
1 of 7

Herbarium collections represent a rich treasure of plant specimens
from around the world, providing the raw material for evolution-
ary, taxonomic, and ecological research. The increasing digitization
of these natural history collections and their free availability allow
scientists to tap into this treasure for systematic, historical, and
phenological studies. The Global Biodiversity Information Facility
(https://www.gbif.org) alone references herbaria containing over 30
million digitized plant specimens. Until recently, this source of data
remained largely untouched due to the amount of manual labor re-
quired for the analysis of herbarium photographs.

Modern image-processing methods, however, allow scientists to
automate the analysis of digitized herbarium specimens (Corney
et al., 2012a, b). In the past few years, progress in machine learning,
especially the development of convolutional neural networks (CNNs),
has made it possible to automatically identify the genus or species

of herbarium specimens (Unger et al., 2016; Carranza-Rojas et al.,
2017), or even automatically extract qualitative information like leaf
arrangement, form, and structure from digital images of preserved
plants (Younis et al., 2018). Recently, Lorieul et al. (2019) showed
that machine learning–based image classification can be used to
detect the phenological state of herbarium specimens. An area of
machine learning that has only very recently gained traction within
the plant science community is the explicit object detection of plant
structures such as leaves, flowers, or fruits in preserved specimens
(Goëau et al., 2020; White et al., 2020).

Here, we introduce GinJinn, an object-detection pipeline based
on the TensorFlow (Abadi et al., 2016) object-detection applica-
tion programming interface (API) designed to make supervised
deep-learning object detection accessible for plant scientists. Its
name relates to the “magical” [Jinn] extraction of herb(arium

Applications in Plant Sciences 2020 8(6): e11351; http://www.wileyonlinelibrary.com/journal/AppsPlantSci © 2020 Ott et al. Applications in Plant Sciences
published by Wiley Periodicals LLC on behalf of Botanical Society of America. This is an open access article under the terms of the Creative Commons
Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

INVITED SPECIAL ARTICLE
For the Special Issue: Machine Learning in Plant Biology: Advances Using Herbarium Specimen Images

GinJinn: An object-detection pipeline for automated feature
extraction from herbarium specimens
Tankred Ott1, Christoph Palm2, Robert Vogt3, and Christoph Oberprieler1,4

S O F T WA R E N O T E

Manuscript received 26 September 2019; revision accepted
6 February 2020.
1 Evolutionary and Systematic Botany Group, Institute of Plant
Sciences, University of Regensburg, Universitätsstraße 31,
D-93053 Regensburg, Germany
2 Regensburg Medical Image Computing (ReMIC), Ostbayerische
Technische Hochschule Regensburg (OTH Regensburg),
Galgenbergstraße 32, D-93053 Regensburg, Germany
3 Botanic Garden and Botanical Museum Berlin-Dahlem, Freie
Universität Berlin, Königin-Luise-Straße 6-8, D-14191 Berlin,
Germany
4 Author for correspondence: christoph.oberprieler@ur.de

Citation: Ott, T., C. Palm, R. Vogt, and C. Oberprieler. 2020.
GinJinn: An object-detection pipeline for automated feature
extraction from herbarium specimens. Applications in Plant
Sciences 8(6): e11351.

doi:10.1002/aps3.11351

PREMISE: The generation of morphological data in evolutionary, taxonomic, and ecological
studies of plants using herbarium material has traditionally been a labor-intensive task.
Recent progress in machine learning using deep artificial neural networks (deep learning)
for image classification and object detection has facilitated the establishment of a pipeline
for the automatic recognition and extraction of relevant structures in images of herbarium
specimens.

METHODS AND RESULTS: We implemented an extendable pipeline based on state-of-the-art
deep-learning object-detection methods to collect leaf images from herbarium specimens of
two species of the genus Leucanthemum. Using 183 specimens as the training data set, our
pipeline extracted one or more intact leaves in 95% of the 61 test images.

CONCLUSIONS: We establish GinJinn as a deep-learning object-detection tool for the
automatic recognition and extraction of individual leaves or other structures from herbarium
specimens. Our pipeline offers greater flexibility and a lower entrance barrier than previous
image-processing approaches based on hand-crafted features.

 KEY WORDS deep learning; herbarium specimens; object detection; TensorFlow; visual
recognition.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Repository of the Freie Universität Berlin

https://core.ac.uk/display/333952652?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.gbif.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:
https://orcid.org/0000-0002-7134-501X
mailto:christoph.oberprieler@ur.de
http://crossmark.crossref.org/dialog/?doi=10.1002%2Faps3.11351&domain=pdf&date_stamp=2020-06-26

Applications in Plant Sciences 2020 8(6): e11351 Ott et al.—GinJinn object-detection pipeline • 2 of 7

http://www.wileyonlinelibrary.com/journal/AppsPlantSci © 2020 Ott et al.

specimen)s [Gin] to detect morphological features/structures.
GinJinn streamlines the process of moving from annotated images
to a trained object-detection model that can be exported and used
for the automatic extraction of relevant structures of interest from
newly acquired images of a particular study group. Thus, GinJinn
allows scientists with little or no prior knowledge of machine learn-
ing to apply modern visual-recognition tools and to incorporate
object detection into their workflow by automatizing data-mining
processes that were previously largely manually performed.

We provide an automatic setup of projects for 47 different
bounding-box-based object-detection architectures together with
the automatic download of pretrained models for 17 of them. While
simplifying the process of model training and deployment, GinJinn
still exposes the raw TensorFlow object-detection API configuration
files, which gives advanced users full access to all the architectural,
preprocessing, and augmentation options provided by TensorFlow.

To show the efficacy of our pipeline, we used GinJinn to train
and evaluate a model for the extraction of intact leaves from digi-
tized herbarium specimens. From a technical point of view, the au-
tomatic extraction of leaves is an interesting problem, as software is
already available for the automatic morphometry of isolated leaves
(Corney et al., 2012a; Bonhomme et al., 2014; Chuanromanee et al.,
2019) but the process of isolating the leaves themselves is not yet
fully automatized (Corney et al., 2012b), especially not using mod-
ern machine learning techniques. From a biological point of view,
leaf morphometry is an important tool for species delimitation and
recognition, as well as for the reconstruction of historical climate
conditions (Royer et al., 2005, 2008).

Here, we use two closely related Leucanthemum Mill.
(Compositae, Anthemideae) species with different ploidy levels,
namely the diploid L. vulgare Lam. and the tetraploid L. ircutianum
DC., to demonstrate the application of leaf detection and extraction
in a herbaceous plant group.

METHODS AND RESULTS

Software

GinJinn was originally developed as an internal tool for rapid it-
eration through deep-learning model architectures to find ade-
quate neural network models for the detection and extraction of
intact leaves in digital images of herbarium specimens for subse-
quent morphometric analyses. It has since evolved into a general
object-detection pipeline for the setup, training, evaluation, and de-
ployment of bounding-box-based object-detection models with a
focus on providing easy access to a high number of different model
architectures with little manual work for the user, including the au-
tomated download of pretrained models if available. With GinJinn,
we provide plant scientists a tool for applying modern machine
learning–based visual recognition to their own data sets without re-
quiring a thorough theoretical background in machine learning and
proficiency in programming, which is generally necessary to apply
and deploy deep-learning object detection.

GinJinn is a Python 3 command-line application for the man-
agement, training, and application of object-detection models. In
addition to the pipeline application, GinJinn contains several helper
scripts that can be used separately from the main command line
tool. GinJinn makes use of the free, open-source deep-learning
framework TensorFlow (Abadi et al., 2016). Specifically, we are

using the TensorFlow object-detection API to access highly opti-
mized training and evaluation pipelines and modern neural net-
work architectures. The object-detection models supported by
GinJinn are bounding-box prediction models; segmentation mod-
els are not yet implemented. This means that, based on sufficient
training data where representative instances of the objects of in-
terest are annotated with encompassing bounding boxes, the CNN
learns to recreate those bounding boxes on the training data, and is
also able to transfer the learned image-to-bounding-box transfor-
mation to newly acquired, similar data (Girschick et al., 2013; Liu et
al., 2015; see O’Shea and Nash [2015] for an introduction to CNNs).
This allows the automatic recognition of structures of interest af-
ter the training of the neural network. In the context of herbarium
specimens, those structures might be, for example, fruits, flowers,
leaves, buds, or herbivore damage patterns. Structures extracted by
GinJinn may be subsequently subjected to different downstream
analyses aiming to quantify their shape, color, or texture; count dif-
ferent structure classes (number of buds vs. number of flowers vs.
number of fruits in phenological studies); or quantify their posi-
tions relative to each other on the surveyed herbarium specimen
(coordinates of members of a predefined structure class).

The two different meta-architectures of bounding-box prediction
models that are supported by GinJinn are Regions with CNNs
(R-CNNs; Girschick et al., 2013) and Single Shot Multibox Detectors
(SSDs; Liu et al., 2015). R-CNNs basically employ a two-step proce-
dure of first predicting regions of interest, so-called region propos-
als, and subsequently classifying the regions of interest (Girschick
et al., 2013; Girschick, 2015; Ren et al., 2015). In contrast, SSDs
combine both steps in a single neural network architecture (Liu
et al., 2015). While SSDs are more modern and allow faster pre-
diction of bounding boxes, a recent benchmarking study by Zhao
et al. (2018) showed that R-CNNs achieve similar or better
accuracies. The even more recently developed class of bounding-box
prediction models, You Only Look Once (YOLO) (Redmon et al.,
2015), is intentionally not supported by GinJinn, because these
models focus on prediction speed by sacrificing accuracy (Zhao
et al., 2018), which is not necessary for the extraction of structures
from static images of preserved plants.

Although GinJinn makes heavy use of the TensorFlow ob-
ject-detection API, it is not merely a wrapper to ease the use of the
API. GinJinn provides additional tools for data preprocessing, set-
ting up a standardized project structure, downloading pretrained
models (if available), simple model exporting, and using the trained
network for the extraction of bounding boxes from newly acquired
data, which is a functionality not supported out-of-the-box by the
TensorFlow object-detection API. While providing this additional
functionality, we ensured that the intermediary and output files
were kept compatible with TensorFlow to allow advanced users to
seamlessly access the more advanced features of the TensorFlow
object-detection API without having to leave the framework pro-
vided by GinJinn. Hence, for users who are new to the field of ma-
chine learning–based object detection, the pipeline can act as a
gentle introduction and allow them to iteratively try out more ad-
vanced functionalities of modern deep-learning object detection.
Additionally, the interoperability with TensorFlow allows GinJinn
users to monitor the training and evaluation of their models live
with the TensorBoard (Abadi et al., 2016) tool.

The GinJinn pipeline consists of six steps (Fig. 1): (1) The gener-
ation of a project directory including a project configuration tem-
plate file. The project configuration file is the place for the user to set

Applications in Plant Sciences 2020 8(6): e11351 Ott et al.—GinJinn object-detection pipeline • 3 of 7

http://www.wileyonlinelibrary.com/journal/AppsPlantSci © 2020 Ott et al.

FIGURE 1. Flow diagram of the six GinJinn pipeline steps. A project folder is generated using ginjinn new (1) and the configuration file is modified
depending on the user’s needs (1.1). The preparation (2), processing (3), training (4), and export (5) steps are executed sequentially with specific
GinJinn commands (setup_dataset, setup_model, train, and export, respectively), or alternatively at once with the single ginjinn auto command. When
not using ginjinn auto, the user can modify intermediary TensorFlow configuration files (3.1) for additional control over the model parameters and
augmentation options. The trained and exported model can be used for inference of bounding boxes on new data using ginjinn detect. GinJinn com-
mands are indicated by the yellow process boxes. Data inputs and outputs are illustrated with solid and dashed arrows, respectively. After bounding
box detection, the extracted structures of interest can be supplied to other tools for downstream analyses.

Applications in Plant Sciences 2020 8(6): e11351 Ott et al.—GinJinn object-detection pipeline • 4 of 7

http://www.wileyonlinelibrary.com/journal/AppsPlantSci © 2020 Ott et al.

data paths and select parameters for the subsequent pipeline steps.
(2) The conversion of the data to an internal format and splitting
of the data into training and test data sets. (3) Model preparation,
which includes the setup of the model and the automatic download
of pretrained models (if desired and available). Additionally, this
step generates the TensorFlow model configuration file. Advanced
users can modify this file to influence image preprocessing, as well
as the training and evaluation of the model. (4) Simultaneous model
training and evaluation. Model checkpoints are automatically saved.
During this step, progress can be monitored via TensorBoard or the
console output. (5) Model export, in which the user can select one
saved model checkpoint for export. (6) The use of exported models
for the extraction of structures from newly acquired images via an
additional GinJinn command.

GinJinn accepts JPEG (.jpg, .jpeg) and PNG (.png) images with
corresponding annotations in PASCAL Visual Object Classes
Challenge (VOC; Everingham et al., 2010) XML format or VGG
Image Annotator (Dutta and Zisserman, 2019) JSON format for the
training and evaluation of the CNNs. PNG images can be supplied
only without the alpha channel (transparency). Like the exported
models, the intermediary outputs are also compatible with standard
TensorFlow object-detection workflows. The prediction of bound-
ing boxes on newly obtained image data can be performed based
on both JPEG and PNG formats. The output of the prediction is
available as class-wise images with bounding boxes for visual in-
spection, cropped bounding boxes, or bounding-box coordinates
in CSV (.csv) format. The output image formats are PNG or JPEG,
depending on the format of the respective input images.

We have tested GinJinn on Windows 10 (Microsoft Corporation,
Redmond, Washington, USA), Debian (https://www.debian.org/),
and Ubuntu (https://ubuntu.com/). The pipeline requires an in-
stallation of Python 3.6 (van Rossum and Drake, 2009) and a
corresponding TensorFlow or TensorFlow–graphics processing
unit (GPU) version. The latter version is recommended due to the
speedup in training, evaluation, and inference time compared to the
CPU version, but requires the installation of proprietary NVIDIA
GPU drivers and toolkits. Apart from the computation time, both
versions are equivalent. Detailed installation instructions can be
found in the manual. GinJinn has been released open source under
the MIT license. The source code, including the installation instruc-
tions, is available at https://github.com/AGObe rprie ler/ginjinn.

Example application: Leucanthemum leaves

As an example of the application of GinJinn, we present the recogni-
tion and extraction of intact leaves from digital images of preserved
herbarium specimens of two species of Leucanthemum (ox-eye
daisies; Compositae, Anthemideae) with different ploidy levels,
namely the diploid L. vulgare and the tetraploid L. ircutianum.
One important morphological character for the differentiation of
those two species is the shape of the basal and middle cauline leaves
(Wagenitz, 1977; Vogt, 1991).

The automated recognition of intact leaves on herbarium speci-
mens, especially for plants with a high variability in leaf shape—as
is the case for Leucanthemum—can be considered a complex task,
because the occurrence of intact leaves in relation to the occurrence
of non-intact leaves is rare. This high abundance of damaged leaves
is caused by factors such as herbivore damage, shearing while han-
dling the vouchers, and most prominently by the dry pressing pro-
cess, where leaves are often unintendedly folded. Additionally, the

difference between damaged and intact leaves can be very small,
making it hard to clearly differentiate between the two cases, even
for human observers. We defined as intact those leaves that were
completely visible, non-overlapping, non-folded, and not damaged
by herbivores. For cauline leaves, special care was taken to ensure
that the leaf base was visible, as this is an important character for
the distinction between the two Leucanthemum species (Wagenitz,
1977; Vogt, 1991). Damaged, overlapping, or folded leaves were not
annotated. Accordingly, the detection of intact leaves in this study
is posed as a single-class bounding-box detection problem. We have
refrained from the subsequent downstream analyses of extracted
structures (here: leaves) because these analyses of taxonomically
relevant features such as the leaf outline, degree of dissection, color,
or texture could be easily accomplished with existing software such
as MASS (Chuanromanee et al., 2019) or Momocs (Bonhomme et
al., 2014).

For the present example application of GinJinn, we used a data
set consisting of 286 JPEG images of preserved plant herbarium
specimens provided by the herbarium of the Botanic Garden and
Botanical Museum Berlin-Dahlem (B), Berlin, Germany. The im-
ages were annotated using the free open-source tool LabelImg
version 1.8.1 (https://github.com/tzuta lin/labelImg), resulting in
a total of 889 annotated intact leaves in 243 images of herbarium
specimens. For the 43 remaining images, no intact leaves were pres-
ent. GinJinn was used to split the data into training and test data
sets for model evaluation by randomly sampling 25% of the images
into the test data set.

A model architecture consisting of a Faster R-CNN (Ren et al.,
2015) meta-architecture and Inception-ResNet version 2 (Szegedy
et al., 2016) as the feature extractor was selected. To speed up the
training process, we applied so-called transfer learning by starting
the training from a model that was pretrained on the Common
Objects in Context (COCO) data set (Lin et al., 2014) provided by
the TensorFlow object-detection API. The model was trained for
12,000 generations with a batch size of 1.

The evaluation was performed according to the PASCAL VOC
challenge evaluation metrics (Everingham et al., 2010). The model
achieved a mean average precision (mAP) of 0.49 at an intersection
over union (IoU) of 50%. We were able to successfully detect the
presence of one or more intact leaves in 95% of the 61 test images,
for which the presence of an intact leaf was manually determined a
priori. Figure 2A shows the resulting predicted bounding boxes on a
test image, with Fig. 2B and C depicting true positive and false pos-
itive leaf detection, respectively. The results shown in Fig. 2B could
subsequently be used for morphometric analyses with tools such as
MASS (Chuanromanee et al., 2019) or Momocs (Bonhomme et al.,
2014), for example. Our results indicate the applicability of train-
ing a deep-learning model for the detection of objects in preserved
plant specimens that can potentially assist or even automatize the
extraction of leaves from herbarium images or assist further anno-
tations, even with a relatively small data set of only 243 images.

The software manual hosted at the GinJinn GitHub repository
contains a dedicated section for the reproduction of these results.
This section should also be considered a tutorial for new users.

CONCLUSIONS

With GinJinn, we are introducing a new software tool that allows
plant scientists to tap into modern deep-learning-based visual

https://www.debian.org/
https://ubuntu.com/
https://github.com/AGOberprieler/ginjinn
https://github.com/tzutalin/labelImg

Applications in Plant Sciences 2020 8(6): e11351 Ott et al.—GinJinn object-detection pipeline • 5 of 7

http://www.wileyonlinelibrary.com/journal/AppsPlantSci © 2020 Ott et al.

recognition for the exploration and exploitation of the rich treasure
that digitized herbarium specimens in collections all over the globe
represent. Here, we have shown that our pipeline is able to automati-
cally extract intact leaves from herbarium specimen images for sub-
sequent downstream analyses. This provides the potential to speed
up and automatize previously work-intensive manual workflows, and
can grant scientists access to huge amounts of morphological data for
morphometric and phenological studies using herbarium specimens.

Previous work in the area of visual recognition of preserved
plant materials used hand-crafted features for trait and structure
extraction (Corney et al., 2012b; Henries and Tashakkori, 2012;
Unger et al., 2016), focused on classification instead of object de-
tection (Jin et al., 2015; Munisami et al., 2015; Carranza-Rojas et
al., 2017; Younis et al., 2018; Lorieul et al., 2019), or tried to directly
extract characters from images without using explicit object-detec-
tion techniques (Ubbens and Stavness, 2017; Younis et al., 2018).
GinJinn, in contrast, is a tool specifically developed for the ex-
traction of structures such as leaves, flowers, buds, or fruits from
digitized herbarium specimens. As such, GinJinn can be used to
generate inputs for downstream analyses with existing tools, for
example, the recently released MASS (Chuanromanee et al., 2019)
software for morphometric analyses. A tool somewhat similar to
GinJinn, LeafMachine (Weaver et al., 2020), is also newly available
for the extraction of leaves from digital images of preserved plants.
Whereas LeafMachine is designed to extract leaves via semantic
segmentation, our pipeline can be used to extract instances of any
kind of structure that it is trained for via bounding-box object de-
tection. Furthermore, all dependencies of GinJinn are free and open
source, while LeafMachine depends on the proprietary MATLAB

(MathWorks, Natick, Massachusetts, USA)
environment. However, if a pixel-wise seg-
mentation is required instead of cropped
leaves, LeafMachine might be the bet-
ter-suited tool. Another possibility would be
to use both tools: GinJinn to first reduce the
complexity of the problem via bounding-box
cropping and a subsequent pixel-perfect
extraction of leaf silhouettes based on the
cropped leaves using LeafMachine.

When compared to the usage of the
TensorFlow object-detection API directly,
our pipeline adds the additional features of
project setup, data preparation, automatic
download of pretrained models, and an easy-
to-use inference routine with outputs fitted
to the plant science community. Additionally,
GinJinn can be used by scientists without
proficiency in Python programming and
generally does not require any knowledge
about the architecture of TensorFlow and the
TensorFlow object-detection API.

By designing the pipeline with ease of use in
mind, it was necessary to reduce the feature set
that is presented to the user when compared to
TensorFlow. This drawback is partly mitigated
by exposing the raw TensorFlow configuration
and the run and export scripts in the project
folders generated by GinJinn in such a way that
advanced users can modify those files directly
without leaving the framework of the pipeline.

As a machine learning–based tool, the performance of ob-
ject-detection models trained using GinJinn is highly dependent
on the quality of the available training data. This limitation, how-
ever, applies to all machine learning–based modeling. Care must
be taken to ensure the data used for training the object-detection
models resemble the expected test data. A problem, for exam-
ple, is strong differences in lighting conditions or the angle from
which images were taken between the training and test data. This
limitation is partially mitigated using the built-in augmentation
options, which introduce small perturbations into the training
images to make the model more resistant against that type of
variability.

A temporary technical restriction is that only bounding-box
prediction models are available, even though models for semantic
and instance segmentation are also supported by the TensorFlow
object-detection API. However, in future versions, those segmenta-
tion models will be made available through the GinJinn interface.
Another goal for the next version of the application is to provide
the configuration of additional data augmentation options. The
long-term aim is the integration of the PyTorch (Paszke et al., 2017)
framework as an alternative to TensorFlow, which would introduce
a higher amount of available architectures and an easier setup of
GPU acceleration for GinJinn.

We present GinJinn as a deep-learning object-detection tool
for the automatic recognition and extraction of structures such
as leaves or flowers from herbarium specimens. We showed that
GinJinn can be applied to successfully extract intact leaves from
images of herbarized Leucanthemum individuals, while offer-
ing greater flexibility and a lower barrier to entry compared

FIGURE 2. (A) Output type ‘ibb’ (image with bounding boxes) showing class-wise predicted
bounding boxes of leaves with a score of 0.5 or higher drawn on the original image of a herbar-
ium specimen. The score can be interpreted as a probability that the content of the bounding box
belongs to a certain object class (in this case, a leaf). (B) Output type ‘ebb’ (extracted bounding
boxes with a padding of 25 pixels) for selected true positive examples of the detected leaves
shown in A. (C) Output type ‘ebb’ for selected false positive examples of the leaves shown in A.

A B

C

Applications in Plant Sciences 2020 8(6): e11351 Ott et al.—GinJinn object-detection pipeline • 6 of 7

http://www.wileyonlinelibrary.com/journal/AppsPlantSci © 2020 Ott et al.

with previous image-processing approaches based on hand-
crafted features.

ACKNOWLEDGMENTS

This work benefited from the collaboration of C.O. (OB 155/13-1)
and R.V. (VO 1595/3-1) within the Deutsche Forschungsgemeins-
chaft (DFG) priority program SPP 1991 “Taxon-omics − New
Approaches for Discovering and Naming Biodiversity” through the
project “Setting-up a methodological pipeline for species delimita-
tion and species network reconstruction in polyploid complexes.”
The comments of two reviewers improved an earlier version of this
contribution considerably and are thankfully acknowledged.

AUTHOR CONTRIBUTIONS

T.O., C.P., and C.O. conceived the present study. R.V. produced the
scans of the preserved specimens. T.O. programmed the software.
C.P. consulted the exemplary data analysis. A first draft of the paper
was written by T.O. with input from C.P., R.V., and C.O.

DATA AVAILABILITY

The source code and manual are hosted at https://github.com/
AGObe rprie ler/ginjinn. The annotated image data that were used
for evaluation of the method are hosted by the German Federation
for Biological Data (GFBio; https://data.bgbm.org/datas et/gfbio
/0033/).

LITERATURE CITED

Abadi, M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
et al. 2016. TensorFlow: Large-scale machine learning on heteroge-
neous distributed systems. arXiv 1603.04467 [cs] [Preprint]. Published
14 March 2016 [accessed 6 May 2020]. Available at: https://arxiv.org/
abs/1603.04467.

Bonhomme, V., S. Picq, and C. Gaucherel. 2014. Momocs: Outline analysis using
R. Journal of Statistical Software 56(13): 1–24.

Carranza-Rojas, J., H. Goeau, P. Bonnet, E. Mata-Montero, and A. Joly. 2017.
Going deeper in the automated identification of herbarium specimens. BMC
Evolutionary Biology 17: 181–194.

Chuanromanee, T. S., J. I. Cohen, and G. L. Rya. 2019. Morphological Analysis of
Size and Shape (MASS): An integrative software program for morphometric
analyses of leaves. Applications in Plant Sciences 7(9): e11288.

Corney, D. P. A., H. L. Tang, J. Y. Clark, Y. Hu, and J. Jin. 2012a. Automating digital
leaf measurement: The tooth, the whole tooth, and nothing but the tooth.
PLoS ONE 7(8): e42112.

Corney, D. P. A., J. Y. Clark, H. L. Tang, and P. Wilkin. 2012b. Automatic extraction
of leaf characters from herbarium specimens. Taxon 61: 231–244.

Dutta, A., and A. Zisserman 2019. The VIA annotation software for images,
audio and video. In Proceedings of the 27th ACM International Conference
on Multimedia (MM ’19), 21–25 October 2019, Nice, France. ACM, New
York, New York, USA.

Everingham, M., L. Gool, C. K. Williams, J. Winn, and A. Zisserman. 2010. The
Pascal Visual Object Classes (VOC) challenge. International Journal of
Computer Vision 88: 303–338.

Girschick, R. 2015. Fast R-CNN. arXiv: 1504.08083 [cs] [Preprint]. Published
30 April 2015 [accessed 6 May 2020]. Available at: https://arxiv.org/
abs/1504.08083.

Girschick, R., J. Donahue, T. Darrell, and J. Malik. 2013. Rich feature hierarchies
for accurate object detection and semantic segmentation. arXiv 1311.2524
[cs] [Preprint]. Published 11 November 2013 [accessed 6 May 2020].
Available at: https://arxiv.org/abs/1311.2524.

Goëau, H., A. Mora-Fallas, J. Champ, N. Love, S. J. Mazer, E. Mata-Montero, A.
Joly, and P. Bonnet. 2020. A new fine-grained method for automated visual
analysis of herbarium specimens: A case study for phenological data ex-
traction. Applications in Plant Sciences 8(6): e11368.

Henries, D. G., and R. Tashakkori. 2012. Extraction of leaves from herbar-
ium images. 2012 IEEE International Conference on Electro/Information
Technology. https://doi.org/10.1109/EIT.2012.6220752.

Jin, T., X. Hou, P. Li, and F. Zhou. 2015. A novel method of automatic plant species
identification using sparse representation of leaf tooth features. PLoS ONE
10(10): e0139482.

Lin, T.-Y., M. Maire, S. Belongie, L. Bourdev, R. Girschick, J. Hays, P. Perona, et al.
2014. Microsoft COCO: Common Objects in Context. arXiv 1405.0312 [cs]
[Preprint]. Published 1 May 2014 [accessed 6 May 2020]. Available at: https://
arxiv.org/abs/1405.0312.

Liu, W., D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg.
2015. SSD: Single Shot MultiBox Detector. arXiv 1512.02325 [cs] [Preprint].
Published 8 December 2015 [accessed 6 May 2020]. Available at: https://
arxiv.org/abs/1512.02325.

Lorieul, T., K. D. Pearson, E. R. Ellwood, H. Goëau, J.-F. Molino, P. W. Sweeney, J.
M. Yost, et al. 2019. Toward a large-scale and deep phenological stage anno-
tation of herbarium specimens: Case studies from temperate, tropical, and
equatorial floras. Applications in Plant Sciences 7(3): e01233.

Munisami, T., M. Ramsurn, S. Kishnah, and S. Pudaruth. 2015. Plant leaf recog-
nition using shape features and colour histogram with k-nearest neighbour
classifiers. Procedia Computer Science 58: 740–747.

O’Shea, K., and R. Nash. 2015. An introduction to convolutional neural networks.
arXiv 1511.08458 [cs] [Preprint]. Published 26 November 2015 [accessed 6
May 2020]. Available at: https://arxiv.org/abs/1511.08458.

Paszke, A., S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, et al.
2017. Automatic differentiation in PyTorch. NIPS Autodiff Workshop.
Website https://openr eview.net/forum ?id=BJJsr mfCZ [accessed 21 April
2020].

Redmon, J., S. Divvala, R. Girschick, and A. Farhadi. 2015. You only look once:
Unified real-time object detection. arXiv 1506.02640 [cs] [Preprint]. Published 8
June 2015 [accessed 6 May 2020]. Available at: https://arxiv.org/abs/1506.02640.

Ren, S., K. He, R. Girschick, and J. Sun. 2015. Faster R-CNN: Towards
real-time object detection with region proposal networks. arXiv 1506.01497
[cs] [Preprint]. Published 4 June 2015 [accessed 6 May 2020]. Available at:
https://arxiv.org/abs/1506.01497.

Royer, D. L., P. Wilf, D. A. Janesko, E. A. Kowalski, and D. L. Dilcher. 2005.
Correlations of climate and plant ecology to leaf size and shape: Potential
proxies for the fossil record. Paleobotany 92(7): 1141–1151.

Royer, D. L., J. C. McElwain, J. M. Adams, and P. Wilf. 2008. Sensitivity of leaf
size and shape to climate within Acer rubrum and Quercus kelloggii. New
Phytologist 179(3): 808–817.

Szegedy, C., S. Ioffe, V. Vanhoucke, and A. Alemi. 2016. Inception-v4, Inception-
ResNet and the impact of residual connections on learning. arXiv 1602.07261
[cs] [Preprint]. Published 23 February 2016 [accessed 6 May 2020]. Available
at: https://arxiv.org/abs/1602.07261.

Ubbens, J. R., and I. Stavness. 2017. Deep plant phenomics: A deep learning
platform for complex plant phenotyping tasks. Frontiers in Plant Science 8:
1190–1201.

Unger, J., D. Merhof, and S. Renner. 2016. Computer vision applied to herbar-
ium specimens of German trees: Testing the future utility of millions of her-
barium specimen images for automated identification. BMC Evolutionary
Biology 16: 248–254.

van Rossum, G., and F. L. Drake. 2009. Python 3 Reference Manual. CreateSpace,
Scotts Valley, California, USA.

Vogt, R. 1991. Die Gattung Leucanthemum Mill. (Compositae-Anthemideae) auf
der Iberischen Halbinsel. Ruizia 10: 1–261.

Wagenitz, G. 1977. Zur Bestimmung der Leucanthemum-Arten in Mitteleuropa
nördlich der Alpen. Göttinger Floristische Rundbriefe 10: 80–85.

https://github.com/AGOberprieler/ginjinn
https://github.com/AGOberprieler/ginjinn
https://data.bgbm.org/dataset/gfbio/0033/
https://data.bgbm.org/dataset/gfbio/0033/
https://arxiv.org/abs/1603.04467
https://arxiv.org/abs/1603.04467
https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1311.2524
https://doi.org/10.1109/EIT.2012.6220752
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1512.02325
https://arxiv.org/abs/1512.02325
https://arxiv.org/abs/1511.08458
https://openreview.net/forum?id=BJJsrmfCZ
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1602.07261

Applications in Plant Sciences 2020 8(6): e11351 Ott et al.—GinJinn object-detection pipeline • 7 of 7

http://www.wileyonlinelibrary.com/journal/AppsPlantSci © 2020 Ott et al.

Weaver, W., J. Ng, and R. G. Laport. 2020. LeafMachine: Using machine learn-
ing to automate phenotypic trait extraction from herbarium vouchers.
Applications in Plant Sciences 8(6): e11367.

White, A., R. Dikow, M. Baugh, A. Jenkins, and P. Frandsen. 2020. Generating
segmentation masks of herbarium specimens and a data set for training seg-
mentation models using deep learning. Applications in Plant Sciences 8(6):
e11352.

Younis, S., C. Weiland, R. Hoehndorf, S. Dressler, T. Hickler, B. Seeger, and
M. Schmidt. 2018. Taxon and trait recognition from digitized herbarium
specimens using deep convolutional neural networks. Botany Letters 165:
377–383.

Zhao, Z.-Q., P. Zheng, S.-T. Xu, and X. Wu. 2018. Object detection with deep
learning: A review. arXiv 1807.05511 [cs] [Preprint]. Published 15 July 2018
[accessed 6 May 2020]. Available at: https://arxiv.org/abs/1807.05511.

https://arxiv.org/abs/1807.05511

