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Abstract. We present an analytical model that extends BSP to cover both 
oblivious synchronization and group partitioning. There are a few 
oversimplifications in BSP that make difficult to have accurate predictions. 
Even if the numbers of individual communication or computation operations in 
two stages are the same, the actual times for these two stages may differ. These 
differences are due to the separate nature of the operations or to the particular 
pattern followed by the messages. Even worse, the assumption that a constant 
number of machine instructions takes constant time is far from the truth. 
Current memory hierarchies imply that memory access vary from a few cycles 
to several thousands. A natural proposal is to associate a different 
proportionality constant with each basic block, and analogously, to associate 
different latencies and bandwidths with each “communication block”. 
Unfortunately, to use this approach implies that the evaluation parameters not 
only depend on given architecture, but also reflect algorithm characteristics. 
Such parameter evaluation must be done for every algorithm. This is a heavy 
task, implying experiment design, timing, statistics, pattern recognition and 
multi-parameter fitting algorithms. Software support is required. We have 
developed a compiler that takes as source a C program annotated with 
complexity formulas and produces as output an instrumented code. The trace 
files obtained from the execution of the resulting code are analyzed with an 
interactive interpreter, giving us, among other information, the values of those 
parameters.  
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1 Introduction 

Most of the approaches to performance analysis and prediction fall into two 
categories: Analytical Modeling and Performance Profiling.  Analytical methods use 
models of the architecture  and the algorithm to predict the program runtime. The 
analysis can be independent of the target architecture. Among the analytical models, 
the Bulk Synchronous Parallel (BSP)  model [13] is the most popular . Profiling may 
be conducted on an existing parallel system to recognize current performance 
bottlenecks. Performing measurements requires special purpose hardware and 
software and, since the target machine is used , the measurement method can be 
highly accurate [4, 5, 9, 11, 14]. Although much work has been developed in 
Analytical Modeling and in Parallel Profiling, sometimes seems to be a divorce 
between them. Analytical modeling is considered to be too theoretical to be accurate 
in practical cases and profiling analysis is criticized of lack of generality. This work 
attempts to find a hybrid approach, proposing and analytical model supported by a 
profiling tool.  The class of parallel algorithms whose performance behavior can be 
predicted includes the Bulk Synchronous Parallel Algorithm class. 
The asynchronous nature of some parallel paradigms like farms and pipelines 
hampers the efficient implementation in the scope of a flat-data-parallel global-barrier 
Bulk Synchronous Programming software like the BSPLib [10]. To overcome these 
limitations, the Paderborn University BSP library (PUB [1]) offers the use of 
collective operations, processor-partition operations and oblivious synchronization. In 
addition to the BSP most common features, PUB provides the capacity to partition the 
current BSP machine into several subsets, each of which acts as an autonomous BSP 
computer with their own processor numbering and synchronization points. The 
authors of the BSP Worldwide Standard Library report claim that an unwanted 
consequence of group partitioning is a loss of accuracy [7, page 18]. Other of the 
novel features of PUB is the oblivious synchronization. It is implemented through the 
bsp_oblsync(bsp,n) function, which does not return until n messages have been 
received. Although its use mitigates the synchronization overhead, it implies that 
different processors can be in different supersteps at the same time. The BSP semantic 
is preserved in PUB by numbering the supersteps and by ensuring that the receiver 
thread buffers messages that arrive out of order until the correct superstep is reached.  

Fig. 1 on the left illustrates the impact of the 
second improvement, oblivious synchronizations, 
in BSP prediction accuracy. The diagram 
corresponds to an application running on a 2-
processor machine in 2 supersteps. White areas 
correspond to computation while black areas stand 
for communication. During the first superstep, 
processor P1 performs a task heavier (4 sec) than 
the performed by processor P0 (2 sec). After an 
exchange operation (2 sec) and an oblivious 
synchronization, the situation is inverted and 
processor P0 does the lighter part compensating 
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Fig. 1. Oblivious Supersteps 



the former unbalance. Finally, there is another oblivious exchange between processors 
P0 and P1 (2 sec). While the actual time is 10 sec, the BSP prediction corresponding 
to a global synchronous barrier is of 12 sec.  

There are other sources of inaccuracy intrinsic to the definition of BSP. One 
comes from characterizing the computing time W through a single parameter s, 
considering that all the elementary local operations take the same quantity of time 
(called time step). Significant differences are observed in practice, partly due to the 
separate nature of the operations (number of floating point arithmetic operations, 
number of memory transfers, etc.) involved [15, page 123]. The other comes from 
characterizing the communication time through two single parameters g and L, 
considering that any h-relation takes the same quantity of time, independently of the 
particular communication pattern involved. In [12] we studied the impact of such 
patterns in the h-relation time. 

A natural (and more realistic) alternative is to associate a different proportionality 
constant with each basic block (maximal segment of code without jumps), and 
analogously, to associate different latencies and bandwidths with the same h-relation, 
depending on the pattern. However, although these new parameters means an 
improvement, this approach does not suffices to have accurate predictions. Most 
modern microprocessors have at least two levels of cache. Furthermore, operating 
systems use main memory as a cache for  a larger virtual address space for each 
process and translate between virtual addresses used by a program and  the physical 
addresses required by the hardware. Memory is divided into blocks called pages. To 
keep the overhead address translation low, the most recently used page addresses are 
cached  in a translation lookaside buffer (TLB). While a L1 cache hit typically takes 2 
or 3 cycles a TLB miss requiring only reload of the TLB can take the order of 2000 
cycles [2 page 3]. The assumption that a constant number of machine instructions 
takes constant time is far from the truth. Any model attempting to be accurate has to 
have into account this paradoxical  “variation of the constants”. On the other side of 
the balance, the model has to be simply enough to be practicable. To have into 
account these considerations implies the evaluation of a finite (but perhaps large) 
number of parameters. These parameters are not only architecture dependent, but also 
reflect algorithm characteristics. Such parameter evaluation is a heavy task, implying 
experiment design, timing, statistics and multi-parameter fitting algorithms. It does 
not seem reasonable to ask the algorithm designer to carry on by hand such tasks for 
every developed program.  

Our proposal attempts to give a solution to all the aforementioned problems. In a 
previous work, the authors introduced the Oblivious BSP model (OBSP) to deal with 
both oblivious synchronization and group partitioning [6]. Starting from OBSP, we 
now address the problem of how to relax the number of parameters without 
introducing an unbearable complexity. The resulting model, called OBSP* is 
introduced in the following section. The third section presents CALL, a prototype of a 
software tool for the analysis and prediction of PUB BSP (and most MPI) programs. 
The tool consists of “pragma” language extending C, its associated compiler and a 
profiler/analyzer interpreter of the trace files generated by the instrumented target. 
The analyzer provides  the values of the communication and computation constants, 



establishes the segments where the values of the constants are valid and facilitates the 
prediction of the performance of the algorithm for any input values. Both the theory 
and the computational experiences allow us to conclude, in the fourth section, that an 
OBSP* analysis means an improvement in prediction accuracy when compared with 
using traditional BSP (if in scope) or  OBSP. 

2 The OBSP* model 

As in ordinary BSP, the execution of a PUB program on a BSP machine X={0,...,P-1} 
consists of supersteps. However, as a consequence of the oblivious synchronization, 
processors may be in different supersteps at a given time. Still it is true that: 

• Supersteps can be numbered starting at 1. 
• The total number of supersteps R, performed by all the P processors is the same. 
• Although messages sent by a processor in superstep s may arrive to another 

processor executing an earlier superstep r<s, communications are made effective 
only when the receiver processor reaches the end of superstep s. 

Lets assume in first instance that no processor partitioning is performed in the 
analyzed task T. If the superstep s ends in an oblivious synchronization, we define the 
set Ωs,i for a given processor i and superstep s as the set 

Ωs,i = {j∈X / Processor j sends a message to processor i in superstep s} ∪ { i} (1) 

while Ωs,i = X when the superstep ends in a global barrier synchronization. In fact, 
this last expression can be considered a particular case of formula (1) if it is accepted 
that barrier synchronization carries (directly or indirectly) an AllToAll communication 
pattern. Processors in the set Ωs,i are called "the incoming partners of processor i in 
step s". Usually it is accepted that all the processors start the computation at the same 
time. The presence of partition functions forces us to consider the most general case 
in which each processor i joins the computation at a different initial time ξi. Denoting 
by ξ = (ξ0 , ..., ξp-1) the vector for all processors, the OBSP* time Φs,i(T, X, ξ) taken 
by processor i∈X executing task T to finish its superstep s is recursively defined by 
the formulas:  

Φ1,i(T, X, ξ) = max {W1,j + ξj   / j∈ Ω1,i } + (g * h1,i + L), i = 0,..., P-1, 

Φs,i(T, X, ξ) = max {Φs-1,j(T, X, ξ) + Ws,j   / j∈ Ωs,i} +  (g * hs,i + L),           
s = 2,..,R,  i = 0,..., P-1 

(2) 

where Ws,j denotes the time spent in computing by processor j in step s. Assuming the 
processors have an instruction set  {I1 ,...,It} of size t, where the i-th instruction Ii takes 
time pi, the time Ws,j is given by the formula: 

Ws,j = ∑i=1,t ws,i,j * pi where ws,i,j = number of instructions of the class Ii 
executed by processor j in step s. 

(3) 



Constant R denotes the total number of supersteps, and constants g and L vary 
depending on the algorithm. The value hs,i is defined as the number of bytes 
communicated by processor i in step s, that is: 

hs,i = max {ins,j @ outs,j / j∈Ωs,i },  s = 1,...,R, i = 0,...,P-1 (4) 

and ins,j and outs,j respectively denote the number of incoming/outgoing bytes to/from 
processor j in the superstep s. The @ operation is defined as max or sum depending on 
the input/output capabilities of the network interface. 

At any time, processors are organized in a hierarchy of processor sets. A 
processor set in PUB is represented by a structure called a BSP object. Let Q⊆X be a 
set of processors (i.e. a BSP object) executing task T. When processors in Q execute 
function bsp_partition(t_bsp *Q, t_bsp *S, int r, int *Y), the set Q is divided in r 
disjoint subsets Si such that, 

Q = ∪0 ≤ i≤ r-1 Si , 

S0 = {0,..., Y[0]-1}, 

Si = {Y[i-1],..., Y[i]-1}, 1 ≤  i ≤ r-1  

(5) 

After the partition step, each subgroup Si acts as an autonomous BSP computer 
with its own processor numbering, messages queue and synchronization mechanism. 
The time that processor j∈Si takes to finish its work in task Ti executed by the BSP 
object Si is given by  

ΦRi, j(Ti, Si, Φs-1,j+w*s,j) such that j∈ Si , i = 0,...,r-1, (6) 

where Ri is the number of supersteps performed in task Ti and w*s,j is the computing 
time executed by processor j before its call to the bsp_partition function in the s-th 
superstep of original set Q. Observe that subgroups are created in a stack-like order, 
so function bsp_partition and bsp_done incur no communication. This implies that 
different processors in a given subset can arrive at the partition process (and leave it) 
at different time. From the point of view of the parent machine, the code executed 
between the call to bsp_partition and bsp_done behaves as computation (i.e. like a 
call to a subroutine). 

3 An OBSP* Environment for Performance Prediction  

The CALL system consists of a translator (called call), a run time library (cll.h) and 
an analyzer interpreter (llac). Although it can be used for the analysis of sequential 
programs, it gives also support for the prediction of PUB and MPI  parallel programs. 
The run time library makes use, if installed, of the PAPI library [2]. Fig. 2 shows the 
execution system of CALL.  From a sequential or parallel C program annotated with 
call pragmas, the call compiler produces two files containing the necessary code 
(*.cll.c) and structures (*.cll.h) to save variable values, to time the corresponding code 
and to produce the reports required by the llac analyzer. Once the program has been 
compiled and executed, the llac interpreter allows the programmer to play with the 



resulting data, considering subsets, transformations of them or merging them with 
other data coming from other experiences. The analyzer deduces the values of the 
parameters involved, the segments where they are valid, the  variation of these 
parameters with the input values, predicts the behavior of the different experiments 
under study and allows their graphic visualization. 

To exemplify the combined use of the OBSP* model and the CALL tool to predict 
the time spent by PUB programs we have chosen the Fast Fourier Transform (FFT) 
algorithm. The Fourier Transform (FT) decomposes a function into its different-
frequency sinusoidal components. In 1965, Tukey and Cooley [3] proposed a Discrete 
Fourier Transform algorithm with a number of computations of order O(N log(N)). It 
is a divide and conquer algorithm based on the fact that the transformation of a digital 
signal can be obtained by combining the transforms of its even and odd components. 
Although it is not a requirement, the expression of the algorithm is simplified using a 
signal size, N that is a power of 2. 

Line 1 in Figure 3 warns the call compiler to notice that this is a BSP parallel 
program using PUB. The optional argument gbsp points to the global BSP object. 
This information will be used by the report clause in line 10. When executed, the 
code generated from this line will collect all the statistics sampled in the different 
processors, routing them to processor 0, where they will be dumped on the 
corresponding output file fft.cll.#n.dat.  

 
Lines 5 to 7 in Fig. 3 define a “call experiment”. The experiment is named after 

the identifier following the pragma, fft in the example. The complexity formula ruling 
the time taken by the segment of code delimited by the experiment appears after its 
name. The constants in the complexity formula are referenced indexing its name. In 
this case there are 4 constants, fft[0], fft[1], fft[2] and fft[3]. Any call complexity 
formula must be in canonical form, i.e. has to be a sum of terms made of complexity 
constants multiplied by expressions. More general, the experiment constant must be 
the only multiplicative constant in each term. This constraint is due to singularities 
appearing in the multidimensional fit algorithm [8] used by the interpreter. 

The complexity formula (11) for Φ2,i (FFT,X,0) that will be obtained for the 
algorithm in figure 4 is written  in terms of the corresponding program variables: 

 
fft[0] + fft[1] * log(P)+ fft[2] *(N/P)* log(N/P)+ fft[3] *N*(P-1)/P 

src.c call src.cll.c 
src.cll.h 

cc+(PUB|MPI)?+PAPI?
? src.cll 

(executable) 

llac 

src.cll 
mpirun src.cll 
pubrun src.cll 

... 

(traces) 
src.cll.0.dat 
src.cll.1.dat 

           

parameters 
predictions 

plots 
        ... 

Fig. 2. Diagram of the CALL system 



where the relations with the constants introduced in the next subsection are: 

fft[0] = G[0]; 
fft[1] =A[0]+ B[0]+ C[0]+ E[0]+ F[0]+D[0] 

fft[2] = G[1]; 
fft[3]=F[1]+D[1] 

For each experiment the front end call compiler generates the code to time it and to 
save its state for later report and treatment. Starting from the trace files generated 
during the execution, the back end llac analyzer determines the values of fft[0], fft[1], 
fft[2] and fft[3]. Actually, what llac determines using linear multifit is a vector of 
values for each of these constants and the intervals where those values apply. For this 
example, the constants vary with N and P. There are usually  values of fft[0], fft[1], 
fft[2] and fft[3] for small values of N and P, and another different values for medium 
sizes and so forth. When predicting the time for a concrete value –say N = 1024, P = 
32 the programmer does not need to concern with the exact parameter values. The llac 
system will choose the appropriate constant values of fft[0], fft[1], fft[2] and fft[3] 
(the one for the small range of N and P = 32 for the example) to obtain a more precise 
prediction. The recognition of the intervals of validity of the constant parameters 
imply the use of heuristic statistical techniques.  

 
The code in Fig. 4 is a PUB implementation of the FFT algorithm annotated with 

CALL pragmas. It has as input a vector of complex numbers a, the vector W 
containing the N-th pre-computed roots of unity, the number N of elements, the stride 
determining a subproblem of the original problem and the pointer to the data 
structure, gbsp defining the current BSP machine. We assume that both the input data 
and the result vector A are replicated in each processor. 
 
Let’s denote by FFT the code presented in Fig. 4. At each level d-1 of the recursion, 
there is a PUB machine Xd-1 that executes two OBSP* supersteps. The time spent by a 
processor i ∈ Xd-1 to perform the first superstep, Φ1,i(FFT, Xd-1, ξ), consists of four 
computational blocks and one communication: 

a) Input signal division into its even and odd components (line 7). Because the 
input data is replicated on each processor, this operation can be implemented 
over the same vector a. Variable stride indicates the separation between 

1. #pragma parallel PUB gbsp 
2. ... 
3. initizalize(N, a); 
4. Roots(N/2, W); 
5. #pragma cll fft fft[0]+fft[1]*log(P)+fft[2]*(N/P)*log(N/P)+\ 
                                            fft[3] *N*(P-1)/P 
6. parDandCFFT(A, a, W, N, 1, D, gbsp); 
7. #pragma cll end fft 
8. bsp_sync (gbsp); 
9. ... 
10. #pragma cll report all 
11. ... 

Fig. 3. The fft experiment 



logical consecutive elements in the input vector. This computation takes a 
constant time A[0]. 

b) The BSP machine Xd-1  is partitioned in two submachines Xd
j with  j = 0,1 

(lines 10-12). Under the assumption that the number of processors in Xd-1 is a 
power of 2, each submachine has the same number of processors. A PUB 
machine partition operation takes a constant time B[0]. 

c) While one of the submachines computes the transformation of the even 
components, the other does the same with the odd terms. These computations 
correspond to the recursive calls in lines 15 and 29 respectively. The times 
required by each of these submachines to perform their computations are given 
by Φ2,i(FFT, Xd

j, ξd-1,i + A[0] + B[0]). Where d is the recursion depth, Xd
j is 

the set of processors in the current BSP machine, ξd-1,i  is the time when the 
calling FFT started and w*1,i = A[0] + B[0] denotes the computation 
performed by the machine Xd

j in the current superstep before the submachine 
begins its computation. 

d) When a submachine finishes its task, each processor determines its 
communication partner and then rejoins to the father group (lines 17-18 and 
31-32 respectively). This operation is performed in constant time C[0]. 

e) A communication bounds the superstep. Partial results are exchanged between 
partner processors (lines 21-22 and 35-36). Each processor has to wait only for 
a message from its partner. Under the assumption that the input signal size is a 
power of 2, the h-relation is the same for all the processors. We work with the 
h-relation definition as the sum of incoming and outgoing message sizes. 

h1,i= size = N * sizeof(Complex), 

Ωs,i = {i, partneri} 
(7) 

Therefore, the time for the first superstep is: 
Φ1,i(FFT, Xd-1, ξ) = max {Φ2,k(FFT, Xd, ξ k + A[0]+B[0]) + C[0] / k∈ Ω1,i }  

+ D[1]* size + D[0] 
(8) 

 
The second superstep deals with the combination phase. It consists of two 

computational blocks and no communication is required. 
a) In the first computation block (lines 25 and 39), the message received from the 

partner is retrieved from the communication library buffer to the process 
memory. This requires time E[0]. 

b) The combination itself is performed by the call to routine combine in line 43. 
This computation takes time proportional to the signal size, that is F[0]+F[1] 
* n. 

 
Thus, the formulas for the second superstep are: 

Ωs,i = {i} 

Φ2,i(FFT, Xd-1, ξd-1,i ) = Φ1,i(FFT,Xd-1, ξd-1,i) + E[0] + F[0] + F[1] * n 

(9) 



This recursive process follows until only one processor remains in the BSP 
submachine. These single-processor machines only perform one superstep. No 
communication is needed and the computations consist on calling to routine 
seqDandCFFT in line 49, which transforms a signal with size N/P using a sequential 
version of the same algorithm. The computational complexity is O((N/P)*log(N/P)), 
and is approximated by the linear expression: 



Φ1,i(FFT, Slog(P), ξlog(P)) = G[0] + G[1] * N/P * log(N/P) (10) 

Since all processors start the computation at the same instant ξ0,i = 0. Using 
successively formulas 7, 8 and 9, leads to the expression: 

1. void parDandCFFT(Complex *A, Complex *a, Complex *W,  
                     int N, int stride,t_bsp *gbsp) { 
2.   .... /* variable declarations */ 
3.   if (bsp_nprocs(gbsp) > 1) { 
4.     if(N == 1) { A[0].re = a[0].re;  A[0].im = a[0].im; } 
5.     else { 
6. #pragma cll A A[0] 
7.       n = N / 2; size = n*sizeof(Complex); B = A;   C = A + n; 
8. #pragma cll end A 
9. #pragma cll B B[0] 
10.       subgroup[1] = bsp_nprocs(gbsp); 
11.       subgroup[0] = (bsp_nprocs(gbsp) / 2); 
12.       bsp_partition(gbsp, &bsp_new, 2, subgroup); 
13. #pragma cll end B 
14.       if(bsp_pid(gbsp) < subgroup[0]) { 
15.         parDandCFFT(B, a, W, n, stride*2, &bsp_new); 
16. #pragma cll C C[0] 
17.         partner = bsp_pid(&bsp_new) + subgroup[0]; 
18.         bsp_done(&bsp_new); 
19. #pragma cll end C 
20. #pragma cll D D[0]+D[1]*size 
21.         bsp_hpsend(gbsp, partner, B, size); 
22.         bsp_oblsync(gbsp, 1); 
23. #pragma cll end D 
24. #pragma cll E E[0]+E[1]*size 
25.         C = (Complex*)bspmsg_data(bsp_getmsg(gbsp, 0)); 
26. #pragma cll end E 
27.       } 
28.       else { 
29.         parDandCFFT(C, a+stride, W, n, stride*2, &bsp_new); 
30. #pragma cll C C[0] 
31.         partner = bsp_pid(&bsp_new); 
32.         bsp_done(&bsp_new); 
33. #pragma cll end C 
34. #pragma cll D D[0]+D[1]*size 
35.         bsp_hpsend(gbsp, partner, C, size); 
36.         bsp_oblsync(gbsp, 1); 
37. #pragma cll end D 
38. #pragma cll E E[0]+E[1]*size 
39.         B = (Complex*)bspmsg_data(bsp_getmsg(gbsp, 0)); 
40. #pragma cll end E 
41.       } 
42. #pragma cll F F[0]+F[1]*n 
43.       combine(A,B,C,W,n); 
44. #pragma cll end F 
45.     } 
46.   } 
47.   else  
48. #pragma cll G G[0]+G[1]*N*log(N) 
49.     seqDandCFFT(A, a, W, N, stride); 
50. #pragma cll end G 
51. } 

Fig. 4. Parallel Fast Fourier Transform 



Φ2,i(FFT, X, ξ) = log(P) * (A[0] + B[0] + C[0] + E[0]) +  

G[0] + G[1] * (N/P) * log(N/P) + 

 log(P)* F[0] + F[1] * ((P-1)/P) * N + 

 D[1]* ((P-1)/P) * size + log(P) * D[0] 

(11) 

 
4 Results and Conclusions 

Table 1 presents the results. The OBSP* approach implies an improving in prediction 
accuracy for both computation and communication parts. The benefits are remarkable 
if they are compared with the errors obtained using raw BSP, where they can reach 
large values [15]. 

Table 1. Real and predicted times (sec.) for the FFT in the CRAY T3E (2 Megacomplex). 

PROCS TIME OBSP* ERROR % 
1 11.7748 11.8096 -0.30 
2 6.0036 5.8943 1.82 
4 3.2120 3.0908 3.77 
8 1.8939 1.7735 6.36 
16 1.2750 1.1644 8.68 
32 0.9664 0.8919 7.71 

 

The CALL environment is currently under development. The values of the parameters 
and intervals of validity where  manually computed . A first deliverable is expected to 
be publicly available by the end of 2001. 
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