128,674 research outputs found

    Generating Synthetic Data for Neural Keyword-to-Question Models

    Full text link
    Search typically relies on keyword queries, but these are often semantically ambiguous. We propose to overcome this by offering users natural language questions, based on their keyword queries, to disambiguate their intent. This keyword-to-question task may be addressed using neural machine translation techniques. Neural translation models, however, require massive amounts of training data (keyword-question pairs), which is unavailable for this task. The main idea of this paper is to generate large amounts of synthetic training data from a small seed set of hand-labeled keyword-question pairs. Since natural language questions are available in large quantities, we develop models to automatically generate the corresponding keyword queries. Further, we introduce various filtering mechanisms to ensure that synthetic training data is of high quality. We demonstrate the feasibility of our approach using both automatic and manual evaluation. This is an extended version of the article published with the same title in the Proceedings of ICTIR'18.Comment: Extended version of ICTIR'18 full paper, 11 page

    EIGEN: Ecologically-Inspired GENetic Approach for Neural Network Structure Searching from Scratch

    Full text link
    Designing the structure of neural networks is considered one of the most challenging tasks in deep learning, especially when there is few prior knowledge about the task domain. In this paper, we propose an Ecologically-Inspired GENetic (EIGEN) approach that uses the concept of succession, extinction, mimicry, and gene duplication to search neural network structure from scratch with poorly initialized simple network and few constraints forced during the evolution, as we assume no prior knowledge about the task domain. Specifically, we first use primary succession to rapidly evolve a population of poorly initialized neural network structures into a more diverse population, followed by a secondary succession stage for fine-grained searching based on the networks from the primary succession. Extinction is applied in both stages to reduce computational cost. Mimicry is employed during the entire evolution process to help the inferior networks imitate the behavior of a superior network and gene duplication is utilized to duplicate the learned blocks of novel structures, both of which help to find better network structures. Experimental results show that our proposed approach can achieve similar or better performance compared to the existing genetic approaches with dramatically reduced computation cost. For example, the network discovered by our approach on CIFAR-100 dataset achieves 78.1% test accuracy under 120 GPU hours, compared to 77.0% test accuracy in more than 65, 536 GPU hours in [35].Comment: CVPR 201

    GinJinn: An object‐detection pipeline for automated feature extraction from herbarium specimens

    Get PDF
    Premise The generation of morphological data in evolutionary, taxonomic, and ecological studies of plants using herbarium material has traditionally been a labor‐intensive task. Recent progress in machine learning using deep artificial neural networks (deep learning) for image classification and object detection has facilitated the establishment of a pipeline for the automatic recognition and extraction of relevant structures in images of herbarium specimens. Methods and Results We implemented an extendable pipeline based on state‐of‐the‐art deep‐learning object‐detection methods to collect leaf images from herbarium specimens of two species of the genus Leucanthemum . Using 183 specimens as the training data set, our pipeline extracted one or more intact leaves in 95% of the 61 test images. Conclusions We establish GinJinn as a deep‐learning object‐detection tool for the automatic recognition and extraction of individual leaves or other structures from herbarium specimens. Our pipeline offers greater flexibility and a lower entrance barrier than previous image‐processing approaches based on hand‐crafted features

    From Imitation to Prediction, Data Compression vs Recurrent Neural Networks for Natural Language Processing

    Get PDF
    In recent studies [1][13][12] Recurrent Neural Networks were used for generative processes and their surprising performance can be explained by their ability to create good predictions. In addition, data compression is also based on predictions. What the problem comes down to is whether a data compressor could be used to perform as well as recurrent neural networks in natural language processing tasks. If this is possible,then the problem comes down to determining if a compression algorithm is even more intelligent than a neural network in specific tasks related to human language. In our journey we discovered what we think is the fundamental difference between a Data Compression Algorithm and a Recurrent Neural Network

    TextGAIL: Generative Adversarial Imitation Learning for Text Generation

    Full text link
    Generative Adversarial Networks (GANs) for text generation have recently received many criticisms, as they perform worse than their MLE counterparts. We suspect previous text GANs' inferior performance is due to the lack of a reliable guiding signal in their discriminators. To address this problem, we propose a generative adversarial imitation learning framework for text generation that uses large pre-trained language models to provide more reliable reward guidance. Our approach uses contrastive discriminator, and proximal policy optimization (PPO) to stabilize and improve text generation performance. For evaluation, we conduct experiments on a diverse set of unconditional and conditional text generation tasks. Experimental results show that TextGAIL achieves better performance in terms of both quality and diversity than the MLE baseline. We also validate our intuition that TextGAIL's discriminator demonstrates the capability of providing reasonable rewards with an additional task.Comment: AAAI 202
    corecore