5 research outputs found

    Analisis and tools for performance prediction

    Get PDF
    We present an analytical model that extends BSP to cover both oblivious synchronization and group partitioning. There are a few oversimplifications in BSP that make difficult to have accurate predictions. Even if the numbers of individual communication or computation operations in two stages are the same, the actual times for these two stages may differ. These differences are due to the separate nature of the operations or to the particular pattern followed by the messages. Even worse, the assumption that a constant number of machine instructions takes constant time is far from the truth. Current memory hierarchies imply that memory access vary from a few cycles to several thousands. A natural proposal is to associate a different proportionality constant with each basic block, and analogously, to associate different latencies and bandwidths with each “communication block”. Unfortunately, to use this approach implies that the evaluation parameters not only depend on given architecture, but also reflect algorithm characteristics. Such parameter evaluation must be done for every algorithm. This is a heavy task, implying experiment design, timing, statistics, pattern recognition and multi-parameter fitting algorithms. Software support is required. We have developed a compiler that takes as source a C program annotated with complexity formulas and produces as output an instrumented code. The trace files obtained from the execution of the resulting code are analyzed with an interactive interpreter, giving us, among other information, the values of those parameters.Eje: Programación concurrenteRed de Universidades con Carreras en Informática (RedUNCI

    Analisis and tools for performance prediction

    Get PDF
    We present an analytical model that extends BSP to cover both oblivious synchronization and group partitioning. There are a few oversimplifications in BSP that make difficult to have accurate predictions. Even if the numbers of individual communication or computation operations in two stages are the same, the actual times for these two stages may differ. These differences are due to the separate nature of the operations or to the particular pattern followed by the messages. Even worse, the assumption that a constant number of machine instructions takes constant time is far from the truth. Current memory hierarchies imply that memory access vary from a few cycles to several thousands. A natural proposal is to associate a different proportionality constant with each basic block, and analogously, to associate different latencies and bandwidths with each “communication block”. Unfortunately, to use this approach implies that the evaluation parameters not only depend on given architecture, but also reflect algorithm characteristics. Such parameter evaluation must be done for every algorithm. This is a heavy task, implying experiment design, timing, statistics, pattern recognition and multi-parameter fitting algorithms. Software support is required. We have developed a compiler that takes as source a C program annotated with complexity formulas and produces as output an instrumented code. The trace files obtained from the execution of the resulting code are analyzed with an interactive interpreter, giving us, among other information, the values of those parameters.Eje: Programación concurrenteRed de Universidades con Carreras en Informática (RedUNCI

    Performance Problem Diagnostics by Systematic Experimentation

    Get PDF
    Diagnostics of performance problems requires deep expertise in performance engineering and entails a high manual effort. As a consequence, performance evaluations are postponed to the last minute of the development process. In this thesis, we introduce an automatic, experiment-based approach for performance problem diagnostics in enterprise software systems. With this approach, performance engineers can concentrate on their core competences instead of conducting repeating tasks

    Performance Problem Diagnostics by Systematic Experimentation

    Get PDF
    In this book, we introduce an automatic, experiment-based approach for performance problem diagnostics in enterprise software systems. The proposed approach systematically searches for root causes of detected performance problems by executing series of systematic performance tests. The presented approach is evaluated by various case studies showing that the presented approach is applicable to a wide range of contexts
    corecore