versus estimated step response on multiple days. The curve between start-up time and steady state as 
noted is the step response for one day. 

 

Fig. 7 Sample RC constant estimated for the northeast quadrant of floor 2, in summer days 

We may obtain different RC time constants if choosing another training period, so cross validation is 
needed. Generally speaking, cross validation separates the whole datasets into several parts which are 
the same in length with each other, and then each cross validation step (fold) leaves out one as test and 
uses the remaining parts as training. The figure below shows a 5-fold cross validation: 
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Figure 3.18: Thermal response model estimation for a building’s northeast quadrant of
second floor in summer days[137].

• Number of failures during the experiment period

• Failure rate, which equals number of failures divided by total days of test

• Mean time between failures (MTBF), which equals 1/failure rate, shows on average

how many days before another failure may happen

A Running Example Test Case

As illustrated in Figure 3.19 and 3.20, the data quality issues, in this case some abnormal

data by fault injection such as data gaps for certain period, led to incorrect prediction results

for the CPS. These predictions, in red line, are the output of the forecasting system and can

be incorrect due to data quality issues. As people can see from Figure 3.19, because the

start-up time forecasts for October 7 and October 8 are too early, the excess cooling and

incorrect temperature set-points drive the room temperature too low, i.e., below 70 ◦F, which

are considered failures in this experiment.

While, in the case of Figure 3.20, ARIS is able to inform operator to ignore the forecasts

and take proper actions based on recommendations from ARIS. Because ARIS evaluates
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Figure 3.19: CPS space temperature and start-up time forecasting system without ARIS.

Figure 3.20: CPS space temperature and start-up time forecasting system with ARIS.

data quality on the fly and informs operator some results are erroneous and should be

ignored, the CPS with ARIS was able to better cope with the data quality issues and the

operator’s actions are more accurate, which in turn produced better results and improved
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system reliability.

Results of Data Quality Analysis

Table 3.2 shows some statistical results of three experiments using the reliability metrics

described in section 3.5. These results are based on experiments of simulating one building’s

HVAC start-up control system using historic data for the period from July 1, 2014 to October

1, 2014. The CPS with ARIS implemented has improved reliability based on lower failure

instances, lower failure rate and longer MTBF. Figures 3.21, 3.22 and 3.23 further illustrates

that the CPS with ARIS has the best system reliability comparing to the baseline and

rule-based system.

Experiment #Failure Failure rate MTBF (days)
Baseline 12 0.130 7.7
Rule-based system 6 0.065 15.4
ARIS 1 0.011 90.9

Table 3.2: Comparison of results.

Figure 3.21: Comparison of number of failures.

Figure 3.24, 3.25 and 3.26 further illustrate the system performance from July 1, 2014

to October 1, 2014 for baseline CPS, CPS with rule-based system, and CPS with ARIS. In
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Figure 3.22: Comparison of failure rate.

Figure 3.23: Comparison of MTBF.

these three charts, the two yellow bands range from 70 to 77 degrees Fahrenheit (◦F) and

the green band ranges from 72 to 75 degrees Fahrenheit (◦F). The blue lines, consisting of

individual data points, that are out of yellow bounds (i.e., either above or below) indicate

the incidence of failure. Each failure incidence may have multiple data points. But since

they are referring to the same failure, they are counted as one incidence of failure. Because

we only consider office hours required by the building lease and do not take into account

of non-working hours (i.e., weekends and time outside of 8:00 am to 6:00 pm during work

days), the data shown are not contiguous.
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Figure 3.24: CPS space temperature and start-up time forecasting system (baseline) without
ARIS (from July 1, 2014 to October 1, 2014).

The results are similar in my experiments using datasets from buildings with different

BMS (Building Management System) types, e.g., Schneider Andover system [12], Siemens

APOGEE system [34] and Johnson Controls METASYS system [35]. Table 3.3 lists the

failure rate comparison for three different buildings. The results show that the system with

ARIS has smallest failure rate, hence most reliable. The experiment also demonstrates that

the approach is agnostic to any type of BMS system. The main reason for this agnostic

property is that ARIS focuses on processing of the data itself with regards to its quality for

the specific circumstance disregarding other non-data related information. In this experiment,
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Figure 3.25: CPS space temperature and start-up time forecasting system (rule-based)
without ARIS (from July 1, 2014 to October 1, 2014).

different BMS systems may be drastically different in their hardware and communication

protocols, e.g., METASYS uses proprietary communication channel while Andover and

APOGEE use standard BACnet protocol [92], their final data repositories (mostly time series

dataset) look very much the same after formatting.

Furthermore, as illustrated in Figure 3.27, with amount of faults injected into CPS data

increasing, i.e., fault density increasing, reliability for each system has different trending

pattern. In the figure, system reliability (R0) denotes system reliability, measured with MTBF

(Mean Time Between Failures), for baseline CPS without any additional technique, system
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Figure 3.26: CPS space temperature and start-up time forecasting system with ARIS (from
July 1, 2014 to October 1, 2014).

Experiment Failure rate for build-
ing with Andover

Failure rate for build-
ing with APOGEE

Failure rate for build-
ing with METASYS

Baseline 0.130 0.119 0.152
Rule-based system 0.065 0.054 0.087
ARIS 0.011 0.022 0.032

Table 3.3: Comparison of results.

reliability (R1) for CPS with ARIS, and system reliability (R2) for CPS with rule-based

technique. The result further validates that reliability metric R1 > R0 and R1 > R2 under

different level of fault density. Table 3.4 lists the experimental results of reliability measured

in MTBF (days) and Table 3.5 lists their corresponding failure rates.
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Figure 3.27: Comparison of reliability (measured in MTBF) trend versus fault density.

Number of faults R0 R1 R2

10 7.69 90.91 15.38
20 5.75 45.45 10.20
30 3.68 22.73 9.17
40 3.07 15.38 7.69

Table 3.4: Comparison of reliability (measured in MTBF) versus fault density.

Number of faults Failure Rate0 Failure Rate1 Failure Rate2

10 0.130 0.011 0.065
20 0.174 0.022 0.087
30 0.272 0.044 0.109
40 0.326 0.065 0.130

Table 3.5: Comparison of failure rate versus fault density.

Results of Self-Tuning

In these controlled experiments, self-tuning uses performance metric MAPE (Mean Absolute

Percentage Error) [213] to measure accuracy of the data analysis models. Self-tuning also

uses parameters estimation and statistical trend detection to improve the accuracy of the

data quality analysis. Please note that this self-tuning applies to ARIS system itself, not to

tune the whole CPS.

In my experiments, self-tuning is used to determine parameters for optimal outcome of a
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Support Vector Regression (SVR) algorithm. Specifically, a nu-SVR is used with following

parameters, implemented using the libsvm library [138]:

• -s (svn type to be nu SVR)

• -k (kernel function to be RBF–radial basis function)

• -c (cost)

• -g (gamma value in kernel function)

• -n (nu value of nu-SVR)

Furthermore, performance metric MAPE (Mean Absolute Percentage Error) is used

to measure accuracy of the data quality analysis. As listed below, the accuracy not only

depends on the parameters of the model, but also the input data range. Thus, the parameter

tuning and trend detection are important to ensure the better performance of the data quality

analysis.

• 5.8813 % using September of 2008-2013 and August 2014 as training data to predict

data quality trend for September 2014

• 6.6870 % using September of 2009-2013 and August 2014 as training data to predict

data quality trend for September 2014

• 6.8176 % using September of 2010-2013 and August 2014 as training data to predict

data quality trend for September 2014

• 7.0826 % using September of 2011-2012, 2013 and August 2014 as training data to

predict data quality trend for September 2014

• 7.5949 % using September of 2012-2013 as training data to predict data quality trend

for September 2014
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Summary

In summary, my experiments show that the data quality analysis and self-tuning techniques

are effective. Comparing to the baseline and the CPS with state of the art rule-based system,

CPS with ARIS has better system reliability. Also, the ARIS system can employ techniques

such as accuracy measurement, model parameter estimation and trend detection to perform

self-tuning. This self-tuning leads to an self-adaptive evaluation system that works better

under system changes and operator feedback, which leads to improved system reliability.

Threat to Validity

In this section, I will discuss some potential threats to validity. First of all, people may ask

whether the rule-based system employed in the experiment is sufficient and representative

of the state of the art. According to my research, the ASHRAE (American Society of

Heating, Refrigerating and Air-Conditioning Engineers) Standard 90.1-2013 [99] is the

latest standard in this field and it is widely used by industry. The rule-based system used

in my experiment closely resembles the common practice adopted by building operations.

There are more complex rule-based systems for building control, mostly used for equipment

diagnostics but not for routine day to day operations.

Secondly, people may question whether the fault injection techniques used are good

representation of the real-world problems. During design phase of my controlled experi-

ments, a lot of historic data has been analyzed to derive the pattern of the faults that are

common for the cyber-physical systems being studied. The faults injected to the CPS data

are representative of the common data issues in the CPS of this domain.

Lastly, people may question whether the experiment can be used to reach a general

conclusion. In my experiments, ARIS system using data quality analysis and self-tuning is

an independent component. It is agnostic to the CPS being implemented and processes the

CPS data, in this case, building’s internal data such as space temperature, equipment settings,

occupancy, and exogenous data such as weather information, day of the week, holiday, and
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utilities data on the fly. Also, my experiments show that using different kinds of buildings’

data lead to same result in terms of system reliability improvement. Thus, it is reasonable to

generalize this controlled experiment applies to other CPS in the domain of interest.

3.5.3 Real-World Experiments

Another important set of experiments is conducted in some real-world environments where

unpredictable conditions often happen. The real-world experiments are important for

validating the proposed approach because the deployed cyber-physical systems will not

be operating in a controlled environment, and must be robust to unexpected conditions

and adaptable to subsystem failures. These real-world experiments demonstrate the ap-

proach is applicable to different cyber-physical systems in the real world and support

the third hypothesis described in section 1.7, i.e., the approach is efficient and does not

add too much overhead.

For the real-world experiments, I experimented with the prototype system on two types

of cyber-physical systems: smart power grid CPS and smart building CPS.

• Smart power grid, as described in section 2.2.1, is an important type of cyber-physical

system that is becoming more unreliable as more and more complex electrical, comput-

ing and communication components are added. The ML-based electrical component

ranking systems are used for preventive maintenance of the power grid. I applied

the ARIS system on some smart power grid ML system to prove that the proposed

approach can in fact improve system reliability for cyber-physical systems and it does

not incur too much extra cost. In the following section 3.5.4, I will describe some

studies of the experiments on a smart power grid ML system.

• Smart building, as described in section 2.2.2, is another important type of cyber-

physical system that is becoming increasingly complex and unreliable. The sensors

and meters in the building collect various types of status and usage data for the
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building operators and energy control systems to operate the building with the help

of building management system (BMS). The predictive building energy optimization

system applies machine learning (ML) to historical and real-time building data and

other exogenous information to improve the efficiency of building systems. I deployed

and experimented with the ARIS system on a smart building BMS system and ML

system to prove the proposed approach is effective and efficient in improving system

reliability. In the following sections 3.5.5 and 3.5.6, I will describe some studies of

the experiments on smart building BMS system and ML system .

3.5.4 Study #1: Experiments on Smart Power Grid ML System

In the following subsections, I present a study on improving smart power grid system

reliability using data quality analysis. First, I will describe some background information on

power grid reliability. Then I will describe the NOVA system, a prototype implementation

of the ARIS system, followed by experimental results and analysis. Note that this NOVA

system is not self-tuning.

To improve power grid system reliability using ML based preventive maintenance, it

requires objective evaluation of the machine learning and data mining software to ensure

they are running as expected, the quality of the data input and output, and the consequential

benefits, i.e., physical system improvements, after the actions recommended by the machine

learning and data mining systems have been taken. For this purpose, I have developed

NOVA system, a prototype implementation of ARIS system, that is able to provide such a

data quality analysis and reliability evaluation [242, 243].

NOVA conducts an automated and integrated evaluation at multiple stages along the

workflow of the smart power grid CPS. There are three steps provided through a unified user

interface, as illustrated in Figure 3.28: first, evaluation of the input data; second, evaluation of

the machine learning and data mining output; third, evaluation of the system’s performance

improvement. The results from Step 1, 2 and 3 are eventually directed to a centralized
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Figure 3.28: Design and workflow of NOVA for smart power grid ML system.

software dashboard for operator-in-the-loop to take actions. When abnormal results trigger

pre-defined thresholds at any step, warning messages are dispatched automatically.

I implemented NOVA in evaluating MartaRank and ODDS feeder-ranking systems and
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analyzed the experimental results. In the following subsections, I will describe the details of

each evaluation stage and demonstrate useful summarization charts for each step.

In order for a system to perform as expected, the input data sets have to meet the

pre-defined quality specifications. The evaluation process first uses data constraints and

checks to see whether the required data exist and are up to date. Then the evaluation process

conducts some more fine-grained checks, for example by using a sparkline graph, which is

a type of information graphic characterized by its small size and high data density [220].

These checks would help researchers to correlate the changes in the input data sets with the

variations of machine learning and data mining results, so that further study may be done to

improve machine learning and data mining accuracy, thus leading to better rankings/actions

and improved system reliability. As illustrated in Figure 3.29, in the sparkline time series

graph, for the one-day period preceding an actual outage, among ten feeder attributes—

maximum scaled voltage, number of joints, number of cables, peak load, etc.— being plotted,

some attributes show varied patterns (e.g., Attribute 1, 2, 5, 6, 7, and 10), while others are

constant (e.g., Attribute 3, 4, 8, and 9). These patterns may be used to improve machine

learning and data mining results. For example, it may be possible that the constant attributes

can be avoided so that only varied attributes are used as input data, which simplifies and

improves the processing of the machine learning and data mining.

The ML system’s output is a ranked list of components ordered by their susceptibility

to failures. To evaluate the output data quality, I use Receiver Operator Characteristic

(ROC) curves, and accompanying rank statistics such as the Area Under the Curve (AUC).

The AUC is equal to the probability that a classifier will rank a randomly chosen positive

instance higher than a randomly chosen negative one [31, 75]. It is in the range of [0, 1],

where an AUC of 0.5 represents a random ordering, and an AUC of close to 1.0 represents

better ranking with the positive examples (i.e., correctly predicted examples) at the top

and the negative ones at the bottom. Figure 3.30 illustrates one typical ROC curve for a

feeder-ranking with AUC equals 0.768. The description for each data point (e.g., 17M96
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Figure 3.29: Sparkline graph for attributes data.

(511)) stands for feeder name (e.g., 17M96) and its ranking (e.g., 511). When the AUC is

bad, i.e. close to 0.5, the operator is informed that the output results are close to randomness

so that the operator can use alternate factors for decision-making accordingly.

The ranking systems generate new models continuously, so the evaluation is presented

as a time series of AUC values as shown in Figure 3.31. The black series in the figure shows

the AUC time series of ODDS and the gray series shows the ones for MartaRank, both for

the time period from May 2010 to November 2010. My experiments show that MartaRank

and ODDS feeder-ranking systems have comparable overall performance according to the

AUC. The better the AUC results, the more accurate the component rankings are, which

leads to better preventive maintenance results in improving system reliability.

After the machine learning and data mining outputs ranking results, the feeders ranked

with highest susceptibility to failure are usually treated with a higher priority. The final

stage of the evaluation is to validate that the recommended actions are in fact leading to the

expected power system improvement, i.e., fewer outages and longer time between failures.

For a longer time, a log(cumulative outages) versus log(time) chart is useful for seeing the

changes in the time interval between failures. This graphical analysis is also called a Duane
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Figure 3.30: ROC curve.

plot, which is a log-log plot of the cumulative number of failures versus time [84], shown in

Figure 3.32. The changing slope of the regression lines of the cumulative outages shows the

improved rate of outages. If the failure rate had not changed, this log-log plot would show a

straight line. The inflection period around 250th days is primarily due to the implementation

of the system.

To summarize the above key steps of the NOVA system as described above, Table 3.6

lists the evaluation targets and main techniques (e.g., methods, metrics, charts) used at each

evaluation stage.

NOVA system has been implemented in evaluating two feeder-ranking systems in New

York City’s power grid since 2007. Some of its newer features were added from 2007 to 2010.

New York City has over two thousand feeders. One experimental result I concluded from the

evaluation using NOVA is the increasing MTBF (Mean Time Between Failures), i.e., lower

failure rate and better system reliability, for most networks. Mean Time Between Failures
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Figure 3.31: AUC cyclicity graph.

Step Evaluation target Methods, metrics, charts
1 Input data Sparkline graph, data checks and con-

straints
2 Machine learning and data mining re-

sults
ROC curve, AUC time series

3 Physical system improvements Duane plot, MTBF, failure rate, linear
regression

Unified user interface Dashboard, charts, triggers, warning
messages, alert emails

Table 3.6: Summary of techniques used in evaluation.

(MTBF) is the predicted elapsed time between inherent failures of a system during operation

[113]. Figure 3.33 illustrates MTBF time series for all the feeders in a specific network for

the period from 2002 to 2009 and the linear regression. On average, the MTBF for feeders

in this network are improving over time. The MTBF improvement after deployment of

NOVA in 2007 was better than pre-deployment period, as the black regression line shown in
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Figure 3.32: Cumulative system outages versus time log-log chart.

the graph.

Figure 3.34 illustrates the MTBF differences between year 2002 and year 2009 for each

network. The bars with values above zero indicate MTBF improvements. The majority of

the networks saw significant increase of MTBF. More than ten percent of the approximately

2000 feeders in the city have been serviced or replaced according to their rankings. The

preventive maintenance of these highly ranked error-prone feeders improved power grid

system reliability.

Table 3.7 lists the total number of feeder failures in the city from year 2005 to year 2009.

The accelerated decreasing number of feeder failures shows fewer outages of the power

network.

In summary, the experiments on New York City’s power grid indicate that the NOVA
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Figure 3.33: MTBF versus time and linear regression.

Year Number of Feeder Failures Yearly Decrease
2005 1612
2006 1547 65
2007 1431 116
2008 1239 192
2009 1009 230

Table 3.7: Number of feeder failures in the city.

system contributes to the system reliability improvement for the smart power grid CPS,

based on MTBF and number of feeder failures metrics. The system runs efficiently in

parallel with the CPS. It does not add much overhead to the power grid CPS.
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Figure 3.34: MTBF difference for each network.

3.5.5 Study #2: Experiments on Smart Building BMS System

To ensure that the smart building BMS system works reliably, an automated online evalu-

ator monitors the building’s internal and external conditions (e.g., temperature, humidity,

electrical load, peak load, fluctuating electricity pricing and building work and maintenance

schedules) control actions (e.g., adjusting lighting, turning on/off the AC/heat and shutting

off elevators) and the results of those actions. This evaluator employs intelligent real-time

data quality analysis components to quickly detect anomalies, such as malfunctions of digi-

tal thermostats that interfere with temperature reading or introduce variances from normal

HVAC set-points, and sends feedback to building management, who can then take appro-

priate preventive or corrective actions. My experiments show that this automated online

evaluator is responsive and effective in further ensuring that building systems continue to

run reliably.
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I implemented a prototype ARIS application at a large commercial building, which is

a 634 foot (193 m) tall skyscraper in midtown Manhattan, New York City. Designed by

Emery Roth & Sons and completed in 1969, the building has 44 floors and more than 1.8

million square feet of tenant space. Approximately 5,000 people work in the building, and

there are about 1,000 visitors to the building daily. The owner and property manager is one

of the largest private real estate companies in New York City. Building management has

installed a state-of-the-art building energy monitoring system and BMS, which provided a

live building dataset for ARIS.

As shown in Figure 3.35, ARIS worked with the BMS in parallel and processed the live

data feeds via a remote data link. In my experiments, I connected ARIS to the building’s

various intelligent systems directly using a secure IP-based data connector. This setup

simplifies the data collection and communication processes.

Data Points

BMS

Firewall

Router Router

Firewall

ARIS application, 

database, Web servers

Building

Hub

Hub
Internet

Figure 3.35: Experimental setup.

ARIS efficiently identified a large number of suspicious data anomalies obtained from

2,480 building data sources, mostly sensors, over a six-month period (December 2011 to

May 2012). The relevant sensors and SCADA (supervisory control and data acquisition)

data sources were investigated with the help from the building operators and engineers. The

results confirmed that the majority of the issues identified were in fact caused by system

failures such as BMS software errors or equipment malfunctions. Figures 3.36-3.39 present

some example time-series visualization charts for selected data sources.
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Figure 3.36: Supply air temperature time series.

Figure 3.36 shows out-of-bounds supply air temperatures that are lower than 50 ◦F or

higher than 80 ◦F. After these abnormal behaviors are detected and flagged by ARIS, the

building’s operator can take proper control actions to maintain normal operation of the

building’s cooling system and ensure that service will not be disrupted. Through its SVM

classification-based diagnosis, ARIS also recommends corrective actions to the operator as

part of a work order management system.

As shown in Figures 3.37-3.38, the drop in maximum energy demand and steam demand

around January 1 coincide with the building system shutdown during New Year’s Eve and

subsequent reactivation after the holiday. This kind of dip would normally be detected as

anomalous behavior and a warning would be triggered and sent to building management from

the automated online evaluator. However, the self-tuning capability allows the building’s
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Figure 3.37: Maximum energy demand time series.

Figure 3.38: Maximum steam demand time series.

operator to notify ARIS about this abrupt schedule change to avoid the generation of

unnecessary warnings.

In summary, the experiments showed that ARIS is effective in identifying and analyzing

data anomalies in the smart building BMS systems for system reliability improvement. The
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Figure 3.39: Building internal wet-bulb humidity time series.

system runs independently from the smart building BMS system. It runs efficiently and does

not add much overhead to the smart building BMS system.

3.5.6 Study #3: Experiments on Smart Building ML System

I further implemented a prototype ARIS application for a smart building ML system, i.e.,

predictive building energy optimization system as described in section 2.2.2, at a large

commercial building in midtown Manhattan, New York City [244, 209]. The building’s

regular hours are 7:00 AM to 7:00 PM Monday through Friday, and 8:00 AM to 1:00 PM

on Saturdays. The estimated energy cost of running the HVAC system of the building for

an hour amounts to approximately $2,000 to $2,500 in 2011. The building uses electricity,

steam and natural gas supplied by Con Edison, the main utilities company in New York City,

for heating and cooling in the building. Management has installed a state-of-the-art energy

monitoring system, which provides an archived data log of energy demand that can be used

for predictive building energy optimization.

As illustrated in Figure 3.40, the automated online evaluation system receives data at
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Figure 3.40: Design and workflow of ARIS for smart building ML system.
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multiple stages in the ML system workflow. The evaluator employs intelligent real-time data

quality analysis components to quickly detect data anomalies (e.g., malfunctions of digital

thermostats that interfere with temperature reading or introduce variances from normal

expected HVAC set-points) and gives feedback to building management, who can then

respond appropriately.

More than 10 suspicious data anomalies were identified for over a two-month period

(December 2011 to January 2012) and investigated the related data sources.

The following will describe the self-tuning of the ARIS to adapt the data quality analysis

to the changing data patterns including seasonality changes.

In order to identify the ML model parameters (i.e., specifically C and γ values), and

number of time delays that yield the most accurate and efficient model, a step-wise search

method was used. The step-wise method works by running regressions using values of

different orders of magnitude for a specific parameter, calculating the R2 value to assess

accuracy, then evaluating on finer scales until the appropriate value is established. The same

method was used for variable selection of C, γ and time delay values, where the test file

incorporating real values as classifiers in order to compare the model’s accuracy at predicting

for those values.

Based on the results of the R2 statistical tests, the best combination of variables for a

February regression would be to use one year of energy data. For May, the best combination

of variables would be two years of energy and temperature. While these statistical tests

proved the accuracy of these models, two years of energy, temperature and humidity were

used for all regressions.

It was important to include those variables in the creation of the model. A model using

fewer variables produces smooth, highly cyclical curves, while the addition of more variables

creates curves with more noise and statistically poorer fits. However, the inclusion of more

variables allows the model to adapt more dynamically to changes in weather that occur

within a single day or week, and it aids the model in predicting minimal and maximal energy



CHAPTER 3. AUTOMATED ONLINE EVALUATION FOR CPS 87

Figure 3.41: Predicted versus actual energy demand in May 2011 [209].

Figure 3.42: Predicted versus actual energy demand in Feb 2011 [209].
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demand values.

Figures 3.41 and 3.42 show regression results of SVR prediction versus actual energy

demand for two different five-month datasets at different times of the year. The spring graph

is closer to the actual energy consumption of the building, with an R2 value of about 0.95,

while the winter graph is less accurate, with an R2 of about 0.71. The likely reason for

the less accurate winter regression is that the SVR predictive model may need additional

features in its dataset in order to better handle low winter temperature values, which cause

increased energy demand for heating.

In summary, the experiments showed that the ARIS is effective in ensuring that the

smart building ML system continues to run reliably and the self-tuning component can

adapt the ARIS to the changing data patterns such as seasonality changes. The system runs

independently from the smart building ML system. It runs efficiently and does not add much

overhead to the smart building ML system.

3.6 Summary

This chapter presents automated online evaluation AOE that performs data quality analysis

using computational intelligence and self-tuning techniques to improve system reliability

for cyber-physical systems that process large amounts of data, employ software as a system

component, run online continuously and maintain an operator-in-the-loop. My experiments

with the ARIS system, a prototype architecture and implementation of AOE, in smart power

grid CPS and smart building CPS have demonstrated that this approach is effective and

efficient. The data-dependence of this system makes it easily applicable to different types of

cyber-physical systems, and the open expandable architecture also enables the incorporation

of new data quality analysis and self-tuning techniques.



Chapter 4

Cloud-Based Reliability Assurance

Framework for CPS

One limitation of the ARIS architecture and implementation described in sections 3.3 and

3.4 is that it is not scalable or economical for dealing with certain types of CPS where large

volumes of data need to be processed in parallel within a short period of time. In order to

conduct efficient and cost-effective automated online evaluation for data-intensive CPS, I

will describe a cloud-based reliability assurance framework called COBRA in this chapter.

Using the language similar to the definition of quality assurance [78], reliability assurance

is defined as the planned and systematic activities implemented in a system so that reliability

requirements for a product or service are fulfilled.

In the following section, I will describe an overview with some background information

on data-intensive computing and cloud computing. In section 4.2, I will describe the

COBRA framework, followed by architecture in section 4.3. In section 4.4, I will describe

implementation and some applicable cloud computing environments. Then in section 4.5, I

will describe the empirical studies through controlled experiments and an application of the

framework on a smart building CPS before my conclusion in section 4.6.

89
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4.1 Overview

For the purpose of this thesis, data-intensive computing is a class of computing applications

which often use a data parallel approach to processing large volumes of data, typically

terabytes or petabytes in size and commonly referred to as Big Data [107]. Computing

applications which devote most of their execution time to computational requirements are

deemed compute-intensive and typically require small volumes of data, whereas computing

applications which require large volumes of data and devote most of their processing time

to I/O and manipulation of data are deemed data-intensive [155]. The challenge of data-

intensive computing is to provide the hardware architectures and related software systems

and techniques which are capable of transforming ultra-large data into valuable knowledge.

Data-intensive applications are well suited for large-scale parallelism over the data and also

require an extremely high degree of fault-tolerance, reliability, and availability [82].

Many CPS are data-intensive, requiring large volumes of data and devoting much of

their processing time to I/O and data manipulation [155]. BMS and smart grid control

systems are examples of typical data-intensive CPS; a BMS processes large amounts of data

streams captured by sensors installed throughout the building, while smart grids process

many continuous data sources from electrical and computational components.

Because of their data-intensive characteristics, complexity and the unpredictable running

environment, it is often hard to estimate and improve the reliability of a data-intensive CPS

prior to deployment. During the actual use phase, runtime evaluation can be used. This

works in parallel with the CPS, continuously conducting automated online evaluation at

multiple stages along the system workflow and providing operator-in-the-loop feedback

for reliability improvement [240]. But reliability assurance using only local computing

resources is often impossible, unscalable or too expensive for data-intensive CPS.

Thus, a cloud-based approach might be a good solution. According to the definitions

by the NIST [151], cloud computing is a model for enabling ubiquitous, convenient, on-

demand network access to a shared pool of configurable computing resources (e.g., networks,
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servers, storage, applications, and services) that can be rapidly provisioned and released

with minimal management effort or service provider interaction.

This chapter presents a cloud-based reliability assurance framework called COBRA,

which stands for ClOud-Based Reliability Assurance. COBRA employs cloud-based runtime

evaluation to conduct reliability assurance for data-intensive CPS. It mitigates the limitations

imposed by the large amounts of data transfer required for cloud-based processing using

data serialization and messaging systems. Its data quality analysis processes use scheduler

and elastic load-handling on demand to achieve a degree of scalability, responsiveness

and cost-effectiveness that is not possible with traditional approaches such as local server

clustering. COBRA makes use of self-tuning to manage and configure the evaluation system

to ensure that it adapts itself to changes in the system and exogenous conditions whilst

hiding intrinsic complexity from operators and users. Furthermore, a set of performance

metrics is used to evaluate the performance of COBRA.

I have developed a prototype COBRA system, which I implemented and used in real-

world experiments with a BMS in a New York City building. The evaluation results showed

that it is effective, efficient, scalable and easy to implement. COBRA can also be tested in a

simulated environment using historic data or induced reliability issues, including failures

caused by fault-injection, human error or abnormal environmental variables.

4.2 COBRA Framework

COBRA framework employs cloud-based runtime evaluation with a feedback loop to achieve

reliability assurance for data-intensive CPS. It consists of data transportation between a

CPS data source and a cloud data store with load balancing and failover switch, parallel

data quality analysis with self-tuning, autonomic process management with elastic scaling,

performance and reliability metrics. Performance metrics will be described in section 4.5.1.

A set of reliability metrics has been described in section 3.5.1.
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4.2.1 Data Transportation

One challenge associated with moving data-intensive computation to the cloud is relocating

large amounts of data efficiently and in a timely fashion from the local environment to the

cloud computing environment [18, 19]. Figure 4.1 illustrates two methods to achieve this. A

typical dataset in the applications of interest consists of a large amount of continuous time

series data records in {id, timestamp, value} tuple format.

ID1, TIMESTAMP1, VALUE1
ID2, TIMESTAMP2, VALUE2
ID3, TIMESTAMP3, VALUE3

IDn, TIMESTAMPn, VALUEn

Data Aggregator

Data Transformer

Data Transmitter

Data Receiver

Data Distributor

Serialization

Method 1:

File 

Synchronization 

Service

Deserialization

Cloud Data Store

Method 2:

Queued 

Messages

Message 

Broker 

Service

Messages

Figure 4.1: Data transportation.



CHAPTER 4. CLOUD-BASED RELIABILITY ASSURANCE FRAMEWORK FOR CPS93

The first method involves serialization during the data transformation stage after time-

stamped data has been aggregated. Then, a file synchronization service such as rsync [194]

can transfer the serialized files to the cloud server. Some file synchronization services are

capable of encrypting and compressing the data being transferred, which provides additional

security and efficiency. After the files have been transferred, they will be transformed back

to data records through deserialization. These data records are then saved to the cloud data

store for further processing. This method is suitable for transferring large data records,

including binary data such as medical images.

The second method utilizes a message broker service installed at the data transmitter and

receiver ends to transfer queued messages generated by the data transformer. Some com-

monly used message broker service software includes IBM Websphere MQ [102], Apache

ActiveMQ [15] and RabbitMQ [227]. The received messages are split and transformed

back to the time series data record for storage in the cloud data store. The data store can be

written sequentially on a disk for processing. This step can be managed by systems such as

Apache Hadoop [16]. This method is suitable for transferring data records with textual or

numeric values.

Load Balancing and Failover Switch

At the data transportation stage, self-tuning is used to achieve dynamic load balancing and

failover switch, which applies to the parallel processing of large amounts of time series data

coming from different sources, in order to maximize efficiency and reliability. Dynamic

load balancing automatically distributes the data traffic load across multiple active server

instances. When a sudden burst of data traffic causes bandwidth usage to exceed a predefined

threshold, additional cloud computing resources will be requested and allocated for handling

the heavier load. In the case of some instances failing to respond, the data traffic will be

rerouted to healthy instances by the failover switch.
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4.2.2 Parallel Data Quality Analysis

After data relocation, data quality analysis is used to process the cloud data store for

reliability assurance. Because of the data-intensive and continual processing requirements,

the analysis algorithm needs to be lightweight and responsive, and should not require large

amounts of data storage in each time window. Furthermore, the processing algorithm should

be able to be launched and terminated by the process scheduler.

COBRA uses computational intelligence to perform data quality analysis in an automated

and efficient way, thereby ensuring that the running system performs as reliably as possible.

This computational intelligence is enabled by machine learning, data mining, statistical

and probabilistic analysis and other intelligent techniques. In a CPS, data collected from

the system (e.g., sensor data-points, software bug reports, system status logs and error

reports) are stored in databases. COBRA analyzes this data so that useful information on

system reliability, such as erroneous data or abnormal system states, can be obtained. This

reliability-related information is in turn directed to system operators so that proper actions

can be taken–in some cases, proactively based on predictive results–to ensure proper and

reliable execution of the system. The following sections describe some data quality analysis

techniques used by COBRA.

Data Anomaly Detection and Diagnosis

Data anomaly detection and diagnosis used by COBRA are similar to the techniques

described in the section 3.2.3.

Self-Tuning

Self-tuning is used to automatically evaluate performance and adjust algorithm parameters

for data quality analysis in order to improve the accuracy, efficiency and robustness of

analysis. It also minimizes the burden imposed on the administrator. Some examples of

self-tuning uses are as follows:
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• Use metrics such as R2 (coefficient of determination), ROC (receiver operating char-

acteristic) and AUC (area under the curve) to measure and improve accuracy of data

analysis models. [242]

• Use statistical trend detection and curve fitting, such as Weibull distribution and

parameters estimation [246, 190], to reduce variability and eliminate overshoot.

• Adjust system parameters such as set-points, thresholds and machine learning model

parameters when abnormal exogenous situations happen in order to reduce false

alarms.

4.2.3 Autonomic Process Management

To manage large numbers of parallel data analysis processes, COBRA employs autonomic

process management for launching processes based on the workload and scaling the process

pool dynamically to ensure efficient processing. Process schedulers elastically launch

appropriate numbers of processes for the data feeds and recycle processes that are no longer

needed.

Process Scheduling

Similar to the Process Control Block (PCB) [58] or Process Descriptor in an operating

system, each process in the COBRA system is represented by a data structure. It contains

basic information about the process including:

• Process identification, which is the unique identifier assigned by the process scheduler.

• Process status, which indicates the current status of the process: READY, RUNNING,

BLOCKED or SUSPENDED.

• Process state, which contains information about what kind of resources the process

has used and for how long. These include information about the specific time series
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dataset being processed.

Process creation is illustrated in Figure 4.2. The process scheduler first checks the cloud

data store to see if there is any unhandled dataset, which is a new time series data stream

identified by a unique dataset identifier. The process scheduler then checks if any idle

processes can be reassigned to this new dataset. If none are available, the scheduler launches

a new process and updates the process’s state with relevant information including the dataset

being assigned. This dynamic scheduling system makes decisions on the fly in order to

make better use of resources.

Process termination can be triggered by various causes. Because COBRA is designed for

continual runtime reliability evaluation, the process does not have a predetermined execution

time. As long as the dataset associated with a process is coming in, that process continues.

Process termination typically happens due to an error or fault condition. This includes

lack of system resources such as memory or I/O failure due to an unexpected situation. To

recover a failed process, the process scheduler recreates a new process through the steps

described above.

Elastic Scaling

An important feature of autonomic process management is elastic scaling that automatically

increases and decreases computing resources and running processes to maintain optimal

system performance. Scalability is defined as the ability of a system, network or process

to handle a growing amount of work in a capable manner, or its ability to be enlarged to

accommodate such growth [27, 98]. Elastic scaling modulates the use of computer resources

dynamically to meet a variable workload [179].

Elastic scaling in COBRA is enabled by a two-step self-tuning process. The first step is

to scale up, or scale vertically. At this stage, the process scheduler allocates more resources,

such as CPU, memory and storage, to handle increasing numbers of parallel processes.

When the maximum number of processes in a computing instance, which can be a virtual
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Figure 4.2: Process creation.

machine or cluster running in the cloud computing environment, is reached, the process

scheduler sends a request to cloud computing infrastructure such as Amazon Cloud Service

[7] and OpenStack [171] for additional system resources. This step is also called scaling up,

or scaling horizontally.
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4.3 Architecture

As illustrated in Figure 4.3, COBRA’s architecture includes the following components: data

aggregator and transformer, data transmission, data distributor, cloud data store, parallel

processors, master scheduler, self-tuner, user interface and alerts /triggers, performance and

reliability metrics.

Step 1: The data collected from the CPS, including sensor measurements, software

logs, system alarms and environmental state information, are transferred from the local

environment to the cloud computing servers through a multiple-stage data transportation

process, as described in section 4.2.1.

Step 2: The process scheduler dynamically launches and manages data quality analysis

processes, which conduct continuous processing of the cloud data store. Self-tuning is

used to adjust system resources such as the size of the process pool and settings such as

the parameters of the data processing algorithm in order to achieve higher efficiency and

accuracy. A set of performance metrics, which will be described in section 4.5.1, is measured

on the fly.

Step 3: The results of these parallel processes are communicated back to the human

operator or an automatic actuator, which can take corrective and preventive actions on the

CPS to ensure system reliability. As a separate comparison, a set of reliability metrics as

described in section 3.5.1 is measured directly on the CPS on the fly.

4.4 Implementation

I have implemented a prototype COBRA system using Java programming language. The

architecture is flexible and easy to implement. It can be implemented using different

programming languages, such as Java and Python, and supports various cloud computing

environments.
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Figure 4.3: COBRA system architecture.

4.4.1 Software Design

As shown in Figure 4.4, the software consists of a data receiver and distributor, a data quality

analysis process, a process scheduler, a self-tuning and performance metrics module with a
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cloud data store, several feedback mechanisms (including alert emails, warning messages

and reports) and a user interface with real-time visualization.
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Figure 4.4: COBRA software components and data flow.

For handling real-time time series data, I used a message broker service for commu-

nicating queued messages from the local environment to the cloud environment, which is

the second data transportation method illustrated in Figure 4.1, In my implementation, I

installed a message broker server at both the data transmitter and data receiver ends.

As shown in Figure 4.5, the web interface provides visualization for users. Alert emails,

warning messages and reports are generated automatically to provide CPS operators with

reliability-related information with low latency.

4.4.2 Cloud Computing Environments

In order to be flexible and applicable for different implementations, COBRA does not depend

on any specific cloud computing environment. The following compares some applicable

cloud computing services available for COBRA implementation. Amazon Elastic Compute

Cloud (EC2) and private cloud are the environments tested in my experiments.
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Figure 4.5: User interface example of many different floor temperatures over two days and
three nights in an office building.

Amazon Web Services

Amazon Web Services [7] is a full-service cloud computing environment, including cloud-

based computing, network, content delivery, storage, database, deployment, management

and application services. The services that are useful for COBRA implementation include

Amazon Elastic Compute Cloud (EC2), which provides scalable virtual private servers

and can be the cloud-based server for COBRA implementation; Amazon Simple Storage

Service (S3), which provides Amazon Web Services-based storage; Amazon Simple Queue

Service (SQS), which provides a hosted message queue for web applications; Amazon

CloudWatch, which provides monitoring for cloud resources and applications and can be

used for implementing COBRA’s elastic scaling; and Amazon Simple Notification Service

(SNS), which provides hosted multiprotocol ”push” messaging for applications and can be

used for user notification.
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OpenStack-Based Services

OpenStack [171] is an open-source infrastructure as a service (IaaS) cloud computing

initiative jointly launched by Rackspace [187] and NASA in 2010. The goal of the Open-

Stack project is to enable any organization to create and run cloud computing services on

standard hardware. The cloud-based infrastructure software was developed on the Linux

operating system. As illustrated in Figure 4.6, it includes computing, networking, storage,

queue, scheduler, hypervisor, dashboard, authentication and image services. The computing,

storage and dashboard services can be used directly for implementing COBRA because

OpenStack’s interfaces are open and standardized.

Figure 4.6: OpenStack logical architecture [171].

Windows Azure

Windows Azure [154] is a platform as a service (PaaS) and infrastructure as a service (IaaS)

cloud computing environment created by Microsoft for building, deploying and manag-
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ing applications and services through a global network of Microsoft-managed datacenters.

Services include web, virtual machine, data management, business analytics, identity, mes-

saging, media and mobile services. The virtual machine, data management and messaging

services are applicable for implementing COBRA.

Google App Engine

Google App Engine [89] is a platform as a service (PaaS) cloud computing environment for

developing and hosting web applications in Google-managed data centers. Applications are

sandboxed and run across multiple servers. App Engine offers automatic scaling for web

applications as the number of requests increases. Compared to Amazon and OpenStack-

based cloud services, Google App Engine is less flexible and has fewer features provided

for customized development, but it is still possible to implement COBRA on Google App

Engine.

Private Cloud

A private cloud [235] is a cloud computing platform that is implemented within the corporate

firewall, under the control of the IT department. A private cloud is designed to offer the same

features and benefits of public cloud systems, but removes a number of objections to the

cloud computing model, including control over enterprise and customer data, worries about

security, and issues connected to regulatory compliance. The implementation of COBRA

depends on the specific cloud services enabled by the private cloud environment.

4.5 Empirical Studies

In this section, I will describe evaluation methodology and some empirical studies, in which

I applied the prototype COBRA system to some data-intensive CPS to process parallel data

continuously for reliability assurance.
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4.5.1 Evaluation Methodology

The reliability metrics described in section 3.5.1 and the following performance metrics are

used to evaluate the COBRA system quantitatively.

Performance Metrics

Performance metrics are used to evaluate different aspects of the COBRA system including

data transportation, data quality analysis, and autonomic process management.

The following are some scalability metrics for throughput and resource usage:

• Throughput (Inbound/Outbound) in kbits/second, a measurement of bandwidth uti-

lization.

• Traffic (Inbound/Outbound) in megabytes, a measurement of total data size.

• Process creation rate, which is the number of processes created within a time unit.

• Maximum number of processes before scale-out, which is the maximum allowable

number of processes in the computing instance before requesting additional resources.

• CPU % utilization by process, an indicator of CPU use by a process.

• Memory % utilization by process, an indicator of memory use by a process.

• Data store % utilization by process, an indicator of data store use by a process.

The following are some responsiveness metrics:

• Average processing time, which gives an estimate of time needed for the algorithm to

process a dataset of specific size for a predefined time period.

• Average processing time using self-tuning in adjusting algorithm parameters, which

shows the performance improvement when self-tuning is applied.
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• Connection duration (TCP Client/Server) in seconds, a data transfer performance

metric related to latency.

The following are some other metrics:

• False positive ratio, also known as the false alarm ratio, which refers to the probability

of falsely rejecting the null hypothesis (i.e., a general or default position or state) for a

particular test.

• Active connections, which is the total number of live connections.

• Allocated server processes, which is the number of allocated processes in the comput-

ing instance.

• Number of active processes, which is the total number of processes running.

• Connection requests (TCP Client/Server), the total number of the connection requests.

4.5.2 Real-World Experiments

I evaluated the prototype COBRA system using a smart building BMS system at a large

commercial building in New York City. A BMS is a typical data-intensive CPS consisting of

both software and hardware components that control and monitor a building’s mechanical

and electrical equipment, such as ventilation, lighting, power systems, fire systems and

security systems. The building energy control system is an important component of the

BMS that reads data feeds representing internal and exogenous conditions (e.g., temperature,

humidity, electrical load, peak load, fluctuating electricity pricing and building work sched-

ule) and takes control actions (e.g., adjusting lighting, turning on/off the air-conditioning

and shutting off partial elevators) accordingly. Building operators usually have the ability

to change or override control actions taken by the BMS to accommodate special situations

such as severe weather or changes in the building’s work schedule. I used a BMS at a large

office building in New York City for this study.
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4.5.3 Experiments on Smart Building BMS System

The experimental setup is illustrated in Figure 4.7. Data collected from the building sensors

and BMS software are aggregated, transformed and transferred to servers in the cloud, where

these data are processed on the fly. The results are being sent back to the operator, who can

take actions to ensure reliable system operation.

Data Points

BMS

Firewall

Router Router

Firewall

Cloud Servers

Building

Hub

Hub
Internet

Data

Aggregator

Transformer

Transmitter

Data

Receiver

Distributor

Figure 4.7: Experimental setup.

The following are some experimental results.

Data Transportation

There are a total of 2,600 live time series datasets with each dataset represents a single

data source in the BMS such as a sensor’s measurement, software log and other system

information.

Table 4.1. shows the total data size (inbound/outbound) during each “push” update

for different data sampling frequencies. The results show that as the system gets more

close to real-time data collection, the volume of data traffic increases significantly. This is

an example of the challenges in moving the data-intensive processing from local to cloud

environment.

Table 4.2 lists the approximate time that is required for data transportation of 100 time

series datasets, each with a typical size, during each data “push”. It shows that even with a
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Sampling Frequency Traffic (in megabytes)
Every 15 minutes 10.9
Every 5 minutes 32.8
Every 60 seconds 164.1
Every 5 seconds 1,969.6

Table 4.1: Traffic (inbound/outbound).

high speed connection, the data relocation takes significant time if the number of datasets

increases.

Number of datasets 100
750 Kbps 1,450
1.5 Mbps 730
3.0 Mbps 360
10.0 Mbps 100

Table 4.2: Connection duration (in seconds).

Data Quality Analysis

Data quality analysis processing time varies according to the type of datasets and the state

of the data inside. Table 4.3 shows some examples of results of average processing time

for HVAC (heating, ventilation, and air conditioning), electric meter and BMS software log

datasets, along with their false positive ratios. The more uniform the real-time data is, the

less time the data analysis processing takes and the more accurate it tends to be.

HVAC Meter Log
Processing time (in seconds) 60 55 120
False positive ratio 2% 5% 8%

Table 4.3: Average processing time and false positive ratio.



CHAPTER 4. CLOUD-BASED RELIABILITY ASSURANCE FRAMEWORK FOR CPS108

Process Management

Table 4.4 lists some examples of results for different performance metrics related to the

process management. In my experiments, the memory and data store utilization are often

higher than the CPU % of processor time. It indicates that the dataset size and locality would

more easily lead to performance bottleneck than would the processing power of the cloud

computing instance.

Allocated server processes 100
Number of active processes 35
Maximum number of processes 250
CPU utilization 35%
Memory utilization 60%
Data store utilization 80%

Table 4.4: Maximum number of processes.

Table 4.5 and Figure 4.8 show that the increase in the number of processes does not lead

to an exponential increase in the processing time. The average processing time is always

below an upper bound t0 at 70.

# of processes 1 5 10 20 50 80
Processing time (in seconds) 45 48 55 60 64 65

Table 4.5: Processing time versus number of processes.

Figure 4.9 shows a snapshot of an example of system resource usages.

Effectiveness

Table 4.6 lists some reliability issues related to HVAC, BMS software, environmental issues

and detector errors that were identified and verified before corrective actions taken by the

operators or autonomous actuators.
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Figure 4.8: Processing time versus number of processes.

Figure 4.9: Example system resource usages.

Validity

I estimated reliability metrics such as MTBF metrics to measure the improvement or

deterioration of system reliability. After failure incidence time series data is collected, I
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Issue Type HVAC BMS ENV Sensor
# of reliability issues 33 25 5 14

Table 4.6: Number of reliability issues identified.

estimated reliability metrics as described in section 3.5.1. The weekly failure rates over six

months are charted in Figure 4.10. Also, the linear regression y = −0.0229x + 1.1169,R2 =

0.03829 shows the improved results over time. In this case, θ = −0.0229 using failure rate

as the reliability measurement.

Figure 4.10: Weekly failure rate.

Although it is reasonable to argue that improved CPS reliability may be due to other

factors in the complex system, such as better maintenance or friendlier running environment,

the number of reliability issues identified and subsequently fixed are strong evidence of the

validity of the COBRA framework.
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Summary

In summary, the experiments show the approach is effective and efficient. It is also scalable

to process data-intensive CPS for reliability improvement. Furthermore, the approach can

be implemented relatively easily using various cloud computing services readily available.

4.5.4 Limitations

The prototype implementation uses a disjoint process model; i.e., I assume that processes

can be run independently of each other and that the order in which processes are executed is

not important. Hence, it treats every streaming data series from each source (e.g., sensor

data point) separately. It does not take into consideration correlation or association between

separate data sources. In many cases, reliability issues might have causal or clustering

effects. For example, a failure in one software component might also cause other adjacent or

dependent components to fail. These inter-data-series correlations need to be handled in

future work.

4.6 Summary

This chapter presents COBRA, a cloud-based reliability assurance framework for data-

intensive CPS. COBRA provides automated multi-stage runtime reliability evaluation along

the CPS workflow using data relocation services, a cloud data store, data quality analysis

and process scheduling with self-tuning to achieve scalability, elasticity and efficiency. A set

of performance metrics is used to evaluate the system performance on the fly. A prototype

of COBRA has been implemented and experimented with on the BMS of a large office

building in New York City. The experiments show that it is effective, efficient, scalable and

easy to implement.



Chapter 5

Reliability Benchmark Framework for

CPS

Improving CPS reliability requires an objective measurement, estimation and comparison of

the CPS system reliability. Previously in section 3.5.1, I described some reliability metrics

used in the experiments. In order to provide a generic way to compare and benchmark

system reliability for CPS and to extend the approach described in the prior sections, I will

further describe a generic reliability benchmark framework called FARE (Failure Analysis

and Reliability Estimation) for CPS in this chapter.

In the following section, I will give an overview. In section 5.2, I will describe the

motivation for this framework. In section 5.3, I will describe the FARE framework consisting

of a CPS reliability model, selection of testing environment, failure analysis and reliability

estimation. For empirical evaluation, I will present my implementation in section 5.4,

experiments and results in section 5.5. Finally, I will conclude in section 5.6.

5.1 Overview

Prior researches have proposed reliability benchmarks for some specific CPS such as wind

power plants and wireless sensor networks. There were also some prior researches on the

112
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components of CPS including software and some specific hardware. But there isn’t any

reliability benchmark framework for CPS in general, according to the best of my knowledge.

This chapter describes FARE (Failure Analysis and Reliability Estimation), a framework for

benchmarking the reliability of cyber-physical systems. The FARE framework provides a

set of methods and metrics on failure analysis, data quality measurement and monitoring,

operational availability measurement and reliability estimation for benchmarking CPS

reliability.

The advantages of the FARE framework include a more general and accurate represen-

tation of the CPS reliability; additional reliability metrics; CPS-specific holistic system

reliability; emphasis of actual use and continual evaluation. The framework is extensible for

accommodating new reliability measurement techniques and metrics. It not only provides

a retrospect evaluation and estimation of the CPS system reliability using past data, but

also provides a mechanism for continuous monitoring and evaluation of CPS reliability for

runtime enhancement.

For empirical study, I implemented the FARE framework as a software application

and applied it on a smart building management system for a large commercial building

in New York City. My experiments showed that FARE is easy to implement, accurate for

comparison and can be used for building useful industry benchmarks and standards after

accumulating enough data.

5.2 Motivation

5.2.1 Reliability Benchmarking

Some prior work has been done on benchmarking system dependability for computer

systems and software suites. In their book [120], Kanoun and Spainhower collected some

dependability benchmarks for computer systems developed by industry and academia

and explained the various principles and concepts of dependability benchmarking. The
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DBench (Dependability Benchmarking) project by the European community’s Information

Society Technologies developed a conceptual framework and an experimental environment

for benchmarking the dependability of COTS (commercial off-the-shelf) components and

COTS-based systems [106].

TPC defined the TPC-C specifications and metrics for benchmarking transaction process-

ing and database performance including integrity through simulating a complete computing

environment where a population of users executes transactions against a database [219].

Cooper et al. presented the Yahoo! cloud serving benchmark (YCSB) framework for

comparison of the performance, scalability and availability of cloud data serving systems

[49]. These approaches do not provide a general means for benchmarking reliability of

cyber-physical systems.

5.2.2 Component Reliability versus System Reliability

Through a study of flight computing architectures and related avionics components for

launch vehicles for NASA future missions, Chen et al. stated [43] the limitations of using

component reliability to represent system reliability in their paper. Their conclusion was

that component reliability analysis and system reliability analysis need to be evaluated at

the same time, and that the limitations of each analysis and the relationship between the two

need to be fully understood to ensure mission success.

5.3 FARE Framework

The FARE framework consists of a CPS reliability model, the selection of evaluation

environment using a decision tree, failure analysis including failure detection and diagnostics,

and reliability estimation using metrics and statistical modeling.
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Figure 5.1: CPS reliability model.

5.3.1 CPS Reliability Model

In engineering, computing and communication have become a ‘universal system integrator’

for physical systems making computer based engineering systems the major source of

industrial innovation [216]. Composition of CPS is used as the basis of CPS reliability

model in the FARE framework. As illustrated in Figure 5.1, a simple CPS reliability

model consists of physical components or hardware, cyber components or software, and

communication among them. At the system level, CPS reliability can be measured or

estimated and it is an integration of different components’ reliability.

5.3.2 Selection of Evaluation Environment

Reliability estimation depends on the results or data collected from the tests or the actual

use of the system. Figure 5.2 illustrates the decision tree approach in selecting different

evaluation environments where the failure data will be collected. The top-level category

determines whether the results are based on tests in a lab environment or actual use in

the operational environment. In a lab environment, some tests are based on a life test that

simulates the actual running environment. Life tests include Highly Accelerated Life Test
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Figure 5.2: Decision tree for selecting evaluation environment.

(HALT) and Life Test (LT) in a normal pace. The HALT is similar to stress test that creates

a situation such that failure is more likely to happen. It is a method based on physics-of-

failure, an approach to reliability assessment based on modeling and simulation that relies

on understanding the physical processes contributing to the appearance of the failures [149].

Without a life test, in a lab environment, components’ reliability data can be used to

construct the whole system’s reliability. Although there are many ways to do the compo-

sitional reliability, those estimates are often not indicative or accurate for representing the

whole system reliability. One reason is the communication failure that is often not easy to

be incorporated in these models [95].

Reliability estimation in actual use employs continual failure data processing to enable

rolling estimates that are often useful in system performance monitoring, especially for

human operators of these systems. There are several advantages for employing reliability

estimation in actual use. The first advantage is that it enables real-time feedback to the
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operators or systems so that corrective actions can be implemented in a manual or autonomic

fashion. Second, it enables large long-running systems such as power grids or smart

buildings to be continuously monitored for reliability improvement or degradation. Those

systems are often not possible to be simulated in a lab environment due to their complexity

and the unpredictable running environment. The continual reliability estimates can be further

used to construct a reliability profile for the system under study. The reliability profiling

may show reliability changes in relation to different factors such as seasonality and usage

pattern.

Not every type of CPS can be evaluated during actual use. For example, medical systems

need to be properly tested for reliability prior to their use in the medical operations. Lab

testing for these systems is needed.

5.3.3 Failure Analysis

Failure analysis includes failure detection and diagnostics. As illustrated in Figure 5.3,

failure detection provides information for further diagnostics, along with domain knowledge

and heuristics.

Failure Detection

Domain Knowledge

Heuristics

Root Cause Analysis

Corrective Action Recommendation

Preventive Action Recommendation

Failure Diagnostics

Figure 5.3: Failure analysis.
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Rating Description of Detection
1 Almost certain to detect
2 Very high chance of detection
3 High chance of detection
4 Moderately high chance of detection
5 Medium chance of detection
6 Low chance of detection
7 Slight chance of detection
8 Remote chance of detection
9 Very remote chance of detection
10 No chance of detection; no inspection

Table 5.1: Rating for detection of failure.

Failure Detection

The failure manifestation can be used as a proxy to system failure. For example, an out of

range measurement indicates a system failure. Failure might be induced by the external

environment, a human mistake or an internal system fault. Automated anomaly detection

techniques such as those using machine learning and data mining can be used for more

intelligent detection of failures. Table 5.1 lists the ratings for detection of failure [77].

Failure Diagnostics

Failure diagnostics process the detected failure data using root cause analysis techniques,

corrective and preventive action recommendation techniques with possible help from domain

knowledge and heuristics. Various machine learning techniques can be used in failure

diagnostics [42, 191].

• Root cause analysis (RCA) [115, 146] is used to classify failure type, analyze its

nature and mechanism.

• Corrective action recommendation is used to correct the current failure and avoid

future recurrence of the same type of failure.
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Rating Severity Description
1 The effect is not noticed by customer
2 Very slight effect noticed by customer, does not annoy or inconvenience

customer
3 Slight effect that causes customer annoyance, but they do not seek service
4 Slight effect, customer may return product for service
5 Moderate effect, customer requires immediate service
6 Significant effect, causes customer dissatisfaction; may violate regulation or

design code
7 Major effect, system may not be operable; elicits customer complaint; may

cause injury
8 Extreme effect, system is inoperable and a safety problem. May cause severe

injury.
9 Critical effect, complete system shutdown; safety risk
10 Hazardous; failure occurs without warning; life threatening

Table 5.2: Rating for severity of failure.

• Preventive action recommendation is used to prevent the occurrence of a certain

potential failure before it happens. Cost versus benefits can be a factor in determining

preventive action such as replacement or inspection of the components.

Failure Severity and Impact

To evaluate failure severity and impact, the U.S. military developed Failure Mode Effects

Analysis (FMEA) [77] in the 1940s. FMEA and its standards were further developed by

aerospace, automotive and other industries. Table 5.2 lists the ratings for failure severity.

Preventive Maintenance

For CPS with high reliability requirement such as critical infrastructure like power grid,

preventive maintenance, i.e., maintenance of equipment or systems before fault occurs,

is often employed to improve system reliability. For power companies to benefit from

the use of knowledge discovery methods and statistical machine learning for preventive

maintenance, Rudin et. al introduced a general process for transforming historical electrical
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grid data into models that aim to predict the risk of failures for components and systems

[197]. These models can be used directly by power companies to assist with prioritization

of maintenance and repair work. Specialized versions of this process are used to produce 1)

feeder failure rankings, 2) cable, joint, terminator, and transformer rankings, 3) feeder Mean

Time Between Failure (MTBF) estimates, and 4) manhole events vulnerability rankings.

The process in its most general form can handle data sources that are historical (static),

semi-real-time or real-time, incorporate state-of-the-art machine learning algorithms for

prioritization ranking, and include an evaluation of results via cross-validation and blind

testing.

5.3.4 Reliability Estimation

Reliability may be measured in different ways depending on the particular situation [189].

Reliability can be estimated using a qualitative or a quantitative method. Some systems’

reliability cannot be estimated quantitatively due to various reasons such as lack of failure

data. For these systems, qualitative method using heuristics may be applicable.

FARE framework primarily employs quantitative methods for reliability estimation. The

following are some commonly used reliability metrics that are also applicable to the FARE

framework:

• Failure rate is defined as the total number of failures within an item population, divided

by the total time expended by that population, during a particular measurement interval

under stated conditions [139].

• Mean time between failures (MTBF) is the mean (expected) time between system

failures.

• Mean time to failure (MTTF) is sometimes used instead of MTBF in cases where a

system is replaced after a failure, since MTBF denotes time between failures in a

system, which is then repaired.
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• Mean time to repair (MTTR) is the mean time required to repair a failed component

or device.

• Availability or mission capable rate is the proportion of time a system is in a function-

ing condition. This is also called system uptime (x%). Using a simple representation,

it can be calculated as a ratio of the expected value of the uptime of a system to the

aggregate of the expected values of up and down time,

• Availability at time t is the probability that the item is able to function at time t [189].

• Survival probability is the probability that the item does not fail in a time interval

(0, t] [189].

• Likelihood of recovery is equal to the probability of the observed system recovery

given a particular measurement interval under stated conditions [40].

• Extent of recovery is the degree to which the system has recovered [50].

Additionally, I introduce three new reliability measurement metrics in the FARE frame-

work in order to provide coverage for some specific evaluation scenarios:

• Theta is the rate of reliability change over time. If MTBF is used as the reliability

measurement, then Theta can be calculated as

Θ(t) =
MT BF(t) − MT BF(t + ∆t)

∆t
.

On a MTBF versus time scatter plot chart, Theta indicates the slope of the linear

regression. In a long running continual evaluation environment, Theta provides a

useful indicator of the reliability improvement or degradation over time.

• Vega is the rate of reliability change over a selected variable, which can be any factor

of interest. Similar to Theta, it is a derivative measurement of the reliability for better
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indication of the reliability improvement or degradation with respect to a specific

variable.

• Cross-sectional failure percentage (CSFP) is the percentage of total failed items

within an item population in use at a specific time t. This may look similar to failure

rate or availability at time t. But they are not the same. In a simple form, failure rate

is the total number of failures divided by the total time. Availability at time t is the

probability that a single item does not fail at time t. Cross-sectional failure percentage

is the total number of failed items divided by the total number of items in use at a

given time t. It is a ratio based on actual measurement. This metric is especially useful

for a large system that has a large number of subsystems or components running in

parallel.

To give some further explanation, I use λ(t) to denote the failure rate at time t, and R(t)

to denote the reliability function (or survival function), which is the probability of no failure

before time t. Then the failure rate is:

λ(t) =
R(t) − R(t + ∆t)

∆t · R(t)
.

As ∆t tends to zero, the above λ becomes the instantaneous failure rate, which is also

called hazard function (or hazard rate) h(t):

h(t) = lim
∆t→0

R(t) − R(t + ∆t)
∆t · R(t)

.

A failure distribution F(t) is a cumulative failure distribution function that describes the

probability of failure up to and including time t:

F(t) = 1 − R(t), t ≥ 0.

For system with a continuous failure rate, F(t) is the integral of the failure density function
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f (t):

F(t) =

∫ t

0
f (x) dx.

Then the hazard function becomes

h(t) =
f (t)
R(t)

.

For the Weibull [236, 190] failure distribution, the failure density function f (t) and

cumulative failure distribution function F(t) are

f (t; λ, k) =


k
λ
( t
λ
)k−1e−(t/λ)k

, t ≥ 0

0, t < 0

F(t; λ, k) =


1 − e−(t/λ)k

, t ≥ 0

0, t < 0

where k > 0 is the shape parameter and λ > 0 is the scale parameter of the distribution. The

hazard function when t ≥ 0 can be derived as

h(t; λ, k) =
f (t; λ, k)
R(t; λ, k)

=
f (t; λ, k)

1 − F(t; λ, k)
=

k
λ

( t
λ

)k−1
.

A value of k < 1 indicates that the failure rate decreases over time. A value of k = 1 indicates

that the failure rate is constant (i.e., k/λ) over time. In this case, the Weibull distribution

becomes an exponential distribution. A value of k > 1 indicates that the failure rate increases

with time.

The mean time to failure is given by

MTT F =

∫ ∞

0
t · f (t) dt =

∫ ∞

0
R(t) dt.
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If MTTR is known, then the availability is

Availability =
MTT F

(MTT F + MTTR)
.

5.4 Implementation

I developed a prototype FARE system for this study using Java programming language and

MATLAB.

Software Design

As illustrated in the software architecture diagram in Figure 5.4, the software includes a data

preprocessor, a failure detector, a reliability estimator with metrics and profiler, and a user

interface along with data output component. It was designed with modular components so

that it can be used along with or embedded in another larger system.

5.5 Empirical Studies

In this section, I will describe some empirical studies.

5.5.1 Evaluation Methodology

The reliability metrics described in section 3.5.1 and the following performance metrics are

used to evaluate the FARE system quantitatively.

5.5.2 Real-World Experiments

I evaluated the prototype FARE system using a smart building BMS (building management

system) system at a large commercial building in New York City. A BMS is a type of

CPS consisting of both software and hardware components that controls and monitors a
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Figure 5.4: FARE software components and data flow.

building’s mechanical and electrical equipment, such as ventilation, lighting, power systems,

fire systems and security systems. The building energy control system is an important

component of the BMS that reads data feeds representing internal and exogenous conditions

(e.g., temperature, humidity, electrical load, peak load, fluctuating electricity pricing and

building work schedule) and takes control actions (e.g., adjusts lighting, turns on/off the

air-conditioning and shuts off partial or all elevators) accordingly. Building operators usually

have the ability to change or override control actions taken by the BMS to accommodate

special situations such as severe weather or changes in the building’s work schedule.
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5.5.3 Experiments on Smart Building BMS System

Figure 5.5 illustrates the experimental setup. The building’s BMS’s software collects various

data sources and stores them in the local BMS database. I established a data transmission

link between the BMS server and the remote server where FARE software is installed and

running.

Data Points

BMS

Firewall

Router Router

Firewall

FARE Application Server

Building

Hub

Hub
Internet

Figure 5.5: Experimental setup.

Determination of the failure trigger condition depends on the data sources being used. In

my experiments, FARE software first processes the collected data using the failure criteria

to obtain a time series dataset of failure instances. This data is then processed by the FARE

software to obtain reliability estimates on the fly.

The following are some experimental results.

Failure Detection

Figure 5.6 shows an example BMS time series data for six months starting from July 1, 2012

to January 1, 2013. As a simple threshold failure detection method, the data points with a

value above 80 or below 65 were determined to be nonconformity or failure.

Similarly, Figure 5.7 shows an example BMS electricity time series data for two months

starting from August 1, 2013 to September 30, 2013. The chart shows the actual and

predicted usage of electricity, along with the system start-up and ramp-down time. Using

the simple threshold failure detection method, the actual usage data points with value below
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Figure 5.6: BMS time series data.

300 kilowatts (kW) were determined to be nonconformity or failure.

Reliability Estimation

After the failure incidence time series data is collected, FARE then estimates reliability

metrics as described in section 5.3.4. To follow the example described in Figure 5.6, the

weekly failure rates for the six months are listed and charted in Figure 5.8. Also, the linear

regression y = −0.0229x + 1.1169,R2 = 0.03829 shows the improved results over the time.

In this case, the Theta equals −0.0229 using failure rate as the reliability measurement.
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Figure 5.7: BMS electricity time series data.

Summary

In summary, the experiments show the approach is effective for benchmarking reliability of

CPS. Furthermore, the approach can be implemented relatively easily during the use phase

of the CPS to enable continuous failure analysis and reliability estimation. The framework

can also be used to decide the most appropriate evaluation environment following a decision

tree.
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Figure 5.8: Weekly failure rate.

5.6 Summary

This chapter presents FARE (Failure Analysis and Reliability Estimation), a framework

for benchmarking reliability of cyber-physical systems. The framework employs a generic

CPS reliability model, a set of methods and metrics on the evaluation environment selection,

failure analysis, and reliability estimation for benchmarking CPS reliability. It not only

provides a retrospect evaluation and estimation of the CPS system reliability using the

past data, but also provides a mechanism for continuous monitoring and evaluation of CPS

reliability for runtime enhancement. The framework is generic and can accommodate new

reliability measurement techniques and metrics. My empirical evaluation demonstrated that

FARE is easy to implement, accurate for comparison and can be used for building useful

industry benchmarks.



Chapter 6

Related Work

Some related work has been discussed in the prior chapters. In this chapter, I will describe

additional prior research and compare them with my approach.

In the following section, I will describe some related work on automated online evalua-

tion. In section 6.2 and 6.3, I will describe some related work on data quality analysis and

self-tuning. In section 6.4 and 6.5, I will describe some related work on cloud computing

and data-intensive computing. Finally in section 6.6, I will describe some related work on

failure analysis and reliability estimation.

6.1 Automated Online Evaluation

In section 1.5, I mentioned some prior work on achieving CPS reliability through system

design, usually prior to the deployment of the CPS in the field. My approach aims to

improve the reliability of CPS using automated online evaluation. It employs a runtime

evaluation with feedback loop for deployed CPS running under the real-world unpredictable

environment. Thus, these “reliability by design” researches are complementary to my

approach.

130
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6.1.1 Runtime Evaluation of ML System

In section 3.5.6, I described the application and experiments of the ARIS system on the

smart building ML system. Then in section 3.5.4, I gave examples each of the steps of

automated online evaluation for smart power grid ML system, using NYC power grid data.

Depending on specific data and operational goals, there may be many ways to perform one

of the three evaluations; the key point is that all of these three types of evaluation must be

present. In machine learning and data mining, only the second type of evaluation–output

data quality–is typically considered, and even that evaluation is mainly considered in static

settings (without the element of time).

Langley’s seminal paper “Machine Learning as an Experimental Science” made em-

pirical study an indispensable aspect of machine learning research [131]. Since that time,

many challenges in experimental machine learning have been identified. For instance, a

more recent survey of Japkowicz reviewed shortcomings in current evaluation methods

[109]. Through using ARIS on the New York City power grid, I have also been able to

identify new challenges (e.g., the AUC cyclicity challenge). In machine learning, the goal is

often to optimize the criteria used for evaluation. ARIS suggests a much more ambitious

set of evaluations than what is usually performed in machine learning and data mining

experiments, potentially leading to a much broader way to consider and design machine

learning systems, and hopefully leading to improvements in power grid operations.

Murphy et al. have done research on verification of machine learning programs from

software testing perspective [161]. My approach does not verify the internal correctness of

the machine learning or data mining component. ARIS treats the machine learning and data

mining process as a black-box module and conducts evaluation according to its external

specifications. This leaves the quality assurance of the machine learning and data mining

software module to the machine learning researchers and software developers or testers.
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6.1.2 Runtime Evaluation for Improving Reliability and Security

Mitchell and Chen described a probability model based on stochastic Petri nets [180] to

describe the behavior of the CPS in the presence of both malicious nodes exhibiting a range

of attacker behaviors, and an intrusion detection and response system (IDRS) for detecting

and responding to malicious events at runtime [157]. Vaseashta et al. described some

vulnerabilities and countermeasures for sensor network [226]. Walters et al. gave a general

overview on wireless sensor network security: obstacles, requirements, attacks, and defenses

[228]. My approach does not address the malicious attack in the context of security, but the

automated online evaluation approach and the data quality analysis techniques I described

may be expanded to handle some security related challenges.

In order to deal with the problem that software products are often released with missing

functionality or errors that result in failures in the field, Bowring et al. described an

approach of monitoring deployed software using software tomography. This approach splits

monitoring tasks across many instances of the software, so that partial information can be

collected from users by means of light-weight instrumentation and merged to gather the

overall monitoring information [29]. Elbaum and Hardojo also did an empirical study of

profiling strategies for released software and their impact on testing activities [70]. These

perpetual testing [156] studies are similar to my approach in terms of continuous evaluation

after the systems are deployed in the field, but they target only software systems.

6.2 Data Quality Analysis

Some prior research has been done on data quality analysis. Ballow and Pazer presented a

general model to assess the impact of data and process quality upon the outputs of multi-user

information-decision systems. The data flow/data processing quality control model was

designed to address several dimensions of data quality at the collection, input, processing

and output stages [22]. Wang and Strong developed a framework that captures the aspects
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of data quality that are important to data consumers. A two-stage survey and a two-phase

sorting study were conducted to develop a hierarchical framework for organizing data quality

dimensions [232]. Pipino et al. presented subjective and objective assessments of data

quality, as well as simple ratio, min or max operators, and weighted average–three functional

forms that can help in developing data quality metrics in practice [181]. Their work does

not employ computational intelligence for data quality analysis.

Data mining finds its increased adoption and application in software engineering in

recent years. Gegick et al. performed text mining of bug reports to identify security issues

[85]. Hassan and Xie described the concept of software intelligence and the future of mining

software engineering data [94]. Xie et al. presented a general overview of data mining

for software engineering and described an example of duplicate bug detection using vector

space-based similarity [248]. Wang et al. also described an approach to detect duplicate bug

reports using both natural language and execution information [233].

My redundancy checking engine uses both probability distribution-based KL divergence

and vector space-based Cosine similarity ranking, instead of only vector space-based sim-

ilarity. Furthermore, my approach provides a similarity ranking list that can be used for

search, instead of only Yes and No on duplication check. Gegick et al. presented text mining

of bug reports to identify security issues [85]. Their work aims to identify security problems

such as buffer overflow through mining the bug reports. Their purpose and techniques are

different from my approach.

6.2.1 Data Anomaly Detection

Data anomaly or outlier detection has been a popular research area for many years due to its

broad application such as network intrusion detection for computer security [133]. In their

survey paper [39], Chandola et al. provided a structured and comprehensive overview of the

research on anomaly detection and identified the advantages and disadvantages of different

techniques in each category.
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For processing stream data, Breunig et al. introduced the concept of local outlier factor

(LOF), which is a degree, instead of a binary choice, of being an outlier, and assigned it to

each object. They gave a detailed formal analysis showing that LOF has many desirable

properties. As mentioned in section 3.2.3 and 4.2.2, Pokrajac et al. proposed an incremental

LOF algorithm, appropriate for detecting outliers in data streams [182]. I used this algorithm

in the online anomaly detection. Pokrajac et al. further developed an incremental version of

connectivity-based outlier factor (COF) algorithm and discuss its computational complexity

[183]. Tan et al. introduced Streaming Half-Space-Trees (HS-Trees), a fast one-class

anomaly detector for evolving data streams, which requires only normal data for training

and works well when anomalous data are rare [217]. My approach does not limit itself to

any specific type of anomaly detection technique.

6.2.2 Data Anomaly Diagnosis

Although equally important as data anomaly detection, data anomaly diagnosis received

much less attention within the research community. With the exponential increase of data

volume in different kinds of ‘smart’ devices and CPS, the automatic analysis of data and

diagnosis of data anomalies are becoming more and more important.

Lakhina et al. proposed a method to diagnose network-wide traffic anomalies based on a

separation of the high-dimensional space occupied by a set of network traffic measurements

into disjoint subspaces corresponding to normal and anomalous network conditions [129,

130]. Yang et al. developed a diagnosis technique that uses standard monitoring data

to determine which related changes in behavior may cause anomalies in grid computing

environment [249]. McIntosh et al. described a loosely-coupled, semi-automated diagnosis

system to diagnose thermal hotspots in a data center to substantially reduce the time,

tedium and expertise for analyzing hotspot anomalies that sometimes occur due to excessive

workload or equipment failures [150]. Their work is intended for a specific type of system

and uses a different diagnosis approach than my machine learning based approach.
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6.3 Self-Tuning

In their paper “The Vision of Autonomic Computing,” Kephart and Chess from IBM Thomas

J. Watson Research Center proposed autonomic computing as a solution to the almost impos-

sible difficulty of managing complex current and planned computing systems, which require

integrating several heterogeneous environments into corporate-wide computing systems

that extend into the Internet [122]. Kaiser et al. have retrofitted autonomic computing onto

legacy systems externally, without any need to understand or modify the code, and in many

cases even when it is impossible to recompile [117, 174]. As presented in my approach,

autonomic computing can be further extended and applied on the complex CPS running in

an unpredictable environment and processing increasingly large amount of data.

Chaudhuri and Narasayya discussed self-tuning database systems and automated physical

database design in the AutoAdmin project at Microsoft Research [41]. Sullivan demonstrated

in his Ph.D. thesis that probabilistic reasoning and decision-making techniques can be used

as the foundation of an effective, automated approach to software tuning [212]. Herodotou

et al. introduced a self-tuning system for Hadoop database systems and big data analytics.

The system adapts to user needs and system workloads to provide good performance

automatically, without any need for users to understand and manipulate the many tuning

knobs in Hadoop [96]. I employed self-tuning in the various aspects of my approach

including the ARIS system and COBRA framework. My experiments demonstrated its

effectiveness.

6.4 Cloud Computing

NIST cloud computing model is composed of five essential characteristics (i.e., on-demand

self-service, broad network access, resource pooling, rapid elasticity, and measured service),

three service models (i.e., Software as a Service (SaaS), Platform as a Service (PaaS),

and Infrastructure as a Service (IaaS)), and four deployment models (i.e., private cloud,
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community cloud, public cloud, and hybrid cloud) [151]. The COBRA framework takes

advantage of the cloud model’s characteristics by using the Platform as a Service (PaaS) in

either public or private cloud.

Armbrust et al. gave a Berkeley view of cloud computing and listed top 10 obstacles

and opportunities for cloud computing [18, 19]. One of these obstacles is the data transfer

bottlenecks. In my COBRA framework, I described my solution to this problem within

the context of CPS data. Another obstacle mentioned is the difficulty in scaling quickly.

COBRA framework employs self-tuning to achieve elastic scaling.

As a type of cloud based monitoring system, Amazon CloudWatch [7] provides mon-

itoring for cloud resources such as Amazon EC2, Amazon database instances and the

applications customers run on Amazon Web Services. Developers and system administra-

tors can use it to collect and track metrics, gain insights and react immediately to keep

their applications and services running smoothly. COBRA can connect to CloudWatch by

generating and passing through custom metrics. The service provided by CloudWatch can

simplify the implementation of COBRA.

6.5 Data-Intensive Computing

Large scalable data management and data-intensive computing has been a research area for

many years and much research has focused on large scale data management in a traditional

enterprise setting. In their 1998 article, Moore et al. described data-intensive computing

and digital libraries [158]. Cannataro et al. defined applications that explore, query, analyze,

visualize, and, in general, process very large scale data sets as data intensive applications

[36].

Bryant called for data-intensive scalable computer (DISC) systems, which differ in

fundamental ways from existing high-performance computing (HPC) systems, for scientific

computing applications because these applications must accumulate and manage massive



CHAPTER 6. RELATED WORK 137

datasets, as well as perform sophisticated computations over these data [32]. Szalay et

al. presented the architecture for a three tier commodity component cluster designed for

a range of data intensive computations operating on petascale data sets called GrayWulf

to meet the challenge for traditional supercomputing architectures that maximize FLOPS,

i.e., FLoating-point Operations Per Second, since CPU speed has surpassed IO capabilities

of HPC systems and clusters [215]. These approaches do not take advantage of cloud

computing’s capabilities in order to meet the challenges of data-intensive computing.

Some prior work has been done on the convergence of data-intensive computing and

cloud computing. Agrawal et al. presented some novel challenges in the cloud computing

that must be addressed to ensure the success of data management solutions in the cloud

environment [3]. Bicer et al. described the challenge of data analysis in a scenario where

data is stored across a local cluster and cloud resources; proposing a software framework to

enable data-intensive computing using cloud bursting, i.e., using a combination of compute

resources from a local cluster and a cloud environment to perform Map-Reduce type

processing on a data set that is geographically distributed [26].

Moretti et al. presented an abstraction entitled All-Pairs that enables campus computing

grids to provide end users with high-level abstractions that allow for the easy expression

and efficient execution of data-intensive workloads such as applications in biometrics,

bioinformatics, and data mining [159]. Garcia et al. presented a campus-based Large Scale

Data Facility (LSDF) with adequate storage space and a directly attached analysis farm

with value added services for the big scientific data-sets using the mixed Hadoop, Open

Nebula Cloud environments, a metadata repository, community specific metadata schemes,

graphical tools, and APIs [83]. Similar to my COBRA framework, these approaches try

to meet the challenges of data-intensive computing by employing the cloud computing

environment, either public, private or hybrid ones, and techniques.
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6.6 Failure Analysis and Reliability Estimation

6.6.1 Failure Analysis

Failure analysis has been a popular research area for many years. Stamatis described

the theory and execution of Failure Mode Effect Analysis (FMEA), a design tool used to

systematically analyze postulated component failures and identify the resultant effects on

system operations [210]. Robitaille categorized and described some common corrective

actions in his handbook [192]. de Visser et al. described failure severity in new product

development processes of consumer electronics [57]. Sheldon and Jerath described assessing

the effect of failure severity, coincident failures and usage-profiles on the reliability of

embedded control systems [204]. Appendix A describes a method of reliability estimation

using a semiparametric model with Gaussian smoothing, instead of Weibull and exponential

failure distribution. The evaluation of the method used some power grid CPS failure data.

These works target only some specific systems while my FARE framework is applicable to

general cyber-physical systems.

6.6.2 Component Reliability Assessment

Some prior research has been done on component reliability. Pechet and Nash gave a

comprehensive review of the predictive methods for predicting the reliability of hardware

electronic equipment [178]. He et al. described a theoretical framework for analyzing

communication reliability using frequency domain analysis and reliability calculus [95].

Appendix B describes BugMiner, a software reliability analysis technique employing

data mining on bug reports. Appendix C describes a mutation technique for constructing

subtle software bugs, which can be used for software reliability analysis. These works are

complementary to my FARE framework.
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6.6.3 System Reliability Assessment

The failure reporting, analysis and corrective action system (FRACAS) [208] was developed

by the US government and first introduced for use by the US Navy and all Department

of Defense agencies in 1985. The method calls for systematic failure data collection,

management, analysis and corrective action implementation. Its process is a disciplined

closed loop failure reporting, analysis and corrective action system. FRACAS is typically

used in an industrial environment to collect data, record and analyze system failures, mostly

as an offline postmortem analysis for reporting purpose. My approach employs online

continual runtime evaluation to achieve reliability assurance. Further, FRACAS deals

with actual failures that have happened, while my approach aims to prevent failures from

happening as well as correct them through intelligent data quality analysis and action

recommendation.



Chapter 7

Conclusion

In this chapter, I will describe the contributions, research accomplishments, future work and

conclusion of my thesis.

7.1 Contributions

There are three major contributions in this thesis work. The first contribution is automated

online evaluation (AOE), which is a data-centric runtime monitoring and reliability eval-

uation approach that performs data quality analysis using computational intelligence and

self-tuning techniques to improve system reliability for cyber-physical systems that process

large amounts of data, employ software as a system component, run online continuously and

maintain an operator-in-the-loop. I have presented an example architecture of AOE called

autonomic reliability improvement system (ARIS). My implementation and experiments

with ARIS in smart building CPS and smart power grid CPS have demonstrated that this

approach is effective and efficient. The data-dependence of this system makes it easily

applicable to different types of cyber-physical systems, and the open expandable architecture

also enables the incorporation of new data quality analysis and self-tuning techniques. A list

of items under this contribution is as follows:
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• A system evaluation approach called automated online evaluation that is able to

improve system reliability for cyber-physical systems in the domain of interest as

described in section 1.2. The approach employs data quality analysis and self-tuning.

It enables online reliability assurance of the deployed systems that are not possible

to perform robust tests prior to actual deployment because of physical and cost

constraints.

• A prototype implementation of the approach, i.e., ARIS system, and experimental

demonstration of the approach using ARIS in some controlled experiments as well as

real-world environments.

• A new technique of data quality analysis using computational intelligence and its

application in this type of evaluation system for cyber-physical system.

• A new demonstration of applying self-tuning in this type of evaluation system for

cyber-physical systems.

• A study on applicability of the approach on other domains in order to show that

the approach can be potentially adapted and extended for use in improving system

reliability for a much broader range of large-scale real-world online cyber-physical

systems.

The second contribution is COBRA, a cloud-based reliability assurance framework for

data-intensive CPS. COBRA provides automated multi-stage runtime reliability evaluation

along the CPS workflow using data relocation services, a cloud data store, data quality

analysis and process scheduling with self-tuning to achieve scalability, elasticity and effi-

ciency. A set of performance metrics is used to evaluate the system performance on the fly.

A prototype of COBRA has been implemented and experimented with on a smart building

management system. The experiments show that it is effective, efficient, scalable and easy

to implement.
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The third contribution is FARE, a framework for benchmarking reliability of cyber-

physical systems. The framework provides a CPS reliability model, a set of methods and

metrics on evaluation environment selection, failure analysis, and reliability estimation for

benchmarking CPS reliability. It not only provides a retrospect evaluation and estimation of

the CPS system reliability using the past data, but also provides a mechanism for continuous

monitoring and evaluation of CPS reliability for runtime enhancement. The framework is

extensible for accommodating new reliability measurement techniques and metrics. My

empirical evaluation demonstrated that FARE is easy to implement, accurate for comparison

and can be used for building useful industry benchmarks.

7.2 Research Accomplishments

In addition to the main contributions described above, my research accomplishments include

a list of publications and software applications.

7.2.1 List of Publications

For this thesis work, I have completed following papers:

Papers related to AOE, i.e., automated online evaluation for CPS as described in sec-

tion 3:

• Leon Wu and Gail Kaiser. An Autonomic Reliability Improvement System for Cyber-

Physical Systems. In Proceedings of the IEEE 14th International Symposium on

High-Assurance Systems Engineering (HASE), October 2012 [240].

• Leon Wu, Gail Kaiser, David Solomon, Rebecca Winter, Albert Boulanger, and Roger

Anderson. Improving Efficiency and Reliability of Building Systems Using Machine

Learning and Automated Online Evaluation. In Proceedings of the Eighth Annual



CHAPTER 7. CONCLUSION 143

IEEE Long Island Systems, Applications and Technology Conference (LISAT), May

2012 [244].

• Leon Wu, Gail Kaiser, Cynthia Rudin, and Roger Anderson. Data Quality Assurance

and Performance Measurement of Data Mining for Preventive Maintenance of Power

Grid. In Proceedings of the ACM SIGKDD 2011 Workshop on Data Mining for

Service and Maintenance, August 2011 [242].

• Leon Wu, Gail Kaiser, Cynthia Rudin, David Waltz, Roger Anderson, Albert Boulanger,

Ansaf Salleb-Aouissi, Haimonti Dutta, and Manoj Pooleery. Evaluating Machine

Learning for Improving Power Grid Reliability. In ICML 2011 Workshop on Machine

Learning for Global Challenges, July 2011 [243].

Papers related to FARE, i.e., a reliability benchmark framework for CPS as described

in section 5:

• Leon Wu and Gail Kaiser. FARE: A Framework for Benchmarking Reliability of

Cyber-Physical Systems. In Proceedings of the Ninth Annual IEEE Long Island

Systems, Applications and Technology Conference (LISAT), May 2013 [241].

• Leon Wu, Boyi Xie, Gail Kaiser, and Rebecca Passonneau. BugMiner: Software

Reliability Analysis Via Data Mining of Bug Reports. In Proceedings of the 23th In-

ternational Conference on Software Engineering and Knowledge Engineering (SEKE),

July 2011 [246].

• Leon Wu, Timothy Tervinen, Gail Kaiser, Roger Anderson, Albert Boulanger, and

Cynthia Rudin. Estimation of System Reliability Using a Semiparametric Model. In

Proceedings of the IEEE EnergyTech 2011 (EnergyTech), May 2011 [245].
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7.2.2 List of Software Applications

For empirical studies, I have developed and experimented with the following software

applications:

• ARIS, an autonomic reliability improvement system as described in section 3.3.

• COBRA, a cloud-based reliability assurance framework as described in section 4.3.

• FARE, a reliability benchmark framework as described in section 5.4.

7.3 Future Work

In this section, I will describe future work for different aspects of this thesis work.

7.3.1 Autonomize AOE for CPS

For future work on automated online evaluation as described in section 3.2, one potential

direction is to further offload the work by human system operators, thus closing the feedback

loop, and instead employ some automated software controllers with actuators or robots that

can take actions as human operators on the cyber-physical systems. In this way, the whole

cyber-physical system can be fully autonomic with self-management, self-configuration and

self-healing. Some prior work has been done for closed-loop control. Li et al. introduced a

modeling framework for identifying dynamic models of systems that are under feedback

control with closed-loop conditions and produced a joint representation including both the

plant and controller models in state space form [136]. This kind of study may be referenced

for developing a fully autonomic CPS reliability improvement system in the future.

7.3.2 Security for Autonomic System

The future research of enabling fully autonomic CPS reliability improvement operation

without human intervention will have to take into consideration other factors such as security
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and responsibility. If an Internet or cloud computing-based approach will be used, then the

cybersecurity will have to be considered as an additional system requirement. In their paper

“Security as a New Dimension in Embedded System Design,” Kocher et al. provided a unified

and holistic view of embedded system security by analyzing the typical functional security

requirements for embedded systems from an end-user perspective [125]. Romero-Mariona

et al. described some techniques for developing cybersecurity requirements [193]. These

prior works can be useful for developing future secure reliability improvement systems.

7.3.3 Improvement of Data Quality Analysis

For data quality analysis, one future work is to go beyond the disjoint model. As mentioned

in section 4.5.4, one limitation in the prototype implementation of the COBRA framework

is the assumption of the disjoint model. The current work assumes that processes can be

run independently of each other and that the order in which processes are executed is not

important. Hence, it treats every streaming data series from each source (e.g., sensor data

point) separately. It does not take into consideration correlation or association between

separate data sources. In many cases, reliability issues might have causal or clustering

effects. For example, a failure in one software component might also cause other adjacent or

dependent components to fail. These inter-data-series correlations need to be handled in

future work.

Furthermore, new data quality analysis and self-tuning techniques can be explored and

experimented with in the future work. The ARIS system and COBRA framework are

not limited to any specific type of evaluation techniques or implementation programming

languages. With a broad spectrum of computational learning algorithms and data analysis

techniques available, new methods may be experimented with and employed to improve the

reliability improvement system.
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7.3.4 Building a CPS Reliability Benchmark Database

My experiments for the FARE framework as described in section 5.5 are not extensive

due to the limited access to the CPS and the amount of data available. My real-world

experiments used smart power grid systems and smart building systems. Other types of

sensor-based CPS include wireless sensor networks and other types of intelligent control

CPS include autonomous automotive systems, medical monitoring, process control systems,

distributed robotics, and automatic pilot avionics. One possible future work would be

to apply the approach to some additional types of CPS with some larger datasets. This

would be especially useful for benchmarking evaluation so that a benchmarking results

database can be developed for further analysis and comparison by research and industry

communities. A successful benchmarking system for reference is the TPC Benchmark C for

online transaction processing (OLTP) [219].

7.3.5 Privacy Protection for CPS Users

In the case of CPS involving private information about human subjects, such as medical

systems dealing with patients’ personal health information, privacy protection will become

another important system requirement. Improving system reliability for this CPS should

not violate the privacy policy. For example, when a CPS encounters data anomalies or

system failures, the reliability assurance process should not collect or transmit sensitive

information that is beyond the CPS’s operating state for reliability purpose. In their survey

paper [45], Choi et al. discussed the challenges associated with privacy in health care in

the electronic information age based on the Health Insurance Portability and Accountability

Act of 1996 (HIPAA) Privacy and Security Rules [223]. They examined the storing and

transmission of sensitive patient data in the modern health care system and discussed current

security practices that health care providers institute to comply with HIPAA Security Rule

regulations. This kind of study will have to be incorporated for those types of CPS that

involve human private information.
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7.4 Conclusion

In this thesis, I presented automated online evaluation (AOE), a data-centric runtime moni-

toring and reliability evaluation approach that performs data quality analysis using computa-

tional intelligence and self-tuning techniques to improve system reliability for cyber-physical

systems that process large amounts of data, employ software as a system component, run

online continuously and maintain an operator-in-the-loop. AOE employs data quality analy-

sis and self-tuning techniques. My experiments with ARIS, a prototype implementation of

AOE, in smart building CPS and smart power grid CPS have demonstrated that this approach

is effective and efficient.

Additionally, in order to conduct efficient and cost-effective automated online evaluation

for data-intensive CPS, I presented COBRA, a cloud-based reliability assurance framework

using data relocation services, a cloud data store, data quality analysis and process scheduling

with self-tuning to achieve scalability, elasticity and efficiency. A set of performance metrics

is used to evaluate the system performance on the fly. My experiments on a smart building

BMS shows that it is effective, efficient, scalable and easy to implement.

Finally, in order to provide a generic way to compare and benchmark system reliability

for CPS and to extend the approach described above, I further presented FARE, a framework

for benchmarking reliability of cyber-physical systems. The framework provides a CPS

reliability model, a set of methods and metrics on evaluation environment selection, failure

analysis, and reliability estimation for benchmarking CPS reliability. It not only provides

a retrospect evaluation of the CPS system reliability using the past data, but also provides

a mechanism for continuous monitoring and evaluation of CPS reliability for runtime

enhancement. My empirical evaluation demonstrated that FARE is easy to implement,

accurate for comparison and can be used for building useful industry benchmarks.

This work on improving system reliability for CPS validated the hypotheses outlined in

section 1.7, advanced the state of the art in the CPS reliability research, expanded the body

of knowledge in this field, and provided some useful studies for further research.
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Appendix A

Reliability Estimation Using a
Semiparametric Model

How to accurately and effectively evaluate system reliability has been a long-time research
challenge. One commonly used indictor for system reliability is failure rate, which is the
frequency with which an engineered system or component fails. To estimate the failure rate,
historical failure information and/or testing of a current sample of equipment are commonly
used as the basis of the estimation. After these data have been collected, a failure distribution
model, i.e., a cumulative distribution function that describes the probability of failure up to
and including time t, is assumed (e.g., the exponential failure distribution or more generally,
the Weibull distribution) and used to estimate the failure rate.

Our experimental results indicate that using an exponential or Weibull distribution prior
may not be as effective for power grid failure modeling as a particular semiparametric
model introduced in this work. This semiparametric model does not assume a constant or
monotonic failure rate pattern as the other models do. We introduce Gaussian smoothing
that further helps the semiparametric model to closely resemble the true failure rate. We
applied this method to power network component failure data and compared its blind-test
estimation results with the subsequent real failures. We also compared it with other models
during these experiments. In all of these cases, the semiparametric model outperformed the
other models.

A.1 Background on Reliability Analysis
The failure rate can be defined as the total number of failures within an item population,
divided by the total time expended by that population, during a particular measurement
interval under stated conditions [139]. We use λ(t) to denote the failure rate at time t, and
R(t) to denote the reliability function (or survival function), which is the probability of no
failure before time t. Then the failure rate is:

λ(t) =
R(t) − R(t + ∆t)

∆t · R(t)
.

As ∆t tends to zero, the above λ becomes the instantaneous failure rate, which is also
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called hazard function (or hazard rate) h(t):

h(t) = lim
∆t→0

R(t) − R(t + ∆t)
∆t · R(t)

.

A failure distribution F(t) is a cumulative failure distribution function that describes the
probability of failure up to and including time t:

F(t) = 1 − R(t), t ≥ 0.

For system with a continuous failure rate, F(t) is the integral of the failure density function
f (t):

F(t) =

∫ t

0
f (x) dx.

Then the hazard function becomes

h(t) =
f (t)
R(t)

.

A.1.1 Weibull and Exponential Failure Distribution
For the Weibull failure distribution, the failure density function f (t) and cumulative failure
distribution function F(t) are

f (t; λ, k) =

{
k
λ
( t
λ
)k−1e−(t/λ)k

, t ≥ 0
0, t < 0

F(t; λ, k) =

{
1 − e−(t/λ)k

, t ≥ 0
0, t < 0

where k > 0 is the shape parameter and λ > 0 is the scale parameter of the distribution. The
hazard function when t ≥ 0 can be derived as

h(t; λ, k) =
f (t; λ, k)
R(t; λ, k)

=
f (t; λ, k)

1 − F(t; λ, k)
=

k
λ

( t
λ

)k−1
.

A value of k < 1 indicates that the failure rate decreases over time. A value of k = 1 indicates
that the failure rate is constant (i.e., k/λ) over time. In this case, the Weibull distribution
becomes an exponential distribution. A value of k > 1 indicates that the failure rate increases
with time.

A.2 Semiparametric Model with Gaussian Smoothing
We consider the semiparametric estimation of the longitudinal effect of a blip treatment (i.e.,
a single “all-or-nothing” treatment occurring at a precisely recorded time) on a system with
recurring events (e.g., immediately-recoverable failures in a mechanical/electronic system).
The estimand is the effect of the most recent blip treatment on the future arrival rate. The
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method assumes that the effect of treatment is to scale the underlying rate, and is thus an
extension of Cox regression with internal covariates, using the Gaussian process to provide
much-needed smoothing.

Although the method applies to any blip treatment, we focus on estimating the effect
of an event (failure) on future failures. For example, an association of an event with an
immediate increase in failure rate provides a finely-detailed explanation for “infant mortality”
which can be compared with parametric models such as the Weibull.

A.2.1 Probability and Regression Model
We assume each of N units is under observation for some interval of time [0,T ]. The method
can be easily adapted to allow for units with missing observation periods (known in advance).
Let T denote the (finite) set of times at which an event occurs. The unit to fail at time t (if
any) is denoted as i(t); ties are broken in preprocessing, if necessary, by randomly selecting
tied units and shifting their failures by one second. For any unit j under observation at time
t denote by τt,i the time of the treatment (which is here the time of previous outage). It turns
out to be important to remove “unobserved” units (i.e. those for which t−τt,i is unknown due
to left-truncation of the study); thus, the index-set of fully-observed units at time t is given
by R(t), and commonly called the “risk set.” Note that if the mechanism for observation is
independent of the treatment and failure processes (i.e., if it is fixed in advance), this does
not introduce bias [9]. We consider the non-parametric rate model as follows:

λ(t; i) = λ0(t)ψ(t − τt,i);

ψ(·) = eφ(·),

that is, 20 seconds after treatment the effect will be to make failure ψ(20) = eφ(20) times
more likely.

The full likelihood is then [9]:

l(λ0(·), ψ(·)) =
(∏

t∈T λ0(t)ψ(t − τt,i(t))
)
×

e−
∫ T

0
∑

j∈R(t) λ0(t)ψ(t−τt, j)dt.

The estimation proceeds in two steps, detailed in Appendix A–2. The λ0 term is first
shown to be estimated as 0 at all times t < T. Thus, conditioning on the failure times, the λ0

term is cancelled out (since it affects all units equally). This allows convenient estimation
of ψ(t) = eφ(t). After the estimation of ψ(t), the λ0 term may be estimated by a weighted
non-parametric estimator (which uses the estimate of ψ). For simplicity, in this paper we
fit the λ0 as a constant (within each network) by using the method of moments (Appendix
A–3).

Since only the time since last treatment is tracked, it is implicitly assumed that any
prior treatments are immediately “forgotten” by the system upon administration of a new
treatment.

The connection between the hazard λ and the distribution function is detailed in Appendix
A–1.
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The information reduction induced by the Cox framework should be very useful, espe-
cially in the Gaussian process setup which scales as O(p3) in the number of predictors. To
achieve further reduction of data for numerical stability and to expedite cross-validation, we
“bin” values of t − τt,· (which can be viewed as the predictors of φ(t − τt,·)) into percentiles.

A.2.2 Application
The method is applied to the failure rate of distribution power feeders in three boroughs
of New York City (Manhattan, Queens, and Brooklyn). Distribution feeders are the power
cables that feed intermediate voltage power in distribution grids. In New York City, un-
derground distribution feeders, mostly 27KV or 13KV, are one of the most failure-prone
electrical components in the power grid. The effect of infant mortality and the changing
hazard rate are of interest for maintenance scheduling applications.

In our application, N = 81 and there are |T| = T = 667 distinct failure times (i.e., 667
total failures are observed among the 81 units).

A.2.3 Preliminary Fit
The model predictions without smoothing are provided in Figure A.1, which shows the
failure rate versus time since treatment, and they are clearly overfitted to the data. Since
events occur rarely, we have that some (t − τt,i)-bins may be observed only once, associated
with a failure, causing a direct estimate of ψ(·) to overestimate. Likewise, many bins will be
associated only with the non-failed risk set, and ψ(·) will go to 0. This effect will be more
pronounced with a large number of units and rare failures.

A.2.4 Gaussian Process
We apply a Gaussian process prior to the values φ(t) with a radial basis function. After the
standard marginalizing of the prior [188] onto t ∈ T, the φ(t) are normally distributed with
mean 0 and covariance matrix K with

Kt,t′ = ae−(t−t′)2/b.

This marginal prior distribution will be referred to as π. The parameters a, b are the marginal
variance and so-called “characteristic time-scale” respectively. We use the parameter values
a = 5, b = 1 · 103 based on good performance on the training data. Alternatively, cross-
validation on a grid search on these parameters can be used to obtain approximate “point
estimates” of a, b.

Details of the fitting process are in Appendix A–4.
Figure A.2 shows the smoothed fit using the Gaussian process prior. It is much better

than the unsmoothed fit.
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Figure A.1: Preliminary fit.

A.3 Empirical Studies
We implemented the semiparametric model with Gaussian smoothing and applied it to five
years of distribution power feeder failure data collected in New York City, as discussed in
section A.2.2. We further compared the estimation with what actually happened. We also
applied the exponential distribution and Weibull distribution models on the same set of data
and compared their results with the results from the semiparametric model.

A.3.1 Experimental Setup
Our experiments consist of three main groups of blind tests. In New York City, the distribu-
tion power feeder failures are seasonal. During summer heat waves, more feeder failures are
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Figure A.2: Smoothed fit.

likely to happen. The three groups are estimates of the failure rate for the summer, winter,
and the whole year using the historical data for the first three years, i.e., from year 2006
through 2008. Then we compare these estimates with the actual failure rates measured
for the years 2009–2010 using the failure data. We perform similar experiments on the
exponential and Weibull models.

A.3.2 Results and Analysis
The results of fitting the model are summarized in Table A.1 (giving the constants) and
Figure A.3 (giving the estimated failure rate multiplier ψ(t)) for each network.

To analyze the fit of each model, we integrate (numerically for the semiparametric)
to convert the hazard estimates to estimates of the cumulative distribution function (see
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Network # of Units # of Failures Exponential λ
Queens: 01Q 26 327 75.2

Brooklyn: 01B 29 197 154.12
Manhattan: 02M 26 143 114.1

Network Weibull k Weibull λ Semiparametric λ0

Queens: 01Q 0.48 42 71.0
Brooklyn: 01B 0.69 120.4 130.0

Manhattan: 02M 0.62 108.0 112.1

Table A.1: Summary of results (units are in days).

Training
Network Exponential Weibull Semiparametric

Queens: 01Q 0.40 0.19 0.13
Brooklyn: 01B 0.25 0.17 0.14

Manhattan: 02M 0.27 0.17 0.12
Testing

Network Exponential Weibull Semiparametric
Queens: 01Q 0.35 0.23 0.20

Brooklyn: 01B 0.27 0.20 0.16
Manhattan: 02M 0.38 0.31 0.32

Table A.2: Kolmogorov-Smirnoff test of fit.

section A.2 and Appendix A–1). The resulting model fits are then visually and numerically
compared to the empirical distribution function of the data.

The fit of each model is evaluated on the training (2006–08) and test (2009–10) sets using
the Kolmogorov-Smirnoff (K-S) statistic [144], which is a distance between the empirical
distribution of the cumulative distribution function F, F̂emp, and the F provided by each
model fit. Since none of these models are to be considered true, we use the statistic simply
as a “measure of fit” on training and holdout data, rather than as a formal hypothesis test.
The empirical distribution function is defined as

F̂emp(t) =
1
T

∑
Iti<t,

with the sum being over all inter-arrival times in the data. The K-S statistic is the maximum
absolute discrepancy between the two distributions, defined as

KS(F̂emp, F) = sup
t
|F̂emp(t) − Fmodel(t)|.

As expected, the Weibull uniformly performs better than the exponential. Table A.2
shows the K-S test of fit. The semiparametric method uniformly outperforms the Weibull
on the training data, and outperforms the Weibull on the holdout test data in Queens and
Brooklyn, demonstrating accuracy in prediction. The semiparametric method comes very
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Figure A.3: Semiparametric infant mortality rate estimates.

close to the Weibull in test performance on the Manhattan network which, notably, also
exhibits the worst degradation from training to test performance, across all models.

The comparison of the estimation results shows that the failure rate estimates using the
semiparametric model are closer to the actual measured inter-arrival times, which means the
semiparametric model with Gaussian smoothing is more accurate in estimating the failure
rate.

A.4 Related Work
Estimation of system reliability by modeling failure rate has been an active research area.
Various estimation models have been proposed for different kinds of systems including
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power electrical components, semiconductor chips and boards, and software systems. The
exponential, Bayesian, log-normal, and Weibull approaches were popular in prior research.
In 1974, Littlewood and Verrall used a Bayesian reliability model to estimate stochastic
monotone failure rates [139]. Ibrahim et al. formalized the field of Bayesian survival
analysis in 2001 [103]. Rigdon and Basu described a way to estimate the intensity function
of a Weibull process [190]. Mudholkar and Srivastava used the exponential Weibull family
for analyzing the bathtub failure rate model [160]. In prior sections, we compared our
approach with the exponential and Weibull models. Our approach differs from previous
Bayesian models in making fewer assumptions on a continuous failure distribution.

Among the failure patterns, the bathtub model and infant mortality are perhaps the most
well-studied [152, 160]. To model non-constant failure rates, Jones used a constant failure
intensity assumption and exponential failure distribution-based method to do the estimation,
and experimented with the method in reliability analysis of digital circuit devices [112].
Our approach does not assume a constant failure rate or a constant failure intensity. The
semiparametric model we described is not a modified version of the exponential or Weibull
models.

In 1984, Laprie described a mathematical model for the failure behavior of component-
based software systems with physical and design faults [132]. Hierons and Wiper researched
the estimation of software system failure rate using random and partition testing methods
[97]. Kubal et al. proposed a way of estimating software system failure rate based on the
failure rates of the underlying components using a Bayesian approach [126]. Although we
directly applied our approach to distribution power feeder failures here, our approach can be
directly applied to other areas, for instance, software reliability analysis.

A.5 Summary
This appendix presented a new method of estimating failure rate using a semiparametric
model with Gaussian process smoothing. The method is able to provide accurate estimation
based on historical data and it does not make strong a priori assumptions of the failure rate
pattern (e.g., constant or monotonic). Our empirical studies of applying such an approach
in power system failure data and a comparison of this approach with other existing models
show its efficacy and accuracy. This method may also be used in estimating reliability for
many other systems, such as software systems or components.

Appendix A–1 Equivalence of Hazard and Distribution Functions

From definition of the hazard function,

λ(t) = f (t)/(1 − F(t)),

and from the definitions of
f (t) = −

∂(1 − F(t))
∂t

,
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and finally, from calculus,
∂ log( f (t))

∂t
=

f ′(t)
f (t)

.

Therefore:
−
∂(1−F(t))

∂t

1 − F(t)
= λ(t),

−
∂ log(1 − F(t))

∂t
= λ(t),

− log(1 − F(t)) =

∫ t

0
λ(u)du,

1 − F(t) = e−
∫ t

0 λ(u)du,

F(t) = 1 − e−
∫ t

0 λ(u)du.

Appendix A–2 Marginalizing Times without Failure

We consider the contribution to the likelihood from the observation of no failures
between times ti−1, ti, assuming no censoring and that φ(·) < ∞:

L = e−
∫ ti

ti−1
λ0(u)

∑
j∈R(u) eφ(i−τu, j)du

.

Taking the functional derivative of λ0 at time s ∈ (ti−1, ti):

∂L
∂λ0(s) =

(
e−

∫ ti
ti−1

λ0(u)
∑

j∈R(u) eφ(i−τu, j)du
)
×(

−λ0(s)
∑

j eφ(s−τs, j)
)
,

which is negative for all positive values of λ0(s). Since λ0 ≥ 0 by definition, the maximum
likelihood estimate of baseline hazard is λ̂0(s) = 0, which gives the MLE (i.e., Maximum
Likelihood Estimation) of failure rate

λ̂0(s)
∑

j

eφ(s−τs, j) = 0.

Substituting this into the likelihood, we see that it does not depend on φ when there are no
failures, reducing the estimation problem to event times. This result, derived more formally
[148], is also valid under random censoring, as shown by Cox and given in [9].

Thus, since intervals without failures give no information about φ, we can reduce the
problem of estimating φ to the conditional probability of each observed unit failing at time t,
given that some unit failed at time t, which is:∏

t

unit i fails at t
some unit fails at t
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=
∏

t

λ0(t)eφ(t−τt,i)

λ0(t)
∑

j eφ(t−τt, j)

=
∏

t

eφ(t−τt,i)∑
j eφ(t−τt, j)

,

which gives the “Cox likelihood” for φ at those values t − τt, j, which are observed.
After the estimate of φ is obtained, we can derive an estimate of Λ0 =

∫ t

0
λ0 through

the weighted non-parametric Nelson-Aalen estimator [118]. This Λ0 is smoothed and used
directly in computing the test-penalty, or if desired λ0 may be approximately estimated by
differentiating the smoothed version.

Appendix A–3 Fitting λ0

For simplicity we take the baseline hazard λ0 to be constant for each network. After
estimating ψ, the reliability function is

R(t) = e−
∫ t

0 h(t) = e−λ0
∫ t

0 ψ(u)du,

from which the mean time to failure can be computed directly by the so-called layered
representation of the expectation (which follows from integration by parts):

Eλ0[T ] =

∫ ∞

0
e−λ0

∫ u
0 ψ(u)dudt.

At this point, the λ0 is chosen by grid search over numeric approximations of this integral,
so that the mean time to failure equals the empirical mean time to failure: Eλ0[T ] = T .

Appendix A–4 Fitting the Gaussian Process

The log-posterior probability is proportional to the sum of the log of the Cox likelihood
(l) and the log of the marginalized Gaussian process prior (π):

∂L
∂λ0(s) = l + π =

∑
t log φ(t − τt,i)−

log
∑

j∈R(t) φ(t − τt, j)+(
−1

2φ
†K−1φ

)
.

We apply the Newton-Raphson method to find the maximum a-posteriori estimate. The
gradient with respect to φ is

∇(l + π) =
∑

t

−ψ(t − τ·,t) + ei(t)st

st
+ K−1φ,
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with Hessian
(∇∇(l + π))i, j = ψ(t − τi,t)ψ(t − τ j,t)/s2

t + K−1,

where
st =

∑
j

ψ(t − τ j,t),

the total hazard of observed units at time t, and ei(t) is the unit basis vector indicating the
failed unit at time t, δi(t).

The step-size is dynamically adjusted, and is stopped on a relative improvement of the
quasi-posterior probability by less than 1.4e − 08.



Appendix B

Software Reliability Analysis Via Bug
Mining

Software bugs reported by human users and automatic error reporting software are often
stored in some bug tracking tools (e.g., Bugzilla and Debbugs). These accumulated bug
reports may contain valuable information that could be used to improve the quality of the
bug reporting, reduce the quality assurance effort and cost, analyze software reliability, and
predict future bug report trend. In this chapter, I present BugMiner, a tool that is able to
derive useful information from historic bug report database using data mining, use these
information to do completion check and redundancy check on a new or given bug report, and
to estimate the bug report trend using statistical analysis. My empirical studies of the tool
using several real-world bug report repositories show that it is effective, easy to implement,
and has relatively high accuracy despite low quality data.

B.1 Introduction
Finding and fixing the faults in software is an indispensable while time-consuming quality
assurance task in software development. The definition of fault is a programming error
that leads to an erroneous result in some programs during execution. A software bug is
the common term used to describe a fault, error, flaw, mistake, or failure in a program that
produces an incorrect or unexpected result, or causes it to behave in unintended ways. When
a software bug is identified, it is often reported and recorded into a bug report database
using some bug tracking tools so that further analysis or fix can be performed, possibly
by a developer or tester. For some real-world software, their bug report databases have
accumulated a large amount of historic bug reports. For example, as of February 2011,
Debbugs, i.e., Debian bug tracking system, has accumulated 615,000 bug reports [186, 214].

These accumulated bug reports may contain valuable information that could be used
to improve the quality of the bug reporting, reduce the cost of quality assurance, analyze
software reliability, and predict future bug report trend. One of the challenges in bug
reporting is that the bug reports are often incomplete (e.g., missing data fields such as
product version or operating system details). Another challenge is that there are often many
duplicate bug reports for the same bug. Software developers or testers normally have to

177
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review these redundant bug reports manually, which is time-consuming and cost inefficient.
I developed a tool called BugMiner that is able to derive useful information from historic

bug reports using data mining techniques, including machine learning (e.g., SVM [225, 51])
and natural language processing, and use these information to do completion check through
classification and redundancy check through similarity ranking on a new or given bug report.
BugMiner can also perform bug report trend analysis using Weibull distribution [190]. I
implemented the tool and experimented it using three real-world bug report repositories
including Apache Tomcat [185], Eclipse [69], and Linux Kernel [123]. My experiments
demonstrate that it is effective, easy to implement, and has relatively high accuracy despite
low quality data.

B.2 Background on Bug Reporting
Bug tracking tools are often developed as a database-driven web application. The web
interface allows multiple geographically distributed users to enter the bug reports simul-
taneously. The backend database stores the records for the reported bugs. Table B.1 lists
some main attributes (i.e., data fields or columns) of a typical bug report for Apache Tomcat
using Bugzilla [185, 33]. These attributes are meta information of the bug report. The field
bug id is an unique identifier for a distinct bug instance. A bug report is often modified
by subsequent reviewers or developers who are trying to verify or fix the bug. Table B.2
lists the additional commentary entries related to the same bug listed in Table B.1. Each
new entry (i.e., new long desc record) records the author name, entry date and time, and the
free text description. The entry date and time for the first and last long desc record, along
with the first author’s name, are also stored in the main attributes list of the same bug (i.e.,
creation ts, delta ts, and reporter). There is no predefined limit on how many additional
commentary entries a bug report can hold. Bug report datasets will be further explained in
section B.4.2.

Attribute Name Sample Value Attribute Name Sample Value
bug id 48892 component Connectors
creation ts 2010-03-11 12:10:09 delta ts 2010-12-14 14:30:22
short desc Use URIEncoding... rep platform All
cclist accessible 1 op sys All
classification id 1 bug status NEW
classification Unclassified bug severity enhancement
product Tomcat 7 priority P2
reporter reporter 1 assigned to dev

Table B.1: Main attributes of a bug report
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Attribute Name long desc 1 long desc 2 long desc 3
isprivate 0 0 0
who reporter 1 reporter 2 reporter 3
bug when 2010-03-11 12:10:09 2010-04-04 10:18:48 2010-12-14 14:30:22
thetext Here is a ... There are ... For encoding ...

Table B.2: Additional attributes

B.3 Approach

B.3.1 Architecture
Figure B.1 illustrates the architecture of BugMiner. There are two types of bug reporters:
human users such as software developers, testers, and end users; automatic error reporting
processes that run as a service on users’ computers. The bug reporters generate new bug
reports and enter the related information via the bug tracking tool’s interface. The bug
tracking tool then store the new bug report into the bug report database.

BugMiner consists of three data mining and statistical processing engines: automatic
completion check engine; automatic redundancy check engine; and bug report trend analysis
engine. These three engines process the historic data stored in the bug report database and
the new bug report coming in. The results from these engines are then directed to the bug
tracking tool so that these results can be reviewed and stored. In the following subsections, I
will describe each engine in detail.

B.3.2 Attributes and Feature Selection
BugMiner analyzes bug report data based on two sets of attributes: 1) static meta information,
and 2) bag-of-words (i.e., a collection of distinct free text words) attributes. For each bug
report in Bugzilla, users need to fill in a predefined set of bug information, as shown in
Table B.1. This set of attributes has two characteristics: 1) static: the list of fields is fixed
for all types of software products, and those fields are available for all bug reports; 2) meta
information: they describe the general information about the bug report but doesn’t go to the
details of the problem. Bug report analysis based solely on the static and meta information is
very limited. In BugMiner, I further include the free text data of a bug report in my analysis.

The free text data usually describes a bug scenario in natural language followed by
some sample code. I represent the textual data as a bag-of-words. Each data instance
is a high dimensional vector with words being attributes. The values of the attributes
are Term Frequency-Inverse Document Frequency (TF-IDF) weight [147], which gives a
higher weight on words that are frequent in certain data records but not too common across
all records. Stemming, a process of reducing inflected (or sometimes derived) words to
their stem or root form, is not necessary because the vocabulary usually doesn’t have a
variety of morphed forms, and imperfect stemming may bring in additional noisy content
unnecessarily. My feature selection also bases on inverse document frequency (IDF) and
global term frequency. Words with a low IDF (e.g., stopwords such as ‘the’ and ‘a’) are
removed because they are too common and lack discriminative power. Words with a very
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Figure B.1: BugMiner architecture

low global term frequency are also removed because they are rare and their inclusion leads
to a high dimensionality, which may cause “curse of dimensionality” problem in machine
learning.

B.3.3 Automatic Completion Check Engine
When a bug report is filed, the bug information submitted are sometimes incomplete (e.g.,
missing data fields). BugMiner’s automatic completion check engine derives these missing
data fields through mining historic data and classification using the partially filled infor-
mation. It reduces manual effort, keeps the bug report complete, and helps developers and
testers to analyze the bug report more precisely.
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Classification Using Support Vector Machine

Missing field autocompletion can be solved as a supervised learning problem. By training
a classification model on existing data, I can predict the missing values. In BugMiner, I
use Support Vector Machines (SVM) as the classifier. SVM is a popular machine learning
method because of its high performance. It formulates the classification modeling process
as a quadratic minimization problem, and finds hyperplanes in a high dimensional space
that separate data instances of different categories, while maximizing the margins between
categories.

I first use a set of historic bug reports (e.g., each one with n attributes) as training data to
build a linear SVM model. For a new or given bug report with one missing data field a (i.e.,
n − 1 attributes filled and 1 attribute missing), I use the trained SVM model as a classifier
and the filled n − 1 attributes to predict the value of the missing a field for this bug report.
In the case of multiple data fields are missing for a report (e.g., n − m attributes filled and
m attributes missing), I use the SVM model and the n − m filled attributes to predict the
missing fields one by one.

B.3.4 Automatic Redundancy Check Engine
A common way of searching a bug report database to find out whether a new or given
bug report already exists or not is to use keyword search, which normally uses keyword in
combination with some wildcat characters such as ‘%’ and ‘?’ to construct database query
string that can be executed on the database table. This kind of search based on keyword
matching is often imprecise and may generate a large amount of useless or irrelevant results.
The similarity ranking used by BugMiner’s automatic redundancy check engine is able
to tell whether the new bug report is a duplicate or not more precisely. Furthermore, the
similarity ranking can find out the most similar prior bug reports and sort them for the user.

Similarity Ranking Using Cosine Similarity

I represent bug report dataset in a vector space model (i.e., term vector model), an algebraic
model for representing text documents as vectors of identifiers, such as index terms [198].
Each bug report is a vector that consists of a list of feature values. As described in section
B.3.2, BugMiner uses two sets of features: 1) static meta information; 2) bag-of-words
attributes with TF-IDF values.

I measure the similarity between two bug reports based on Cosine similarity, i.e., the
Cosine of the angle between the two vectors that represent these two bug reports, as shown
in the following formula:

DistanceCOS (a, b) =

∑
i ai × bi√∑

i a2
i ×

√∑
i b2

i

,

where a and b represent two vectors. Its result equals 1 when the angle between two
vectors is 0 (i.e., two vectors are pointing in the same direction), and its result is less than 1
otherwise.
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For a new or given bug report, I compute the Cosine similarity value (i.e., csv) between
this new bug report’s vector and all the prior bug reports’ vectors, and then rank the csv
values in an descending order. The historic bug report with the highest csv value (i.e., the
closest one to 1) is the most similar prior record.

Similarity Ranking Using KL Divergence

In addition to Cosine similarity, I rank all prior bug reports based on their relevance to the new
bug report using probability distribution. Kullback-Leibler (i.e., KL) divergence [53, 147] is
an effective relevance metric that assumes each data instance in a high dimensional feature
space is characterized by a probability distribution. KL divergence measures the dissimilarity
between two probability distributions, as shown in the following formula:

DKL(a||b) =
∑
t∈V

P(t|Ma)log
P(t|Ma)
P(t|Mb)

,

where Ma and Mb represent the probability distributions for vector a and b respectively.
V is the vocabulary of all terms and t is a term in V . KL divergence measures how
bad the probability distribution Ma is at modeling Mb. Previous work [128] presents
results suggesting that model comparison approach outperforms both query-likelihood and
document-likelihood approaches. However, this metric is asymmetric, i.e., DKL(a||b) ,
DKL(b||a). In order to use it as a distance metric, I adopt a symmetrized KL divergence
method for similarity ranking, which is defined as:

DistanceKL(a, b) =
1
2

DKL(a||b) +
1
2

DKL(b||a).

The result is symmetric and nonnegative. It equals 0 when two distributions are identical. It
is bigger than 0 otherwise, and the larger the value the greater their dissimilarity.

For a new or given bug report, I compute the symmetrized KL divergence value (i.e.,
kld) between this new bug report’s vector and all the prior bug reports’ vectors, and then
rank the kld values in an ascending order. The historic bug report with the lowest kld value
(i.e., the closest one to 0) is the most similar prior record.

Is the New Bug Report a Duplicate? What are the Similar Bugs Reported before?

I categorize a new or given bug report into one of the three categories according to the
ranked csv and kdl values, along with the value ranges they fall into:

• If a prior report exists with csv ≥ c r2 and kld ≤ k r1, it is highly likely to be a
duplicate (or repeat) of a prior report.

• If a prior report exists with c r1 < csv < c r2 or k r1 < kld < k r2, it has similar prior
report.

• If all prior reports have csv ≤ c r1 and kld ≥ k r2, it does not have any similar prior
report.

The value range parameters (i.e., c r1, c r2, k r1, and k r2) can be determined based on
heuristics obtained from experiments.
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B.3.5 Bug Report Trend Analysis Engine
After major software releases, the number of software bugs tend to increase initially. As
these bugs are fixed, the number of bugs gradually decreases, which resembles the “bathtub
curve” in reliability engineering. The increase and decrease of the number of bugs normally
lead to the similar trend of the number of bug reports. Weibull distribution can be used to
model this kind of pattern and provide the basis for trend analysis.

Report Incidence Distribution

For the Weibull distribution, the incidence (e.g., failure or bug report) density function f (t)
and cumulative incidence distribution function F(t) are

f (t; λ, k) =
k
λ

(
t
λ

)k−1e−(t/λ)k
, t ≥ 0,

F(t; λ, k) = 1 − e−(t/λ)k
, t ≥ 0,

where k > 0 is the shape parameter and λ > 0 is the scale parameter of the distribution. The
instantaneous incidence rate (or hazard function) when t ≥ 0 can be derived as

h(t; λ, k) =
f (t; λ, k)

1 − F(t; λ, k)
=

k
λ

( t
λ

)k−1
.

A value of k < 1 indicates that the incidence rate decreases over time. A value of k = 1
indicates that the incidence rate is constant (i.e., k/λ) over time. In this case, the Weibull
distribution becomes an exponential distribution. A value of k > 1 indicates that the
incidence rate increases with time.

Estimation of Coming Bug Report

I first use historic data to fit the Weibull function and derive the λ and k parameters. Then
for any given time t, which is the number of weeks (or other chosen time units such as days
or hours) after the starting date, the number of bug reports that may happen during that
week can be estimated using the Weibull’s density function f (t). The result is an estimate
of how many bug reports may happen during the t-th week after the starting event, e.g., a
new software release. Similarly, the instantaneous incidence rate can be estimated using
the hazard function h(t). These estimates give software developers or testers a baseline for
designing the software testing and maintenance plan.

B.4 Empirical Studies

B.4.1 Implementation
I implemented BugMiner in Java using some existing machine learning and statistical
analysis tools, including Weka [237] and MATLAB [87].
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B.4.2 Bug Report Datasets and Data Processing
I experiment BugMiner on the bug report repositories of three real-world software applica-
tions (Apache Tomcat [185], Eclipse [69], and Linux Kernel [123]). Table B.3 lists some
statistics of these bug report repositories. For example, the Apache Tomcat dataset contains
two product versions—Tomcat 3 and Tomcat 7. The OS is the operating system the software
runs on. The components are the functional components of the software.

Software Name # bug reports # product # OS # components
Apache Tomcat 1525 2 16 16
Eclipse 1674 2 17 13
Linux Kernel 1692 16 1 106

Table B.3: Software and bug report datasets

I first apply pattern matching to extract static meta information, as listed in Table B.1.
Then I process free text descriptions using tokenization and bag-of-words feature selection
as described in section B.3.2. The dimensionalities of the term feature space range from
4000 to 13,000 depending on the dataset. After the attribute data sources are combined, the
final vector space to represent bug report instances includes static meta information and
bag-of-words features.

B.4.3 Results and Analysis
My experimental results show that BugMiner is effective in automatic completion check,
automatic redundancy check, and bug report trend analysis. The following subsections
present the detailed results and analysis.

Classification for Missing Field Autocompletion

For missing field autocompletion, I train classification model on 80% of the data and do
blind-test on the remaining 20% of the data. For example, for Apache Tomcat, I use 1220 (or
80%) bug reports as training data and use 305 (or 20%) bug reports as the testing data. Table
B.4 lists the classification results for the Tomcat version. The accuracy of the classification
on testing instances is 99.02%. This means the automatic completion check engine can
determine the product version highly accurately in this case.

TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.991 0.014 0.996 0.991 0.993 0.989 tomcat 3
0.986 0.009 0.973 0.986 0.98 0.989 tomcat 7
0.99 0.012 0.99 0.99 0.99 0.989 weighted Avg.

Table B.4: Classification results of products

Table B.5 lists the classification results for the operating system version for Tomcat. The
accuracy of the classification on testing instances is 68.52%.
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TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.888 0.449 0.758 0.888 0.818 0.719 all
0.356 0.081 0.432 0.356 0.39 0.637 linux
0.087 0.018 0.286 0.087 0.133 0.535 other
0.176 0.014 0.429 0.176 0.25 0.581 solaris
0.786 0.047 0.629 0.786 0.698 0.869 windows xp
0.685 0.294 0.632 0.685 0.647 0.696 weighted Avg.

Table B.5: Classification results of OS versions

Table B.6 lists the classification results for the software component related to the bug
report. The accuracy of the classification on testing instances is 53.11%. The results show
that it is relatively difficult to accurately determine the problematic component based on the
bug reports in this case.

TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.5 0.007 0.714 0.5 0.588 0.747 auth
0.868 0.067 0.73 0.868 0.793 0.9 catalina
0.2 0.039 0.313 0.2 0.244 0.58 config
0.368 0.037 0.583 0.368 0.452 0.665 connectors
0.5 0.003 0.5 0.5 0.5 0.748 encoding
0.622 0.041 0.676 0.622 0.648 0.79 jasper
0.667 0.003 0.667 0.667 0.667 0.832 manager
0.6 0.154 0.513 0.6 0.553 0.723 servlet
0.1 0.007 0.333 0.1 0.154 0.547 webapps
0.531 0.091 0.535 0.531 0.518 0.72 weighted Avg.

Table B.6: Classification results of components

I also did some experiments on the bug report datasets of Eclipse and Linux Kernel.
Table B.7 shows the summary of classification accuracy rates for the datasets tested. As the
number of classes increases, the accuracy rate tends to decrease; nevertheless, the accuracy
rates (e.g., 53.11% for Tomcat’s components) are relatively high if they are compared to the
chance baseline (i.e., probability is 1/n if there are n possible components).

Software Name product OS components
Apache Tomcat 99.02% 68.52% 53.11%
Eclipse 97.90% 66.47% 67.37%
Linux Kernel 76.33% N/A 58.88%

Table B.7: Summary of classification accuracy
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Similarity Ranking

I first transform the historic training bug reports and the testing bug report to vectors using the
vector space model. After the csv and kld value for each training bug report are calculated,
all the training bug reports are then sorted in an descending order based on the csv value
and in an ascending order based on the kld value. The bug reports at the top of the ranked
lists are the most similar ones to the testing bug report.

Based on the heuristics from the experiments, I determine the value range parameters as
c r1 = 0.2, c r2 = 0.9, k r1 = 2.0, and k r2 = 10.0 for Tomcat. Table B.8 lists some sample
results for a given bug report #393. From the results, the bug report #393 is highly likely to
be a duplicate of some prior reports because there exists historic bug reports with csv ≥ 0.9
and kld ≤ 2.0 (i.e., bug report #330 and #296). Furthermore, bug report #228 is likely to
be a similar bug report of #393 because it has 0.7 < csv < 0.9 or 2.0 < kld < 10.0. To
determine whether a new or given bug report is in fact a duplicate usually requires human
judgment. My manual verification shows that the similarity ranking results produced by
BugMiner are highly accurate despite the low quality data.

bug id csv kld
330 0.928 1.940
296 0.917 0.816
228 0.717 9.868

Table B.8: Similarity ranking results

Trend Analysis

I implement the bug report trend analysis based on the Weibull distribution. I first aggregate
the historic data to compute a vector of the time (i-th week) and the number of bug reports
whose first reporting date falls in the i-th week. Then a result vector returns the 95%
confidence intervals for the estimates of the parameters of the Weibull distribution given the
historic vector data. The two-element row vector estimates the Weibull parameter λ and k.
The first row of the 2-by-2 matrix contains the lower bounds of the confidence intervals for
the parameters, and the second row contains the upper bounds of the confidence intervals.

Table B.9 shows the estimates of the Weibull parameters for Apache Tomcat 3. The
value of k is less than 1, which indicates that the incidence rate decreases over time. The
related curve fit is illustrated in Figure B.2 and B.3. The starting time, (i.e., the 0 on the
x-axis) is the week of August 25, 2000. The curve fit shows that the Weibull distribution
closely resembles the actual bug report incidence distribution.

Software λ λlow λhigh k klow khigh

Tomcat 3 0.3885 0.2280 0.6621 0.2241 0.2041 0.2461
Tomcat 7 6.4941 5.1735 8.1519 1.3077 1.0576 1.6168

Table B.9: Weibull parameter estimates
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Figure B.2: Weibull fit for Tomcat 3

B.5 Related Work
Some prior studies have been done on applying data mining on software engineering. Hassan
and Xie described the concept of software intelligence and the future of mining software
engineering data [94]. Xie et al. presented a general overview of data mining for software
engineering and described an example of duplicate bug detection using vector space-based
similarity [248] . Wang et al. also described an approach to detect duplicate bug reports
using both natural language and execution information [233]. My redundancy check engine
uses both probability distribution-based KL divergence and vector space-based Cosine
similarity ranking, instead of only vector space-based similarity. Furthermore, my approach
provides a similarity ranking list that can be used for search, instead of only Yes and No on
duplication check. Gegick et al. presented text mining of bug reports to identify security
issues [85]. Their work aims to identify security problems such as buffer overflow through
mining the bug reports. Their purpose and techniques are different from my approach.
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Figure B.3: Weibull fit for Tomcat 7

B.6 Summary
In this appendix, I presented BugMiner, a tool that is able to derive useful information
from historic bug report database via data mining, use these information to do completion
check and redundancy check on a new or given bug report, and to estimate the bug report
trend using statistical analysis. I did empirical studies of the tool using several real-world
bug report repositories. The experimental results show that BugMiner is effective, easy to
implement, and has relatively high accuracy despite low quality data. BugMiner can be
integrated into some existing bug tracking tools or software testing suites for more intelligent
and cost-efficient software reliability analysis.



Appendix C

Constructing Software Bugs Using
Mutation

Mutation testing applies mutation operators to modify program source code or byte code in
small ways, and then runs these modified programs (i.e., mutants) against a test suite in order
to evaluate the quality of the test suite. In this appendix, I first describe a general fault model
for concurrent programs and some limitations of previously developed sets of first-order
concurrency mutation operators. I then present a new mutation testing approach, which
employs synchronization-centric second-order mutation operators that are able to generate
subtle concurrency bugs not represented by the first-order mutation. These operators are
used in addition to the synchronization-centric first-order mutation operators to form a
small set of effective concurrency mutation operators for mutant generation. My empirical
study shows that our set of operators is effective in mutant generation with limited cost and
demonstrates that this new approach is easy to implement.

C.1 Introduction
Mutation testing is a white-box fault-based software testing technique that uses mutants,
slightly modified variants of the program source code or byte code, to characterize the
effectiveness of a testing suite and locate weaknesses in the test data or program that are
seldom or never exposed during normal execution [61]. Mutation testing is based on the
Competent Programmer Hypothesis and the Coupling Effect Hypothesis. The Competent
Programmer Hypothesis assumes that programmers are competent and normally write
programs that are close to perfect; program faults are syntactically small and can be corrected
with a few small code modifications [1, 61]. The Coupling Effect Hypothesis states that
complex bugs in software are closely coupled to small, simple bugs. Thus, mutation testing
can be effective in simulating complex real-world bugs [61, 167].

Mutation testing typically involves three stages: (1) Mutant generation, the goal of which
is the generation of mutants of the program through inserting bugs. (2) Mutant execution,
the execution of test cases against both the original program and the mutants. (3) Result
analysis, to check the mutation score, i.e., the percentage of nonequivalent mutants that
are killed by the test suite [184, 167]. A mutant is equivalent to the original program if

189
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the mutant and the original program always produce the same output, hence no test case
can distinguish between the two [60]. A mutant is considered killed by the test suite if the
execution result of the mutant is different from the result of the original program [169]. A
test data set is said to be adequate if its mutation score is 100% [60, 168].

For the first stage, a predefined set of mutation operators are used to generate mutants
from program source code or byte code. A mutation operator is a rule that is applied to
a program to create mutants [169]. Mutants containing one simple fault are called first-
order mutants and mutants containing two simple faults are called second-order mutants
[184]. Researchers have developed many sets of mutation operators [169, 111], targeting a
variety of programming languages. For example, Delamaro et al. and Bradbury et al. have
proposed different set of mutation operators for concurrent Java programs [59, 30]. My
empirical study and analysis shows that some subtle concurrency bugs are not generated
by any of these proposed first-order mutation operators. My study further shows that a
large portion of these operators are not effective in mutant generation: the majority of the
mutants are generated by a small subset of the mutation operators, generally those that are
synchronization-centric, i.e., directly relating to the synchronization of different processes
or threads. Based on a general fault model for concurrent programs and my analysis of
the limitations in prior work, I present my new mutation testing approach, which employs
synchronization-centric second-order mutation operators that are able to generate subtle
concurrency bugs not represented by the first-order mutation. These operators are used in
addition to the synchronization-centric first-order mutation operators to form a small set
of effective concurrency mutation operators that can be used in mutant generation. My
empirical study shows that our small set of operators is effective in mutant generation with
limited cost and demonstrates that this new approach is easy to implement. The initial
analysis of the possible implications of our results has potential impact on the Coupling
Effect Hypothesis, indicating that possibly the coupling effect is weaker in concurrent
programs than in sequential programs.

The remainder of this appendix is structured as follows. In section C.2, I describe a fault
model for concurrent programs. In section C.3, I present the limitations of some previous
work. In section C.4, I present my new approach. In section C.5, I present some empirical
study. Lastly, I discuss some related work before conclusion.

C.2 Fault Model for Concurrent Programs
Testing concurrent programs is difficult. It is generally impossible or impractical to exhaus-
tively test all combinations of input values or cover all possible control or data flow paths in
sequential programs but even more so in concurrent programs; nevertheless, test suites can
and must be constructed according to various criteria to attempt to find bugs. In order to
develop a set of concurrency mutation operators that are able to model subtle concurrency
bugs, I employ a general fault model that is based on the concurrency bug patterns and the
synchronization mechanisms. The definition of fault is a programming error that leads to an
erroneous result in some programs during execution.
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C.2.1 Concurrency Bug Patterns
Some prior research on concurrency bug patterns has been done. [74] and [142] described
taxonomy of common concurrency bugs. [73] compiled a benchmark of concurrency bugs.
[44] and [145] described some empirical studies on concurrency bugs. I consolidate the
common concurrency faults from these prior researches that I consider for mutation operators
to model and present them below.

• Data Race: Data race condition happens when multiple threads read and write the
same data, and the outcome of the execution depends on the particular order in which
the accesses happen [44]. It is also called thread interference.

• Memory Inconsistency: Memory inconsistency errors occur when different threads
have inconsistent views of the same variable.

• Atomicity Violation: Atomicity violation error is caused by concurrent execution of
multiple threads violating the atomicity of a certain code region [145].

• Deadlock: Deadlock happens when multiple threads are blocked forever, waiting for
each other.

• Livelock: Livelock happens when two threads are busy responding to each other and
make no progress.

• Starvation: Starvation happens when a thread is unable to gain regular access to
shared resources and is unable to make progress.

• Suspension: Suspension happens when a thread suspends or waits indefinitely.

C.2.2 Synchronization Mechanism
Concurrent programs rely on synchronization to ensure correct program execution. There
are two main synchronization mechanisms: synchronization using shared memory and
synchronization using message passing. For programming models that use shared memory
synchronization (e.g., Java and C#), the threads communicate primarily by sharing access
to fields and the objects reference fields refer to. The synchronization aims to avoid thread
interference and memory consistency errors. For programming models that use message
passing (e.g., Erlang [20] and Microsoft Asynchronous Agents Library [153]), the concurrent
agents or actors in the programs communicate with each other through exchanging messages
and use the synchronization to avoid problems in the message communications.

C.3 Limitations of First-Order Concurrency Mutation Op-
erators

To measure the testability of concurrent Java programs, Ghosh described mutation based on
two mutation operators that remove the keyword synchronized [86]. Long et al. tested
mutation-based exploration for concurrent Java components [141]. Delamaro et al. proposed
a set of 15 concurrency mutation operators for Java [59]. Later, Bradbury et al. proposed a
new set of 24 concurrency mutation operators for Java [30]. The operators they proposed
are all first-order mutation operators. I have investigated these mutation operators in my
empirical study and identified some of their limitations.
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C.3.1 Subtle Concurrency Bugs Are Not Generated
The first important limitation I found is that some subtle concurrency bugs are not generated
by any of these proposed first-order mutation operators. This limitation could lead to loss of
comprehensive representation of common concurrency bugs by the mutants, thus reducing
the reliability of the mutation score that follows. I give two examples in the following
subsections.

Data Race Example

The following code fragment from the LinkedList program, a Java program from the IBM
concurrency benchmark programs repository [73], inserts an element to the end of a list.
Another process, not shown here, reads the list. The synchronized method first starts from
the top of the list (line 4), then moves to the end of the list via a loop (line 5) before inserts
the object x to the end (line 6). Suppose we only apply first-order mutation operators (e.g.,
removing synchronized keyword from line 2 or deleting a statement from line 4 to 6),
the mutant does not represent a feasible programming error that line 2 is not synchronized
and line 5’s error causes the node index itr does not move to the end of the list properly.
The combined error in line 2 and line 5 would potentially cause data race because multiple
threads would try to write to the header of the list without synchronization and other threads
might read the list at the same time. The outcome of the execution would depend on the
thread schedule and which thread made the last call to the method because different threads
all try to update the header of the list. By definition, this is a data race condition. To apply
either operator independently is not going to create the same fault because under single
application of either first-order mutation operator, data race would less likely happen and
their mutants would represent different kind of faults.

1 / ∗ I n s e r t s e l e m e n t t o t h e end of l i s t ∗ /

2 p u b l i c s y n c h r o n i z e d vo id a d d L a s t ( O b j e c t x )
3 {

4 MyListNode i t r = t h i s . h e a d e r ;
5 w h i l e ( i t r . n e x t != n u l l ) i t r = i t r . n e x t ;
6 i n s e r t ( x , new M y L i n k e d L i s t I t r ( i t r ) ) ;
7 }

Deadlock Example

Incorrect use of synchronization can result in two or more threads waiting for each other
to release the locks on the synchronized objects, forming a deadlock circle. As shown in
the following example code for money transfer between two accounts, the line 5 and 6 in
the original code may be incorrectly programmed in a nested synchronized block, which
makes the deadlock possible. For example, two threads with execution of line 9 and 10
simultaneously would lead to deadlock since each thread will be waiting in a circle for the
other thread to release required lock. This kind of deadlocks that require changes in more
than one place are not generated by any first-order operator.
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1 vo id Transfe rMoney ( Acct a , Acct b , i n t amount ) {
2 s y n c h r o n i z e d ( a ) {
3 a . d e b i t ( amount ) ;
4 }

5 s y n c h r o n i z e d ( b ) {
6 b . c r e d i t ( amount ) ;
7 }

8 }

1 vo id Transfe rMoney ( Acct a , Acct b , i n t amount ) {
2 s y n c h r o n i z e d ( a ) {
3 s y n c h r o n i z e d ( b ) { / / f i r s t change
4 a . d e b i t ( amount ) ;
5 b . c r e d i t ( amount ) ; / / second change
6 }

7 }

8 }

9 Thread1 . run ( ) { Transfe rMoney ( a , b , 1 0 ) ; }
10 Thread2 . run ( ) { Transfe rMoney ( b , a , 2 0 ) ; }

C.3.2 A Large Portion of Operators Do Not Generate Any Mutant
My empirical study shows that a large portion of existing mutation operators are not effective
in generating mutants. For example, several previously proposed mutation operators for
concurrent Java, including MSF, MXC, MBR, RCXC, ELPA, EAN, RSTK, RFU, RXO and
EELO [59, 30], did not generate any mutants in my experiments. Some others, including
MXT, RNA, RJS, InsNegArg, and ReplTargObj [59, 30], generated very few mutants. In
my assessment, over half of the total number of operators are non-performing mutation
operators, i.e., operators that do not generate any new mutant. Most of the performing ones
are related to mutation of a synchronized method or block.

C.4 Approach

C.4.1 Synchronization-Centric Second-Order Mutation Operators
My new mutation testing approach is based on the fault model and my analysis of the
limitations of some previous work. I use synchronization-centric second-order concurrency
mutation operators to construct subtle concurrency bugs that are not represented by the
first-order mutation. While, a random and brute-force approach without any reduction would
lead to n ∗ n second-order mutation operators based on n first-order mutation operators. To
reduce the number of second-order mutation operators and mutant execution cost, I employ
two steps of reduction. I first choose one of the two first-order mutation operators to be
a synchronized method or block related modification and the other first-order operator to
perform code changes related to the same synchronized method or block. For example,
in concurrent Java, there are five first-order mutation operators related to synchronized
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methods [59, 30], I choose two out of the five in the same category. Then I evaluate the
chosen two first-order mutation operators to see if their combination can generate mutants
that resemble some possible faults due to programming mistakes and only keep those
meaningful combinations. This second reduction step through selection based on domain
knowledge further reduces the amount of second-order mutation operators and leads to
fewer unnecessary or redundant mutants.

After the set of synchronization-centric second-order concurrency mutation operators are
chosen, they are combined with the synchronization-centric first-order mutation operators to
form a smaller set of mutation operators for mutant generation.

C.4.2 Example Mutation Operators for Java
Table C.1 lists the synchronization-centric second-order concurrency mutation operators for
Java, as an example of synchronization using shared memory. I describe each operator with
example code in the following subsections.

sy
nc

m
et

ho
d RKSN+RSSN Remove synchronized Keyword and a Statement

from Synchronized Method
AKST+MASN Add static Keyword and Modify Argument with

Constant to Synchronized Method
RKSN+MASN Remove synchronized Keyword and Modify Argu-

ment with Constant

sy
nc

bl
oc

k RSNB+RSSB Remove synchronized Block and a Statement from
Synchronized Block

MOSB+RSSB Modify synchronized Object and Remove a State-
ment from Synchronized Block

MOSB+MVSB Modify synchronized Object and Move State-
ment(s) Out of Synchronized Block

Table C.1: Second-order concurrency mutation operators for Java

RKSN+RSSN

The RKSN+RSSN operator removes a synchronized keyword and a statement from a
synchronized method. This operator simulates programming errors that can potentially lead
to data race, memory inconsistency, and deadlock. The data race described in section C.3.1
can be constructed by this operator.

/ ∗ O r i g i n a l Code ∗ /

p u b l i c s y n c h r o n i z e d vo id p roc ( O b j e c t A) {
< s t a t e m e n t 1>
< s t a t e m e n t 2>

}

/ ∗ RKSN+RSSN Mutant 1 ∗ /

p u b l i c vo id p roc ( O b j e c t A) { / / sync removed
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. . . / / s t a t e m e n t removed
< s t a t e m e n t 2>

}

/ ∗ RKSN+RSSN Mutant 2 ∗ /

p u b l i c vo id p roc ( O b j e c t A) { / / sync removed
< s t a t e m e n t 1>
. . . / / s t a t e m e n t removed

}

AKST+MASN

The AKST+MASN operator adds a static keyword and modifies an argument with a
constant to a synchronized method. This operator simulates programming errors that can
potentially lead to data race and memory inconsistency.

/ ∗ O r i g i n a l Code ∗ /

p u b l i c s y n c h r o n i z e d vo id send ( S t r i n g m) { . . . }
/ ∗ AKST+MASN Mutant ∗ /

p u b l i c s t a t i c s y n c h r o n i z e d vo id send ( S t r i n g n ) { . . . }

RKSN+MASN

The RKSN+MASN operator removes a synchronized keyword and modifies an argument
with a constant to a synchronized method. This operator simulates programming errors that
can potentially lead to data race and memory inconsistency.

/ ∗ O r i g i n a l Code ∗ /

p u b l i c s y n c h r o n i z e d vo id send ( S t r i n g m) { . . . }
/ ∗ AKST+MASN Mutant ∗ /

p u b l i c vo id send ( S t r i n g n ) { . . . }

RSNB+RSSB

The RSNB+RSSB operator removes the synchronized block and a statement from a syn-
chronized block. This operator simulates programming errors that can potentially lead to
data race, memory inconsistency, and deadlock.

/ ∗ O r i g i n a l Code ∗ /

s y n c h r o n i z e d ( t h i s ) {
< s t a t e m e n t 1>
< s t a t e m e n t 2>

}

/ ∗ RSNB+RSSB Mutant 1 ∗ /

. . . / / removed
. . . / / removed
< s t a t e m e n t 2>
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. . .
/ ∗ RSNB+RSSB Mutant 2 ∗ /

. . . / / removed
< s t a t e m e n t 1>
. . . / / removed

. . .

MOSB+RSSB

The MOSB+RSSB operator modifies a synchronized object and removes a statement from a
synchronized block. This operator simulates programming errors that can potentially lead to
data race and memory inconsistency.

/ ∗ O r i g i n a l Code ∗ /

s y n c h r o n i z e d ( ob j1 ) {
< s t a t e m e n t 1>
< s t a t e m e n t 2>

}

/ ∗ MOSB+RSSB Mutant ∗ / / / o b j e c t m o d i f i e d
s y n c h r o n i z e d ( newobj ) {

< s t a t e m e n t 1>
. . . / / removed

}

/ ∗ MOSB+RSSB Mutant ∗ /

s y n c h r o n i z e d ( newobj ) { / / o b j e c t m o d i f i e d
. . . / / removed
< s t a t e m e n t 2>

}

MOSB+MVSB

The MOSB+MVSB operator modifies a synchronized object and moves statement(s) out
of a synchronized block. This operator simulates programming errors that can potentially
lead to data race, deadlock, memory inconsistency, and atomicity violation. The deadlock
described in section C.3.1 can be constructed by this operator, i.e., moving two lines of code
including the synchronized block.

/ ∗ O r i g i n a l Code ∗ /

s y n c h r o n i z e d ( ob j1 ) {
< s t a t e m e n t 1>
< s t a t e m e n t 2>
. . .

}

/ ∗ MOSB+MVSB Mutant 1∗ /

< s t a t e m e n t 1> / / moved
s y n c h r o n i z e d ( newobj ) { / / o b j e c t m o d i f i e d
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< s t a t e m e n t 2>
. . .

}

/ ∗ MOSB+MVSB Mutant 2∗ /

< s t a t e m e n t 1> / / moved
< s t a t e m e n t 2> / / moved
s y n c h r o n i z e d ( newobj ) { / / o b j e c t m o d i f i e d

. . .
}

C.4.3 Example Mutation Operators for Erlang
Table C.2 lists the synchronization-centric second-order concurrency mutation operators for
Erlang, as an example of synchronization using message passing. The CRT (i.e., Change
Reference Type) refers to changing a message reference from Send by Ref to Send by Val,
and vice versa [108]. The CST (i.e., Change Synchronization Type) refers to changing a
message’s synchronization method from Sync Send to Async Send, and vice versa. Since
these mutation operators are self-explanatory, I do not give detailed example code here.

M
es

sa
gi

ng

CRT+MMP Change reference type and modify message parameter
CRT+RMP Change reference type and reorder message parameter
CRT+MMN Change reference type and modify message name
CRT+MMR Change reference type and modify message recipient
CST+MMP Change sync type and modify message parameter
CST+RMP Change sync type and reorder message parameter
CST+MMN Change syn type and modify message name
CST+MMR Change syn type and modify message recipient

C
on

st
ra

in
t CRT+RC Change reference type and remove constraint

CRT+MC Change reference type and modify constraint
CST+RC Change syn type and remove constraint
CST+MC Change syn type and modify constraint

Table C.2: Second-order concurrency mutation operators for Erlang

C.5 Empirical Study

C.5.1 Implementation
I developed an Eclipse Plug-in [69] called BugGen that is able to automate mutant generation
after the specific mutation operator is selected. Eclipse is a popular integrated development
environment (IDE) with an extensible plug-in system. Building BugGen as an Eclipse
Plug-in leverages the functionalities of the Eclipse and simplifies software development.
During my implementation, I found the new set of mutation operators is easy to implement.
In my empirical study, I focus on concurrent Java.
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C.5.2 Example Programs
I use the following four example programs in my experiments to study mutant generation,
as well as the cost and effectiveness of each proposed operator,

• Webserver, a Java web server program that supports concurrent client connections and
synchronization [5].

• Chat, a Java chat program that supports multiple clients exchanging messages [68].
• Miasma, a graphical Java applet program from the NIH web-site [114]. It supports

synchronization and uses wait(t) for prior pixels to be accepted before triggering
another one.

• LinkedList, a modified Java program from the IBM concurrency benchmark programs
repository [73]. The original program was developed to emulate the concurrency bug
in using Java linked list, which is a non-synchronized collection.

I select the above example programs because they all employ different concurrency
features and these programs are diversified in terms of type, size, coding style, applied field,
and developer. These programs are representative in demonstrating common programming
practices using concurrent Java. Table C.3 lists some statistical information for each
program’s source code.

Program Name lines of code classes sync methods sync blocks
Webserver 125 6 11 2
Chat 482 4 10 2
Miasma 360 1 0 2
LinkedList 421 5 1 1
Total 1,388 16 22 7

Table C.3: Example programs

C.5.3 Mutant Generation Results and Analysis
In my experiments, I apply each of the mutation operators listed in Table C.1, along with the
synchronization-centric first-order mutation operators, on the example programs, count the
number of mutants generated by each operator for each program, and then examine these
mutants. From my experiments, I found that over half of the first-order mutation operators,
especially those that are not related to synchronization, are not effective in generating
mutants. Synchronization-centric mutation operators generate the majority of the mutants.
My quantitative data and summations for each category are recorded in the histogram
chart presented in Figure C.1. Details for each operator and the example programs can be
found in my technical report [238]. The vertical axis shows the number of mutants. Most
synchronization-centric mutation operators, in particular the second-order ones, are effective
in mutant generation.

My empirical study demonstrates that the second-order mutation operators generate
subtle concurrency bugs not represented by the first-order mutation; my mutant generation
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Figure C.1: Number of mutants generated per operator

effort is limited; fewer percentages of equivalent mutants are generated. Second-order
operators tend to decrease the percentage of equivalent mutants [184].

C.6 Related Work
Some prior studies have been done on mutation testing for concurrent programs [111].
Carver described deterministic execution mutation testing and debugging of concurrent
programs using synchronization-sequence [38]. Researchers have developed many sets of
mutation operators [169, 111], targeting a variety of programming languages. Other than
the mutation operators for concurrent Java, Jagannath et al. have proposed a set of mutation
operators for actor programming model [108]. The synchronization-centric second-order
mutation operators for message passing presented here also apply to the actor programming
model.

For higher-order mutation, Polo et al. studied mutation cost reduction using second-order
mutants [184]. Jia et al. described some general cases of higher-order mutation and related
algorithms [110]. In my approach, I used second-order mutation to construct some subtle
concurrency faults. By keeping a small number of second-order mutation operators based
on synchronization and reduction through domain analysis, I avoided the drastic growth of
the number of mutants, thus avoiding higher computing cost in mutant execution. To the
best of my knowledge, this work is the first study of the second-order mutation operators
specifically for concurrent programs.

C.7 Summary
This appendix first described a general fault model for concurrent programs and some
limitations of previously developed sets of first-order concurrency mutation operators. I then
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presented my new mutation testing approach, which employs synchronization-centric second-
order mutation operators that are able to generate subtle concurrency bugs not represented by
the first-order mutation. These operators are used in addition to the synchronization-centric
first-order mutation operators to form a small set of effective concurrency mutation operators
that can be used in mutant generation. I developed an Eclipse Plug-in called BugGen to
automate the mutant generation using these operators. My empirical study showed that our
set of mutation operators is effective in mutant generation with limited cost and this new
approach is easy to implement. One potential future work is to evaluate some concurrency
testing suites using the set of mutation operators.
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