
From Imitation to Prediction, Data Compression vs
Recurrent Neural Networks for Natural Language

Processing
Juan Andrés Laura∗, Gabriel Omar Masi† and Luis Argerich‡

Departemento de Computación, Facultad de Ingenierı́a
Universidad de Buenos Aires

Email: ∗jandreslaura@gmail.com, †masigabriel@gmail.com, ‡largerich@fi.uba.ar

Abstract—In recent studies [1] [2] [3] Recurrent Neural Net-
works were used for generative processes and their surprising
performance can be explained by their ability to create good
predictions. In addition, data compression is also based on
prediction. What the problem comes down to is whether a
data compressor could be used to perform as well as recurrent
neural networks in the natural language processing tasks of
sentiment analysis and automatic text generation. If this is
possible, then the problem comes down to determining if a
compression algorithm is even more intelligent than a neural
network in such tasks. In our journey we discovered what we
think is the fundamental difference between a Data Compression
Algorithm and a Recurrent Neural Network.

I. INTRODUCTION

One of the most interesting goals of Artificial Intelligence
is the simulation of different human creative processes like
speech recognition, sentiment analysis, image recognition,
automatic text generation, etc. In order to achieve such goals,
a program should be able to create a model that reflects how
humans think about these problems.

Researchers think that Recurrent Neural Networks (RNN)
are capable of understanding the way some tasks are done such
as music composition, writing of texts, etc. Moreover, RNNs
can be trained for sequence generation by processing real data
sequences one step at a time and predicting what comes next
[1] [2].

Compression algorithms are also capable of understanding
and representing different sequences and that is why the com-
pression of a string could be achieved. However, a compression
algorithm might be used not only to compress a string but also
to do non-conventional tasks in the same way as neural nets
(e.g. a compression algorithm could be used for clustering [4],
sequence generation or music composition).

Both neural networks and data compressors should be able
to learn from the input data to do the tasks for which they
are designed. In this way, someone could argue that a data
compressor can be used to generate sequences or a neural
network can be used to compress data. In consequence, using
the best data compressor to generate sequences should produce
better results than the ones obtained by a neural network but
if this is not true then the neural network should compress
better than the state of the art in data compression.

The hypothesis for this research is that, if compression
is based on learning from the input data set, then the best
compressor for a given data set should be able to compete with
other algorithms in natural language processing tasks. In the
present work, this hypothesis will be analyzed for two given
scenarios: sentiment analysis and automatic text generation.

II. DATA COMPRESSION AS AN ARTIFICIAL INTELLIGENCE
FIELD

For many authors there is a very strong relationship between
Data Compression and Artificial Intelligence [5] [6]. Data
Compression is about making good predictions [7] which
is also the goal of Machine Learning, a field of Artificial
Intelligence.

Essentially, Data compression involves two important steps:
modeling and coding. Coding is a solved problem using
arithmetic compression. The difficult task is modeling because
it comes down to building a description of the data using the
most compact representation; this is again directly related to
Artificial Intelligence. Using the Minimal Description Length
principle [8] the efficiency of a good Machine Learning
algorithm can be measured in terms of how good it is to
compress the training data plus the size of the model itself.

A file containing the digits of π can be compressed with
a very short program able to generate those digits, gigabytes
of information can be compressed into a few thousand bytes.
However, the problem arises when trying to find a program
capable of understanding that our input file contains the digits
of π. In consequence, achieving the best compression rate
involves finding a program able to always find the most
compact model to represent the data and that is clearly an
indication of intelligence, perhaps even of General Artificial
Intelligence.

III. RNNS FOR DATA COMPRESSION

Recurrent Neural Networks and in particular LSTMs were
used not only for predictive tasks [9] but also for Data
Compression [10]. While the LSTMs were brilliant in their
text [2], music [3] and image generation [11] tasks they were
never able to defeat the state of the art algorithms in Data
Compression [10].

ASAI, Simposio Argentino de Inteligencia Artificial

46JAIIO - ASAI - ISSN: 2451-7585 - Página 72

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/157569290?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This might indicate that there is a fundamental difference
between Data Compression and Generative Processes and
between Data Compression Algorithms and Recurrent Neural
Networs. After experiments, a fundamental difference will be
shown in this research in order to explain why a RNN can
be the state of the art in a generative process but not in Data
Compression.

IV. SENTIMENT ANALYSIS

A. A Qualitative Approach

The Sentiment of people can be determined according to
what they write in many social networks such as Facebook,
Twitter, etc.. It looks like an easy task for humans. However, it
could be not so easy for a computer to automatically determine
the sentiment behind a piece of writing.

The task of guessing the sentiment of text using a computer
is known as sentiment analysis and one of the most popular
approaches for this task is to use neural networks. In fact,
Stanford University created a powerful neural network for
sentiment analysis [12] which is used to predict the sentiment
of movie reviews taking into account not only the words
in isolation but also the order in which they appear. In the
first experiment, the Stanford neural network and a PAQ
compressor1 [13] will be used for doing sentiment analysis
of movie reviews in order to determine whether a user likes
or not a given movie (i.e. each movie review will be classified
as positive or negative). After that, results obtained will be
compared using the percentage of correctly classified movie
reviews. Both algorithms will use a public data set for movie
reviews [14].

In order to understand how sentiment analysis could be
done with a data compressor it is important to comprehend
the concept of using Data Compression to compute the dis-
tance between two strings using the Normalized Compression
Distance [15].

NCD(x, y) =
C(xy)−min{C(x), C(y)}

max{C(x), C(y)}

Where C(x) is the size of applying the best possible
compressor to x and C(xy) is the size of applying the best
possible compressor to the concatenation of x and y.

The NCD is an approximation to the Kolmogorov distance
between two strings using a Compression Algorithm to ap-
proximate the complexity of a string because the Kolmogorov
Complexity is uncomputable.

The principle behind the NCD is quite simple: when string
y is concatenated after string x then y should be highly
compressed whenever y is very similar to x because the
information in x contains everything needed to describe y.
An observation is that C(xx) should be equal, with minimal
overhead difference to C(x) because Kolmogorov complexity
of a string concatenated to itself is equal to the Kolmogorov
complexity of the string.

1PAQ’s source code is free and it is available at Manohey’s web [13]

As introduced, a data compressor performs well when it is
capable of understanding the data set that will be compressed.
This understanding often grows when the data set becomes
bigger and in consequence compression rate improves. How-
ever, it is not true when future data (i.e. data that has not
been compressed yet) has no relation with already compressed
data because the more similar the information it is the better
compression rate is achieved.

Let C(X1, X2...Xn) be a compression algorithm that
compresses a set of n files denoted by X1, X2...Xn. Let
P1, P2...Pn and N1, N2...Nm be a set of n positive reviews
and m negative reviews respectively. Then, a review R can be
predicted positive or negative using the following inequality:

C(P1, ...Pn, R)−C(P1, ..., Pn) < C(N1, ..., Nm, R)−C(N1, ..., Nm)

The formula is a direct derivation from the NCD. When the
inequality is not true, a review is predicted negative.

The order in which files are compressed must be considered.
As you could see from the proposed formula, the review R is
compressed last.

Some people may ask why this inequality works to predict
whether a review is positive or negative. So it is important
to understand this inequality. Suppose that the review R is
a positive one. R will be compressed in order to classify it:
if R is compressed after a set of positive reviews then the
compression rate should be better than the one obtained if R is
compressed after a set of negative reviews because the review
R has more related information with the set of positive reviews
and in consequence should be compressed better. Interestingly,
both the positive and negative set could have different sizes
and that is why it is important to subtract the compressed file
size of both sets in the inequality.

B. Data Set Preparation

The Large Movie Review Dataset [14], which has been used
for Sentiment Analysis competitions, is used in this research2.

Positive Negative
Total 12491 12499
Training 9999 9999
Test 2492 2500

Table I
MOVIE REVIEW DATASET

C. PAQ for Sentiment Analysis

Using Data Compression for Sentiment Analysis is not
a new idea. It has been already proposed in IEEE 12th
International Conference [16]. However, the authors did not
use PAQ compressor.

PAQ Compressor is taken into account for this research
because of it’s excellent compression rates achieved at Hutter’s
Prize [17] and many benchmarks such as Matt Mahoney’s one
[13].

2Both training set and test set were chosen randomly

ASAI, Simposio Argentino de Inteligencia Artificial

46JAIIO - ASAI - ISSN: 2451-7585 - Página 73

In order to make sentiment analysis of a movie review using
PAQ, it is needed to compress each review after compressing
both the positive train set and the negative one separately.
Given the fact that compressing each train set takes a consid-
erable time, a checkpoint tool is used in this work. The review
is classified positive if the compression rate using the positive
train set is better than the one obtained using the negative train
set. Otherwise, it is classified as negative. If both compression
rates are equals, it is classified as inconclusive.

D. Experiment Results

In this section, the results obtained are explained giving a
comparison between the data compressor and the Stanford’s
Neural Network for Sentiment Analysis.

The following table shows the results obtained

Correct Incorrect Inconcluse
PAQ 77.20% 18.41% 4.39%
RNN 70.93% 23.60% 5.47%

Table II
PAQ VS RNN CLASSIFICATION RESULTS

As you could see from the previous table, 77.20% of movie
reviews were correctly classified by the PAQ Compressor
whereas 70.93% were well classified by the Stanford’s Neural
Network.

There are two main points to highlight according to the
result obtained:

1) Sentiment Analysis could be achieved with a PAQ
compression algorithm with high accuracy ratio.

2) In this particular case, a higher precision can be achieved
using PAQ rather than the Stanford Neural Network for
Sentiment Analysis.

We observed that PAQ was very accurate to
determine whether a review was positive or negative,
the missclassifications were always difficult reviews and in
some particular cases the compressor outdid the human label,
for example consider the following review:

“The piano part was so simple it could have been
picked out with one hand while the player whacked
away at the gong with the other. This is one of the
most bewilderedly trancestate inducing bad movies
of the year so far for me.”

This review was labeled positive but PAQ correctly predicted
it as negative, since the review is misslabeled it counted as a
miss in the automated test.

Analyzers based on words like the Stanford Analyzer
tend to have difficulties when the review contains a lot of
uncommon words. However, they can work well in longer
documents by relying on a few words with strong sentiment
like ’awesome’ or ’exhilarating’ [12]. It was surprising to
find that PAQ was able to correctly predict those. Consider
the following review:

”The author sets out on a ”journey of discovery”
of his ”roots” in the southern tobacco industry
because he believes that the (completely and
deservedly forgotten) movie ”Bright Leaf” is about
an ancestor of his. Its not, and he in fact discovers
nothing of even mild interest in this absolutely silly
and self-indulgent glorified home movie, suitable
for screening at (the director’s) drunken family
reunions but certainly not for commercial - or even
non-commercial release. A good reminder of why
most independent films are not picked up by major
studios - because they are boring, irrelevant and of
no interest to anyone but the director and his/her
immediate circles. Avoid at all costs!”

This was classified as positive by the Stanford Analyzer,
probably because of words such as ”interest, suitable, family,
commercial, good, picked”, the Compressor however was able
to read the real sentiment of the review and predicted a
negative label. In cases like this the Compressor shows the
ability to truly understand data.

V. AUTOMATIC TEXT GENERATION

This module’s goal is to automatically generate text with a
PAQ series compressor and compare it with Andrej Karpathy
RNN’s results [18], using specifics metrics and scenarios.

The ability of good compressors when making predictions is
more than evident. It just requires an entry text (training set) to
be compressed. At compression time, the future symbols will
get a probability of occurrence: The higher the probability, the
better compression rate for success cases of that prediction, on
the contrary, each failure case will take a penalty. At the end of
this process, a probability distribution will be associated with
that input data [19]. As a result of this probabilistic model,
it will be possible to simulate new samples, in other words,
generate text.

A. Data Model

PAQ series compressors use arithmetic coding to encode
symbols assigned to a probability distribution. Each proba-
bility lies on the interval [0,1) and when it comes to binary
coding, there are two possible symbols: 0 and 1. Moreover,
this compressor uses contexts, a main part of compression
algorithms. They are built from the previous history and can
be used to make predictions, for example, the last ten symbols
can be linked to compute the prediction of the eleventh.

PAQ uses an ensamble of several different models to com-
pute how likely a bit 1 or 0 is next. Some of these models are
based in the previous n characters of m bits of seen text, other
models use whole words as contexts, etc. In order to weight
the prediction performed by each model, a neural network is
used to determine the weight of each model [20]:

P (1|c) =
nX

i=1

Pi(1|c)Wi

ASAI, Simposio Argentino de Inteligencia Artificial

46JAIIO - ASAI - ISSN: 2451-7585 - Página 74

Where P (1|c) is the probability of bit 1 with context ”c”,
Pi(1|c) is the probability of bit 1 in context ”c” for model i
and Wi is the weight assigned to model i.

In addition, each model adjusts their predictions based
on the new information. When compressing, input text is
processed bit by bit. On every bit, the compressor updates the
context of each model and adjusts the weights of the neural
network.

Generally, as you compress more information, predictions
improve.

B. Text Generation

When data set compression is over, PAQ is ready to generate
text. A random number is sampled in the [0,1) interval and
transformed into a bit 1 or 0 using Inverse Transform Sampling
[21]. In other words, if the random number falls within the
probability range of symbol 1, bit 1 is generated, otherwise,
bit 0.

Figure 1. PAQ splits the [0,1) interval giving 1/4 of probability to bit 0 and
3/4 of probability to bit 1. When a random number is sampled in this context it
is more likely to generate a 1. Each generated bit updates all models’ context.
However, that bit should not be learned becaused of its random nature. In other
words, PAQ just learns from the training set and then generates random text
using that probabilistic model. After 8 bits, a character is generated.

Once that bit is generated, it will be compressed to reset
every context for the following prediction. Here, it is essential
to update models in a way that if the same context is obteined
in two different samples, probabilities must be the same,
otherwise it could compute and propagate errors. Seeing that,
it was necessary to turn off the training process and the weight
adjustment of each model at generation time. This was also
possible because the source code of PAQ is available.

It was noted that granting too much freedom to our com-
pressor could result in a large accumulation of bad predictions,
leading to poor text generation. Therefore, it is proposed to
make the text generation more conservative adding a parameter
called “temperature” that reduces the possible range of the
random number.

On maximum temperature, the random number will be
generated in the interval [0,1), giving the compressor maxi-
mum degree of freedom to make mistakes, whereas, when the
temperature parameter turns minimum, the “random” number
will always be 0.5, removing the degree of freedom to commit
errors (in this scenario, the highest probability symbol will be
generated).

When temperature is around 0.5 the results are very legible
even if they are not as similar to the original text (according
to the proposed metrics). It can be seen at the following
randomly generated Harry Potter’s snippet:

”What happened?” said Harry, and she was
standing at him. ”He is short, and continued to
take the shallows, and the three before he did
something to happen again. Harry could hear him.
He was shaking his head, and then to the castle,
and the golden thread broke; he should have been
a back at him, and the common room, and as
he should have to the good one that had been
conjured her that the top of his wand too before he
said and the looking at him, and he was shaking
his head and the many of the giants who would
be hot and leafy, its flower beds turned into the song.

C. Metrics

A simple transformation is applied to each text in order
to compute metrics. It consists in counting the number of
occurrences of each n-gram in the input (i.e. every time
a n-gram ”WXYZ” is detected, it increases its number of
occurrences). Then three different metrics were considered:

1) Pearson’s Chi-Squared: How likely it is that any ob-
served difference between the sets arose by chance. The chi-
square is computed as:

X 2 =

nX
i=1

(Oi − Ei)
2

Ei

Where Oi is the observed ith value and Ei is the expected
ith value. A value of 0 means equality.

2) Total Variation: Each n-gram’s observed frequency can
be denoted like a probability if it is divided by the sum of
all frequencies, P(i) on the real text and Q(i) on the generated
one. Total variation distance [22] can be computed according
to the following formula:

δ(P,Q) =
1

2

nX
i=1

|Pi −Qi|

In other words, the total variation distance is the largest pos-
sible difference between the probabilities that two probability
distributions can assign to the same event. A value of 0 means
equality.

3) Generalized Jaccard Similarity: It is the size of the
intersection divided by the size of the union of the sample
sets [23]. Jaccard Similarity is computed using the following
formula:

J(G,T) =
G ∩ T

G ∪ T

A value of 1 means both texts are equals.

D. About Samples

For each scenario, Karpathy’s RNN was trained several
times to find its best hyper-parameters. Asymmetrically, the
compressor required to be trained just once. After that, a
sampling procedure was executed. It set up different values

ASAI, Simposio Argentino de Inteligencia Artificial

46JAIIO - ASAI - ISSN: 2451-7585 - Página 75

Figure 2. Effect of Temperature in the Jaccard Similarity, very high tempera-
tures produce text that is not so similar to the training test, temperatures that
are too low aren’t also optima, the best value is usually an intermediate one.

for ”temperature” parameter, allowing these trained models to
generate diverse text samples.

In this research, similarity between the input text (for
example, The Complete Works of William Shakespeare) and
an automatic generated text sample was measured using a local
context and a global one. The former implied splitting the
input set in n fragments. Each fragment was compared to the
sampled text to find the best combination (i.e. the metrics were
computed using each real fragment against the generated one,
the best value was taken). The latter implied measuring the
sampled text against the whole set without fragmentation.

E. Results

Turning off the training process and the weights adjustment
of each model freezes the compressor’s global context on the
last part of the training set. As a consequence of this event,
the last piece of the entry text will be considered as a “big
seed”.

For example, The King James Version of the Holy Bible
includes an index at the end of the text, a bad seed for text
generation. Compressing the Bible with that index set an
unknown context for PAQ and leaded us to this result:

ˆ55And if meat is broken behold I will love for
the foresaid shall appear, and heard anguish, and
height coming in the face as a brightness is for
God shall give thee angels to come fruit.

56But whoso shall admonish them were dim
born also for the gift before God out the least was
in the Spirit into the company

[67Blessed shall be loosed in heaven.)

The index at the end of the file was removed and then PAQ
compressed and generated again:

ˆ12The flesh which worship him, he of our Lord
Jesus Christ be with you most holy faith, Lord,

Let not the blood of fire burning our habitation of
merciful, and over the whole of life with mine own
righteousness, shall increased their goods to forgive
us our out of the city in the sight of the kings of
the wise, and the last, and these in the temple of
the blind.

ˆ13For which the like unto the souls to the
saints salvation, I saw in the place which when
they that be of the bridegroom, and holy partly, and
as of the temple of men, so we say a shame for a
worshipped his face: I will come from his place,
declaring into the glory to the behold a good; and
loosed.

ˆ14He that worketh in us, by the Spirit saith
unto the earth;and he that they shall not be
ashamed before mine old, I come saith unto him
the second time, and prayed, saying to flower, and
death reigned brass.

The difference is remarkable. Comparing different segments
of each input file against each other, it was observed that in
some files the last piece was significantly different than the
rest of the text. Those unpredictable endings mess up PAQ’s
generation but it was very interesting to notice that for the
RNN did not result in a noticeable difference. This was the
first hint that the compressor and the RNN were proceeding
in different ways.

Figure 3. The effect of the chosen seed in the Chi Squared metric. In Orange
the metric variation by temperature using a random seed. In Blue the same
metric with a chosen seed.

In some cases the compressor generated text that was
surprisingly well written. This is an example of random text
generated by PAQ8L after compressing ”Harry Potter”

CHAPTER THIRTY-SEVEN - THE GOBLET OF LORD
VOLDEMORT OF THE FIREBOLT MARE!”

Harry looked around. Harry knew exactly who lopsided,
looking out parents. They had happened on satin’ keep his
tables.”

ASAI, Simposio Argentino de Inteligencia Artificial

46JAIIO - ASAI - ISSN: 2451-7585 - Página 76

Dumbledore stopped their way down in days and after
her winged around him.

He was like working, his eyes. He doing you were draped in
fear of them to study of your families to kill, that the beetle,
he time. Karkaroff looked like this. It was less frightening you.

While the text may not make sense it certainly follows the
style, syntax and writing conventions of the training text.

F. Metric Results

The result of both, PAQ and Karpathy’s RNN, for automatic
text generation using the mentioned metrics to evaluate how
much similar the results are to the original ones.

1) Local similarity: It can be seen that the compressor got
better results for all texts except Poe, Shakespeare and Game
of Thrones. A subtle reason why the RNN got better results
in such texts is explained in the conclusions.

PAQ8L RNN
Game of Thrones 47790 44935
Harry Potter 46195 83011
Paulo Coelho 45821 86854
Bible 47833 52898
Poe 61945 57022
Shakespeare 60585 84858
Math Collection 84758 135798
War and Peace 46699 47590
Linux Kernel 136058 175293

Table III
CHI SQUARED RESULTS (LOWER VALUE IS BETTER)

PAQ8L RNN
Game of Thrones 25.21 24.59
Harry Potter 25.58 37.40
Paulo Coelho 25.15 34.80
Bible 25.15 25.88
Poe 30.23 27.88
Shakespeare 27.94 30.71
Math Collection 31.05 35.85
War and Peace 24.63 25.07
Linux Kernel 44.74 45.22

Table IV
TOTAL VARIATION %(LOWER VALUE IS BETTER)

PAQ8L RNN
Game of Thrones 0.06118 0.0638
Harry Potter 0.1095 0.0387
Paulo Coelho 0.0825 0.0367
Bible 0.1419 0.1310
Poe 0.0602 0.0605
Shakespeare 0.0333 0.04016
Math Collection 0.21 0.1626
War and Peace 0.0753 0.0689
Linux Kernel 0.0738 0.0713

Table V
JACCARD SIMILARITY (HIGHER IS BETTER)

2) Global similarity: The Recurrent Neural Network got
better results in global contexts. The results are shown in the
following tables:

PAQ8L RNN
Game of Thrones 60541 62514
Harry Potter 66008 363711
Paulo Coelho 67846 255951
Bible 838686 70258
Poe 99199 75965
Shakespeare 180619 91877
Math Collection 294999 100153
War and Peace 59625 62854
Linux Kernel 371226 198317

Table VI
CHI SQUARED RESULTS (LOWER VALUE IS BETTER)

PAQ8L RNN
Game of Thrones 21.79 19.16
Harry Potter 25.31 33.67
Paulo Coelho 24.92 30.62
Bible 28.51 17.21
Poe 29.63 21.39
Shakespeare 29.63 21.67
Math Collection 36.46 22.78
War and Peace 37.38 18.81
Linux Kernel 41.85 29.70

Table VII
TOTAL VARIATION %(LOWER VALUE IS BETTER)

PAQ8L RNN
Game of Thrones 0.0611 0.0636
Harry Potter 0.0835 0.0386
Paulo Coelho 0.0758 0.0399
Bible 0.0911 0.1430
Poe 0.0500 0.0646
Shakespeare 0.0332 0.0401
Math Collection 0.1351 0.2094
War and Peace 0.0427 0.0761
Linux Kernel 0.0771 0.0925

Table VIII
JACCARD SIMILARITY (HIGHER IS BETTER)

VI. CONCLUSIONS

In the sentiment analysis task, an improvement using PAQ
over a Neural Network is noticed. A Data Compression
algorithm has the intelligence to understand text up to the
point of being able to predict its sentiment with similar or
better results than the state of the art in sentiment analysis. In
some cases the precision improvement was up to 6% which is
a lot.

Sentiment analysis is a predictive task, the goal is to predict
sentiment based on previously seen samples for both positive
and negative sentiment, in this regard a compression algorithm
seems to be a better predictor than a RNN.

In the text generation task, the use of a right seed is needed
for PAQ algorithm to be able to generate useful text, this was
evident in the Bible example. This result is consistent with
the sentiment analysis result because the seed is acting like
the previously seen reviews, if it is not in sync with the text
then the results will not be similar to the original text.

The text generation task showed the critical difference be-
tween a Data Compression algorithm and a Recurrent Neural
Network and we believe this is the most important result of
our work: Data Compression algorithms are predictors while
Recurrent Neural Networks are imitators.

ASAI, Simposio Argentino de Inteligencia Artificial

46JAIIO - ASAI - ISSN: 2451-7585 - Página 77

The text generated by a RNN looks in general better than the
text generated by a Data Compressor but if just one paragraph
is generated, the Data Compressor is clearly better. PAQ learns
from the previously seen text and creates a model that is
optimal for predicting what is next, that is why they work
so well for Data Compression and that is why they are also
very good for Sentiment Analysis or to create a paragraph
after seeing the training set.

On the other hand the RNN is a great imitator of what
it learned, it can replicate style, syntax and other writing
conventions with a surprising level of detail but what the RNN
generates is based in the whole text used for training without
weighting recent text as more relevant. In this sense, the RNN
is better for random text generation while the Compression
algorithm should be better for random text extension or
completion.

Suppose the text of Romeo & Juliet is located at the end
of William Shakespeare’s works and then both algorithms use
them to generate a sample. As a consequence, PAQ would
create a new paragraph of Romeo and Juliet whereas the
RNN would generate a Shakespeare-like piece of text. Data
Compressors are better for local predictions and RNNs
are better for global predictions.

This explains why in the text generation process PAQ and
the RNN obtained different results for different training tests.
PAQ struggled with ”Poe” or ”Game of Thrones” but was
very good with ”Coelho” or the Linux Kernel. What really
happened was that it was measured how predictable the last
piece of the text was!. If the text is very predictable then the
best predictor will win, PAQ defeated the RNN by a margin
with the Linux Kernel and Paulo Coelho. When the text is
not predictable then the ability to imitate in the RNN defeated
PAQ. This can be used as a wonderful tool to evaluate the
predictability of different authors comparing if the Compressor
or the RNN works better to generate similar text. In our
experiment it was concluded that Coelho is more Predictable
than Poe and it makes all the sense in the world!

As our final conclusion it was shown that Data Compression
algorithms show rational behaviour and that they are based in
the accurate prediction of what will follow, based on what
they have learnt recently. RNNs learn a global model from
the training data and can then replicate it. That is why Data
Compression algorithms are great predictors while Recurrent
Neural Networks are great imitators. Depending on which
ability is needed one or the other may provide the better
results.

VII. FUTURE WORK

We believe that Data Compression algorithms can be used
with a certain degree of optimality for any Natural Language
Processing Task were predictions are needed based on recent
local context. Completion of text, seed based text generation,
sentiment analysis, text clustering are some of the areas where
Compressors might play a significant role in the near future.

We have also shown that the difference between a Com-
pressor and a RNN can be used as a way to evaluate the

predictability of the writing style of a given text. This might be
expended in algorithms that can analyze the level of creativity
in text and can be applied to books or movie scripts.

REFERENCES

[1] A. Graves. (2014, Jun.) Generating sequences with recurrent neural
networks. Cornell University Library. ArXiv:1308.0850v5. [Online].
Available: https://arxiv.org/pdf/1308.0850.pdf

[2] I. Sutskever, J. Martens, and G. Hinton. (2011) Generating text with
recurrent neural networks. University of Toronto. [Online]. Available:
http://www.cs.utoronto.ca/∼ilya/pubs/2011/LANG-RNN.pdf

[3] O. Bown and S. Lexer, “Continuous-time recurrent neural networks for
generative and interactive musical performance,” in Rothlauf F. et al.
(eds) Applications of Evolutionary Computing. EvoWorkshops 2006, vol.
3907, Springer, Berlin, Heidelberg, pp. 652–663.

[4] R. Cilibrasi and P. Vitanyi, “Clustering by compression,” IEEE Trans-
actions on Information Theory, vol. 51, pp. 1523–1545, Apr. 2005.

[5] A. Franz. (2015, Jun.) Artificial general intelligence through recursive
data compression and grounded reasoning: a position paper. Cornell
University Library. ArXiv:1506.04366v1. [Online]. Available: https:
//arxiv.org/pdf/1506.04366.pdf

[6] O. David, S. Moran, and A. Yehudayoff. (2016, Oct.) On statistical
learning via the lens of compression. Cornell University Library.
ArXiv:1610.03592v2. [Online]. Available: https://arxiv.org/pdf/1610.
03592.pdf

[7] J. Ratsaby. (2010, Aug.) Prediction by compression. Cornell University
Library. ArXiv:1008.5078v1. [Online]. Available: https://arxiv.org/pdf/
1008.5078.pdf

[8] P. Grunwald. (2004, Jun.) A tutorial introduction to the
minimum description length principle. Cornell University Library.
ArXiv:math/0406077v1. [Online]. Available: https://arxiv.org/pdf/math/
0406077.pdf

[9] F. Gers, J. Schmidhuber, and F. Cummins. (1999,
Jan.) Learning to forget: Continual prediction with lstm.
IDSIA. [Online]. Available: https://pdfs.semanticscholar.org/1154/
0131eae85b2e11d53df7f1360eeb6476e7f4.pdf

[10] J. Schmidhuber and S. Heil, “Sequential neural text compression,” IEEE
Transactions on Neural Networks, vol. 7, pp. 142–146, Jan. 1996.

[11] K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, and D. Wierstra.
(2015, Feb.) Draw: A recurrent neural network for image generation.
Cornell University Library. ArXiv:1502.04623v2. [Online]. Available:
https://arxiv.org/pdf/1502.04623.pdf

[12] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. Manning, A. Ng, and
C. Potts. (2013) Recursive deep models for semantic compositionality
over a sentiment treebank. [Online]. Available: https://nlp.stanford.edu/
∼socherr/EMNLP2013 RNTN.pdf

[13] M. Mahoney. The paq data compression series. [Online]. Available:
http://mattmahoney.net/dc/paq.html

[14] A. Maas, R. Daly, P. Pham, D. Huang, A. Ng, and
C. Potts. Learning word vectors for sentiment analysis. Stanford
University. [Online]. Available: http://ai.stanford.edu/∼ang/papers/
acl11-WordVectorsSentimentAnalysis.pdf

[15] M. Li and P. Vitanyi, An Introduction to Kolmogorov Complexity and
Its Applications. Springer, 2008.

[16] D. Ziegelmayer and R. Schrader, “Sentiment polarity classification
using statistical data compression models,” IEEE 12th International
Conference on, Dec. 2012.

[17] 50’000 prize for compressing human knowledge. [Online]. Available:
http://prize.hutter1.net/

[18] A. Karpathy. (2015, May) The unreasonable effectiveness of recurrent
neural networks. [Online]. Available: http://karpathy.github.io/2015/05/
21/rnn-effectiveness/

[19] M. Mahoney. (2013, Apr.) Data compression explained. [Online].
Available: http://mattmahoney.net/dc/dce.html#Section 4

[20] ——. Fast text compression with neural networks. Florida Institute
of Technology. [Online]. Available: https://cs.fit.edu/∼mmahoney/
compression/mmahoney00.pdf

[21] M. Steyvers, Computational Statistics with Matlab, May 2011.
[22] A. L. Gibbs and F. E. Su, “On choosing and bounding probability

metrics,” International Statistical Review, vol. 70, pp. 419–435, Sep.
2002.

ASAI, Simposio Argentino de Inteligencia Artificial

46JAIIO - ASAI - ISSN: 2451-7585 - Página 78

https://arxiv.org/pdf/1308.0850.pdf
http://www.cs.utoronto.ca/~ilya/pubs/2011/LANG-RNN.pdf
https://arxiv.org/pdf/1506.04366.pdf
https://arxiv.org/pdf/1506.04366.pdf
https://arxiv.org/pdf/1610.03592.pdf
https://arxiv.org/pdf/1610.03592.pdf
https://arxiv.org/pdf/1008.5078.pdf
https://arxiv.org/pdf/1008.5078.pdf
https://arxiv.org/pdf/math/0406077.pdf
https://arxiv.org/pdf/math/0406077.pdf
https://pdfs.semanticscholar.org/1154/0131eae85b2e11d53df7f1360eeb6476e7f4.pdf
https://pdfs.semanticscholar.org/1154/0131eae85b2e11d53df7f1360eeb6476e7f4.pdf
https://arxiv.org/pdf/1502.04623.pdf
https://nlp.stanford.edu/~socherr/EMNLP2013_RNTN.pdf
https://nlp.stanford.edu/~socherr/EMNLP2013_RNTN.pdf
http://mattmahoney.net/dc/paq.html
http://ai.stanford.edu/~ang/papers/acl11-WordVectorsSentimentAnalysis.pdf
http://ai.stanford.edu/~ang/papers/acl11-WordVectorsSentimentAnalysis.pdf
http://prize.hutter1.net/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://mattmahoney.net/dc/dce.html#Section_4
https://cs.fit.edu/~mmahoney/compression/mmahoney00.pdf
https://cs.fit.edu/~mmahoney/compression/mmahoney00.pdf

[23] F. Chierichetti, R. Kumar, S. Pandey, and S. Vassilvitskii. Finding
the jaccard median. Stanford University. [Online]. Available: http:
//theory.stanford.edu/∼sergei/papers/soda10-jaccard.pdf

[24] M. Mahoney. (2005) Adaptive weighing of context models for lossless
data compression. Florida Institute of Technology CS Dept. [Online].
Available: https://cs.fit.edu/∼mmahoney/compression/cs200516.pdf

[25] A. Graves, Supervised Sequence Labelling with Recurrent Neural Net-
works. Springer, 2012, vol. 385.

[26] E. Celikel and M. E. Dalkilic, “Investigating the effects of recency and
size of training text on author recognition problem,” in Computer and
Information Sciences - ISCIS 2004, vol. 3280, Springer, pp. 21–30.

ASAI, Simposio Argentino de Inteligencia Artificial

46JAIIO - ASAI - ISSN: 2451-7585 - Página 79

http://theory.stanford.edu/~sergei/papers/soda10-jaccard.pdf
http://theory.stanford.edu/~sergei/papers/soda10-jaccard.pdf
https://cs.fit.edu/~mmahoney/compression/cs200516.pdf

	Introduction
	Data Compression as an Artificial Intelligence Field
	RNNs for Data Compression
	Sentiment Analysis
	A Qualitative Approach
	Data Set Preparation
	PAQ for Sentiment Analysis
	Experiment Results

	Automatic Text Generation
	Data Model
	Text Generation
	Metrics
	Pearson's Chi-Squared
	Total Variation
	Generalized Jaccard Similarity

	About Samples
	Results
	Metric Results
	Local similarity
	Global similarity

	Conclusions
	Future Work
	References

