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Abstract

The performance of enterprise software systems has a direct impact on the
success of business. Recent studies have shown that software performance
affects customer satisfaction as well as operational costs of software. Hence,
software performance constitutes an essential competitive and differentiating
factor for software vendors and operators. In industrial practice, it is still a
challenging task to detect software performance problems before they are
faced by end users. Diagnostics of performance problems requires deep
expertise in performance engineering and still entails a high manual effort.
As a consequence, performance evaluations are postponed to the last minute
of the development process, or even are completely omitted. Instead of
proactively avoiding performance problems, problems are fixed in a reactive
manner when they first emerge in operations. Since reactive, operation-time
resolution of performance problems is very expensive and has a negative
impact on the reputation of software vendors, performance problems need to
be diagnosed and resolved in the process of software development. Existing
approaches addressing performance problem diagnostics either assume the
existence of a performance model, are limited to problem detection without
analyzing root causes, or are applied as reactive approaches during the
operations phase and, thus, cannot be effective applied during development
for performance problem diagnostics.

In this thesis, we introduce an automatic, experiment-based approach for
performance problem diagnostics in enterprise software systems. We de-
scribe a method to derive a taxonomy on recurrent types of performance
problems and introduce a systematic experimentation concept. Using the
taxonomy as a search tree, the proposed approach systematically searches
for root causes of detected performance problems by executing series of
systematic performance experiments. Based on the measurement data from
experiments, detection heuristics decide on the presence of performance
problems in the target system. Furthermore, we develop a domain-specific

i



Abstract

description language to specify the information required for automatic perfor-
mance problem diagnostics. Finally, we create and evaluate a representative
set of detection heuristics. We validate our approach by means of five studies
including end-to-end case studies, a controlled experiment and an empirical
study. The results of the validation show that our approach is applicable to
a wide range of contexts and is able to fully automatically and accurately
detect performance problems in medium-size and large-scale applications.
External users of the provided approach evaluated it as a useful support
for diagnostics of performance problems and exposed their willingness to
use the approach for their own software development projects. Explicitly
designed for automatic, development-time testing, our approach can be in-
corporated into continuous integration. In this way, our approach allows
regular, automatic diagnostics of performance problems involving minimal
manual effort. Furthermore, by encapsulating and automating expert knowl-
edge on performance engineering, our approach enables developers who are
non-performance experts to conduct performance problem diagnostics.
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Zusammenfassung

In heutigen Unternehmen nehmen betriebliche Informationssysteme eine
zentrale Rolle ein. Sie eröffnen neue Vertriebskanäle, ermöglichen effiziente-
re Betriebsprozesse und tragen maßgeblich zur Nutzung von Skaleneffekten
bei. Dienstgüteeigenschaften betrieblicher Informationssysteme haben einen
direkten Einfluss auf den Geschäftserfolg der Unternehmen. Studien haben
gezeigt, dass die Performance solcher Systeme sich maßgeblich auf deren
Betriebskosten sowie die Kundenzufriedenheit auswirkt. Somit ist die Per-
formance betrieblicher Software ein entscheidender Wettbewerbsfaktor und
ein Differenzierungsmerkmal für Software-Anbieter und Software-Betreiber.
Performance-Probleme, die bis zum Betrieb der Software unerkannt bleiben,
stellen nicht nur ein finanzielles Risiko dar, sondern können auch einen
Schaden in der Reputation verursachen.

In der industriellen Praxis der Software-Entwicklung ist das frühzeitige
Erkennen und die Diagnose von Performance-Problemen immer noch eine
große Herausforderung. Die Diagnose von Performance-Problemen erfordert
nicht nur ein tiefgründiges Expertenwissen in der Disziplin des Performance
Engineering, sondern bringt einen großen manuellen Aufwand mit sich.
Dies hat zur Folge, dass Performance-Analysen bis in die späten Phasen
der Software-Entwicklung aufgeschoben oder gänzlich ausgelassen werden.
Performance-Probleme werden meist reaktiv angegangen, wenn sie zum
ersten Mal im Betrieb der Software auftauchen, anstatt sie proaktiv während
der Software-Entwicklung zu erkennen und zu lösen. Da das reaktive Lösen
von Performance-Problemen vergleichsweise sehr aufwändig ist, müssen
Performance-Probleme noch während des Software-Entwicklungsprozesses
diagnostiziert werden.

Existierende Ansätze zur Erkennung von Performance-Problemen nehmen
entweder die Verfügbarkeit eines Systemmodells an, sind auf das Erkennen
von Problemen beschränkt, ohne eine Diagnose der Ursachen durchzuführen,
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oder sind für den reaktiven Einsatz während des Software-Betriebs ausgelegt.
Somit bieten existierende Ansätze nicht die notwendigen Mittel, um eine
proaktive Erkennung und Diagnose von Performance-Problemen effektiv
während der Software-Entwicklung durchzuführen.

In der vorliegenden Arbeit wird ein Ansatz zur automatischen, experiment-
basierten Diagnose von Performance-Problemen in betrieblichen Software-
Systemen vorgestellt. Basierend auf einer Taxonomie von wiederkehrenden
Performance-Problemtypen führt der vorgestellte Ansatz eine Erkennung von
Performance-Problemen durch sowie eine systematische Suche nach deren
Ursachen. Dabei wird eine Reihe zielgerichteter Performance-Experimente
durchgeführt. Die dabei gesammelten Messdaten werden mit Hilfe einer Men-
ge an Regeln und Algorithmen analysiert, um Aussagen über die Existenz
entsprechender Performance-Problemtypen in dem Zielsystem zu treffen.
Die vorliegende Arbeit umfasst die folgenden wissenschaftlichen Beiträge:

Taxonomie der Performance-Problemtypen Die vorliegende Arbeit
führt eine Methode zur expliziten Erfassung von strukturiertem Wissen
über Performance-Probleme ein. Dazu wird ein Klassifikationsschema für
bestehende, wiederkehrende Typen von Performance-Problemen eingeführt.
Die Klassifikation erfasst zum einen verschiedene Charakteristiken von
Performance-Problemen sowie die Beziehungen zwischen unterschiedli-
chen Performance-Problemtypen. Auf Basis der Klassifikation wird eine
Taxonomie der wiederkehrenden Performance-Problemtypen abgeleitet. Die
statische Taxonomie wird schließlich um die dynamische Information zur
experimentbasierten Diagnose von Performance-Problemen erweitert. Im
Rahmen der vorliegenden Arbeit wurde die eingeführte Methode auf 27
Performance-Problembeschreibungen angewendet. Das Ergebnis ist ein Eva-
luationsplan für Performance-Probleme, der zur Koordination der automati-
schen Performance-Problemdiagnose eingesetzt werden kann und darüber
hinaus eine Unterstützung bei der manuellen Diagnose bietet.

Systematisches Experimentier- und Diagnosekonzept Messbasierte
Performance-Analyseverfahren haben das inhärente Problem, dass Mess-
daten auf Grund des Mehraufwands der Messung nicht gleichzeitig ge-
nau, umfassend und mit hohem Detailgrad erfasst werden können. Die
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vorliegende Arbeit beschreibt unter anderem ein systematisches, selekti-
ves Experimentierkonzept, dass es erlaubt durch eine systematische Aus-
führung von Experimenten sowohl genaue als auch detaillierte Messdaten
zu erfassen. Dabei wird für jedes einzelne Experiment eine zielgerichte-
te, selektive Instrumentierung der Zielanwendung durchgeführt, sodass der
durch Messung verursachte Mehraufwand in jedem Experiment gering ge-
halten wird. Die Instrumentierungsanweisungen werden zwischen einzel-
nen Experimenten dynamisch verändert und erlauben so, detaillierte Da-
ten bei hoher Genauigkeit zu erfassen. Zur automatischen Diagnose von
Performance-Problemen wird das systematische Experimentierkonzept mit
der beschriebenen Taxonomie kombiniert, um eine systematische Suche
nach Ursachen von Performance-Problem zu ermöglichen. Die Taxonomie
wird dabei als ein Suchbaum verwendet, während für jeden Knoten in der
Taxonomie ein zugeschnittenes Experiment mit selektiver Instrumentierung
durchgeführt wird. In der vorliegenden Arbeit werden die Vorteile und die
Einschränkungen des systematischen Experimentierkonzepts für die auto-
matische Diagnose von Performance-Problemen untersucht. Des Weiteren
wird die Anwendbarkeit des vorgestellten Experimentierkonzepts über die
Performance-Problemdiagnose hinaus untersucht.

Beschreibungssprache für Performance-Problemdiagnose Um eine
system- und technologieunabhängige und dennoch automatische Diagno-
se von Performance-Problemen zu ermöglichen, wird in dieser Arbeit ein
Metamodell eingeführt, welches eine Sprache zur Beschreibung von Szena-
rien der Performance-Problemdiagnose definiert. Die Sprache umfasst vier
Subsprachen. (i) Eine Experimentbeschreibungssprache erlaubt es, Experi-
mentpläne zur Analyse von Performance-Problemen zu spezifizieren. (ii)
Eine Instrumentierungs- und Monitoring-Beschreibungssprache bietet die
Möglichkeit, Instrumentierungsanweisungen zielgerichtet und dabei syste-
munabhängig zu beschreiben. (iii) Ein Datenformatmodell gibt ein gemein-
sames, kontextunabhängiges Format für die Messdaten vor. (iv) Schließlich
wird eine Sprache zur Beschreibung der Messumgebung eingeführt, welche
es erlaubt konkrete Anwendungskontexte des automatisierten Diagnose-
ansatzes mit geringem Aufwand zu beschreiben. In der Summe schließen
die vorgestellten Sprachen die Lücke zwischen dem generischen Kern des
Ansatzes zur Performance-Problemdiagnose und den konkreten Anwen-
dungskontexten.
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Heuristiken zur Erkennung von Performance-Problemen Während die
Taxonomie der Performance-Probleme zusammen mit dem systematischen,
selektiven Experimentierkonzept den Gesamtprozess der Performance-Pro-
blemdiagnose vorgeben, kapseln dedizierte Heuristiken das spezifische Wis-
sen zur Erkennung einzelner Performance-Problemtypen. Einzelne Heuristi-
ken umfassen dabei jeweils eine Definition einer Experimentserie sowie eine
Erkennungsstrategie in Form eines Algorithmus, der die Messdaten aus den
Experimenten untersucht. In der vorliegenden Arbeit werden ein Prozess und
eine Menge von Regeln zur Erstellung akkurater und generischer Heuristiken
für verschiedene Performance-Problemtypen beschrieben. Für eine reprä-
sentative Menge an Performance-Problemtypen werden unterschiedliche
Erkennungsstrategien entwickelt und systematisch evaluiert.

Die Beiträge der vorliegenden Arbeit werden mittels fünf Studien evaluiert.
Es werden drei Ende-zu-Ende-Fallstudien durchgeführt, ein kontrolliertes
Experiment und eine empirische Studie. Die Ergebnisse der Studien zeigen,
dass der vorgestellte Ansatz Performance-Probleme in unterschiedlichen,
vielfältigen Kontexten mit mittelgroßen bis hinzu sehr großen Zielanwen-
dungen akkurat erkennt, solange die beschriebenen Vorbedingungen erfüllt
sind. Teilnehmer des empirischen Experiments bewerteten den Ansatz als
eine hilfreiche Unterstützung bei der Diagnose von Performance-Problemen
und drückten ihre Bereitschaft aus, den Ansatz auch in eigenen Projekten
einzusetzen.

Da der beschriebene Ansatz für eine automatische, testbasierte Diagnose in
der Software-Entwicklungsphase konzipiert ist, kann er in den Prozess des
Continuous Integration eingebunden werden. Dadurch erlaubt der Ansatz,
Zielanwendungen regelmäßig und frühzeitig auf Performance-Probleme
zu untersuchen bei einem geringen, manuellen Aufwand. Da der Ansatz
Expertenwissen zur Performance-Problemdiagnose kapselt und automatisiert,
befähigt er Software-Entwickler, die keine Performance-Experten sind, auch
Performance-Problemdiagnosen durchzuführen.
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1. Introduction

The present thesis describes an approach for automatic detection and diagnos-
tics of performance problems in enterprise software systems. The proposed
approach supports software development teams during the development of
software to ensure a high level of software performance quality. In this
chapter, we explain why an approach for automatic performance problem
diagnostics is needed. Furthermore, we describe the problem addressed in
this thesis as well as corresponding goals and challenges. Finally, we give
an outline of existing solutions as well as the contributions of this thesis and
explain the structure of the work at hand.

1.1. Motivation

Relevance of Software Performance In contemporary enterprises, soft-
ware systems are ubiquitous. Enterprise software systems play a central role
in most businesses, reaching from enterprises in mechanical engineering
to service providers, trading companies and many more since they enable
efficient business processes, new channels of sales and effects of scale. The
quality of service (QoS) of enterprise software systems has a significant
impact on their total cost of ownership, efficiency of supported business
processes (Hitt et al., 2002) and the customer satisfaction. Therefore, the per-
formance of software systems plays a crucial role as one of the QoS attributes.
A study at Amazon has shown that “[. . . ] every 100-ms increase in the page
load time decreased sales by 1 percent [. . . ]” (Kohavi et al., 2007). Some
investigations at Google confirm the impact of performance on the success of
enterprises demonstrating that “[. . . ] a 500-ms increase in the search results
display time reduced revenue by 20 percent [. . . ]” (Kohavi et al., 2007). An-
other company Compuware providing application performance management
solutions conducted an empirical study with 150 IT managers from large
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companies across Europe (Compuware 2015) to evaluate the importance of
application performance management. Their findings show that more than
half of the companies have experienced unexpected performance problems
in more than 20 per cent of newly-deployed applications. Furthermore, 80
per cent of the IT managers agreed that software performance may affect
customer satisfaction as well as total cost of ownership. In sum, for software
vendors and operators of software systems, performance is a competitive and
differentiating factor affecting the success of business.

Costs of Solving Performance Problems Although a majority of IT
managers is aware of the importance of software performance, most perfor-
mance problems in industry are typically identified and reported by end-users
(Compuware 2015). However, the later problems are detected the more ex-
pensive their resolution is. According to Boehm, 1981, fixing problems
in the operations phase of a software product can be more than a hundred
times higher than conducting the resolution in early phases. The magnitudes
of cost escalation are illustrated by Stecklein et al., 2004: Errors that have
been made during the requirements phase but could be fixed in the design or
integration phase entail a cost factor of up to eight and up to 78, respectively.
In contrast, fixing the problems during operations is up to 1500 times more
expensive. Whilst the named examples refer to software problems in general,
the estimates can be similarly applied to software performance problems.
Therefore, software performance needs to be addressed from early on in a
software development process.

Reluctance to Adopt Performance Evaluation Approaches Software
performance engineering (SPE) approaches (Smith, 1993) provide means
to systematically evaluate the performance of software systems in early de-
velopment phases. System and performance models are used to estimate
the impacts of design decisions in early development phases when the im-
plementations of systems are not available. In this way, SPE approaches
allow early detection and resolution of critical performance problems, thus,
reducing the costs for late problem resolution. Nevertheless, SPE approaches
are still rarely adopted in industrial software development projects. Ap-
plying such systematic approaches requires profound expertise and entails
a considerable overhead in creating and managing system models. There
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are many reasons why SPE approaches are still often omitted in industrial
projects (Smith, 2015; Woodside et al., 2007). Most reasons can be reduced
to three main obstacles: (i) Due to strong time restrictions in software devel-
opment projects, IT managers try to avoid the additional overhead of creating
system and performance models for SPE. (ii) Since software developers
often lack sufficient expertise in performance engineering, they perceive
SPE approaches as a burden rather than as help. (iii) Finally, developers
do not trust in models and performance predictions (Woodside et al., 2007),
which results in a reluctant attitude towards SPE approaches. Moreover,
although SPE is suitable to uncover early design problems, performance
problems that arise during implementation are not covered by design-time
performance evaluation approaches due to their level of abstraction (Wood-
side et al., 2007). Measurement-based performance evaluation approaches
(H. Koziolek, 2010) allow to investigate the performance of implemented
software systems either as part of testing during the implementation phase
or online, during operations. Since measurements are closer to the actual
implementation of the software system, developers typically trust more
in performance measurements than in performance predictions. However,
analogous to SPE approaches, measurement-based approaches require deep
expertise in performance evaluation (Jain, 1991) and entail a significant
manual overhead for setting up and managing corresponding performance
tests. Therefore, performance considerations are often postponed from the
design and implementation phase to the end of the product lifecycle (cf.
“fix-it-later” approach (Smith, 1993)). As a consequence, performance prob-
lems are revealed by end users which results in reputational damage for the
corresponding organization and high costs of problem resolution.

Prevalent Practice in Performance Problem Diagnostics Performance
problem diagnostics is the process of detecting and understanding a perfor-
mance problem as well as localizing its root cause. Based on the consider-
ations in the previous paragraph, in many software development projects,
performance problem diagnostics is conducted as a reactive performance
fire-fighting activity. Performance problems leading to customer complaints
put corresponding software development and operation teams under high
time pressure when they have to diagnose and resolve the performance
problems. Due to insufficient expertise in performance engineering the
responsible companies employ performance engineers (e.g. external perfor-
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mance consultants) to quickly identify and resolve performance problems.
Performance engineers iteratively plan, set up and conduct performance tests,
analyze measurement data, and make decisions on next diagnostics steps
until they understand and identify the root causes of performance problems.
Depending on the expertise of the performance engineers and severity of the
performance problems the diagnostics process may take days, weeks or even
month. All in all, the prevalent industrial practice in diagnosing performance
problems comprises many manual steps and is often conducted in a reactive
manner.

The Need for Automated, Measurement-based Performance Problem
Diagnostics While conducting performance tests and subsequent analysis
of measurement data requires deep knowledge in performance engineering,
conceptually, the corresponding testing and analysis activities are often recur-
rent among unrelated, yet similar contexts (Heger, 2015). The expertise of
highly qualified performance engineers is a result of years of practical expe-
rience, encountering similar performance problems in different contexts and
learning recurrent activity patterns for detecting and solving performance
problems. To be able to diagnose performance problems effectively and
efficiently, performance engineers need to go through a long and tedious
learning process leading them to profound expertise in their field. However,
with regard to performance engineering expertise, we cannot benefit from
scaling effects as long as the knowledge remains implicit in the heads of
performance engineers and is not explicitly available. Furthermore, in this
case diagnostics of performance problems remains a highly manual task
requiring performance engineers to manually conduct performance tests and
analyze measurement data. This does not scale in the first place, and it is also
expensive and time-consuming. The recurrent nature of performance prob-
lems (Smith et al., 2000) and corresponding activities for their diagnostics
provides a potential for automation through externalization and formalization
of knowledge. An automatic approach would provide a means to the scale
and cost problems of manual performance problem diagnostics. However,
automating performance problem diagnostics poses scientific challenges
that are addressed in this thesis. In general, this includes investigation of
concepts for the systematization of diagnostics processes, formalization of
expert knowledge on performance problems and their diagnostics, as well
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as concepts to mitigate limitations of measurement-based approaches. The
scientific challenges are explained in more detail further below.

1.2. Problem Statement and Goals

The motivation in the previous section exposes multiple problematic aspects
of the current practice in diagnosing performance problems during the de-
velopment of software systems. First, performance evaluation requires deep
expertise in performance engineering. Therefore, without proper tool support
developers often rely on performance experts with regard to performance
testing. Second, a high manual effort for conducting performance tests and
analyzing corresponding measurement data is a significant obstacle for per-
formance evaluation during software development. Both aspects lead to the
main problem, namely to complete abandonment of performance diagnostics
during development.

The field of functional testing yields an entirely different picture. Static code
analysis approaches, such as Lint (Johnson, 1977), Findbugs (Ayewah et al.,
2008) and Checkstyle (CSL 2015), are widely used in software development
projects. Furthermore, developers are often obliged by project guidelines to
write unit tests to achieve a certain level of test coverage (Zhu et al., 1997).
Finally, integration tests are commonly used to ensure correct functionality
across software components. Combining functional testing with the concept
of continuous integration (Duvall et al., 2007) allows to keep functional
quality of software products on a high level throughout the development.

Hence, while continuous evaluation of functional aspects is a matter of course
in software development projects, continuous considerations of performance
aspects is rather seldom. The reason for the wide adoption of functional
testing lies in the high degree of automation of corresponding approaches,
the encapsulated expert knowledge, the adoption of software engineering
concepts, as well as the low manual effort to use the approaches. Conversely,
performance evaluation is rarely adopted due to insufficient automation, lack
of formalized and systematized expert knowledge, and enormous, manual
overhead. In an earlier study by Woodside et al., this problem has been
identified as a promising potential for future research:
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“There are many weaknesses in current performance processes.
They require heavy effort, which limits what can be attempted.

[. . . ]

Developers and testers use instrumentation tools to help them
find problems with systems. However, users depend on experi-
ence to use the results, and this experience needs to be codified
and incorporated into tools. Better methods and tools for inter-
preting the results and diagnosing performance problems are a
future goal.

[. . . ]

Promising areas for the future include better visualizations, deep
catalogues of performance-related patterns of behaviour and
structure, and algorithms for automated search and diagnosis.”

(Woodside et al., 2007)

In the quote of Woodside et al., we emphasized text passages that expose
the main research problems addressed by this thesis. By addressing these
problems, the present thesis is making a step towards incorporating per-
formance problem diagnostics into continuous, automated testing during
software development. In particular, the following high-level goals have
guided the research work for this thesis.

Goal 1 — Reduce manual effort for measurement-based diagnostics of
performance problems.

Reducing the manual effort for applying performance problem diagnostics
is a crucial criterion to increase its adoption as a natural part of software
development. To this end, manual tasks such as execution of performance
tests and consequent analysis of data need to be automated.

Goal 2 — Enable frequent experiment-based analysis of
performance problems.

Automation of performance problem diagnostics allows developers to con-
duct regular scans for performance problems and their root causes without
additional effort. Diagnostics of performance problems can be, for instance,
incorporated into continuous integration (Duvall et al., 2007). In this way,
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performance problems can be diagnosed as soon as they emerge in the
software implementation.

Goal 3 — Enable non-experts to conduct performance
problem diagnostics.

Automation of performance problem diagnostics takes over many tasks such
as configuration of performance tests and analysis of measurement data that,
typically, need to be conducted by performance experts. Additionally to the
automation, the results of the diagnostics have to be adequately comprehen-
sible for non-experts, in order to increase adoption of performance problem
diagnostics.

1.3. Research Questions

The goals described in the previous section entail some challenges regarding
the realization of an automatic performance problem diagnostics approach.
In the following, we describe the challenges and corresponding, emerging
research questions that are addressed in this thesis.

Capturing Knowledge on Performance Problem Diagnostics Due to
the inherent complexity and diversity, performance problem diagnostics is
a discipline that is strongly based on expert knowledge. Hence, in order to
automate performance problem diagnostics, expert knowledge needs to be
captured in a certain way, either through acquiring knowledge or through
explicit formalization. Performance experts possess profound implicit knowl-
edge of performance problem diagnostics. Furthermore, some knowledge
has already been informally written down as typical, recurrent performance
problems and performance anti-patterns. However, the available knowledge
is loosely coupled, barely structured and insufficiently formalized. In the way
the expert knowledge is available up to now, it does not provide sufficient
guidance in conducting performance problem diagnostics. Based on this
observation, in this thesis, we address the following research questions:
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RQ 1 — Which formalisms are appropriate in order to capture expert knowl-
edge on performance problem diagnostics in a structured way?

RQ 2 — Does explicitly structured knowledge provide significant advantages
in guiding performance problem diagnostics, as compared to the currently
available representations of expert knowledge?

Achieving High Accuracy and Precision As stated in Goal 2, we aim
at providing an experiment-based approach for performance problem diag-
nostics that can be integrated with continuous testing. Measurement-based
approaches share one common problem: Accuracy (i.e. deviation of mea-
surements from reality) and precision (i.e. level of detail) of measurements
are contradicting properties due to the monitoring overhead which is inher-
ent to any measurement technique. However, to find a useful performance
problem diagnostics approach that allows to identify detailed root causes of
performance problems, both high measurement accuracy and a high level
of detail (i.e. precision) are required. Hence, further research questions are
arising from this consideration:

RQ 3 — What is a proper solution for overcoming the trade-off between
accuracy and precision of measurement data?

RQ 4 — If such solution can be found, how significant is the benefit of the
solution compared to common measurement-based methods?

Generalization Automation of processes is often coupled with technology-
specific details including tool-specific configurations, automation scripts, etc.
Consequently, as mentioned by Woodside et al., 2007 there is “a conflict
between automation and adaptability in that systems which are highly au-
tomated”. Hence, approaches that are highly automated tend to be specific
to certain technologies, tools or application contexts. In contrast, to achieve
the goals stated in the previous section, a performance problem diagnostics
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approach must be generic with respect to different application contexts on
the one hand and, to technologies and tools used in these contexts on the
other hand. In particular, generic diagnostics algorithms must be decoupled
from context-specific characteristics without sacrificing the ability to fully
automate the diagnostics process. These considerations, in turn, lead us to
the subsequent research questions:

RQ 5 — What are generic diagnostics algorithms for context-independent
performance problem identification?

RQ 6 — Which abstraction constructs are necessary to decouple generic
diagnostics processes from context-specific characteristics?

RQ 7 — What is a proper way to bridge the gap between generic diagnostics
processes and specific application contexts in order to enable automation of
performance problem diagnostics?

Systematization Experiment-based performance evaluation approaches
are inherently time-consuming due to the need of executing multiple, long-
running experiments (i.e. in the range of minutes or hours). The practi-
cability of experiment-based approaches highly depends on the number of
experiments that need to be executed. Therefore, brute-force diagnostics
approaches for performance problems that entail a huge amount of experi-
ments are very time-consuming, expensive and, thus, not practicable. Similar
to the manual diagnostics procedure by performance experts, an automatic
diagnostics should follow a systematic approach that guides the search for
root causes of specific performance problems in a goal-oriented manner. In
this context, we address the following research question in this thesis:

RQ 8 — What is an appropriate means to systematize the diagnostics of
performance problems?
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RQ 9 — How beneficiary is the systematic diagnostics approach regarding
efficiency?

RQ 10 — Does a systematization of performance problem diagnostics affect
the diagnostics accuracy?

1.4. Existing Solutions

There are various approaches addressing the issue of detecting performance
problems. The approaches can be divided into model-based and measurement-
based approaches.

Model-based approaches (Cortellessa et al., 2014; Trubiani et al., 2011;
Franks et al., 2006; Xu, 2012) allow to detect performance problems in very
early phases (e.g. design phase) of a software product lifecycle. Thereby,
static analysis of architectural models as well as analytical or simulative
solutions of performance models are used to identify performance prob-
lems. Beside pure detection of performance problems, anti-pattern-based
approaches (Cortellessa et al., 2014; Trubiani et al., 2011) provide deeper
insights into the manifestations of detected performance problems. Based
on detected performance problems, some approaches (Trubiani et al., 2011;
Xu, 2012) make use of models to evaluate different solution alternatives
without the need to actually implement the solutions. Though model-based
approaches allow an early diagnostics of performance problems, they inher-
ently depend on the availability of corresponding system and performance
models. Furthermore, due to the abstraction level of models, model-based
approaches detect performance problems at the granularity of software com-
ponents. In particular, performance problems that are manifested in the
implementation details of a system cannot be sufficiently diagnosed by
model-based approaches.

Alongside with model-based solutions, there are measurement-based ap-
proaches for the detection and diagnostics of performance problems. Mea-
surement-based approaches utilize instrumentation and monitoring of the
target system to retrieve measurement data for the analysis of problems.
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Online detection approaches (Parsons et al., 2008; Miller et al., 1995; Ehlers
et al., 2011) allow to reveal performance problems during the operation of a
given software system. However, as discussed before, resolution of problems
that are revealed during operation is very expensive and represents a reactive
rather than a proactive approach. Frameworks for self-adaptive systems
(Kounev et al., 2010; van Hoorn, 2014) comprise performance problem
detection and anticipation as part of their control loop for online system
adaptation. However, their focus is on detecting performance problems that
can be solved through dynamic reconfiguration or redeployment of the target
system.

There are several approaches that allow to detect specific performance prob-
lem types during development, for instance as part of testing (Nistor et al.,
2013; Yan et al., 2012; Chen et al., 2014). However, these approaches
focus on some selected types of performance problems and, thus, do not
provide a generic diagnostics approach. Approaches that detect performance
regressions utilize historical data to identify degradations in performance.
Due to their high degree of automation, performance regression detection
approaches can be seamlessly incorporated into continuous integration. How-
ever, apart from detecting the existence of performance problems, these
approaches do not diagnose the root causes of detected
performance problems.

Apart from research approaches, commercial application performance man-
agement tools, such as Dynatrace 2015 or AppDynamics 2015, provide
comprehensive means for monitoring of software systems, as well as man-
agement and visualization of measurement data. However, although these
tools considerably support performance problem diagnostics, performance
experts still have to manually conduct the analysis. In particular, to the best
of our knowledge, the are no commercial tools that conduct a fully automatic
diagnostics of performance problems.

1.5. Contributions

According to the goals stated before, we introduce an experiment-based
approach called Automatic Performance Problem Diagnostics (APPD). The
proposed approach combines different concepts that enable a systematic,
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efficient and context-independent diagnostics of performance problems. The
APPD approach is based on a performance problem taxonomy that encap-
sulates the knowledge about interrelations among different symptoms and
causes of performance problems. Using a systematic experimentation ap-
proach while traversing the taxonomy, APPD realizes a systematic search for
root causes of detected performance problems. A domain-specific language
for the description of goal-oriented performance tests and context informa-
tion decouples the generic diagnostics approach from context-specific char-
acteristics. Detection heuristics for different types of performance problems
encapsulate the knowledge about the characteristics of recurrent problems
(also known as performance anti-patterns (Smith et al., 2000)).

Three properties are essential for the APPD approach. Firstly, similar to
existing operation-time approaches, APPD conducts an in-depth diagnostics
of performance problem root causes. Secondly, APPD covers a wide range of
performance problem types that can be detected with the approach. Finally,
our approach conducts a goal-oriented search for performance problems and
their root causes. In this way, APPD is especially suited to be integrated
with continuous testing during development of a software product. To the
best of our knowledge, APPD is the first approach that fully combines these
properties.

The contributions of this thesis cover (i) a systematic process to derive a
taxonomy on performance problems, (ii) a goal-oriented experimentation and
diagnostics approach, (iii) a domain-specific language for the specification of
performance problem diagnostics scenarios, and (iv) a systematic process to
design and evaluate detection heuristics for individual performance problem
types. In the following, we describe the concrete contributions of this thesis
in more detail.

Taxonomy on Performance Problems One way to automate performance
problem diagnostics is the imitation of the processes conducted by experi-
enced performance experts through processable algorithms. When perfor-
mance experts analyse a software system for performance problems, they
start by observing its external behaviour. By means of symptoms that the
experts observe, they gradually dig deeper into the internals of the target
system until they identify the root cause of a performance problem. For the
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systematic search, performance experts utilize their knowledge on the inter-
relationships between different symptoms, recurrent performance problems
(or performance anti-patterns), and typical root causes. In order to enable an
automated diagnostics approach that proceeds in a comparably systematic
manner, in this thesis, we introduce a novel method to explicitly capture this
knowledge in a taxonomy on recurrent performance problems. Besides, we
suggest a process that describes how to derive a generic, taxonomy-based
Performance Problem Evaluation Plan (PPEP) from a set of known perfor-
mance problem types. We first provide a categorization scheme for the
classification of recurrent performance problem types. The categorization
is used to derive a taxonomy on performance problems. Finally, the static
taxonomy is augmented with diagnostics activities that provide guidance in
diagnosing performance problems. We apply our classification method on
a set of 27 anti-patterns that are described in scientific and industrial litera-
ture. The result is a PPEP instance that covers most common performance
problems in practice. The PPEP is a core element of the APPD approach.
Apart from the automatic diagnostics, a PPEP can be used as a guidance for
manual diagnostics of performance problems.

The main scientific insights can be summarized as follows. A causal, hier-
archical structure on performance problems (i.e. taxonomy) systematizes a
performance problem diagnostics process. A taxonomy-based PPEP explic-
itly reflects the previously implicit knowledge of performance experts. A
PPEP provides guidance in diagnosing performance problems, either manu-
ally or as part of an automatic diagnostics approach. A systematic process
allows to derive and extend PPEP instances.

Systematic Experimentation and Diagnostics Approach In order to
overcome the trade-off between accuracy and precision, in this thesis, we
introduce a Systematic Selective Experimentation (SSE) concept. Thereby,
several experiments with lightweight, selective monitoring are executed
in a systematic way. The collected measurement data is statistically ana-
lyzed and correlated across different experiments. In this way, analyses
can be conducted on accurate and precise measurement data. The SSE is a
generic concept that is applicable not only for automatic performance prob-
lem diagnostics. SSE can be applied in all experiment-based performance
evaluation scenarios where the trade-off between accuracy and precision of
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measurement data is a critical issue. Combining the SSE concept with the
performance problem taxonomy, we realize a systematic search for the root
causes of performance problems following the model of manual performance
problem diagnostics by performance experts. Thereby, the performance prob-
lem taxonomy serves as a decision tree, while the SSE concept is utilized to
conduct tailored experiments for each node in the taxonomy. In contrast to
knowledge- and rule-based diagnostics approaches that are typically applied
during operation, a systematic search approach, as realized in this thesis,
is more appropriate to be incorporated into continuous testing due to its
goal-oriented way of evaluating a system.

Scientifically, the main insight of this contribution is that a systematic ex-
perimentation concept with selective monitoring allows to overcome the
trade-off between accurate and detailed measurement data. However, as
the experiments of such an experimentation concept are independent, corre-
sponding analysis methods must rely on statistical measures rather than on
correlation on raw data.

Problem Diagnostics Specification Languages In order to enable sys-
tem-and technology-independent, yet automatic, performance problem di-
agnostics, we introduce the Performance Problem Diagnostics Description
Model (P2D2M). P2D2M comprises a set of description languages that decou-
ple the generic diagnostics processes from context-specific details. P2D2M
comprises four interrelated meta-models: (i) An Experimentation Descrip-
tion language allows to define experimentation plans for experiment-based
analysis of performance problems. (ii) An Instrumentation and Monitor-
ing (IaM) Description language provides means to specify instrumentation
and monitoring instructions in a context-independent way. (iii) The Data
Representation model constitutes a counterpart to the IaM Description lan-
guage capturing the measurement data generated by the instrumentation and
monitoring instructions. (iv) Finally, the Measurement Environment (ME)
Description meta-model provides domain-specific modelling constructs for
the specification of concrete application contexts. The former three meta-
models constitute the basis for generic, system- and technology-independent
diagnostics heuristics that are based on systematic experiments and anal-
ysis rules evaluating corresponding measurement data. Thereby, the IaM
Description language plays a crucial role allowing to specify goal-oriented
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instrumentation instructions without explicit relations to context-specific
elements. The ME Description instances close the gap between specific
application contexts and generic definitions of diagnostics processes and
algorithms. By providing a minimalistic domain-specific description lan-
guage that is tailored for the purpose of performance problem diagnostics the
ME Description allows to simply describe the components of an application
context that are essential for problem diagnostics. In particular, the ME De-
scription language relieves software engineers from creating comprehensive
and complex architecture and performance models.

The scientific novelty of the proposed languages is manifested in the context-
independent specification of experimentation plans for performance problem
diagnostics as well as a language for a light-weight coupling to specific con-
texts. In this way, the languages allow a high degree of reuse of diagnostics
algorithms that are based on the experiments specified using the proposed
languages.

Detection Heuristics for different Types of Performance Problems
While the performance problem taxonomy and the SSE concept jointly
constitute the high level diagnostics process, the evaluation of individual
performance problem types is encapsulated in detection heuristics. For each
node in the performance problem taxonomy a detection heuristic exists that is
responsible for the investigation of the corresponding performance problem
type. A detection heuristic comprises two main parts. First, by using the
languages defined by P2D2M a heuristic defines an experimentation plan that
describes which experiments (e.g. which load, etc.) to execute and which
IaM instructions to apply on the target system. Depending on the type of
performance problem to be investigated, experiments with selective instru-
mentation are executed to conduct a goal-oriented evaluation of the system
characteristics that may be affected by a corresponding performance problem.
The second part of a heuristic is an analysis algorithm that evaluates the
measurement data gathered during the experiments. A detection heuristic
provides a report on the investigated performance problem, stating whether
the performance problem has been detected or not. In the case of a positive
detection, a detection heuristic provides further information on the location
and severity of a performance problem. A good detection heuristic must
exhibit two essential properties. On the one hand, a detection heuristic must

15



1. Introduction

provide accurate detection results. On the other hand, detection heuristics
must be generically applicable along different target systems. In this thesis,
we introduce a common process for designing accurate and generic detection
heuristics. For a selected versatile set of performance problem types, we
provide multiple alternative detection heuristics. Investigating their accuracy
and general applicability we extract the most appropriate detection heuristics
for the APPD approach.

The main scientific insights with respect to designing experiment-based
detection heuristics for performance problems can be summarized as follows.
Overall, if properly designed, experiment-based heuristics allow to accurately
detect performance problems. To achieve a high degree of accuracy and
generalization, detection heuristics need to be evaluated on a broad variety of
micro-benchmarks before they are applied on real scenarios. This allows to
identify weaknesses, improve heuristics and identify better suited alternatives.
Furthermore, for the sake of generalization, detection algorithms should not
rely on absolute thresholds for performance measures. They rather should
utilize relative thresholds that are dynamically adopted to the circumstances
of concrete application contexts.

1.6. Validation Methodology

In the field of software engineering, there are three major research method-
ologies (Wohlin et al., 2012): survey, case study and experiment. A survey
aims at collecting information from some subjects, such as knowledge, opin-
ion or behaviour (Fink, 2003). A case study is “an empirical enquiry that
draws on multiple sources of evidence to investigate one instance [. . . ] of a
contemporary software engineering phenomenon within its real-life context
[. . . ]” (Runeson et al., 2009). An experiment (or controlled experiment) is
“an empirical enquiry that manipulates one factor or variable of the studied
setting” (Wohlin et al., 2012). While case studies provide more realistic
insights, they provide less control than experiments.

In this thesis, we evaluated the APPD approach by means of all three types of
investigation, depending on the purpose of validation. According to Wohlin
et al., “case studies are very suitable for industrial evaluation of software
engineering methods and tools because they can avoid scale-up problems”
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(Wohlin et al., 2012). Therefore, we conducted three case studies in which
we evaluated the end-to-end applicability of the APPD approach. Thereby,
we investigated APPD under various conditions by applying the approach
on target systems that differ in several aspects. This includes different types
and scales of target systems, different technologies and run times, as well as
different set-ups. In the case studies, we investigated the diagnostics accuracy
of the APPD approach and explored its strengths and limitations. The case
studies show that, independently from the application scenarios, APPD
accurately diagnoses performance problems. Moreover, the case studies
revealed some characteristics of performance problems in practice that affect
the way of applying APPD. To validate the benefits of the SSE concept
in the field of experiment-based performance evaluation, we conducted a
controlled experiment. In this experiment, we applied the SSE concept on a
different performance evaluation scenario (beyond the scope of performance
problem diagnostics) and compared it to alternative approaches. In particular,
we utilized the SSE concept for automated derivation of resource demands
that are fed into an architectural performance model for the purpose of
performance predictions. The results of the experiment show that the SSE
concept is an enabler of gathering accurate and precise performance data.
Finally, in an empirical study, external users applied the APPD approach
in a controlled environment. As part of the empirical study, we conducted
a survey to capture the perception and opinion of the external users with
respect to the APPD approach. Despite some minor issues like potential for
better usability and documentation, users evaluated the APPD as a useful
means in diagnosing performance problems. Most study participants also
demonstrated willingness to use the APPD approach in their own software
development projects.

1.7. Outline

The current thesis is structured as follows.

Chapter 2 describes the foundations of the conducted research work. We
describe the notion of enterprise software systems, discuss their main
characteristics, and elaborate corresponding implications on the per-
formance behaviour of enterprise software systems. Furthermore, we
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describe common approaches and concepts in the field of software per-
formance analysis. Thereby, we give an overview on relevant concepts
of the queueing theory and discuss the essence of measurement-based
performance evaluation approaches. As we use the Palladio Compo-
nent Model (PCM) as an architectural performance model in one of the
validation studies in Chapter 7, in Chapter 2, we provide a summary
on the Palladio approach. Finally, we describe the notion of Software
Performance Anti-patterns (SPAs), their origin and classification, as
well as a set of anti-patterns relevant for present research.

Chapter 3 describes the overall approach of this thesis. This chapter pro-
vides an overview of the constituent parts of the APPD approach and
their interrelation. We introduce the SSE concept and describe the
basic concept of the systematic search for performance problems by
means of a taxonomy on performance problems. Furthermore, we
discuss the assumptions of the APPD approach as well as the intended
scope of its applicability. On the basis of the research questions out-
lined in Section 1.3 and the constituent parts of the APPD approach
we derive seven research hypotheses that guide the current research
work and serve as validation criteria.

Chapter 4 addresses the challenge of systematically structuring the expert
knowledge on performance problems. In this chapter, we elaborate
on a systematic process for deriving a taxonomy-based Performance
Problem Evaluation Plan (PPEP). Thereto, we develop a categoriza-
tion scheme for performance anti-patterns, describe the steps to derive
a taxonomy, and introduce the transformation of a taxonomy into an
augmented PPEP. We apply our process on a set of 27 anti-patterns
reported in existing literature and instantiate the PPEP for twelve anti-
patterns that are considered in more detail in the remaining chapters
of this thesis.

Chapter 5 introduces the P2D2M, a meta-model defining a set of domain-
specific description languages for the specification of information
that is required for automatic diagnostics of performance problems.
P2D2M comprises four sub-languages that address different aspects of
experiment-based performance problem diagnostics: Experimentation
Description, Instrumentation and Monitoring Description, Measure-
ment Environment Description, and Data Representation. We describe
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the interrelation of the sub-languages of P2D2M and their roles in the
APPD approach. For each sub-language, we describe the design goals,
the abstract syntax and the informal semantics of elements from the
corresponding meta-models.

Chapter 6 addresses the systematic design of detection heuristics for per-
formance problems. In this chapter, we introduce the notion of a
detection heuristic and design a systematic process for the creation of
accurate detection heuristics. According to the proposed process, we
create 23 micro-benchmark applications for the evaluation of alterna-
tive detection heuristics. We develop different detection strategies for
the twelve performance problems selected in Chapter 4 and evaluate
them by means of the benchmark applications. The best performing
heuristics are selected to be integrated into the APPD approach.

Chapter 7 comprises the validation of the APPD approach and its con-
stituent concepts. Based on the hypotheses defined in Chapter 3,
we derive more fine-grained validation questions. To investigate the
validation questions, we conduct three case studies, one controlled ex-
periment and an empirical study with external participants. In the case
studies, we investigate the functionality, strengths and weaknesses of
the APPD approach by means of different target systems including a
benchmark application, an open-source commercial application, and
an industrial large-scale application. The controlled experiment aims
at validating the benefit of the SSE concept. Finally, an empirical
study investigates the applicability of APPD by external users, as well
as their perception of the approach.

Chapter 8 discusses related work. This includes related work in the fields
of classifying performance problems, experimentation-based perfor-
mance evaluation, models and languages for performance testing, as
well as detection and diagnostics of performance problems. The lat-
ter part is further divided into model-based and measurement-based
approaches.

Chapter 9 concludes this thesis by providing a summary, discussing bene-
fits, assumptions and limitations of the APPD approach, and giving an
outlook on future work.
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In this chapter, we introduce some foundations that are relevant for the
remainder of this work. In Section 2.1, we first describe the essentials of
enterprise software systems and corresponding performance-related charac-
teristics. We then give an overview on performance evaluation techniques
and concepts. Thereto, we introduce relevant aspects of model-based perfor-
mance evaluation approaches (Section 2.2) as well as measurement-based
performance analysis techniques (Section 2.3). Finally, we describe the
notion of performance anti-patterns and introduce the anti-patterns that are
considered in this work (Section 2.4).

2.1. Performance of Enterprise
Software Systems

Software engineering covers different types of software (Fowler, 2002), from
operating systems and desktop applications through mobile applications
and embedded systems to enterprise applications and information systems.
Though similar software engineering principles apply to different kind of
applications, with respect to Quality of Service (QoS), different classes of
applications differ in their behaviour as well as aspects that are important
to be considered. For instance considering performance, embedded systems
have strict real-time requirements that, by contrast, are less important for
enterprise software systems. In this work, we focus on the performance
of enterprise software systems. There is no explicit definition of the term
enterprise software system or enterprise application. However, Fowler
describes enterprise applications as follows:

“Enterprise applications are about the display, manipulation, and
storage of large amounts of often complex data and the support
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or automation of business processes with that data. Examples
include reservation systems, financial systems, supply chain
systems, and many others that run modern business. Enterprise
applications have their own particular challenges and solutions,
and they are different from embedded systems, control systems,
telecoms, or desktop productivity software.” (Fowler, 2002)

According to the three main aspects of displaying, manipulating and storing
data, enterprise applications are often designed along a three-tier architecture.
The three tiers comprise a presentation, an application and a data tier. The
presentation tier is responsible for displaying data to the end users in a client
(e.g. Web browser). The application tier encapsulates the business logic of
an enterprise application, responsible for processing and manipulation of
business data. Finally, the data tier persists data in a database or any other
data storage. In all tiers, there are different types of performance problems.
In the presentation tier of Web-based applications, there are different per-
formance problems concerning parsing and interpreting of Java Script code
(D. J. Westermann, 2014) and transmission of data over Internet. Perfor-
mance problems in the data tier are often manifested in improper design
of database schemes, inappropriate configuration of database management
systems and badly designed database queries. In this work, we focus on per-
formance problems in the application tier as well as its communication with
the data tier (i.e. including inefficient data access operations). The following
characteristics of enterprise software systems are of crucial importance to
this work.

Complexity of Software Often, the application tier comprises a great part
of the complexity of enterprise applications. Rettig described the complexity
of enterprise applications as follows:

“Much of the seemingly boundless complexity of enterprise soft-
ware is founded on conditional branching (if-then statements)
and a hierarchy of interacting objects, all of which manipulate
information in a logical succession of small steps. [. . . ] as
enterprise software becomes increasingly comprehensive and
complex, the costs and risks involved in changing it increase as
well. No single person within an organization could possibly
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know how a change in one part of the software will affect its
functioning elsewhere.” (Rettig, 2007)

As in most cases no single person can overlook the complexity of an en-
terprise application, automatic support in analyzing that kind of systems is
essential. This applies for all types of analysis, inter alia, including evaluation
of performance characteristics and performance problem diagnostics.

Interactivity Most enterprise applications have an interactive nature, mean-
ing that end users are actively interacting with the software system by issuing
requests to the system and awaiting a response. This property has an im-
portant implication on the understanding of performance requirements in
the domain of enterprise software systems. End users expect the systems to
respond quickly. Hence the response time of user requests plays a crucial role
when evaluating the performance of enterprise applications. Deficiencies in
the responsiveness of enterprise applications have a proven, negative effect
on the success of business (Kohavi et al., 2007; Compuware 2015). Thereby,
the software system is mostly a black box for the end users. As they don’t
see the complexity of certain interactions, they expect each interaction to
be equally responsive. Often, certain classes of end users exhibit a similar
behaviour with respect to the usage of the software system. Understanding
different classes of users is an important means to enable development-time
performance testing through synthetic generation of load.

Scalability While in enterprise systems the degree of parallelization is
mostly low for individual user requests, most enterprise systems must be
able to manage a high level of concurrency induced by concurrent usage of
the system. Often hundreds, thousands or even millions of users are using
an enterprise software system concurrently. As the level of concurrency
often cannot be estimated in advance, and as it may change rapidly during
operation, scalability is a crucial requirement for enterprise applications.
Hence, by adding additional hardware resources an enterprise application
must be able to manage a higher level of concurrency without noticeable
effects on the performance (i.e. responsiveness of the system). Therefore,
performance testing of enterprise software systems is closely related with
testing the scalability of the application.
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2.2. Model-based Performance Evaluation

Performance evaluation of software systems can be conducted along differ-
ent phases of software development. Depending on the artifacts that are
available in corresponding phases of development, different methods for
performance evaluation can be applied. In the early 80’s, Connie Smith
introduced the disciple of Software Performance Engineering (SPE). Smith
defined SPE as “a method for constructing software systems to meet per-
formance objectives” (Smith, 1993). SPE, as described by Smith, utilizes
system and performance models, prediction methods and quantitative meth-
ods to evaluate the performance of software in early development phases.
Performance models provide an abstract projection of the performance as-
pects of a software system under development. Performance models allow to
evaluate the performance of software systems in early development phases
(e.g. requirements elicitation and design phases) without the need to fully
implement the system. In this way, SPE methods provide a means to support
architects and software developers in estimating the performance effect of
certain design and implementation decisions.

Different modelling approaches are available to conduct model-based per-
formance evaluation. Pure performance models such as Queueing Networks
(Bolch et al., 2006), Stochastic Petri Nets (Marsan et al., 1994) or Queue-
ing Petri Nets (Bause, 1993; Kounev, 2006) allow to directly model the
performance aspects of software systems. While focusing on capturing the
performance aspects of the target system, these kind of models often ab-
stract from the software architecture of the target system. The gap between
pure performance models and actual software development constructs (e.g.
classes, components, etc.) has been a significant obstacle for the adoption of
performance models in industrial software development projects. To bridge
this gap, in recent decades, performance models have been progressively
hidden behind domain-specific languages that are familiar to software de-
velopers. Thereby, modelling languages such as the UML with the UML
MARTE profile (Object Management Group, 2015b) and the Palladio Com-
ponent Model (Becker et al., 2009) allow to enrich architectural models with
additional performance annotations. In the background, model-to-model and
model-to-code transformations are executed to enable performance evalua-
tion of the corresponding architectural models.
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In general, there are two ways of evaluating a performance model: analyti-
cally or simulative. With an analytical approach mathematical methods are
used to resolve a system of equations and stochastic expressions yielding
stochastic results for certain performance metrics of interest. Simulative
approaches synthetically execute a performance model by emulating user
requests in a specified way while observing the performance behaviour of the
model. As the performance models of realistic software systems are far to
complex to be solved analytically, in most cases, simulative approaches are
used for model-based performance analysis of enterprise software systems.

Besides the modelling and evaluation of concrete software systems, the
theory behind model-based performance evaluation constitutes the basis for
any kind of performance analysis and understanding, including measurement
based analysis techniques. In the following, we introduce some core concepts
behind Queueing Networks and the Queueing Theory. Furthermore, we
introduce the Palladio approach for component-based software architecture
and performance modelling and software performance evaluation.

2.2.1. Queueing Theory

Queueing theory is used to describe and analyze queueing processes in dif-
ferent domains. Gross et al. describe queueing theory as follows: “Queueing
theory was developed to provide models to predict the behavior of systems
that attempt to provide service for randomly arising demands” (Gross et al.,
2011). As software applications fall into this category of systems, the queue-
ing theory constitutes the basis for performance considerations of software
systems. In this section, we describe only some selected aspects of the queue-
ing theory. For detailed information on the queueing theory and its usage
for evaluating the performance of software systems we refer to Gross et al.,
2011 and Menascé et al., 2004, respectively. The following descriptions are
based on Gross et al., 2011 and Menascé et al., 2004.

The queueing theory is based on the notion of queues. Figure 2.1a schemati-
cally shows a queue and important quantities. A queue consists of a waiting
line and one or more servers. Servers are responsible for processing requests,
whereby only one request can be processed at a time. The time that is needed
to process a request is called service time S. If the server is busy with the
processing of a request, incoming requests have to wait in the waiting line
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Figure 2.1.: Queue and queueing network

of the queue. The waiting time is denoted by W . The residence time R of a
request in a queue is the sum of the waiting time W and the service time S.
Characteristics of a queue can be mathematically described by means of the
following properties:

• Arrival Rate: Requests to a queue are described by means of an
arrival process and arrival patterns. Thereby, a probability distribution
specifies the inter-arrival times of individual requests. The average
number of requests per second arriving at the queue is denoted by the
arrival rate λ.

• Service Rate: In a similar way, the service times of a server are de-
scribed. A probability distribution specifies the service times of a
server, whereby µ denotes the average service rate of a server. Conse-
quently the average service time of a server is S = 1/µ. The arrival
rate λ and the service rate µ determine the throughput X of the queue.

• Scheduling Strategy: A scheduling strategy describes in which order
requests from the waiting line of a queue are served by the server (e.g.
First-Come-First-Serve, Round Robin, Processor Sharing, etc.).
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• Capacity: A queue can be either finite or infinite. In the former case,
a capacity specifies the maximum allowed queue length of the waiting
line. In the latter case, the queue length can grow to infinity.

• Number of Servers: A queue can have either one or multiple servers.
In a multi-server queue, requests in the waiting line are assigned to the
next server that becomes available.

• Networks: Queues as depicted in Figure 2.1a can be composed to
more comprehensive networks of queues. Requests that were served
by one queue are transmitted for processing to the next queue. Connec-
tions between individual queues describe the flow of requests between
individual queues. Figure 2.1b shows a simple example of a queueing
network modelling an application server and a database server with
a cache. First, each request is processed by the Application Server
queue. Thereafter, a request is either served by the database cache
with a probability of p (i.e. cache hit), or is processed by the Database
Server queue with the probability of 1 − p.

A fully specified queue (or queueing network) can be mathematically solved
using methods from operational analysis (Menascé et al., 2004). Operational
analysis is an approach that allows to reason on performance quantities
based on specified data. Different laws from operational analysis exist
that describe dependencies between different operational quantities (e.g.
utilization, arrival rate, response time, etc.). In the following, we describe
some of the basic principles and laws from operational analysis that are
relevant in this thesis.

Steady State Given an average arrival rate λ and an average service rate
µ, the utilization of a multi-server queue with ν servers is defined by
ρ = λ/(νµ). As long ρ < 1, in average, the server is able to process
requests faster than they arrive. Otherwise (ρ ≥ 1), the requests arrive
more frequently than they can be processed by the server. In this case,
the queue length grows infinitely leading to an unstable system. Hence, a
queueing system is considered to be in a steady state (or in an operational
equilibrium), only if ρ < 1. Analysis of queueing networks is often based
on the assumption of a steady state. Under this assumption, the throughput
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Service Demand Law Given a processing resource r , the Service Demand
Law describes the relation between the service demand Dr of a request to
resource r, the utilization Ur of the resource r and the overall throughput
X :

Dr =
Ur

X
(2.1)

Hereby, the service demand Dr is defined as the sum of all service times Sr
at resource r of the corresponding request. Hence, if a request is served m
times by resource r , then the service demand is defined as Dr = mSr . In the
particular case that a request is served only once by a resource r , the service
demand is equal to the service time of r and the Service Demand Law is
turned into: Sr = Ur/X .

Little’s Law Little’s Law is one of the most important and generic laws
of operational analysis. Given a self-contained queueing system that is in a
steady state, Little’s Law describes the dependency between number N of
requests in the system, throughput X and residence time R as follows:

N = RX (2.2)

Little’s Law is very generic and can be applied on any black box. For
instance, the law holds for the waiting line of a queue, the server of a queue,
the entire queue or even an entire queueing network.

Utilization-Response Time Relationship Given an infinite, single-server
queue, the average number N of requests in the queue solely depends on the
utilization U = ρ = λ

µ of the server:

N =
U

1 −U
(2.3)
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Combining Equation 2.3 with Little’s Law yields the following relation
between the residence time R of a request in a queue, the request’s service
time S, and the server’s utilization U.

R =
N
X
=

U
(1 −U)X

=

λ
µ

(1 −U)λ
=

1
µ

(1 −U)
=

S
1 −U

(2.4)

Assuming a fix service time S, Figure 2.2 graphically illustrates the relation-
ship between the server utilization and the residence time of a request. If the
server is idle, the residence time is equal to the service time. With a server
utilization of 50%, the residence time is twice as high as the service time.
If the utilization is close to capacity (i.e. 100%), the residence time grows
rapidly.

For a multi-server queue with ν servers, the average number of requests in
the queue is more complex, as shown in the following equation (Menascé
et al., 2004):

N =
U

1 −U
C(ν,U) +Uν (2.5)

Hereby, Erlang’s C formula calculates the probability that an arriving request
has to wait in the waiting line of the queue:

C(ν,U) =

(
(Uν)ν
ν!

) (
1

1−U

)
∑ν−1

i=0
(Uν)i
i! +

(
(Uν)ν
ν!

) (
1

1−U

) (2.6)

Again, combining Equation 2.5 with Little’s Law yields the following depen-
dency between utilization, service time and residence time for a multi-server
queue with ν servers:

N =
S

ν(1 −U)
C(ν,U) + S (2.7)

Figure 2.3 shows the corresponding curve for a queue with eight servers.
Compared to the curve in Figure 2.2, with a multi-server queue, the residence
time stays longer low with an increasing utilization of the servers. However,
near to a utilization of 100%, the curve increases more sharply than for a
single-server queue. Transferring these considerations to a software system
allows to reason about expected response times in dependence on observed
utilization of hardware resources.
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including performance and reliability). In this section, we give a general
overview on Palladio and explain the parts of Palladio that are required
to understand the corresponding parts in the work at hand. For a detailed
description of Palladio, we refer to Becker et al., 2009.

Palladio comprises a meta-model for architectural modelling, a process, as
well as a set of tools that allow for an automatic, model-based prediction and
analysis of QoS attributes. The meta-model is called Palladio Component
Model (PCM). To support different roles in a software development process,
PCM is divided into four sub-models. Figure 2.4 depicts the Palladio pro-
cess including the different roles and sub-models. Component Developers
are responsible for specifying and designing individual components. This
includes the provided and required interfaces, the dynamic behaviour asso-
ciated with individual services provided by the components, as well as the
performance characteristics of the services. The performance behaviour is
specified in a parametric way depending on certain characteristics of input
data and the environment. Components are intended to be reusable, that
is why they are stored in a repository of components. System Architects
assemble individual software components to entire software systems. With
respect to performance (or QoS in general), an essential concept is the com-
posability of parametric performance behaviour. Hence, knowing low-level
performance characteristics of individual components allows to reason about
the performance of an assembly of components. As QoS characteristics
directly depend on the execution environment of a software system, a System
Deployer is responsible for providing a model of the execution environment.
This includes modelling of available servers with their hardware resources
(e.g. CPU, HDD, etc.) and network links. Furthermore, a System Deployer
specifies the allocation of the software components to the available system
nodes. Finally, a Domain Expert describes the usage model of the target
system representing typical behaviour of system users.
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Palladio (Becker et al., 2009) is an approach for component-based modelling
of software architectures and model-based evaluation of QoS attributes (e.g.
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In sum, the four sub-models subsume the entire information to conduct an
analysis of QoS attributes. Thereto, Palladio provides different alternatives.
Using Model-to-Model Transformations, a PCM instance can be either trans-
formed to a model based on stochastic regular expressions or a queueing
network model. The former model needs to be solved analytically, however
is limited to single-user scenarios. Queueing network models can be either
solved analytically or through simulation. By means of Model-to-Code
Transformation a PCM instance can be transformed into a performance pro-
totype, into simulation code, or can be used to generate code skeletons for
the initialization of the implementation process. The tooling of Palladio al-
lows to run automatic simulation runs on generated simulation code. During
simulation, the tooling gathers simulation data for different performance
quantities and metrics. Analyzing the simulation data provides insights on
the QoS effects of architectural design decisions.

One of the most central means of specifying the performance behaviour of
software components in PCM is the notion of Resource Demanding Service
Effect Specification (RD-SEFF)s. An RD-SEFF models a control flow by
means of a UML Activity diagram-like representation that is, in addition,
annotated with performance characteristics. An RD-SEFF may contain
different types of actions including control flow actions (e.g. branch, loop and

32



2.3. Measurement-based Performance Evaluation

fork actions), external call actions, and internal actions. While external call
actions model calls to other services, internal actions represent component-
internal computations. Actions can be annotated with parametric resource
demands to different resource types. Thereby, parameters are propagated
from the usage model through the RD-SEFFs and allow to describe the
performance behaviour of a component in dependence of its usage. Resource
demands within RD-SEFFs constitute the core concept in PCM for modeling
performance. The compositional interplay of resource demands and their
effect on the underlying simulated resources yields the overall performance
of the simulated software system. Different techniques can be used to obtain
resource demands. In very early stages, service demands can be roughly
estimated. If implementations of comparable software components exist,
measurement techniques can be used to derive resource demands. In general,
the performance prediction accuracy of a PCM instance highly depends on
the accuracy of the resource demands used to calibrate the model.

2.3. Measurement-based Performance
Evaluation

The definition of SPE by Smith (Smith, 1993) mainly focuses on the usage
of models to conduct performance evaluation of software systems. Woodside
et al. extend the definition of SPE as follows:

“Software Performance Engineering (SPE) represents the entire
collection of software engineering activities and related analyses
used throughout the software development cycle, which are
directed to meeting performance requirements.”

(Woodside et al., 2007)

In contrast to the definition in (Smith, 1993), the definition by Woodside et
al. explicitly includes both model-based and measurement-based approaches.
Hence, measurement-based performance evaluation approaches are com-
plementary to the model-based approaches. In particular, model-based ap-
proaches often depend on measurements for model calibration or validation.
As we have discussed model-based approaches in Section 2.2, in this section,
we introduce foundations in the field of performance measurements.
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According to Menascé et al., 2001, performance measurements can be
divided into passive and active measurements. In the former case, mea-
surements are taken from the software system under a real load. Hence,
passive measurements are applied during operations of a software system.
Passive measurement approaches are used, for instance, to enable online
problem anticipation, reporting of performance problems, understanding of
user behaviour or online self-adaptation of systems. Active performance
measurements involve synthetic generation of load and, thus, are typically
conducted on a test environment. Different types of active measurement
approaches exist that differ in their goal and the measurement methodology
(Liu, 2011; Menascé et al., 2001):

Performance Regression Testing Performance regression testing has the
purpose of comparing the performance of ongoing development ver-
sions of a software product with previous versions. In this way,
degradations in performance can be promptly identified after their
emergence during development.

Performance Optimization Performance optimization is the process of
continuously improving the performance of an application. In contrast
to performance problem detection and resolution, optimization is not
focused on finding severe problems but identify and exhaust potentials
for performance improvement.

Performance Benchmarking The primary focus of performance bench-
marking is the comparability of the tested systems with a baseline.
Thereby, different alternatives are tested under identical conditions to
evaluate competing alternatives. This applies for competing products,
different versions of software application, etc. Depending on the goal,
benchmarks are either created for testing specific aspects (i.e. micro-
benchmarks) or entire systems (i.e. macro-benchmarks). Industrial
benchmarks are typically created by independent organizations such
as the Standard Performance Evaluation Corporation (SPEC 2015) or
the Transaction Performance Processing Council (TPC 2015).

Load and Scalability Testing This kind of tests are executed to analyze the
target system’s ability to meet the performance requirements under
high-load situations. Load and scalability tests are often applied as
part of detection and diagnostics of performance problems.
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Single-user Performance Testing In contrast to load tests, single-user per-
formance tests evaluate the performance of an application under the
load of one user. The purpose of such tests is to understand the control
flow of user requests and identify segments that consume the major
part of the response time. Often, single-user tests are applied manually
to get a first impression of an application and its performance. Further-
more, single-user tests are applied to analyze client-side performance
of applications (e.g. Java script rendering times, etc.).

Performance Unit Testing Apart from entire system tests, performance
tests can be applied on smaller units (e.g. components, classes or even
methods) of software systems. This approach is especially useful to
test the performance of complex algorithms. Functional unit tests can
be reused to conduct performance unit testing. (Heger et al., 2013)

Factor Analysis and systematic experimentation This category encapsu-
lates systematic measurement approaches that aim at providing in-
sights on dependencies between a set of controlled variables (i.e. fac-
tors) and a set of observed measures. Thereby, a set of experiments
is executed while systematically exploring the value space spanned
by the controlled variables. Different factorial designs (Menascé et
al., 2001) and exploration strategies (D. J. Westermann, 2014) exist
that reduce the amount of required experiments. Factor analysis is a
generic approach that can be applied to achieve a multitude of different
performance evaluation goals.

The different measurement approaches are not mutually exclusive. Often,
different measurement approaches are combined to achieve certain analysis
goals. For instance, Heger et al., 2013 combine performance regression
testing with performance unit testing to realize performance problem de-
tection. Bulej et al., 2005 combine regression testing with benchmarking.
In this thesis, we combine load and scalability testing, single-user testing
and systematic experimentation to realize systematic performance problem
diagnostics. An aspect that is essential in all measurement-based approaches
is the gathering of data. Furthermore, an important part of load and scala-
bility testing is the generation of load. As load generation and gathering of
measurement data are two essential topics for this work, in the following, we
take a closer look onto these aspects.
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2.3.1. Workload Generation

The purpose of workload generation is to create a synthetic workload on a
target system during testing. Thereby, the goal is to achieve a representative
workload that is close to the real workload. As real workloads are highly
nondeterministic and complex, synthetic load generation cannot exactly
reflect real workloads. Therefore, load generation uses workload models that
abstractly represent real workloads. A workload model comprises two main
aspects: the work description and the load intensity. The former, describes
type and order of requests to the tested software system that are emitted
by simulated users (i.e. virtual users). The load intensity determines the
frequency of user requests. There are different types of load models and
representations of workload. Both aspects are discussed in the following.

Load Type In general, there are two different types of load: open and
closed model type (Liu, 2011). With an open model type, the simulated users
are not explicitly part of the modelled system. The load intensity of an open
load is specified by means of an arrival rate. The arrival rate determines the
frequency of user requests that are entering the system. If the arrival rate is
higher than the maximum throughput of the tested system, the system can
get into an unsteady state with an infinitely growing backlog of requests to
be served by the system (cf. Section 2.2.1). A closed load model explicitly
includes users into the modelled system. There is a fix population size of
users in the modelled system. Each user that creates a request to the tested
system and has been served by the system, repeatedly creates a new request.
In between two requests, users are idle for a specified time span (i.e. think
time). In contrast to open load models, systems that are tested with a closed
load are inherently in a steady state as there is an upper limit for the number
of concurrent users (i.e. population size).

Workload Representations A workload is the sum of all requests emitted
by different users. However, different groups of users exhibit similar be-
haviour. For instance, in an e-commerce system there can be power-shopper,
users that prevalently browse products, users that visit the shop rarely, etc.
In a workload model, user groups with similar behaviour are represented by
workload classes. There are different types of models that reflect the work
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description for virtual users. A markov model (Jain, 1991; van Hoorn et al.,
2008; van Hoorn et al., 2014) is a probabilistic way of modelling virtual
users. A markov model is a directed graph, whereby the nodes represent
user interactions and the edges represent transitions probabilities between
individual nodes. Different paths in the markov model represent different
workload classes. The big advantage of a markov workload model is the
high degree of indeterminism of user behaviour that is very representative for
actual workloads. However, creating such models requires a lot of detailed
information about the actual behaviour of real users, which however is sel-
dom available. Real user monitoring (Allspaw et al., 2010) during operations
can be used to obtain the information required to build a markov workload
model.

Record and replay of user behaviour is a common approach in practise
(Podelko, 2005). Thereby, either real user sessions are recorded during
operation, or a tester records a click sequence based on some assumptions
on the actual user behaviour. In both cases, the result is a load script
comprising a fix sequence of user interactions that form a virtual user session.
For load generation, the load scripts are replayed, potentially with a high
number of parallel, virtual users. Most professional load generation tools
like HP LoadRunner

TM
or Apache JMeter

TM
provide means for recording and

replaying load scripts.

2.3.2. Gathering Performance Measurement Data

The process of gathering measurement data is called monitoring. To describe
the essence of software performance monitoring, we first define some basic
terms:

Measurement Probe In order to capture the data to be collected, monitor-
ing tools execute program code snippets that conduct measurements
and write back data. In this thesis, we denote such code snippets as
measurement probes. Measurement probes may, for instance, capture
time spans of operation executions, retrieve current CPU utilization,
intercept certain events, and much more.

Measurement Scope Measurement probes can be placed in different loca-
tions of a system (different system nodes, components, classes, etc.).
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The sum of all locations where a certain measurement probe has been
placed is called measurement scope.

Measurement Accuracy The purpose of performance monitoring is to cap-
ture the actual performance behaviour of the System Under Test (SUT).
Thereby, it is desirable that the measurement values reflect the actual
behaviour as good as possible. According to ISO standard 24765,
the accuracy of measurement is “the closeness of the agreement be-
tween the result of a measurement and the true value of the measurand”
(ISO/IEC/IEEE, 2010). Hence, accuracy is an important quality at-
tribute of monitoring approaches and tools.

Measurement Precision In (ISO/IEC/IEEE, 2010) the term precision is
defined as “the degree of exactness or discrimination with which a
quantity is stated” (ISO/IEC/IEEE, 2010). In the context of monitor-
ing software applications, we consider the term precision as the level
of detail that a monitoring approach or tool achieves. For instance,
if monitoring is conducted from the user perspective, we can only
observe the response time of the entire system service. Hence, the pre-
cision is low. However, if we are able to provide detailed, discriminant
execution times of all sub-parts of the system service, the precision is
high.

Monitoring Overhead Analogously to Heisenberg’s uncertainty principle
(Busch et al., 2007), the presence of monitoring probes affects mea-
sured data. Each measurement probe that is executed as part of mon-
itoring must be processed by computational resources (e.g. CPU),
which entails an overhead on the utilization of the resources as well
as on the execution time of the monitored routines. Usually, mea-
surement probes are very light-weight and, per se, introduce only a
very small, negligible monitoring overhead. However, if measurement
probes are executed very frequently (e.g. for each instruction of the
monitored SUT) the monitoring overhead can be very large and, thus,
may completely distort the measured data.

Depending on the monitoring target, there are different means to realize
monitoring. We distinguish between event-based monitoring, sampling, and
control flow monitoring. The former type of monitoring encapsulates all
monitoring techniques that intercept asynchronous events that are emitted in
the environment of a SUT. Hence, event-based monitoring is a passive type
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of monitoring. In Java, for instance, the monitoring of garbage collection
events falls into this category. Sampling denotes the process of periodically
taking a measurement. This approach is typically used to retrieve state infor-
mation from hardware or software resources. For instance, measuring CPU
utilization, the number of free connections in a connection pool, the number
of active database requests, etc. is usually conducted by means of sampling.
Control flow monitoring, covers all measurements that are triggered within
the control flow of a user request. Instrumentation techniques (Angel et
al., 2001; Filman et al., 2002) are used to enrich the application code with
measurement probes. As soon as the control flow of a thread reaches an
instrumented code location, the corresponding measurement probe is exe-
cuted. In this way, information can be monitored that is directly related to the
control flow, such as response times, memory footprints, etc. Instrumentation
can be conducted by different means. Static instrumentation is conducted at
implementation or compile time. As instrumentation is a cross cutting con-
cern, often, Aspect-oriented Programming (AOP) techniques (Kiczales et al.,
1997) are used to weave measurement probes into the application code. As
static instrumentation is not flexible, many monitoring tools apply dynamic
instrumentation, for instance, by means of dynamic bytecode manipulation
(Marek et al., 2012). Thereby, managed programming languages (e.g. Java
or .NET) allow to intercept class loading and provide means to manipulate
the bytecode of classes before they are used in the application. Furthermore,
Java allows to adapt the bytecode of a class at any time in the execution of
the application. Utilizing this functionality, the Adaptable Instrumentation
and Monitoring (AIM) framework (Wert et al., 2015a) allows to dynami-
cally adapt instrumentation of a SUT. In this thesis, we utilize the adaptive
instrumentation of AIM to realize systematic experimentation.

To get a comprehensive and detailed picture of the SUT, ideally, every single,
detailed aspect of the system should be monitored. However, due to the
monitoring overhead inherent in each monitoring approach, a full monitoring
of a system is typically not practical as it would distort the measurement
data. In general, within a single measurement run, accuracy, precision and
measurement scope are contradicting requirements that cannot be achieved
at once. The more precise (i.e. detailed) and broad (i.e wide scope) the
measurements are, the lower is the accuracy. Accuracy is only high if either
the precision is low or the scope is tight. This consideration is essential,
when conducting measurements and relying on measurement data.
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2.4. Software Performance Anti-Patterns
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Figure 2.5.: Hierarchy on anti-pattern types (following and adopting
Parsons et al., 2008)

In software engineering, design patterns (Gamma et al., 1994) and architec-
tural patterns (Buschmann et al., 2007) constitute established concepts for
structuring software. Patterns describe good practices in solving recurrent
design problems exhibiting a positive effect on extra-functional software
quality attributes such as modularity, maintainability, performance, reliabil-
ity, etc. Design patterns have their origin in civil engineering. Christopher
Alexander introduced a pattern language for describing common solutions to
recurrent problems in designing buildings (Alexander, 1982). Design pat-
terns are characterized by a pattern name, a description of the problem to be
solved as well as a common solution to the problem. Introducing patterns in
the context of software development was a crucial step towards establishing
software development as an engineering discipline. Using patterns for design
of software brings along multiple benefits. Firstly, patterns explicitly capture
expert knowledge in designing software that otherwise is implicit and needs
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to be learned through years of experience. Secondly, patterns are expressed
on an appropriate level of abstraction making it a predestined means for
documentation and communication of design decisions. Finally, properly
using patterns for the design of software significantly increases software
quality along different dimensions.

Koenig, 1998 introduced the notion of anti-patterns. Anti-patterns are con-
ceptually similar to patterns, however describe recurrent solutions to design
problems which, however, may have a negative effect on different software
quality attributes. Brown et al., 1998 describe a number of anti-patterns
concerning different software quality attributes. Brown et al. introduce
three categories of anti-patterns: development anti-patterns, architecture
anti-patterns and software project management anti-patterns. Parsons et al.,
2008 extended the classification of anti-patterns as shown in Figure 2.5.

The first level encapsulates all high-level software anti-patterns as, for in-
stance, described by Brown et al., 1998. On Level 2, Parsons et al. distinguish
anti-patterns by means of the affected software quality attributes. In this
work, we are concerned with anti-patterns that have negative effects on soft-
ware performance - Software Performance Anti-patterns (SPAs). Within the
class of SPAs, Parsons et al. distinguish between technology-specific and
technology-independent performance anti-patterns. For instance, in the field
of Enterprise Java Beans (EJB), anti-patterns have been described by Tate
et al., 2003. In this thesis, we focus on technology-independent SPAs as our
goal is to support different target technologies. Technology-independent per-
formance anti-patterns have been introduced by Smith et al., 2000. Finally,
performance anti-patterns can be classified into performance deployment,
design or implementation anti-patterns. The bold part in Figure 2.5 denotes
the scope of anti-patterns that are considered in this work.

The essence of the term performance anti-pattern or SPA lies in the existence
of a description following a certain template, typically including a name,
a description and common solutions. In general, any recurrent type of
performance problem is a potential SPA. Therefore, in this work we use the
terms performance anti-pattern, SPA and recurrent performance problem
type as substitutes.

In Table 2.1, we give an overview on SPAs considered in this thesis. Thereby,
we provide their names, synonyms, references to their original definitions,
as well as short descriptions.
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Name,
Reference

Description

(a) Traffic Jam
(Smith et al.,
2002b)

The Traffic Jam anti-pattern describes an ab-
stract timing behaviour characterized by a
high variance in response times. Overload
situations or inefficient computations lead to
congestions at software or hardware resources.
While some requests get stuck in congestion,
others are not affected by the Traffic Jam. The
result is a high variance in response times.
Corresponding solutions depend on the actual
root cause of the Traffic Jam.

(b) The Ramp
(Smith et al.,
2002a)

“Any situation in which the amount of process-
ing required to satisfy a request increases over
time will produce the behavior [. . . ]” of the
Ramp anti-pattern (Smith et al., 2002a). This
behaviour leads to degrading performance
even if the load does not change over time.
Typical causes are manifested in an increas-
ing amount of data, pollution of memory, etc.
Solutions to the Ramp anti-pattern depend on
concrete root causes.

(c) Application
Hiccups
(Tene, 2014)

The Application Hiccups anti-pattern de-
scribes a timing behaviour showing a peri-
odic pattern of temporarily increased response
times (i.e. hiccups) while during the remain-
ing time the system performance is satisfac-
tory. Hiccups are often caused by periodic
tasks that either temporarily overload the sys-
tem or block other requests (e.g. periodic OS
tasks, garbage collection, etc.).

42



2.4. Software Performance Anti-Patterns

Name,
Reference

Description

(d) Garbage
Collection
Hiccups
(Tene, 2014)

The Garbage Collection Hiccups anti-pattern
is a special form of the Application Hiccups
anti-pattern. In this case, garbage collection
periods temporarily stop the execution of a
virtual machine (e.g. JVM or CLR) leading to
a backlog of requests. Processing the backlog
leads to increased response times.

(e) One Lane
Bridge
Software
Bottleneck
(Smith et al.,
2000)

“One Lane Bridge is a point in the execu-
tion where one, or only a few, processes [or
threads] may continue to execute concurrently.
All other processes must wait. [When an ap-
plication accesses a database], a lock ensures
that only one process may update the asso-
ciated portion of the database at a time. It
may also occur when a set of processes make
a synchronous call to another process that is
not multi-threaded;” (Smith et al., 2000) In
multi-threaded applications, synchronization
points (e.g. semaphores) constitute another
typical cause for this anti-pattern.

(f) Tower of Babel
(Smith et al.,
2003)

This anti-pattern occurs in software systems
that need to exchange big amount of data how-
ever use different representation formats of
data. As format transformation is expensive,
data exchange in such contexts may lead to a
considerable performance overhead.
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Name,
Reference

Description

(g) Dispensable
Synchronization
(Grabner, 2010)

“Too often developers make the mistake to
over-synchronize, e.g.: excessively-large code
sequences are synchronized. Under low load
(on the local developers workstation) perfor-
mance won’t be a problem. In a high-load or
production environment over-synchronization
results in severe performance and scalability
problems.” (Grabner, 2010) Mitigating Dis-
pensable Synchronization includes reducing
the holding time of a resource.

(h) The Blob
God Class
(Smith et al.,
2000)
God Component
Bloated Service
(Palma et al.,
2013)

“A ’god’ class [or a Blob] is one that per-
forms most of the work of the system, relegat-
ing other classes to minor, supporting roles.
[Typically there is] a single, complex con-
troller class [. . . ] that is surrounded by sim-
ple classes that serve only as data containers.
[. . . ] From a performance perspective, a ’god’
class creates problems by causing excessive
message traffic. [. . . ] The solution to the
’god’ class problem is to refactor the design
to distribute intelligence uniformly across the
top-level classes in the application.” (Smith
et al., 2000)
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Name,
Reference

Description

(i) Empty Semi
Trucks
(Smith et al.,
2003)
Message Chain
(Fowler et al.,
2012)
Service Chain
(Palma et al.,
2013)

Empty Semi Trucks is another performance
anti-pattern that causes severe messaging be-
haviour. Besides the actual payload, messages
entail data overheads as well as processing
overheads (e.g. meta-data and time to process
a message). Therefore, sending an aggregated
message is often cheaper than sending multi-
ple, small messages. The Empty Semi Trucks
anti-pattern describes the problem of sending
many small messages instead of conducting
an aggregation. Often, this anti-patterns is
caused by inefficient use of bandwidth or in-
efficient interfaces. Message aggregation and
interface coupling are typical solutions to this
anti-pattern.

(j) Excessive
Dynamic
Allocation
(Smith et al.,
2000)

“With dynamic allocation, objects are created
when they are first accessed [. . . ] and then
destroyed when they are no longer needed.
[. . . ] While the overhead for creating and de-
stroying a single object may be small, when a
large number of objects are frequently created
and then destroyed, the performance impact
may be significant.” (Smith et al., 2000) Pool-
ing expensive resources (e.g. database con-
nections, Threads, etc.) is a solution to this
anti-pattern. Furthermore, when applicable,
resources can be shared among different tasks
to avoid unnecessary creation of individual
resource instances.
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Name,
Reference

Description

(k) The Stifle
(Dudney et al.,
2003)
n+1 Query Trap
(Still, 2013)

The Stifle anti-pattern occurs if data is re-
trieved from a database by means of many
similar (or equal) database queries. This prob-
lem often occurs as a result of improperly us-
ing an entity framework (or Object-relational
Mapping). As each database request entails
a considerable overhead, the high amount of
database requests leads to a performance prob-
lem. In order to resolve a Stifle problem, SQL
queries should be adopted to retrieve data by
means of some few database requests.

(l) Circuitous
Treasure Hunt
(Smith et al.,
2000)

With the Circuitous Treasure Hunt anti-
pattern, “[. . . ] software retrieves data from
a first table, uses those results to search a sec-
ond table, retrieves data from that table, and
so on, until the ’ultimate results’ are obtained.
[. . . ] The impact on performance is the large
amount of database processing required each
time the ’ultimate results’ are needed.” (Smith
et al., 2000) In order to solve this anti-pattern,
the data organization of the application needs
to be refactored to provide simpler access to
required ensembles of data.
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Name,
Reference

Description

(m) Dormant
References
(Rayside et al.,
2007)

A dormant reference points to an object that
will never be used in the future anymore.
Hence, the Dormant References anti-pattern
constitutes a memory-leak that may lead to
increased garbage collection activities. Fur-
thermore, the performance of algorithms that
operate on distending collections containing
dormant references is impaired by this anti-
pattern as well. Hence, resources and objects
that are not required anymore should be de-
referenced to allow garbage collection to prop-
erly clean up memory.

(n) Session as a
Cache
(Kopp, 2011)

“The Session caching anti-pattern refers to
the misuse of the HTTP session as data cache.
The HTTP session is used to store user data
or state that needs to survive a single HTTP
request.” (Kopp, 2011) This anti-pattern can
lead to huge memory demands when consid-
ering a high amount of parallel users. Instead,
developers should use a central, dedicated
cache that allows to manage the maximum
amount of the memory used for caching.

(o) Large
Temporary
Objects
(Kopp, 2011)

The creation of large objects in memory may
lead to increased memory management activ-
ity (swapping or garbage collection) and, thus,
impair software performance. Hence, when
processing big files, pipelining should be used
to avoid loading of huge objects into the main
memory.
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Name,
Reference

Description

(p) Sisyphus
Database
Retrieval
(Dugan et al.,
2002)

This anti-pattern describes the problem of re-
trieving a huge amount of data from a database
although only a small subset is actually pro-
cessed by the application. This problem is
often due to improper formulation of SQL
queries or insufficient fragmentation. With
a growing database size, the performance of
retrieving the data from the database degrades.
Using proper Where-clauses in SQL and ap-
plying paging in interactive systems allows to
mitigate the effect of the Sisyphus Database
Retrieval anti-pattern.

(q) Spaghetti Query
(Karwin, 2010)

The Spaghetti Query (SQL) anti-pattern is a
counterpart to the Stifle anti-pattern. Instead
of splitting a very complex task into manage-
able blocks of work, with this anti-pattern
developers try to accomplish such complex
tasks as one SQL query. However, overly com-
plex database queries may lead to significantly
worse processing performance than some few,
simpler queries in sum.

(r) Unnecessary
Processing
(Smith et al.,
2002a)

The Unnecessary Processing anti-pattern de-
scribes the problem of conducting computa-
tions that are not required at that time, or are
unnecessary at all. For instance, conducting a
calculation that is required only in one part
of a subsequent branching-block is not re-
quired if the control flow takes another branch.
Hence, any calculations should be conducted
when it is clear that they are required.
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Name,
Reference

Description

(s) Spin Wait
Busy Waiting
(Boroday et al.,
2005)

The Spin Wait anti-pattern describes the prob-
lem of actively waiting for a condition (i.e.
repeatedly checking the condition). Thereby,
the actively waiting thread consumes process-
ing resources without conducting any useful
task. Consequently, busy waiting has a sig-
nificant impact on the CPU utilization and,
thus, on the performance of the system. In-
stead, waiting threads should be set into sleep
mode and should be notified when any state
concerning the corresponding condition has
been changed.

(t) Insufficient
Caching
(Reitbauer,
2010)

With respect to databases, any database re-
quest that can be avoided is a potential im-
provement in performance. When database
requests are repeated again and again, caching
is a common means to avoid repeated database
requests. However, often caching is not com-
pletely understood so that caches are improp-
erly used or omitted at all. Properly setting up
caching so that data can be efficiently used is
an important factor for software performance.

(u) Wrong Cache
Strategy
(Grabner, 2010)

As a counterpart to the Insufficient Caching
anti-pattern, the Wrong Caching Strategy anti-
pattern describes the problem of memory pol-
lution through improper use of a cache. Hence,
if a cache has a high cache-miss rate, objects
are permanently created and dropped from the
cache. This leads to an increased pollution
of memory and, thus, an increased memory
management overhead that impairs the perfor-
mance.
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Name,
Reference

Description

(v) Unbalanced
Processing
(Smith et al.,
2002a)

The Unbalanced Processing anti-pattern de-
scribes the problem of unbalanced execution
of concurrent tasks leading to an unbalanced
utilization of corresponding resources. Long
tasks may block a resource for long periods of
time. Remaining tasks are distributed among
remaining resources degrading the through-
put.

(w)
Single-threaded
Code
(Smith et al.,
2002a)

Single-threaded applications cannot make use
of concurrent execution, hence, waisting avail-
able resources and potential for performance
improvement. This anti-pattern is a spe-
cial case of the Unbalanced Processing anti-
pattern. To resolve this anti-pattern, inde-
pendent tasks of an application should be de-
signed in a way that they can be executed in
parallel.

(x) Pipe and Filter
Architecture
(Smith et al.,
2002a)

In a pipe and filter architecture, the slowest
filter determines the throughput of the entire
chain. Remaining filters have to “wait” for the
slowest filter, leading to unbalanced process-
ing. As a solution, pipe and filter architectures
should be designed in a way that individual
filters exhibit a similar throughput.

(y) Chatty Service
(Palma et al.,
2013)
(Dudney et al.,
2003)

“Chatty Service corresponds to a set of ser-
vices that exchange a lot of small data of prim-
itive types, usually with a Data Service an-
tipattern. The Chatty Service is also character-
ized by a high number of method invocations.
Chatty Services chat a lot with each other.”
(Palma et al., 2013)
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Name,
Reference

Description

(z) The Knot
(Palma et al.,
2013)
(Rotem-Gal-Oz
et al., 2012)

“The Knot is a set of very low cohesive ser-
vices, which are tightly coupled. These ser-
vices are thus less reusable. Due to this com-
plex architecture, the availability of these ser-
vices may be low, and their response time
high.” (Palma et al., 2013)

(aa)
Bottleneck
Service
(Palma et al.,
2013)

“Bottleneck Service is a service that is highly
used by other services or clients. It has a high
incoming and outgoing coupling. Its response
time can be high because it may be used by
too many external clients, for which clients
may need to wait to get access to the service.”
(Palma et al., 2013)

Table 2.1.: Software Performance Anti-patterns
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3. Automatic Performance
Problem Diagnostics

The Automatic Performance Problem Diagnostics (APPD) approach intro-
duced in this thesis automates measurement-based detection and root cause
analysis of software performance problems. In this chapter, we provide an
overview on the APPD approach and explain its constituent parts. Section 3.1
explains the high-level idea behind the APPD approach. An overview on
constituent parts of the APPD approach as well as on their interrelations is
given in Section 3.2. In Section 3.3, we discuss the assumptions and the
scope of applicability of the APPD approach. Finally, based on the research
questions from Section 1.3, we derive seven research hypotheses that guide
the remainder of this work. Section 3.5 summarizes this chapter. Early ideas
on the APPD approach have been published in (Wert, 2012; Wert, 2013;
Wert et al., 2013) and constitute the basis for this thesis and, especially, this
chapter.

3.1. Overview

To shape the meaning of the term software performance problem (or just
performance problem) in the work at hand, we provide the following defini-
tion:

Definition 1. A software performance problem is a violation of specified
performance requirements aroused by design, implementation or deployment
failures that, under certain load situations, propagate through the software
system as a chain of causes and symptoms, and are observable as externally
visible symptoms.
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Figure 3.1.: General overview on the approach for automated, experiment-based
diagnostics of performance problems

This definition is closely related to the high-level idea of the APPD approach
as described in the following. As stated in Definition 1, the root causes of per-
formance problems are manifested in design, implementation or deployment
failures. Many of these failures follow certain patterns which are recurrently
observable in different contexts. Software Performance Anti-patterns (SPAs)
(cf. Section 2.4) describe recurrent types of performance failures and com-
mon ways of resolving the failures. APPD leverages the recurrent nature of
SPAs as a knowledge base for a generic performance problem diagnostics
approach. In particular, recurrent failures imply recurrent processes and
rules to detect corresponding failures which lays the foundation for APPD.
Figure 3.1 illustrates the high level idea behind APPD.

First, APPD requires performance engineers to externalize and formalize
their expert knowledge. This includes knowledge about typical SPAs leading
to performance problems in different contexts, their symptoms, possible root
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causes as well as interdependencies between SPAs. Furthermore, the expert
knowledge comprises information about proper execution of performance
tests for the detection of corresponding performance problems. For instance,
applying an appropriate load and measuring the right performance metrics
is essential for successful diagnostics of performance problems. Finally,
a set of data processing steps and data analysis rules are required to be
able to draw conclusions from measurement data collected during the per-
formance tests. While SPAs are specific for certain types of applications,
within individual application types (e.g. three-tier enterprise applications)
SPAs describe in a generic, system-independent way recurrent patterns of
performance problems. Hence, SPAs as well as processes and rules to detect
them are generically applicable on most application contexts within a certain
type of applications. Thus, for each application type it is only a one-time
effort to externalize and formalize the expert knowledge required to detect
performance problems that result from corresponding SPAs.

For each concrete context where APPD is applied, a domain expert once has
to provide system-specific information, such as performance requirements,
load scripts describing the user behaviour, expected maximum load, etc.
Furthermore, the domain expert is responsible for setting up and providing a
description on the measurement environment, comprising the System Under
Test (SUT), load generators and performance monitoring tools. Both provid-
ing system-specific information and setting up the measurement environment
needs to be done once per concrete application context of APPD.

Given the formalized expert knowledge, the system-specific information
and a set up measurement environment, an implementation of our APPD
approach automatically scans the SUT for potential performance problems.
Thereto, a series of performance tests is executed utilizing the aforemen-
tioned monitoring tools for gathering performance data. Analysis rules,
derived from the expert knowledge of performance engineers, are applied
to the measurement data in order to identify potential indications for per-
formance problems. The detection results, containing a list of detected
performance problems and their root causes, are provided to the stakeholders
of the development of the SUT (e.g. developers, system operators, etc.).
With that information, stakeholders can directly initiate the solution process
to resolve the detected performance problems. Hereby, the stakeholders can
be further supported by solution engineering approaches as described by
Heger et al., 2014.
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3.2. Constituent Parts of Automatic
Performance Problem Diagnostics

In this section, we introduce the constituent parts of the APPD approach.
The APPD approach combines several concepts each addressing one or more
research questions described in Section 1.3. Figure 3.2 shows the different
concepts introduced in this thesis as part of APPD and illustrates their
orchestration to the overall approach. The bottom of Figure 3.2 illustrates
the Measurement Environment that encapsulates the specific characteristics
of a concrete application context. This includes different specific tools for
load generation and monitoring. The upper part of the figure schematically
shows the constituent parts of the generic APPD approach.

To bridge the gap between a generic diagnostics approach and specific
application contexts, we introduce an abstraction layer on top of the target
measurement environment (cf. Part I in Figure 3.2). The abstraction layer
comprises description languages and data structures which allow to specify
performance tests and their results in a generic, system-independent way. In
this way, the abstraction layer constitutes the basis for a common interface
between our diagnostics approach and the variety of different load generators
and monitoring tools. Existing load generators and monitoring tools, which
do not directly support the formalisms defined in our abstraction layer,
require additional, lightweight adapters for the transformation of our generic
formalisms to the corresponding tool-specific specifications.

Precise diagnostics of performance problems requires extraction of fine-
grained and detailed performance metrics from a SUT. Furthermore, the
measurement data must not be distorted by the monitoring process in order
to avoid inaccurate diagnostics. As these are conflicting requirements, they
cannot be realized simultaneously in a single performance test (RQ 3, Sec-
tion 1.3). To overcome this problem, we introduce the concept of Systematic
Selective Experimentation (SSE) (cf. Part II(a)), whereby comprehensive
performance tests are broken down to series of multiple tests with selective,
lightweight monitoring. In order to realize the SSE concept, a way of adapt-
ing monitoring instructions of the target SUT is required. To this end, we use
the Adaptable Instrumentation and Monitoring (AIM) approach (Part II(b),
Wert et al., 2015a) for target applications based on managed programming
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Figure 3.2.: The concepts behind the APPD approach

tions dynamically during run-time of the SUT. Though AIM significantly
increases the practicability of our APPD approach, the availability of AIM
is not a mandatory criterion for the applicability of APPD as long as the
monitoring instructions of the target application can be adapted in another
way (e.g. by rebuilding, redeploying and restarting the target application).

A taxonomy on performance problems (cf. Part III) and a set of detection
heuristics (cf. Part IV) constitute the formalized knowledge on performance
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system-independent way, the taxonomy and the detection heuristics address
research questions RQ 1 and RQ 6 (cf. Section 1.3). The taxonomy on
performance problems provides a means to systematize the search for the
root causes of observed performance problems. Serving as a decision tree
(Rokach et al., 2008), the taxonomy guides the SSE concept and inherently
addresses research question RQ 8 (cf. Section 1.3) by reducing the amount
of required performance tests to find a root cause of a performance problem.
For each node in the taxonomy, there is a detection heuristic specifying rules
for execution of performance tests and subsequent analysis steps. In particu-
lar, the heuristics comprise knowledge about how to detect corresponding
performance problem symptoms or root causes.

Finally, we align the APPD approach to the concepts of established software
development processes. Thereby, APPD reuses artifacts which already exist
in the corresponding development processes. In this way, we minimize the
number of tasks which need to be conducted solely for the application of
APPD.

3.2.1. Systematic, Selective Experimentation

As mentioned before, all measurement-based performance evaluation ap-
proaches face the trade-off between high resolution of measurement data and
high measurement accuracy. This trade-off becomes especially critical when
performance evaluation approaches require data with a high resolution and at
the same time a wide scope of points where data needs to be collected from.
Performance problem diagnostics falls into this category of performance
evaluation approaches, as it requires high data resolution for the ability to
narrow down and pinpoint the root causes of performance problems. At
the same time, the location of a performance problem cannot be foreseen,
resulting in a wide scope of points where data potentially may be gathered
from. In order to realize both requirements within a single performance test,
excessive instrumentation is required. This means that the target application
has to be comprehensively instrumented on a fine-grained level. However,
excessive instrumentation introduces an immense overhead which may dis-
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Figure 3.3.: Measurement overhead with excessive and selective instrumentation

Figure 3.3 qualitatively illustrates the measurement overhead introduced by
excessive data gathering and selective gathering, and demonstrates how it
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may impair the accuracy of performance problem diagnostics. Figure 3.3a
shows the call hierarchy of a hypothetical system service a as a UML se-
quence diagram. As a performance requirement, the time span Treq defines
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the upper threshold for the response time of service a. Let us assume that
a performance problem is reported by a performance problem diagnostics
approach if the response time of service a exceeds Treq . Without instru-
mentation, the service a fulfills the requirement Treq . Applying excessive
instrumentation for performance problem diagnostics introduces a measure-
ment overhead in each sub-call (cf. Figure 3.3b). Though the overhead in
each call is relatively small, in sum, the measurement overheads accumulate
to a considerable response time overhead of service a. As a result, the service
a violates the performance requirement Treq leading to a falsely detected
performance problem. By contrast, applying selective instrumentation, as
depicted in Figure 3.3c, introduces only a negligible measurement overhead.
However, when applying selective instrumentation, in a single performance
test the collected data is inherently limited to a very specific, narrow scope.

Our SSE concept combines selective instrumentation with systematic exper-
imentation in order to achieve the possibility of gathering high-resolution
measurement data from a wide scope with a minimal measurement overhead.
The core idea is to conduct series of independent performance tests with
different, goal-oriented, selective instrumentation instructions. The mea-
surement data collected in one experiment can be (automatically) analyzed
to take decisions on the experiment configuration and instrumentation of
the next experiment. Similar to the CADA (Collect-Analyze-Decide-Act)
feedback loop in software engineering (Cheng et al., 2009) and the MAPE
loop (Monitor-Analyze-Plan-Execute) in the area of autonomic computing
(Kephart et al., 2003), the SSE concept defines an experimentation process
for performance analysis tasks as illustrated by the loop in Figure 3.4. The
process starts with a goal-oriented, selective instrumentation of the target
system. During the measurement activity, measurement data are gathered
that originate from the instrumentation. Subsequently, the measurement data
is analyzed with respect to the specific overall goal of the corresponding per-
formance analysis task. Based on the analysis results, decisions can be made
with respect to further analysis activities that may prescribe an adaptation of
the selective instrumentation.

For instance, for performance problem diagnostics, we may start to analyze
the high level performance metrics of the SUT with the first experiment.
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Figure 3.4.: Instrumentation-Measurement-Analysis-Decision loop

Based on the analysis results on the corresponding measurement data, we
decide where to search further for the root cause of an occurring performance
problem. This systematic diagnostics process is described in more detail in
Section 3.2.2.

Compared to a single experiment with excessive instrumentation, the data
gathered with SSE may cover the same width of scope, but, the data exhibits
a higher accuracy due to a significantly smaller measurement overhead.
A consequence of the SSE concept is a different nature of the gathered
data. With excessive instrumentation within a single performance test, the
gathered measurement values can be correlated on a per-instance basis, which
is not possible with data gathered with the SSE concept. Let us illustrate
that consideration on an example. In the example of Figure 3.3b, we can
calculate the average portion p of sub-call b1 of the response time of service
a by simply dividing the response times Rb1,i of b1 by the corresponding
response times Ra,i of a. Thereby, I is the set of call instances of service
a:

p =
1
|I |

∑
i∈I

Rb1,i

Ra,i
(3.1)

This simple calculation of p is possible, because, in the case of excessive
instrumentation, the values Rb1,i and Ra,i belong to the same call instance
i ∈ I of service a. In particular, the following applies:

|Ra | = |Rb1 |, Ra = {Ra,i }i, Rb1 = {Rb1,i }i (3.2)

By contrast, with selective instrumentation, we cannot apply Equation 3.1 to
calculate p due to the fact that the response times Ra = {Ra,i }i of service a
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and the response times Rb1 = {Rb1, j }j of sub-call b1 are measured in differ-
ent, independent experiments. Hence, there are no direct correspondences
between any elements ra ∈ Ra with any element rb1 ∈ Rb1. However, in
enterprise software systems, performance metrics (such as response times)
follow different, mostly multi-modal statistical distributions (Rohr et al.,
2008; Mielke, 2006). Hence, we can employ measures of descriptive statis-
tics (e.g. average, median, variance, etc.) to conduct calculations and
correlations on the measurement values of different performance metrics.
For instance in our example, p denotes the average portion of sub-call b1 of
the response time of service a. Hence, we can use the arithmetic means of
Ra, respectively Rb1, to calculate p:

p =
Rb1

Ra

, Ra =
1
|Ra |

∑
x∈Ra

x, Rb1 =
1
|Rb1 |

∑
y∈Rb1

y (3.3)

To sum up, the SSE concept allows to retrieve high resolution data from a
wide measurement scope while keeping measurement overhead negligible.
SSE entails two implications. First, SSE increases the amount of experi-
ments to be executed and, thus, increases the overall experimentation time.
Second, SSE can only be applied if correspondences of individual measure-
ment values from different experiments are not of interest, but the entirety of
individual performance metrics is important, represented by statistical dis-
tributions. Though the SSE concept introduces two additional implications
which need further considerations to circumvent corresponding limitations,
SSE provides an elegant solution to combine the requirements for high mea-
surement accuracy and high-resolution measurement data for our APPD
approach.

3.2.2. A Taxonomy on Performance Problems
as a Decision Tree

There is a large body of literature defining different Software Performance
Anti-patterns (SPAs) and typical, corresponding root causes (cf. Section 2.4).
The result is a huge set of root causes which may potentially lead to a
performance problem in a SUT. As described in the previous section, the
SSE concept provides a way to conduct measurement-based root cause
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analysis without sacrificing measurement accuracy. There are different ways
of employing the SSE concept for performance problem diagnostics. A
naive approach is to conduct a brute-force scan for all potential root causes
on the SUT by executing an SSE experiment for each potential root cause.
However, this naive approach leads to a huge amount of required experiments,
which results in a very long overall experimentation time, rendering the
naive diagnostics approach impractical. The alternative is to follow a more
systematic approach which is based on the following considerations.

If a software design, implementation or deployment failure in a concrete
SUT leads to a performance problem, then a workload configuration ex-
ists under which the problem becomes visible in terms of symptoms, such
as high end-to-end response times, low throughput, high CPU utilization,
etc. Besides the symptoms which are visible from outside the application,
performance problems exhibit application-internal indications in form of
distinctive performance characteristics. In many cases, following the path
from symptoms to the application-internal indications leads to the root cause
of the performance problem. Furthermore, many root causes of perfor-
mance problems exhibit similar application-internal indications and, in turn,
application-internal indications result in similar symptoms. Consolidating
these considerations yields a taxonomy of symptoms, application-internal
indications and root causes. Thereby, there are only some few high-level
symptoms, a bigger set of descending application-internal indications which
may be spread across multiple layers of the taxonomy and, finally, there
is a huge amount of potential root causes. Figure 3.5 illustrates the idea
behind structuring performance problems along a taxonomy. At the very
top, the category Performance Problem constitutes the root of the taxonomy
subsuming all behavioural patterns leading to the high-level symptom of
violated performance requirements. In the levels below, the taxonomy dis-
tinguishes different categories of performance problems, whereby the types
of performance problems become more specific the deeper they are located
in the taxonomy. The root causes of performance problems are represented
by the leaf nodes of the taxonomy. In general, there is no strict separation
between symptoms and causes of performance problems. In fact, the terms
symptom and cause describe roles of individual taxonomy nodes in a rela-
tionship between two nodes. In particular, each inner node of the taxonomy
is a potential cause for the parent node, and a symptom for its descendant
nodes, respectively. Let us further consider the exemplary taxonomy branch
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in Figure 3.5. A single user performance problem and a scalability problem
are two potential causes for a violation of performance requirements. Within
the category of scalability problems, we further distinguish between typical
software bottlenecks and other causes for scalability problems. External calls
and software synchronization (i.e. software locks) are some typical root
causes for a software bottleneck.
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Figure 3.5.: Concept of a Performance Problem Taxonomy

A taxonomy on performance problems has positive aspects in two respects:
Firstly, the taxonomy encapsulates explicit knowledge on the relationships
between individual symptoms and causes of performance problems. Even
aside from automation of performance problem diagnostics, such a taxonomy
provides a systematic guidance for (potentially inexperienced) performance
engineers when manually diagnosing performance problems. Following
such a taxonomy, performance engineers may come more efficiently to a
valid diagnostics result, than without any explicit procedure. Secondly, in
the context of our APPD approach, the taxonomy constitutes a core part
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determining the search process for root causes of performance problems.
More precisely, the taxonomy guides the execution of experiments while
following our SSE concept. Thereby, the taxonomy serves as a decision tree
(Rokach et al., 2008). At the beginning, a light-weight, selective experiment
(cf. Section 3.2.1) is executed, gathering only the measurement data which
is required to take decision on the existence of the high-level symptom of
violated requirements in the SUT (i.e. Performance Problem in Figure 3.5).
In this particular case, end-to-end response times of user transactions are
sufficient to decide whether high-level performance requirements are vio-
lated. Assuming the case, that a violation of performance requirements is
observed, our APPD approach executes further selective experiments for
the child nodes of the taxonomy’s root node. This process is recursively
repeated until a leaf node of the taxonomy is reached, meaning that a root
cause of an observed performance problem has been identified. By contrast,
if a symptom, which is reflected by a certain taxonomy node, cannot be
found in the SUT, the APPD approach skips the whole sub-tree beneath the
corresponding taxonomy node. This consideration is based on the following
rationale: With APPD, we are searching for actual performance problems
instead of potential performance anti-patterns. Hence, APPD looks for guilty
performance anti-patterns that emerge as performance problems and, thus,
are observable from the end-user perspective. Consequently, if a cause for a
performance problem is guilty, then all taxonomy nodes on the path from the
corresponding guilty node to the root node must be observable. Vice versa,
if a symptom is not observable, then all descending causes in the taxonomy
are not observable, hence, are not guilty.

Compared to the naive, brute-force approach, the taxonomy-based approach
of applying SSE for performance problem diagnostics is more systematic
and, therefore, also more efficient. Reducing the amount of required experi-
ment executions, the taxonomy-based approach significantly increases the
practicability of our APPD approach.

For each node of the taxonomy, a detection heuristic (cf. Part IV in Fig-
ure 3.2) is required that specifies a set of experiments to be executed for
the corresponding taxonomy node and an analysis strategy responsible to
take decisions on the existence of the performance problem, symptom or
cause in the SUT. Thereby, the heuristics utilize the abstraction languages
(cf. Part I in Figure 3.2) to specify the execution plan of experiments and the
measurement data to be collected. In Chapter 5, we introduce the abstraction
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languages and describe the detection heuristics in detail in Chapter 6. In
Chapter 4, we further elaborate on the formalization and instantiation of the
taxonomy, and explain in more detail its role as an integral part of the APPD
approach.

3.3. Scope of Applicability

In this section, we discuss the scope of applicability of the APPD approach,
including limitations on the application context of APPD and its integration
with established software development processes.

3.3.1. Assumptions on the Application Context

Though our APPD approach is designed to be generically applicable on
different, independent application cases, its scope of application is limited by
some assumptions setting the boundaries for the target domain of software
systems APPD can be applied on. In the following, we list and discuss the
assumptions on the application contexts of APPD:

Interactive Enterprise Software Systems Typically, software systems
from different domains (e.g. enterprise software systems, embedded soft-
ware systems, operating systems, etc.) encounter different classes of per-
formance problems or different manifestations of performance problems.
Consequently, the concepts for performance problem diagnostics vary from
one domain of software systems to another. Hence, developing a diagnostics
approach which can be generically applied across all domains of software
systems is basically impossible. Many types of performance problems con-
sidered in this work may occur only in enterprise software systems based
on three-tier architectures. Therefore, the APPD approach is designed for
diagnosing enterprise software systems. Furthermore, some detection heuris-
tics elaborated in this thesis assume a user-based target system. This means
that the workload applied on the SUT is constituted from interactive user
requests. Furthermore, we focus on enterprise software systems where the
end-to-end response times are higher prioritized than the throughput of user
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requests. In particular, we abstain from considering systems that need to
be optimized for throughput rather than for low response times. The same
consideration applies to the types of performance problems. We focus on
performance problems that express themselves in high response times rather
than in low throughput.

Focus on Application Logic As stated in the previous paragraph, APPD
is designed for three-tier software systems. A three-tier software system com-
prises a presentation layer, an application logic layer, and a persistence layer.
Though many performance problems in enterprise software systems occur
due to failures in the presentation layer (e.g. inefficient Java script code in
Web-based applications) or inefficiencies in the persistence of data (e.g. im-
proper database schemas, missing database indexes, etc.), a fairly big amount
of performance problems originates from the application logic, or improper
use of the persistence service from the application layer (Grabner, 2010).
In this thesis, we focus on performance problems which originate from the
application logic layer. In particular, we abstain from improving front-end
performance and optimizing database configurations for better performance.
However, besides performance problems which are purely manifested in the
application logic, we consider types of performance problems which are due
to improper use of services (e.g. data persistence).

Common Programming Concepts The focus of APPD on enterprise
software systems implies that the programming languages of the target
application support common programming concepts which are established
in the domain of enterprise software systems (e.g. database APIs, APIs
for object relational mapping, Messaging APIs, Garbage Collection, REST
APIs, etc.). Moreover, some of the performance problem types investigated
in this thesis and the corresponding heuristics rely on the existence of these
common concepts in the programming language of the target application.
In particular, the abstraction layer on top of different SUTs highly depends
on a common understanding of these concepts, for instance in order to
specify instrumentation instruction on the target application in an abstract,
yet unambiguous way. Consequently, our APPD approach is designed for
modern-day managed run-times (e.g. Java (Stärk et al., 2001), .NET (Box et
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al., 2002), Ruby (Flanagan et al., 2008), etc.) as they support the mentioned
concepts.

3.3.2. Alignment with Established Software
Development Processes

Usually, the development of a software product follows one of the estab-
lished software development processes (Sommerville, 2007), or a variations
of those. In order to ensure acceptance and practicability of our APPD
approach, it must not intervene the underlying development process with
additional, significant efforts, manual tasks or even additional process steps.
On the contrary, the approach should be aligned with the established software
development processes to take advantage of artifacts and tasks which are
part of the development process. Reuse of existing artifacts may significantly
reduce the manual effort to apply APPD on a software development project.
To this end, we have to identify which inputs required by APPD are covered
by artifacts of established software development processes. The following
inputs are required to apply APPD:

Testing Environment As controlled performance experiments are a cru-
cial part of the APPD approach, a testing environment is required that allows
to evaluate the SUT under different load and stress conditions without affect-
ing the real users in operations. The testing environment must comprise a
SUT which is a representative projection of the operational setup. Further-
more, for gathering of measurement data, instrumentation and monitoring
tools need to be set up. Finally, end users of the target application need to
be emulated using a load generator, which is another important part of the
testing environment.

Measurement Tool Adapters As mentioned in Section 3.2, on top of
concrete SUTs, APPD provides an abstraction layer comprising description
languages which abstract from the realization of specific instrumentation
and monitoring tools as well as load generators. As existing monitoring
tools and load generators do not directly support our description languages,
adapters for these monitoring tools need to be set up. Alternatively, our
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Adaptable Instrumentation and Monitoring (AIM) approach can be applied,
which directly supports the description languages defined in the abstraction
layer of APPD (Wert et al., 2015a).

Usage Profile In order to emulate the end user behaviour with a load
generator, the user behaviour needs to be explicitly specified in a usage
profile. Specifying a deterministic sequence of user interactions in a so-
called user script is a common approach to describe the usage behaviour
(cf. Section 2.3). Besides the deterministic way of describing the usage
behaviour, other, probabilistic approaches exist (van Hoorn et al., 2008; van
Hoorn et al., 2014). For the application of APPD, the type of the usage
profile is irrelevant, however, the usage profile needs to be directly parsable
by the used load generator. Furthermore for the application of APPD, we
assume that the load intensity during an experiment is stable. In particular,
the load intensity must not exhibit periodic patterns like oscillation, burst
behaviour or any trends.

Performance Requirements The decision on the existence of a perfor-
mance problem in a SUT is always relative to the performance requirements
for the SUT. In particular, we cannot identify any performance problems
without at least knowing the high-level performance requirements for a
specific SUT. High-level performance requirements describe from the per-
spective of the end users the maximum load, and the worst case performance
behaviour which must not be exceeded under the maximum load. Hence,
high-level performance requirements are an important input for APPD, en-
abling APPD to take decisions on the existence of performance problems.

Regardless of the type, all software development processes, from the water-
fall model through incremental iterative processes to agile methods, cover in
one form or another the activities of the five basic phases of the software life
cycle: Requirement Definition, System Design, Implementation, Integration
and Testing, and Operation and Maintenance (Sommerville, 2007). The
Requirement Definition and Integration and Testing life cycle phases are par-
ticularly important for the application of APPD. The Requirement Definition
phase serves for the elicitation of different types of requirements including
functional as well as extra-functional requirements. Hence, the result of a
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thoroughly conducted requirements elicitation should comprise performance
requirements which can be used for performance testing. The Integration
and Testing phase evaluates the integration of software components to a
software system with respect to different functional and extra-functional
aspects. In particular, performance testing is a part of the Integration and
Testing phase, constituting the basis for the performance experiments of
APPD. Consequently, a testing environment as well as usage profiles reflect-
ing the end user behaviour are some artifacts which should exist in a software
project which thoroughly follows a software development process. Based
on this considerations we may conclude, that except for the measurement
tool adapters, all inputs required for the application of APPD are covered by
existing artifacts of software projects which strictly follow a development
process.

Unfortunately in practice, many software projects follow only to a very
limited extent a certain software development process. In particular, many
software projects lack awareness for software performance so that perfor-
mance considerations are omitted at all. In such a case, neither performance
requirements nor the testing environment exists. On the one hand, applying
APPD in such a case would require additional manual effort to elicit perfor-
mance requirements, setting up a testing environment and capturing the end
user behaviour for the creation of usage profiles. On the other hand, conduct-
ing these tasks is required for any performance evaluation approach which is
based on performance tests. Furthermore, considering the inputs required
by APPD, we may conclude that except for the measurement tool adapters,
the inputs required by APPD are not specific to our approach, but, constitute
general requirements for all test-based performance evaluation approaches.
To sum up, in performance-aware software projects our APPD approach can
be integrated into the underlying development process, whereby existing
artifacts can be used for most inputs required for APPD. In software projects
which are not performance-aware, the application of APPD entails a higher
effort which, however, is common in all measurement-based performance
evaluation activities. In general, the advantages of APPD are greater in incre-
mental, iterative software development processes, where the stakeholders can
benefit from regular executions of APPD as part of continuous integration.
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3.4. Research Hypotheses

From the goals and research questions described in Section 1.3 as well as
the constituent parts of the APPD approach (cf. Figure 3.2), we derive seven
research hypotheses that constitute the basis for the validation of the APPD
approach. In Chapter 7, we use these hypotheses to derive refined validation
questions for a thorough validation of the APPD approach:

Hypothesis 1 — There is an adequately big set of performance problem
types which are generically detectable by a set of explicit experiments and
analysis rules.

There is a large body of literature describing different types of performance
problems (also known as Software Performance Anti-patterns (SPAs)) (cf.
Section 2.4). While some of these performance problem types are detectable
by applying experimentation and corresponding analysis rules, others may
be not suitable to be detected by experimentation or cannot be covered
by generic rules. Hence, it is important to conduct a categorization of
performance problem types, to identify those, which are per-se detectable by
our APPD approach. (RQ 1, Section 1.3)

Hypothesis 2 — Different types of performance problems, their symptoms
and causes share common characteristics allowing to structure them hierar-
chically along a taxonomy.

Based on the idea that all different types of performance problems lead to
some few observable symptoms, we investigate the relationships between
different symptoms and causes of performance problems with the goal to cre-
ate a generic taxonomy on performance problems in the context of enterprise
software applications. (RQ 1, RQ 2, Section 1.3)

Hypothesis 3 — A taxonomy on performance problems systematizes perfor-
mance problem diagnostics and increases its efficiency.

With this research hypothesis, we investigate to which degree a taxonomy
on performance problems (cf. Hypothesis 2) supports diagnostics of perfor-
mance problems. (RQ 8, RQ 9, RQ 10, Section 1.3)

Hypothesis 4 — Performance test specifications can be generalized by a
language which allows to describe instrumentation instructions and perfor-
mance test series in a system-independent and tool-independent way.
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Performance testing comprises a multitude of configuration and description
artifacts, including descriptions of instrumentation and monitoring instruc-
tions, load descriptions, etc. We investigate which abstraction languages are
required to describe the generalizable parts of performance tests in a way
that the description instances can be used for automation of performance
tests. (RQ 6, RQ 7, Section 1.3)

Hypothesis 5 — The conflicting requirements of high measurement accu-
racy and detailed measurement data can be achieved by a goal-oriented
experimentation concept.

We conceptualize an experimentation methodology (cf. SSE, Part II in Fig-
ure 3.2) which allows to gain detailed measurement data with a negligible
measurement overhead. Furthermore, we investigate the scope of applicabil-
ity of SSE on further performance engineering approaches and evaluate its
limits. (RQ 3, RQ 4, Section 1.3)

Hypothesis 6 — The composition of a taxonomy on performance problems,
a language for generic description of instrumentation instructions, moni-
toring as well as performance test series, and the SSE concept enable full
automation of performance problem diagnostics.

As already discussed, the APPD approach combines multiple concepts and
artifacts. The ensemble of these concepts enables a full automation of a sys-
tematic diagnostics approach. As automation is the primary goal of APPD,
providing a fully automated implementation of the APPD approach is not
only a technical realization, but an important validation of the main promise
of APPD.

Hypothesis 7 — Applying our APPD approach in the scope of established
software development processes entails a manual effort which is negligible
compared to traditional, manual performance problem diagnostics.

We investigate the applicability of our overall APPD approach by evaluating
the approach-specific effort for application of APPD. To this end, we discuss
the integration of APPD into established software development processes
and conduct an empirical study to gain an insight on the perception of our
approach by external participants.
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3.5. Summary

In this chapter, we introduced the APPD approach showing a sketch of its
constituent parts and their interplay. The high-level idea behind APPD is
the formalization, structuring and reuse of expert knowledge on recurrent
performance problem types to enable automatic diagnostics of performance
problems. Hence, tasks that are currently conducted for each performance
problem diagnostics context are automated by means of generalizing and
extracting knowledge on recurrent problems and corresponding, recurrent
diagnostics activities. The APPD approach comprises four main, constituent
parts. Generic knowledge on recurrent performance problems and their
interrelation is captured in a taxonomy on performance problems. For each
performance problem type, the APPD approach provides for a corresponding,
experiment-based detection heuristic. Applying the Systematic Selective
Experimentation (SSE) concept, APPD systematically searches for root
causes of performance problems by utilizing the taxonomy on performance
problems as a decision tree. For each node in the taxonomy, a detection
heuristic exists that describes which experiments need to be executed and
how corresponding measurement data must be analyzed to make a decision
on the existence of the investigated performance problem. In order to keep
performance problem diagnostics generic, an abstraction layer provides a
set of specification languages that constitute the basis to bridge the gap
between specific application contexts and the generic diagnostics algorithms.
Discussing the assumptions of the APPD approach, we came to the conclu-
sion that APPD is closely aligned with established software development
processes as it relies on artifacts that should be available in common soft-
ware development projects. Considering the research question stated in
Section 1.3 and the constituent parts of the APPD approach, we derived
seven research hypotheses. These hypotheses guide the remainder of this
thesis and constitute the base for the validation goals of the APPD approach.
The following three chapters take a closer look on the constituent parts of
APPD. Chapter 4 provides deeper details on the performance problem tax-
onomy. Chapter 5 introduces a set of description languages that allow to
keep the core of APPD generic. Finally, in Chapter 6 we consider detection
heuristics in more detail.
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of Performance Problems

Both scientific and industrial literature define a large set of different Software
Performance Anti-patterns (SPAs) in the domain of enterprise software sys-
tems (cf. Section 2.4). An SPA describes a certain type of design, imple-
mentation or deployment failures that may lead to performance problems.
Taken into account, SPAs are an effective means to avoid performance prob-
lems in advance during development. Nevertheless in practice, due to time
restrictions and higher prioritized functional requirements, SPAs are often un-
consciously introduced into the architecture and code of a software product.
In such cases, the SPAs have to be uncovered and diagnosed, for instance in
the testing phase. A description of an SPA is helpful in investigating the exis-
tence of the corresponding type of performance problems in a System Under
Test (SUT). However, descriptions of SPAs do not convey enough informa-
tion on the interrelationship between individual SPAs, symptoms and root
causes. Hence, in order to conduct a diagnostics of performance problems
(i.e. scanning for all types of performance problems), the descriptions on
SPAs allow only for an investigation of each SPA in isolation. However, this
approach is rather unsystematic, tedious and error-prone. In fact, many SPAs,
problem symptoms and root causes are interrelated. In particular, every
type of performance problems leads to the same high level symptom of vio-
lated performance requirements (e.g. response times exceeding a threshold).
Moreover, different SPAs and root causes exhibit similar internal indicators
(e.g. high CPU utilization, congestion points, etc.). The interrelationships
constitute a potential to support a more systematic approach of diagnosing a
SUT for performance problems instead of investigating each SPA individ-
ually. In this chapter, we provide a methodology for deriving a systematic
guidance in diagnosing performance problems from existing knowledge on
different types of performance problems, i.e. SPAs. An explicit guidance in
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diagnosing performance problems is essential in two respects: First, laying
the basis for automating the systematic search for performance problems and
their root causes, it is a crucial part of the Automatic Performance Problem
Diagnostics (APPD) approach. Second, apart from automating performance
problem diagnostics, an explicit guidance facilitates manual diagnostics of
performance problems and enables less experienced performance analysts to
achieve more accurate diagnostics results. We introduce a process for the
systematization of performance problem diagnostics (Section 4.1) and elabo-
rate on the individual process steps (Section 4.2, Section 4.3 and Section 4.4).
Preliminary parts of the systematization of performance problems have been
published before in (Wert et al., 2013; Wert et al., 2014; Wert, 2012).

4.1. Systematization Process

In this section, we introduce a process that describes the necessary activities
to provide systematic guidance in performance problem diagnostics. Fig-
ure 4.1 shows the systematization process comprising four activities with
corresponding process and artifacts flow.

As mentioned before, our approach is based on the notion of Software Perfor-
mance Anti-patterns (SPAs). The knowledge about existing SPAs is spread
among different sources. While some SPAs are explicitly defined in different
sources of scientific and industrial literature, other SPAs remain as implicit
knowledge resulting from practical experience of performance experts. Fur-
thermore, some SPAs are explicitly described but not known under that term.
Hence, the first essential step to create systematic guidance in performance
problem diagnostics is the gathering of knowledge about different SPAs.
Based on the resulting definitions of SPAs, the SPAs can be categorized with
respect to different dimensions using a predefined categorization template.
The resulting, explicit characteristics of SPAs can be used to identify relevant
SPAs (e.g. those, which are automatically diagnosable by a measurement-
based approach) and structure them hierarchically, yielding a taxonomy. The
taxonomy lays the basis for a systematic search for performance problems.
However, as the resulting taxonomy covers only static information about the
SPAs and their interrelationships, the last activity of the process augments the
taxonomy with information about related diagnostics activities. The result of
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Figure 4.1.: Process for deriving systematic guidance in performance
problem diagnostics.

the process is a Performance Problem Evaluation Plan describing how and
in which order to evaluate the individual SPAs. The process is intended to
be iterated as many times as needed in order to extend the resulting artifacts
including the knowledge base of existing SPAs, their categorization, the
taxonomy and the final evaluation plan.

For the categorization step, we develop a categorization template (Sec-
tion 4.2) that supports a better understanding of individual SPAs, allows
to identify relevant SPAs and provides the necessary information for creating
a corresponding taxonomy. We apply that categorization template on a set of
SPAs that we gathered from some selected scientific and industrial sources
of literature. Based on the categorization of the selected SPAs, we create a
taxonomy (Section 4.3) showing the interrelationships of the corresponding
SPAs. We introduce the meta-structure of the evaluation plan (Section 4.4.1)
and describe how to derive an instance of the evaluation plan from a given
SPAs taxonomy (Section 4.4.2). Based on the evaluation plan, we define an
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algorithm that automates the systematic search for performance problems
and their root causes (Section 4.4.3).

4.2. Categorizing Performance Anti-patterns

To provide a systematic guidance in diagnosing a SUT for potential perfor-
mance problems, known types of performance problems (i.e. SPAs) need
to be analyzed with respect to different aspects. In particular, we aim at
identifying conceptional degrees of freedom in existing definitions of known
SPAs. Based on the degrees of freedom, we derive a categorization template
which helps to understand the nature of different SPAs, including their scope
of occurrence and suited methods of analyzing instances of corresponding
SPAs. Furthermore, we are interested in the type of stakeholders who are
responsible for certain kind of performance problems and, thus, are the target
consumer group of the results generated by our overall approach APPD. By
applying the categorization template to a set of known SPAs, we identify
those SPAs which are relevant for our APPD approach and get an insight
on the relationships between individual SPAs. The categorization of the
individual SPAs lays the basis for constructing a taxonomy.

4.2.1. Categorization Template

While gathering definitions of SPAs from scientific literature as well as from
industrial journals and blogs (cf. Section 2.4), we compared the nature
of SPAs with respect to different dimensions. Thereby, we came to the
conclusion that definitions of SPAs are not entirely consistent. In particular,
we made the following observations:

• Definitions of SPAs exhibit different levels of granularity. This even
applies for SPAs which come from the same source of literature. While
some SPAs describe high level symptoms (e.g. the Ramp anti-pattern,
Smith et al., 2002a), others describe internal symptoms (e.g. the One
Lane Bridge anti-pattern, Smith et al., 2000) or even root causes (e.g.
the Excessive Dynamic Allocation anti-pattern, Smith et al., 2000).
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• Furthermore, the anti-patterns are distinguishable in the pattern type
to which they refer. On the one hand, some SPAs describe behavioural
patterns (e.g. patterns in the progression of response times, etc.) which
can be observed only dynamically during execution of the SUT. On
the other hand, some SPAs cover structural and static patterns that
may lead to performance problems. Examples are improper constella-
tions of software components or classes and bad sequences of code
statements, respectively.

• As mentioned before, SPAs describe design, implementation or deploy-
ment failures which may lead to performance problems. Consequently,
the abstraction level of the failure constitutes another degree of free-
dom with the following possible manifestations: architectural failure,
design failure (including object-oriented design, database schema de-
sign, etc.), implementation failure and deployment failure (including
SUT configuration).

• Finally, as mentioned before, SPAs are interrelated, following a cause-
effect relationship. SPAs that represent high level symptoms are
caused by other SPAs representing internal symptoms or root causes.

Level of Granularity Type of Pattern
• root cause /
• internal symptom /
• externally visible symptom

• structural pattern /
• static pattern /
• behavioural pattern

Level of Abstraction Detection Method
• architecture /
• design (OO, DB, etc.) /
• implementation /
• deployment

• static analysis /
• measurement /
• manual analysis

Interrelation
Symptoms Causes
. . . . . .

Table 4.1.: Categorization: Template
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Based on the observations we developed a categorization template for ana-
lyzing individual SPAs as depicted in Table 4.1. The template comprises six
dimensions of categorization: Level of Granularity, Type of Pattern, Level
of Abstraction, Detection Method, Symptoms and Causes. The former three
dimensions are directly derived from the mentioned observations. As the
level of abstraction describes the type of the actual failure that may lead
to a performance problem, this dimension of categorization can only be
applied on SPAs which constitute a root cause (cf. Level of Granularity).
Regardless of the level of granularity, the type of pattern or the level of
abstraction of SPAs, the level of difficulty and possible methods of detecting
an anti-pattern as a cause or symptom of a performance problem varies,
depending on the individual SPA. Hence, it is important to understand which
SPAs are automatically detectable and which methods can be applied to
realize the detection. Hereby, we distinguish between automatic detection
through static code analysis, automatic detection through measurements,
and manual detection requiring human interaction. The latter case applies
to SPAs which cannot be detected by automatic application of rules due
to complex semantic dependencies which can be only resolved by human
interaction. This dimension of categorization is especially important for our
APPD approach, as it distills those SPAs that are potentially detectable with
our approach.

Finally, the interrelation dimensions Symptoms and Causes are the most
essential categorization dimensions for our goal of providing a systematic
guidance in diagnosing performance problems. Identifying which SPAs
are potential causes or symptoms for other SPAs is important to develop a
holistic view on the set of known SPAs.

4.2.2. Applying the Categorization

To understand how individual SPAs are interrelated and to identify relevant
SPAs, it is essential to apply the defined categorization template to a represen-
tatively big set of SPAs. In this section, we apply the categorization template
to a set of 27 selected SPAs from mentioned scientific and industrial sources
of literature (cf. Section 2.4). The selection of considered SPAs is based
on the assumptions for the application context described in Section 3.3.1.
Many of the SPAs categorized in the following are applicable in different
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contexts which may result in different categorization results. However, as
in this thesis we focus on performance problems in the application logic (cf.
Section 3.3.1), the considered SPAs are analyzed from the perspective of the
application logic. For instance, we consider a slow database request as a root
cause. By contrast, from the database configuration and design perspective,
a slow database request is a symptom rather than a root cause.

Though the considered SPAs cover many relevant types of performance
problems, we are aware that this set of SPAs is not exhaustive. However,
the categorization and taxonomy derivation methodology applied in the
following sections can be analogously applied to further SPAs that are not in
our list of selected SPAs.

4.2.2.1. Traffic Jam

The evaluation of the Traffic Jam anti-pattern is depicted in Table 4.2. The
Traffic Jam describes the symptom of highly varying response times caused
by congestion of threads (cf. Table 2.1(a), Chapter 2.4). This symptom can
be observed externally from a SUT in the end-to-end response times or as an
internal symptom in the response times of internal operations. As the Traffic
Jam refers to a behavioural pattern, we cannot specify a value for the level
of abstraction.

Level of Granularity Type of Pattern
• internal symptom
• externally visible symptom

behavioural pattern

Level of Abstraction Detection Method
[not applicable] measurement

Interrelation
Symptoms Causes
violation of performance requirements
under high load

• One Lane Bridge
• CPU intensive application
• congestion on database

Table 4.2.: Categorization: Traffic Jam
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Furthermore, the type of pattern implies that the Traffic Jam can only be
detected by conducting measurements but not by static code analysis. The
Traffic Jam may lead to a violation of performance requirements, especially
if the SUT is under high load. A Traffic Jam is typically caused by a
software bottleneck (also known as the One Lane Bridge anti-pattern (cf.
Table 2.1(e), Chapter 2.4)), CPU intensive computations, or congestion on
external services like a database access.

4.2.2.2. The Ramp

Similarly to the Traffic Jam anti-pattern, the Ramp anti-pattern (cf. Ta-
ble 2.1(b), Chapter 2.4) describes a symptom manifested in the behavioural
pattern that response times grow with the operation time (cf. Table 4.3). An
existence of a Ramp anti-pattern in a SUT mostly reveals very slowly. It
may take weeks or month of operation until an increase in response times
becomes noticeable. Hence, though the Ramp anti-pattern is theoretically
detectable by conducting performance tests, in practice, typical performance
tests are too short to uncover a Ramp behaviour. As the Ramp constitutes a
slow growth in response times, typically, it does not immediately results in a
violation of performance requirements. The Ramp rather leads to a delayed
violation of requirements which, however, gets worse with the operation
time. Typical causes are the Sisyphus Database Retrieval anti-pattern (cf.
Table 2.1(p), Chapter 2.4) yielding a Ramp because of improper database
queries combined with growing database tables, or the Dormant References
anti-pattern (cf. Table 2.1(m), Chapter 2.4) resulting in growing data struc-
tures.
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Level of Granularity Type of Pattern
• internal symptom
• externally visible symptom

behavioural pattern

Level of Abstraction Detection Method
[not applicable] measurement (long running)

Interrelation
Symptoms Causes
increasing violation of performance
requirements

• Sisyphus Database Retrieval
• Dormant References

Table 4.3.: Categorization: The Ramp

4.2.2.3. Application Hiccups

The Application Hiccups anti-pattern (cf. Table 2.1(c), Chapter 2.4) de-
scribes the externally visible symptom of periodically occurring phases with
high response times that, consequently, may lead to periodic violations of
performance requirements (cf. Table 4.4). Hence, it is a behavioural pattern
that, analogously to the Traffic Jam anti-pattern, can be detected only dy-
namically by executing the SUT. Hiccups caused by garbage collection is a
typical cause for the Application Hiccups anti-pattern.

Level of Granularity Type of Pattern
externally visible symptom behavioural pattern

Level of Abstraction Detection Method
[not applicable] measurement

Interrelation
Symptoms Causes
periodical violation of performance
requirements

Garbage Collection Hiccups

Table 4.4.: Categorization: Application Hiccups
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4.2.2.4. Garbage Collection Hiccups

The anti-pattern Garbage Collection Hiccups (cf. Table 2.1(d), Chapter 2.4)
is a special case of the Application Hiccups anti-pattern, however, it is an in-
ternal symptom (cf. Table 4.5) as it requires monitoring of garbage collection
executions in order to be uncovered. Hence, the behavioural pattern Garbage
Collection Hiccups can be detected by measurement. Garbage Collection
Hiccups are caused by memory management anti-patterns which may lead
to an increased pollution of memory.

Level of Granularity Type of Pattern
internal symptom behavioural pattern

Level of Abstraction Detection Method
[not applicable] measurement

Interrelation
Symptoms Causes
Application Hiccups • Wrong Cache Usage

• Session as a Cache
• Large Temporary Objects
• Sisyphus Database Retrieval

Table 4.5.: Categorization: Garbage Collection Hiccups

In particular the Wrong Cache Usage anti-pattern, the Session as a Cache
anti-pattern, the Large Temporary Objects anti-pattern and the Sisyphus
Database Retrieval anti-pattern are typical causes for Garbage Collection
Hiccups.

4.2.2.5. One Lane Bridge

The One Lane Bridge (OLB) anti-pattern (cf. Table 2.1(e), Chapter 2.4) is an
internal symptom (cf. Table 4.6) describing a behavioural pattern which is
similar to the Traffic Jam symptom (cf. Table 2.1(a), Chapter 2.4), however,
that is manifested in a software bottleneck. A OLB can be detected in a
similar way as the Traffic Jam, by conducting measurements. An OLB is
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typically caused by synchronization in the application code (e.g. in thread
pools, connection pools, etc.), database locking, or external services which
become bottlenecks.

Level of Granularity Type of Pattern
internal symptom behavioural pattern

Level of Abstraction Detection Method
[not applicable] measurement

Interrelation
Symptoms Causes
Traffic Jam • synchronization

• database locking
• Bottleneck Service

Table 4.6.: Categorization: One Lane Bridge

4.2.2.6. Dispensable Synchronization

Dispensable Synchronization (cf. Table 2.1(g), Chapter 2.4) is a common
root cause for the OLB anti-pattern. It is a static pattern that is manifested in
an implementation failure (cf. Table 4.7). This root cause is characterized
by the location in the application code where threads need to wait for a
lock because of unnecessarily long locking areas. While static code analysis
may be useful to identify all synchronization points in the target application,
measurements are required to reveal those synchronization points which
become a bottleneck and, thus, constitute a performance problem.

85



4. Systematizing Diagnostics of Performance Problems

Level of Granularity Type of Pattern
root cause static pattern

Level of Abstraction Detection Method
implementation • static (code) analysis

• measurement

Interrelation
Symptoms Causes
One Lane Bridge [not applicable]

Table 4.7.: Categorization: Dispensable Synchronization

4.2.2.7. The Blob

The Blob (cf. Table 2.1(h), Chapter 2.4), also known as the God Class
anti-pattern, describes a structural pattern on the level of architectural or
object-oriented design (cf. Table 4.8), manifested in a central component.
The communication between the central component and other components
may lead to an excessive messaging which impairs the performance of the
SUT. Hence, the Blob is a root cause that is characterized by the instance
identifier of the central, guilty component. Though a central component can
be statically (i.e. by static code or model analysis) detected as a potential
Blob anti-pattern, deciding whether that component constitutes a perfor-
mance problem or not is not possible by applying static analysis. Hence,
measurements are required to be conducted to reveal a central component as
a guilty Blob anti-pattern that is resulting in a performance problem.
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Level of Granularity Type of Pattern
root cause structural pattern

Level of Abstraction Detection Method
• architecture
• design

• static analysis (partially)
• measurement

Interrelation
Symptoms Causes
excessive messaging [not applicable]

Table 4.8.: Categorization: The Blob

4.2.2.8. Empty Semi Trucks

The Empty Semi Trucks anti-pattern (cf. Table 2.1(i), Chapter 2.4) is another
potential root cause for excessive messaging, manifested in an unnecessarily
high amount of small messages. Empty Semi Trucks describes a behavioural
pattern originating from an implementation failure characterized by two
communication points (i.e. locations in the source code) where many small
messages are transmitted. Analogously to the Blob, the Empty Semi Trucks
anti-pattern is detectable by measurement.

Level of Granularity Type of Pattern
root cause behavioural pattern

Level of Abstraction Detection Method
implementation measurement

Interrelation
Symptoms Causes
excessive messaging [not applicable]

Table 4.9.: Categorization: Empty Semi Trucks
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4.2.2.9. The Stifle

Table 4.10 shows the categorization of the Stifle anti-pattern. Very similar to
the Empty Semi Trucks anti-pattern, the Stifle (cf. Table 2.1(k), Chapter 2.4)
describes the behavioural pattern of sending too many, fine-grained database
queries instead of aggregating them. In particular, the Stifle is a root cause
on the implementation level, which is identified by the fine-grained SQL
statements and the location in the SUT where the corresponding database
queries are emitted. The potential consequences of a Stifle anti-pattern are
an increased network utilization or an overloaded database that results in
database congestion.

Level of Granularity Type of Pattern
root cause behavioural pattern

Level of Abstraction Detection Method
implementation measurement

Interrelation
Symptoms Causes
• congestion on database
• increased network utilization

[not applicable]

Table 4.10.: Categorization: The Stifle

4.2.2.10. Circuitous Treasure Hunt

The Circuitous Treasure Hunt anti-pattern (cf. Table 2.1(l), Chapter 2.4) is
similar to the Stifle, as it entails many database requests. However, with
Circuitous Treasure Hunt the database requests are interrelated.
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Level of Granularity Type of Pattern
root cause static pattern

Level of Abstraction Detection Method
design manual analysis

Interrelation
Symptoms Causes
• congestion on database
• increased network utilization

[not applicable]

Table 4.11.: Categorization: Circuitous Treasure Hunt

This anti-pattern constitutes a root cause that is manifested in a bad design of
database tables and corresponding SQL statements. Therefore, the Circuitous
Treasure Hunt anti-pattern describes a static type of pattern. Analogously to
the Stifle, this anti-pattern may lead to a congestion on the database or in-
creased utilization of the network. However, due to the semantic dependency
between database requests, the Circuitous Treasure Hunt cannot be detected
automatically, neither by measurement nor by static analysis. In particu-
lar, the detection of this anti-pattern requires analysis of data flow in order
to identify relationships between individual database requests. Therefore,
manual analysis is the only way of detecting this anti-pattern.

4.2.2.11. Dormant References

The Dormant References anti-pattern (cf. Table 2.1(m), Chapter 2.4) is
a behavioural pattern referring to steadily growing data structures due to
missing clean-up operations. Therefore, it is a failure which is manifested in
the implementation of the target application. Because of growing response
times of operations working on that data structures, the Dormant References
anti-pattern constitutes a root cause for the Ramp anti-pattern. However, this
anti-pattern may lead to a memory leaks, as well. By tracking the sizes of
data structures, the Dormant References anti-pattern can be detected through
measurements.

89



4. Systematizing Diagnostics of Performance Problems

Level of Granularity Type of Pattern
root cause behavioural pattern

Level of Abstraction Detection Method
implementation measurement

Interrelation
Symptoms Causes
• The Ramp
• Memory Leak

[not applicable]

Table 4.12.: Categorization: Dormant References

4.2.2.12. Session as a Cache

Session as a Cache (cf. Table 2.1(n), Chapter 2.4) is a static pattern originat-
ing from an implementation failure (cf. Table 4.13), whereby a user session
is misused as a data cache. As this anti-pattern leads to an increased pollution
of the memory, it constitutes a potential root cause for Garbage Collection
Hiccups. Static code analysis may be useful to identify locations in code
where data objects are attached to a user session object. Combining static
analysis with measurements allows to evaluate whether large-size objects or
huge sets of objects are attached to user sessions.

Level of Granularity Type of Pattern
root cause static pattern

Level of Abstraction Detection Method
implementation • static analysis (partially)

• measurement

Interrelation
Symptoms Causes
Garbage Collection Hiccups [not applicable]

Table 4.13.: Categorization: Session as a Cache
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4.2.2.13. Excessive Dynamic Allocation

Describing the process of allocating a huge amount of temporary objects,
the Excessive Dynamic Allocation anti-pattern (cf. Table 2.1(j), Chapter 2.4)
describes a static pattern resulting from an implementation failure (cf. Ta-
ble 4.14). The code fragment, where a big amount of memory is allocated,
constitutes the root cause of this anti-pattern. As allocation of objects is
an expensive task, Excessive Dynamic Allocation may lead to an increased
usage of CPU. By applying static code analysis, frequent allocations of
temporary objects can be detected (e.g. temporary objects in loops). Mea-
surements may be helpful to retrieve the memory footprint of such code
fragments.

Level of Granularity Type of Pattern
root cause static pattern

Level of Abstraction Detection Method
implementation • static analysis

• measurement

Interrelation
Symptoms Causes
increased CPU usage [not applicable]

Table 4.14.: Categorization: Excessive Dynamic Allocation
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4.2.2.14. Sisyphus Database Retrieval

Level of Granularity Type of Pattern
root cause static pattern

Level of Abstraction Detection Method
implementation manual analysis

Interrelation
Symptoms Causes
• Garbage Collection Hiccups
• The Ramp
• long-running database requests

[not applicable]

Table 4.15.: Categorization: Sisyphus Database Retrieval

The Sisyphus Database Retrieval anti-pattern (cf. Table 2.1(p), Chapter 2.4)
constitutes a static implementation pattern in the SQL statements of database
queries. It leads to big amounts of data that is retrieved from the database,
however, is not entirely used in the application logic. In the cases where
the database grows over time, the time for processing the database queries
increases steadily which may lead to an observation of the Ramp anti-pattern.
Furthermore, if data is dropped immediately after it has been retrieved from
the database, it may lead to an increased pollution of memory and, thus, may
result in Garbage Collection Hiccups. An exposure of a Sisyphus Database
Retrieval anti-pattern requires analysis of data flow in order to decide which
parts of the retrieved data are actually used in the application logic. However,
this task entails semantic interpretation of data usage and data transformation.
Therefore, the detection of the Sisyphus Database Retrieval requires manual
human interaction.

4.2.2.15. Tower of Babel

The Tower of Babel anti-pattern (cf. Table 2.1(f), Chapter 2.4) describes the
problem of conducting too many, expensive transformations of data between
different representation formats. As data transformation code is typically
very CPU intensive, this anti-pattern may lead to a massive increase in the
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CPU utilization (cf. Table 4.16), especially, if large amounts of data have to
be transformed. As decisions on which data formats to use are made during
implementation, the Tower of Babel is an implementation failure manifested
as a static pattern. The code fragments in the target application which are
responsible for transforming data into different formats constitute the root
cause of the Tower of Babel anti-pattern. However, in order to identify
such code fragments, semantic interpretation of the source code is required.
Hence, the Tower of Babel anti-pattern cannot be detected in an automatic
way, neither by static code analysis nor by measurements. Consequently, the
detection of the Tower of Babel depends on manual analysis.

Level of Granularity Type of Pattern
root cause static pattern

Level of Abstraction Detection Method
implementation manual analysis

Interrelation
Symptoms Causes
increased CPU utilization [not applicable]

Table 4.16.: Categorization: Tower of Babel

4.2.2.16. Unnecessary Processing

The Unnecessary Processing anti-pattern (cf. Table 2.1(r), Chapter 2.4) refers
to code fragments whose processing is not required for the correct execution
of the target application. The code fragments constitute a static root cause
on the implementation layer which may lead to an unnecessary increase in
the CPU utilization (cf. Table 4.17). In order to identify an Unnecessary
Processing anti-pattern, one must be able to decide whether a certain piece
of code is necessary at that point in time of execution or not. However, this
kind of decision, again, requires semantic interpretation of the tasks realized
by the corresponding code fragment and, thus, depends on manual analysis.
Though measurements can be applied to identify code fragments which are
especially CPU intensive, deciding whether these code fragments constitute
an Unnecessary Processing anti-pattern requires human interaction.
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Level of Granularity Type of Pattern
root cause static pattern

Level of Abstraction Detection Method
implementation • measurement (partially)

• manual analysis

Interrelation
Symptoms Causes
increased CPU utilization [not applicable]

Table 4.17.: Categorization: Unnecessary Processing

4.2.2.17. Spin Wait

Table 4.18 shows the categorization of the Spin Wait anti-pattern (cf. Ta-
ble 2.1(s), Chapter 2.4). Spin Wait describes the static pattern of misusing an
empty loop for synchronization of threads. As an empty loop consumes CPU
time without conducting any useful computations, the Spin Wait anti-pattern
constitutes a potential, implementation-level root cause for an unnecessarily
high utilization of the CPU. The empty loop of a Spin Wait can be easily
detected by conducting static code analysis.

Level of Granularity Type of Pattern
root cause static pattern

Level of Abstraction Detection Method
implementation static code analysis

Interrelation
Symptoms Causes
increased CPU utilization [not applicable]

Table 4.18.: Categorization: Spin Wait
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4.2.2.18. Insufficient Caching

Introducing caching is often a solution to reduce the performance impact of
repeated, CPU-intensive computations or repeated database requests. The
Insufficient Caching anti-pattern (cf. Table 2.1(t), Chapter 2.4) describes the
problem of a missing or undersized cache. Depending on whether a cache is
missing for the database access or in the application logic, its absence may
lead to a congestion on the database, or to a high CPU utilization at the ap-
plication server, respectively (cf. Table 4.19). As decisions on the utilization
of a cache can be made on different abstraction levels (architecture, design,
implementation), the Insufficient Caching anti-pattern is a root cause which
may be manifested on any of these levels. In cases where a cache is missing
at all, the Insufficient Caching anti-pattern describes a structural pattern.
If a cache is undersized, this anti-pattern describes the behavioural pattern
of frequent cache misses. A missing cache can be detected by identifying
repeated, CPU-intensive methods which produce unique results for given
inputs. Monitoring CPU times of methods and the corresponding relation-
ships between input and output values allows to identify such methods. An
undersized cache can be identified by monitoring its cache miss rate.

Level of Granularity Type of Pattern
root cause • structural pattern

• behavioural pattern

Level of Abstraction Detection Method
• architecture
• design
• implementation

measurement

Interrelation
Symptoms Causes
• congestion on database
• increased CPU utilization

[not applicable]

Table 4.19.: Categorization: Insufficient Caching
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4.2.2.19. Wrong Cache Strategy

Using a cache is not always beneficial in terms of performance. The Wrong
Cache Strategy anti-pattern (cf. Table 2.1(u), Chapter 2.4) describes the
opposite structural pattern to the Insufficient Caching anti-pattern (cf. Ta-
ble 4.20). In particular, if a cache is used in inappropriate situations, it may
lead to an increased pollution of the memory and, thus, may result in hiccups
which are caused by garbage collections. Analogously to the Insufficient
Caching anti-pattern, the Wrong Cache Strategy anti-pattern can be found on
any abstraction level (architecture, design, implementation). An improperly
used cache can be detected through measurement by monitoring the cache
miss rate.

Level of Granularity Type of Pattern
root cause structural pattern

Level of Abstraction Detection Method
• architecture
• design
• implementation

measurement

Interrelation
Symptoms Causes
Garbage Collection Hiccups [not applicable]

Table 4.20.: Categorization: Wrong Cache Strategy

4.2.2.20. Unbalanced Processing

The Unbalanced Processing anti-pattern (cf. Table 2.1(v), Chapter 2.4)
occurs when the work is not evenly distributed among available processors.
Hence, it is a symptom which is only visible from the interior of the SUT,
but not from the end-user perspective (cf. Table 4.21). This behavioural
pattern can be detected by monitoring the utilization of available CPUs and
analyzing the distribution. The Unbalanced Processing anti-pattern may lead
to a bottleneck (i.e. Traffic Jam) due to inefficient use of available resources.
Single-threaded code or an unevenly distributed Pipe and Filter Architecture
are typical causes for the Unbalanced Processing symptom.
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Level of Granularity Type of Pattern
internal symptom behavioural pattern

Level of Abstraction Detection Method
[not applicable] measurement

Interrelation
Symptoms Causes
Traffic Jam • Single-threaded Code

• Pipe and Filter Architecture

Table 4.21.: Categorization: Unbalanced Processing

4.2.2.21. Single-threaded Code

Table 4.22 shows the categorization of the Single-threaded Code anti-pattern
(cf. Table 2.1(w), Chapter 2.4). Single-threaded Code is one of the potential,
implementation-level root causes for an Unbalanced Processing anti-pattern.
This static pattern can be identified by static code analysis or by monitoring
the amount of active threads.

Level of Granularity Type of Pattern
root cause static pattern

Level of Abstraction Detection Method
implementation • static code analysis

• measurement

Interrelation
Symptoms Causes
Unbalanced Processing [not applicable]

Table 4.22.: Categorization: Single-Threaded Code

4.2.2.22. Pipe and Filter Architecture

If a Pipe and Filter Architecture is distributed unevenly, one of the filters may
become a bottleneck which impairs the performance of the entire chain (cf.

97



4. Systematizing Diagnostics of Performance Problems

Table 2.1(x), Chapter 2.4). Describing a structural failure on the architecture
level, the Pipe and Filter Architecture anti-pattern is a root cause for Unbal-
anced Processing (cf. Table ??). While a static analysis is helpful to identify
a Pipe and Filter Architecture, in order to reveal that such an architecture
is unevenly distributed, monitoring the execution of the individual filters is
essential.

Level of Granularity Type of Pattern
root cause structural pattern

Level of Abstraction Detection Method
architecture • static analysis

• measurement

Interrelation
Symptoms Causes
Unbalanced Processing [not applicable]

Table 4.23.: Categorization: Pipe and Filter Architecture

4.2.2.23. Large Temporary Objects

The creation of Large Temporary Objects (cf. Table 2.1(o), Chapter 2.4) is
a potential root cause for an increased pollution of the memory and, thus,
may lead to Garbage Collection Hiccups (cf. Table 4.24). As the allocation
of objects is an implementation issue, this anti-pattern needs to be solved
at the implementation level. Identifying large objects can be conducted by
monitoring object allocations. However, in order to decide whether an object
is used temporarily, static code analysis has to be applied.
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Level of Granularity Type of Pattern
root cause behavioural pattern

Level of Abstraction Detection Method
implementation • measurement

• static code analysis

Interrelation
Symptoms Causes
Garbage Collection Hiccups [not applicable]

Table 4.24.: Categorization: Large Temporary Objects

4.2.2.24. Chatty Service

The Chatty Service anti-pattern (cf. Table 2.1(y), Chapter 2.4) describes
the behavioural pattern of emitting a big amount of service calls in order
to perform a task. While from the perspective of the service consumer this
anti-pattern constitutes a behavioural pattern, from the service provider side,
the Chatty Service is a static pattern that usually originates from an improper
design of the service interface (cf. Table 4.25). As calls to external services
are very expensive in terms of performance, for the service consumer the
Chatty Service anti-pattern may be a root cause for high response times, even
in cases of low load on the SUT. A sequence of external service calls can
be identified either by conducting static code analysis or by monitoring the
interaction with external services.
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Level of Granularity Type of Pattern
root cause • behavioural pattern

• static pattern

Level of Abstraction Detection Method
design • static code analysis

• measurement

Interrelation
Symptoms Causes
high response times [not applicable]

Table 4.25.: Categorization: Chatty Service

4.2.2.25. The Knot

Table 4.26 shows the categorization of the Knot anti-pattern (cf. Table 2.1(z),
Chapter 2.4). Similarly to the Chatty Service anti-pattern, the Knot anti-
pattern is a potential root cause for high end-to-end response times. The Knot
describes the problem of emitting an expensive call to an external, complex
service in order to perform a simple task. For the service consumer the Knot
constitutes a behavioural pattern. However, for the service provider, the
Knot is a structural design failure that is manifested in tightly coupled sub-
services. Expensive, external services can be easily detected by monitoring
the response times of external service calls.

Level of Granularity Type of Pattern
root cause • behavioural pattern

• structural pattern

Level of Abstraction Detection Method
design measurement

Interrelation
Symptoms Causes
high response times [not applicable]

Table 4.26.: Categorization: The Knot
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4.2.2.26. Bottleneck Service

A Bottleneck Service (cf. Table 2.1(aa), Section 2.4) is a potential root
cause for an observation of an OLB. As the Bottleneck Service anti-pattern
constitutes a behavioural pattern, it can be detected in a similar way as an
OLB, by monitoring the relationship between load and the response times
of the external service. From the perspective of the service provider, the
Bottleneck Service is a symptom rather than a root cause. In particular,
at the provider side, a Bottleneck Service may have different root causes
from all possible levels of abstraction (architecture, design, implementation,
deployment). However, as our focus is on the application logic of the service
consumer, we consider a Bottleneck Service as a root cause rather than a
symptom.

Level of Granularity Type of Pattern
root cause behavioural pattern

Level of Abstraction Detection Method
any measurement

Interrelation
Symptoms Causes
One Lane Bridge [not applicable]

Table 4.27.: Categorization: Bottleneck Service

4.2.2.27. Spaghetti Query

The Spaghetti Query anti-pattern (cf. Table 2.1(q), Chapter 2.4) describes
the static pattern of an overly complex SQL statement. Often this can lead to
unnecessarily complex computations on the database resulting in a conges-
tion on the database. As the SQL query design is an implementation issue,
the Spaghetti Query anti-pattern constitutes an implementation-level root
cause. This anti-pattern can be detected by applying static code analysis for
identification of overly complex SQL statements. However, measurements
are required to decide whether a corresponding query has a negative impact
on performance.
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Level of Granularity Type of Pattern
root cause static pattern

Level of Abstraction Detection Method
implementation • static code analysis

• measurement

Interrelation
Symptoms Causes
congestion on database [not applicable]

Table 4.28.: Categorization: Spaghetti Query

4.3. Deriving a Taxonomy

Based on the categorization from the previous section, we derive a taxonomy
which provides a holistic view on the considered SPAs and their relation-
ships. Figure 4.2 shows the resulting taxonomy. For the construction of
the taxonomy, we primarily utilize the categorization dimensions Symptoms
and Causes (cf. Section 4.2.1). In particular, we use these dimensions to
derive hierarchical links between individual SPAs. Hence, the taxonomy
reflects the cause-effect relationships of the considered SPAs. While high-
level symptoms, such as the Ramp (cf. Section 4.2.2.2), the Traffic Jam
(cf. Section 4.2.2.1) or the Application Hiccups (cf. Section 4.2.2.3) anti-
patterns are located at the top levels of the taxonomy, internal symptoms and
causes constitute inner nodes and leaf nodes of the taxonomy, respectively.
In addition to the 27 SPAs considered in the previous section, we introduce
some taxonomy nodes representing common symptoms that are not reflected
by defined SPAs.

The Performance Problem node constitutes the root node of the taxonomy
serving as a grouping of all potential types of performance problems. On the
first level of the taxonomy, the high-level symptoms separate different pat-
terns of the end-to-end response time progression under a constant, high load.
Hereby, we distinguish between continuously growing response times (i.e
the Ramp anti-pattern), periodically high response times (i.e. the Application
Hiccups anti-pattern) and continuously high response times. In contrast to
the Traffic Jam anti-pattern, the Single User Problem node subsumes all
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types of performance problems that exhibit high response times under single-
user load and the response times do not get worse under increasing load.
Typically, such performance problems are related to communication with
system-external services. The additionally introduced Database Congestion
node constitutes an internal symptom that groups all SPAs resulting in con-
gestion due to inefficient communication and usage of the database. Hereby,
the Expensive Database Call subsumes SPAs that are manifested in single,
expensive calls to the database. The Excessive Messaging node constitutes
an internal symptom which results from SPAs related to inefficient com-
munication between software components and system nodes. Finally, the
CPU-intensive Application node groups all types of performance problems
that lead to a high CPU utilization on the application servers.

Although most SPAs have a unique path from the corresponding node in the
taxonomy to the root node, some SPAs may have different or multiple effects
on the performance of a SUT, depending on the runtime environment (e.g.
sizing of hardware resources) and the manifestation of the corresponding
SPA. For instance, on the one side, the Sisyphus Database Retrieval anti-
pattern (cf. Section 4.2.2.14) may lead to Garbage Collection Hiccups (cf.
Section 4.2.2.4) because of an increased pollution of memory. On the other
side, Sisyphus Database Retrieval may lead to a Ramp (cf. Section 4.2.2.2)
if the database content grows over time. Furthermore, the Sisyphus Database
Retrieval may result in Database Congestion due to an expensive, long-
running database call. Hence, according to our definition in Section 3.1, the
essence of a performance problem is characterized by a chain of causes and
symptoms, as reflected by a path in the taxonomy from the root node to a
leaf node.

Except for the anti-patterns Tower of Babel, Circuitous Treasure Hunt and
Sisyphus Database Retrieval, the considered SPAs are automatically de-
tectable by applying rules in the context of static analysis, performance
measurements or combination of both. Hence, there is a solid base of anti-
patterns that can be addressed by our APPD approach. Furthermore, as we
considered only a subset of potential, explicitly or implicitly known SPAs,
the taxonomy shown in Figure 4.2 can be extended with additional SPAs by
applying the categorization methodology described in these sections.
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Figure 4.2.: Taxonomy on performance problems
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4.4. Evaluation Plan for Performance
Problem Diagnostics

A taxonomy as derived in the previous section lays the basis for a better
understanding of the interrelationships between individual anti-patterns. As
the taxonomy is based on the principle of cause-effect chains, it can be
considered as a kind of a decision tree (Rokach et al., 2008) for diagnostics
of performance problems (cf. Section 3.2.2). For instance in Figure 4.2,
we do not need to investigate the Blob anti-pattern if we have not observed
Excessive Messaging, yet. With respect to the evaluation of performance
problems we can skip the entire sub-tree under the Traffic Jam node, if a
Traffic Jam anti-pattern is not present. Hence, the taxonomy describes the
order for the evaluation of individual types of performance problems and
can be used to avoid unnecessary evaluation steps.

As mentioned in the beginning of this chapter, our goal is to provide a
systematic guidance in diagnosing performance problems. However, the
taxonomy structure as derived up to now does not provide sufficient guidance
in diagnosing performance problems, yet. In particular, it is unclear what are
the concrete activities to evaluate the corresponding performance problems.
Therefore, in this section, we augment the taxonomy by additional constructs
to provide a Performance Problem Evaluation Plan (PPEP) which can be
either used manually by non-experts to analyse performance problems or
can be utilized as a guiding process in APPD. We instantiate the PPEP for
the SPAs that we considere in more detail in this thesis and for which we
provide detection strategies in Chapter 6. Based on the PPEP structure, we
provide an algorithm describing the usage of PPEP as a guiding process.

4.4.1. Augmenting the Taxonomy

The taxonomy derived in Section 4.3 consists of nodes which separate
different categories and sub-categories of SPAs. In this way, the taxonomy
provides only a static view on the interrelationships of individual SPAs.
In order to create a guiding process for performance problem diagnostics,
we derive a PPEP from the taxonomy. Therefore, we augment the meta-
structure of the taxonomy by additional types of nodes that provide additional
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Figure 4.3.: Meta-structure for the Performance Problem Evaluation Plan (PPEP)

semantics on how to utilize the taxonomy as a decision tree for performance
problem diagnostics. Figure 4.3 shows the abstract syntax of the PPEP and
the concrete, graphical syntax we use to represent an instance of PPEP.

The abstract Node class with its associations represents a tree structure,
whereby each node (except for the root node of the PPEP) has a parent node
and a (potentially empty) set of child nodes. In the PPEP, we distinguish
three types of nodes: Category Node, Condition Node and Action Node.
Identified by SPA names, the Category Nodes reflect the nodes from the
taxonomy and serve as a static categorization of SPAs detected during the di-
agnostics process. Additionally, a Category Node refers to a Result Template
which describes the type of the detection result artifact for the corresponding
SPA. An Action Node describes which evaluation activities need to be exe-
cuted in order to take decisions on further evaluation of the corresponding
descending branch in the PPEP. An Action Node comprises a load profile
and an evaluation target. The load profile determines whether performance
tests need to be executed or static analysis has to be conducted. In the for-
mer case, the load profile describes the load pattern to be applied during a
series of performance tests. Hereby, we distinguish between a single-user
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test, a load test with a high load, and a series of performance tests with an
increasing load from one test to the next. With the evaluation target, the
Action Node defines which performance metrics or more complex aspects
should be evaluated under the corresponding load profile. Based on the
evaluation data (e.g. measurement data, static analysis insights, etc.) gained
from preceding Action Nodes, a Condition Node defines a boolean term
evaluating the existence of the SPA represented by the subsequent Category
Node. Hence, a Condition Node constitutes a guard for further descending in
the corresponding branch of the evaluation plan. The existence of an SPA is
specified by the AND-concatenation of all conditions in the Condition Nodes
along the path from the corresponding Category Node to the root node of
the PPEP instance (comparable to rule induction in decision trees, (Rokach
et al., 2008)).

In addition to the meta-structure, a set of Object Constraint Language (OCL)
rules specifies a correct instantiation of the PPEP (cf. Listing 4.1). First,
there is exactly one root node, characterized by an undefined parent(cf.
Listing 4.1, l. 2-3). Second, a PPEP must start with an initial Action Node
that generates measurement data for subsequent evaluation decisions (cf.
Listing 4.1, l. 4-5). Each Category Node must have a preceding Condition
Node that evaluates the existence of the SPA referred to by the subsequent
Category Node (cf. Listing 4.1, l. 6-7). Action Nodes and Condition Nodes
that have no descending Category Nodes are useless, as they cannot lead to
an additional diagnostics result. Consequently, all leaf nodes of the PPEP
must be of the type Category Node (cf. Listing 4.1, l. 8-9). Finally, as
consecutive nodes of same type can be merged to one node, sequences of
equally typed nodes are not allowed ((cf. Listing 4.1, l. 10)).

107



4. Systematizing Diagnostics of Performance Problems

Listing 4.1: OCL rules for the meta-structure of the augmented taxonomy on perfor-
mance problems

context: Node

inv: Node.allInstances()->select(t |

t.parent.oclIsUndefined())->size() = 1

inv: self.parent.oclIsUndefined()

5 implies self.oclIsTypeOf(ActionNode)

inv: self.oclIsTypeOf(CategoryNode)

implies self.parent.oclIsTypeOf(ConditionNode)

inv: self.childNodes->isEmpty()

implies self.oclIsTypeOf(CategoryNode)

10 inv: not self.getType().conformsTo(self.parent.getType())

In the following, we introduce necessary steps to derive a PPEP instance
from a performance problem taxonomy and create an instance for a selected
part of the taxonomy shown in Figure 4.2.

4.4.2. Instantiating the Evaluation Plan

Based on the meta-structure explained before and shown in Figure 4.3, we
instantiate the PPEP for a selected set of SPAs that we consider in more
detail in the following chapters. To this end, we augment the grey part of the
taxonomy depicted in Figure 4.2. The selected part of the taxonomy, covers
database related performance problems as well as software bottlenecks. Both
classes of performance problems occur very frequently in practice (Grabner,
2010). Furthermore, the selected part of the taxonomy contains conceptually
different performance problems. This allows us, in the following chapters of
this thesis, to evaluate the APPD approach with respect to different types of
performance problems.

For the derivation of a concrete PPEP instance from a given taxonomy, we
define four steps based on the following considerations:

1. Characterization of Categories: Each node from the original taxon-
omy is specified by a unique set of characteristics that differentiates the
corresponding SPA from others. For each taxonomy node we capture
these characteristics as boolean expressions. In this way, we create for
each Category Node a preceding Condition Node. Parts of conditions
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can be moved to preceding Condition Nodes, if the corresponding
partial condition is common in all sibling Condition Nodes.

2. Derivation of Experiments: Based on the metrics used in the Condi-
tion Nodes we derive the definitions of experiments required to obtain
these metrics. Primarily, we get for each Condition Node an Action
Node describing the experiments to retrieve the data required for the
subsequent Condition Node.

3. Optimization: As experiment execution is expensive in terms of time,
we try to reduce the amount of Action Nodes in the PPEP instance.
Therefore, we remove Action Nodes with redundant experiments and
merge similar, light-weight experiments by moving and aggregating
corresponding Action Nodes up to the next ancestor Action Node.

4. Result Definition: Finally, we define for each Category Node the
template for the partial result by listing the artifact types that precisely
specify an instance of the corresponding SPA.

Applying these steps to the grey part of the taxonomy in Figure 4.2 yields a
PPEP instance as depicted in Figures 4.4-4.6.

Though a PPEP describes the high-level process for performance problem
diagnostics, the Action and Condition Nodes of a PPEP may represent com-
prehensive executions of performance tests and complex evaluations of
corresponding measurement data, respectively. Therefore, in the shown
instance of the PPEP, we describe the Action and Condition Nodes on a
high level of abstraction, whereby a detailed consideration of the actions and
evaluation of conditions is covered by corresponding detection heuristics
discussed in Chapter 6.

The root node of the PPEP is an Action Node describing the evaluation of
the end-to-end response times Re2e of all system services under a constant,
high load (cf. Figure 4.4). If a time frame exists in which the response times
Re2e exceed the threshold Treq defined in the performance requirements,
then a Performance Problem exists in the SUT. The result template of a
Performance Problem allows for specifying the guilty system services that
are responsible for the violation of performance requirements. Additionally,
the rate of cases can be specified that violate the performance requirements.
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Figure 4.5.: Performance Problem Evaluation Plan - Part 2

result template allows to specify the frequency, amplitude and duration of the
hiccups. If the end-to-end response times Re2e grow with the operation time,
then a Ramp anti-pattern has been observed specified by the slope of the
increasing response time curve. Finally, if the response times Re2e exceed
the threshold Treq permanently, without any particular pattern, we observe

111

If performance requirements are violated in periodic time frames, an Appli-
cation Hiccups anti-pattern is present in the SUT. In this case, the partial



4. Systematizing Diagnostics of Performance Problems

between the measured response times and the threshold Treq . In the case of
continuously violated requirements, we need to distinguish between Single
User Problems and scale-based problems (i.e. Traffic Jam) (cf. Figure 4.2).
To this end, the end-to-end response times, utilizations of different hardware
resources, and server statistics (e.g. database server, messaging server, etc.)
have to be evaluated under different load situations. If single-user response
times Re2e do not violate performance requirements, however, the response
times exceed the threshold Treq under higher load because of an unpropor-
tional growth of Re2e with the load, then a Traffic Jam is detected in the SUT.
A Traffic Jam is specified by the slope of the growing response times, i.e. the
increase of Re2e per additional user.

Figure 4.5 shows the continuation of the PPEP instance beneath the Traffic
Jam node. An OLB is a special case of a Traffic Jam that occurs if none of
the hardware resources exhibits a critical utilization (e.g. CPUs, Network,
etc.) and at the same time response times Re2e grow unproportionally with
the load. The result template allows for specifying the system services
that exhibit an OLB. Application-internal synchronization is a possible
cause for an OLB. In order to evaluate that alternative, we need to measure
the synchronization waiting times Wsync under different load intensities. If
Wsync grow significantly with the load, then the Dispensable Synchronization
anti-pattern is the root cause for the observed OLB. This root cause is
specified by the location of the synchronized code fragment, which can be
specified in the result template for the Dispensable Synchronization node.
Database requests constitute another potential root cause for an occurrence
of an OLB. Measuring the response times RDB of database requests under
different load intensities allows to evaluate whether the response times RDB

grow unproportionally with the load. If this is the case, then the database
requests are most likely the root cause for an observed OLB. A Databse OLB
result is characterized by the guilty SQL statement and the code location
where the corresponding database query is emitted. Finally, external services
constitute the third alternative root cause for an OLB. The evaluation of the
Bottleneck Service is similar to the Database OLB. If response times RES of
external services grow unproportionally with the load, then the corresponding
external service is the root cause for the occurrence of the OLB. For the three
root cause alternatives of the OLB we created three separate Action Nodes in
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overhead in the corresponding performance tests because of the detailed
retrieval of measurement data for each of the three Action Nodes.

Figure 4.6 shows the last part of the PPEP instance considered in this thesis.
Based on the measurement data retrieved in the experiments of the Action
Node preceding the Traffic Jam (cf. Figure 4.4), we can evaluate whether
the network or a messaging server are critically utilized. In this case, the
messaging behaviour of the SUT has to be evaluated under a scaling load
intensity. If the message throughput stagnates with an increasing load, we
can assume Excessive Messaging. The Blob and the Empty Semi Trucks
anti-patterns as potential root causes for Excessive Messaging need to be
evaluated in separation. For the Blob the participation in messaging pC
needs to be captured for each software component C under a constantly
high load intensity. If a component C∗ exists that has a significantly higher
participation pC∗ than all other components, then, in terms of messaging, C∗

is a Blob component that causes Excessive Messaging. The result template
for the Blob allows to specify the guilty component as the root cause. For
the evaluation of the Empty Semi Trucks anti-pattern the messaging patterns
needs to be evaluated under single-user load. If many small messages are
transmitted per user transaction, then we observe the Empty Semi Trucks
anti-pattern. In this case, the partial diagnostics result is specified by the
location of the code fragment that emits many small messages.

The right branch in Figure 4.6 shows another potential chain of causes for the
Traffic Jam anti-pattern. If a high utilization of the database CPU (CPUDB)
is observed, or any tables of the database are excessively locked, then we
observe Database Congestion. Observing the database access patterns under
single-user load allows to evaluate the Stifle anti-pattern as a potential root
cause for Database Congestion. To this end, we investigate whether many
database requests are emitted with the same SQL query pattern. In the
corresponding result template, an occurrence of a Stifle is specified by the
SQL query pattern and the location of the code fragment that emits the
corresponding database requests. An Expensive Database Call anti-pattern
is identified if single database calls have a long execution time.
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4.4.3. Systematic Search Using an Evaluation Plan

The PPEP provides a means to describes a process for performance problem
diagnostics. In this section, we explain a complimentary algorithm that
uses a PPEP instance to automate the systematic diagnostics of performance
problems.

4.4.3.1. Systematic Search Algorithm

The systematic search for performance problems and their root causes is
depicted in Algorithm 1. The algorithm is based on a breadth-first search on
a PPEP instance. Therefore, the algorithm is initiated with a PPEP instance
Ta (Algorithm 1, line 2). The result tree R (cf. line 4) is a projection of Ta
containing only Category Nodes. Hence initially, R reflects the original tax-
onomy that was used to derive Ta. In the algorithm, R serves as a structured
container for the diagnostics results. In particular, a final diagnostics result
is an instance of the original taxonomy, whereby each taxonomy node is an-
notated either with ’detected’ or ’not-detected’, respectively. For SPAs
that have been detected in the SUT, specific detection artifacts are attached
to the corresponding nodes in the result tree R. Hence, the diagnostics result
for a specific performance problem is the concatenation of the partial results
(cf. Figure 4.3) along the path from the problem’s deepest detected cause to
the root node of the taxonomy. Q constitutes a processing queue for PPEP
nodes used for breadth-first search (cf. line 7). Initially, Q contains only
the root node of the PPEP instance Ta. The setM is a repository for the
measurement data gathered during execution of the performance tests (cf.
line 8).

In the lines 11-13, all nodes of the result tree R are initially annotated with
’not-detected’. The subsequent loop (cf. lines 15-32) iterates over the
PPEP nodes in a breadth-first search manner. Depending on the type of the
node in process η, different activities are conducted (cf. lines 18-28) before
all children of η are enqueued to Q for processing (cf. lines 29-31). If the
node in process is an Action Node, the algorithm executes the performance
experiments defined in the corresponding node, and appends the gathered
measurement data to the data repository M (cf. lines 18-20). The data
repositoryM is used to evaluate the condition of a subsequent node of type
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Algorithm 1 Systematic Search Algorithm
Input:

Ta // an instance of the PPEP
Result:

R // the result tree R reflects Ta , but contains only Category Nodes
annotated with diagnostics results

5: Init:

R ← simplified Ta
Q ← {root node of Ta} // queue on PPEP nodes to be processed
M ← {} // set of measurement data
Algorithm:

10: for all τ ∈ R do
annotate τ as ’not-detected’

end for

while Q is not empty do
15: η ← pull first element of Q

ζ ← true // ζ is a guard, indicating whether to descend into the
sub-tree beneath η

if η is Action Node then
µ← executeExperiments(η) // returns measured data
M ←M ∪ {µ}

20: else if η is Condition Node then
ζ ← evaluateCondition(η ,M) // returns the boolean value of

the evaluated condition
else if η is Category Node then
τ ← corresponding node in R for η
annotate τ as ’detected’

25: ρ ← calculatePartialResult(η , M) // fill result template with
concrete information

attach ρ to τ
end if
if ζ is true then

enqueue all child nodes of η to Q
30: end if

end while
return R
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Condition Node (cf. lines 21-22). If a condition for a node η is evaluated to
false, the guard ζ ensures that the child nodes of η are not enqueued for
processing in lines 29-31. In this way, the entire sub-tree beneath η is skipped
and all Category Nodes of that sub-tree remain annotated as ’not-detected’.
However, if a condition is evaluated to true the descending Category Node η
will reach the lines 24-27 of the algorithm, meaning that the SPA represented
by η has been detected in the SUT. In this case, the algorithm annotates
the corresponding result node τ in R with ’detected’. Furthermore, based
on the measurement dataM and the result template of the Category Node
η (cf. Figure 4.3), the algorithm calculates the specific result artifact ρ
and attaches it to the result node τ. As soon as the queue Q is empty, the
algorithm terminates, returning the result tree R that contains information
about detected SPAs, and additional diagnostics information according to
the result templates.

Summing up, Algorithm 1 describes a high-level procedure of using a PPEP
for diagnostics of performance problems. In particular, the main complexity
of diagnosing performance problems is hidden behind the three tasks exe-
cuteExperiments(), evaluateCondition() and calculatePartialResult(). For
each SPA these tasks are encapsulated in a corresponding detection heuristic.
In Chapter 6, we discuss the detection heuristics in more detail and explain
how these tasks are conducted for the individual SPAs.

4.4.3.2. Complexity Considerations

Execution of performance experiments is very time consuming and, thus,
the critical factor that determines the time complexity of a performance
problem diagnostics approach. Hence, during diagnostics of performance
problems it is important to avoid execution of unnecessary experiments.
The introduced algorithm (cf. Algorithm 1) realizes a systematic search
for performance problems and their root causes while avoiding unnecessary
experiments. Without a systematic approach, the only alternative to diagnose
performance problems is the brute-force scan for all known SPAs. Therefore,
we qualitatively compare the computational complexity of the systematic
search algorithm against a brute-force diagnostics approach.

Let us assume that the set of all known SPAs has a cardinality of n. For that
n SPAs we would apply the described categorization, taxonomy derivation
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and augmentation steps to obtain a PPEP instance. For simplicity, let us
further assume that

• the resulting PPEP instance is a balanced tree with a height h and
width b that defines the number of child nodes per tree node.

• each Category Node has exactly one preceding Condition Node and
Action Node.

Hence, the number of Action Nodes in the PPEP instance is:

n =
h−1∑
i=0

bi = 1 + b
h−2∑
i=0

bi (4.1)

Applying the brute-force diagnostics approach means that each SPA is an-
alyzed individually. Independently whether and how many performance
problems (i.e. in this context: root causes) exist in the SUT, the brute-
force approach implies n evaluation steps, resulting in the following time
complexity:

CBF = n = 1 + b
h−2∑
i=0

bi (4.2)

The complexity of the Systematic Search Algorithm depends on the number
of existing performance problems in the SUT and their location in the PPEP
instance. Hence, depending on the number of performance problems we can
calculate a best-case and a worst-case complexity of the Systematic Search
Algorithm.

No performance problem In the case that no performance problem exists
in the SUT, no symptoms are visible from outside the SUT. Hence, the
first Condition Node in the PPEP would be evaluated to false, so that the
Systematic Search Algorithm terminates after one evaluation step. In this
case, the Systematic Search Algorithm is obviously significantly superior to
a brute-force diagnostics approach.
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One performance problem If the SUT contains exactly one root cause
of a performance problem, the algorithm would evaluate b alternatives on
each level of the PPEP instance and descend into the one branch that leads
to the root cause of the performance problems. The resulting complexity
CSSA(1) for one problem is:

CSSA(1) = 1 +
h−1∑
i=1

b = 1 + b (h − 1) (4.3)

For a PPEP instance with a height h > 2 and width b > 1 the complexity
of the Systematic Search Algorithm is smaller than the complexity of the
brute-force approach:

CSSA(1) = 1 +
h−1∑
i=1

b < 1 +
h−1∑
i=1

bi = CBF (4.4)

The benefit in time complexity of the Systematic Search Algorithm shown
in Equation 4.4 becomes more significant the wider and higher the instance
of the PPEP is. For instance, with a width of b = 2 and a height of h = 4
the Systematic Search Algorithm is more than double as efficient as the
brute-force approach with the complexities of CSSA(1) = 7 and CBF = 15,
respectively.

Multiple performance problems Given the case that the SUT contains x
root causes of performance problems, whereby 1 < x ≤ b, the complexity
CSSA(x) depends on the distribution of the root causes in the PPEP instance.
In the best case, the x root causes are located in the same PPEP branch, so
that the corresponding Category Nodes in the PPEP have the same ancestor
Category Node. In this case, the best-case time complexity Cbc

SSA
(x) of the

algorithm is the same as for one root cause (cf. Equation 4.4). By contrast, if
the root causes are equally distributed among different PPEP branches, the
Systematic Search Algorithm has to descend the entire depth of the tree x
times. Consequently, the worst-case complexity Cwc

SSA
(x) can be calculated

as follows:

Cwc
SSA(x) = 1 + b + xb (h − 2) , 1 < x ≤ b (4.5)
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Given the extreme case that x = b, the complexity Cwc
SSA

(x) is still smaller
than the brute-force complexity CBF :

Cwc
SSA(b) = 1 + b + b2 (h − 2) = 1 + b + b2 + b2 + . . . + b2

< 1 + b + b2 + b3 + . . . + bh−1

= 1 + b
h−2∑
i=0

bi = CBF

(4.6)

Many performance problems In the case, that the SUT contains a per-
formance problem instance for each leaf node of the PPEP instance, the
Systematic Search Algorithm would need to traverse the entire PPEP in-
stance resulting in a time complexity Cwc

SSA
that is equal to the complexity

CBF of the brute-force approach.

To sum up, the time complexity CSSA of the Systematic Search Algorithm is
never worse than the brute-force complexity CBF . Assuming that diagnostics
of performance problems is conducted on a regular, frequent basis, the
SUT should not contain many root causes for performance problems at
the same time. The SUT would contain only a few, if at all, different
performance problems. In such a case, the Systematic Search Algorithm is
significantly more efficient than a naive, brute-force diagnostics approach (cf.
Equations 4.4,4.6) and, therefore, increases the practicability of the APPD
approach.

4.5. Summary

In this chapter, we introduced a methodology to systematize the diagnostics
of performance problems. The core idea is to utilize the explicit knowl-
edge about recurrent types of performance problems, known as Software
Performance Anti-patterns (SPAs), and to structure that knowledge in or-
der to provide an explicit, systematic guidance in diagnosing performance
problems. We defined a process that describes by means of four activities
how to create a Performance Problem Evaluation Plan (PPEP) from a set
of SPA definitions. The first activity describes the step of gathering knowl-
edge about existing SPAs. Next, SPAs have to be categorized to gain a
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better understanding of the characteristics of individual SPAs. Based on
some observations regarding the definitions of SPAs, we developed a cate-
gorization template and applied the template to 27 selected SPAs. Based on
the categorization results, we were able to identify SPAs that are relevant
for our measurement-based diagnostics approach. Furthermore, we used
the insights from the categorization to create a taxonomy on performance
problems for the selected set of relevant SPAs. Augmenting the taxonomy
structure by additional information on diagnostics activities, we introduced
the meta-structure of the PPEP. We described the steps to be conducted in
order to derive a PPEP instance from a performance problem taxonomy and
demonstrated the instantiation on a selected part of the previously created
taxonomy. Finally, we introduced the Systematic Search Algorithm that
utilizes a PPEP to systematically search for performance problems and their
root causes. Conducting a theoretical analysis of the complexity of the Sys-
tematic Search Algorithm, we have shown that in most cases the Systematic
Search Algorithm exhibits a significantly higher efficiency than a brute-force
diagnostics approach.
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5. Specification Languages
for Performance Problem
Diagnostics

As described in Section 3.1, the main benefit of the Automatic Perfor-
mance Problem Diagnostics (APPD) approach results from the decoupling
of generic, context-independent knowledge about performance problem di-
agnostics and the context-specific information required for diagnostics of
performance problems. While the context-specific information needs to be
provided for every application context of APPD, the generic knowledge
is intended to be captured once in a generic way so that it can be reused
independently from the specific context. Both types of information need
to be captured in a proper, goal-oriented way facilitating the usage of the
APPD approach for the knowledge providers (i.e. performance experts) as
well as the end users of APPD (e.g. developers, system operators, etc.).
Hence, besides a language that allows to specify necessary context-specific
information for problem diagnostics, we need generic languages that allow
to capture experimentation rules in a system-, tool- and context-independent,
as well as reusable way.

In this chapter, we introduce the Performance Problem Diagnostics Descrip-
tion Model (P2D2M) that comprises four sub-meta-models for the definition
of context-specific information as well as generic experimentation descrip-
tions for performance problem diagnostics. Section 5.1 discusses the moti-
vation for a new description language for performance problem diagnostics.
The sub-meta-model for the specification of context-specific information
for the APPD approach is introduced in Section 5.2. In Section 5.3, we
introduce languages for the specification of generic experimentation rules,
instrumentation instructions and corresponding data formats for the resulting
measurement data. Finally, this chapter is summarized in Section 5.4.
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5.1. The Abstraction Layer

As mentioned in Section 3.2, an abstraction layer between a specific mea-
surement environment (including the System Under Test (SUT) and used
measurement tools) and our APPD approach is an essential part in order to
enable the development of generic, context-independent detection heuristics
for individual Software Performance Anti-patterns (SPAs). A properly de-
fined abstraction layer allows to specify detection heuristics in a generic way
while the specific application contexts (i.e. SUT, measurement tools, etc.)
can vary without the need to adapt the detection heuristics to the specific
contexts. In this section, we discuss the requirements on the abstraction layer
in order to identify its essential, constituent parts.

Figure 5.1 shows the context for the abstraction layer. The Measurement
Environment comprises the SUT as well as all tools used for conducting

124



5.1. The Abstraction Layer

measurements, including Load Generators, Instrumentation Tools and Mon-
itoring Tools. The Load Generators are responsible for emulating virtual
users that apply a load on the SUT. Instrumentation Tools are used to enrich
the SUT with measurement probes that retrieve measurement data from the
internals of the target application (e.g. response times of individual meth-
ods) as well as the corresponding landscape (e.g. utilization of hardware
resources). Finally, the Monitoring Tools are responsible to collect data
from the placed measurement probes. With respect to performance testing,
the measurement tools constitute the interface to the SUT. In particular, a
measurement-based diagnostics approach (such as our APPD approach) does
not interact directly with the SUT but over the measurement tools. Corre-
sponding to the different types of measurement tools, we distinguish three
relevant interface types in the Measurement Environment, as illustrated by
the different interface symbols (triangle, square, and diamond) in Figure 5.1.
Moreover, within an interface type the interfaces may differ depending on
the concrete tool implementations used in the specific context. For instance,
HP LoadRunner

TM
(LoadRunner 2014) and Apache JMeter

TM
(JMeter 2014)

provide different interfaces though both tools are load generators. The big
variety of existing measurement tools that can be used in specific contexts
constitutes a challenge that needs to be dealt with in order to create a generic,
automatic diagnostics approach.

The most top box in Figure 5.1 represents an implementation of the APPD
approach, comprising the systematic search for performance problems and
their root causes (cf. Chapter 4), as well as generically defined detection
heuristics for individual SPAs (described in detail in Chapter 6). In order to
bridge the gap between generically defined detection heuristics of the APPD
approach and specific Measurement Environments, two additional layers are
required in between: First, an Abstraction Layer enables the generic defini-
tion of detection heuristics based on a common understanding of underlying,
specific contexts (i.e. SUTs and measurement tools). Second, a layer of tool
Adapters transforms the generic concepts defined by the Abstraction Layer
to corresponding, tool-specific interpretations. Hence, instead of defining
detection heuristics specifically for each available combination of measure-
ment tools, with these two layers we reduce the complexity by shifting
the transformation of generic to specific knowledge to a more elementary
layer (Adapters layer) that is close to the individual measurement tools. The
essence of the Abstraction Layer is to provide generic languages and data
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formats that cover the core concepts of the corresponding interface types and
at the same time provide the basis for a generic specification of detection
heuristics for different SPAs. Consequently, we identified the following three
requirements for the Abstraction Layer:

• The Abstraction Layer must provide a language that allows to gener-
ically specify which performance tests should be executed by the
underlying load generators and how to execute them (cf. Load De-
scription in Figure 5.1).

• An Instrumentation Description language is required that enables to
specify instrumentation instructions (i.e. where and what to measure)
independently from the SUT and the used instrumentation tools.

• Finally, a Measurement Data format is required to provide a common
understanding of the measurement data returned by used monitoring
tools.

Based on these considerations, we develop the P2D2M that comprises four
sub-meta-models that constitute the Abstraction Layer and its binding to
a specific application context. Thereby, we specify the abstract syntax
and informal semantics of the languages. Figure 5.2 shows the four sub-
meta-models, their interrelationships, and their assignment to corresponding
stakeholder roles.

As mentioned in Chapter 3, in the context of our APPD approach, the per-
formance engineer is responsible for providing generic knowledge about
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diagnostics of performance problems. We further have shown that this
knowledge covers two aspects: knowledge about the generic process of diag-
nosing performance problems and the knowledge on the detection heuristics
for individual SPAs. In Chapter 4, we discussed in detail the former as-
pect, whereas, for the formalization of the knowledge on specific detection
heuristics the abstraction layer plays a crucial role. In particular, in order to
describe detection heuristics that follow the Systematic Selective Experimen-
tation (SSE) concept (cf. Section 3.2.1), the performance engineer requires
languages that allow him to generically specify experiment series and the
corresponding measurement data to be retrieved . To this end, we provide
the Experimentation Description meta-model and the Instrumentation and
Monitoring (IaM) Description meta-model. For each detection heuristic that
a performance engineer creates fo an SPA, he provides an experimentation
description that specifies which experiments need to be executed. Further-
more, the performance engineer specifies an IaM Description that specifies
which measurement data needs to be retrieved from the SUT for the detection
heuristic of the corresponding SPA. The IaM Description is attached to the
Experimentation Description for the SPA under investigation. Finally, the
performance engineer has to specify analysis strategies to be applied on the
measurement data gathered during corresponding experiments. Thereto, he
requires a common, context-independent way to access the measurement
data. To this end, we provide the Data Representation meta-model that pro-
vides a common representation of performance measurement data, as well
as its binding to corresponding entities of the IaM Description. By means of
the Experimentation Description, IaM Description and Data Representation
meta-models the performance engineer is able to define generic, context-
independent detection heuristics for individual SPAs. However in most cases,
the circumstances under which SPAs emerge as performance problems are
relative to the characteristics of a specific SUT (e.g. size or load of the SUT).
On the one hand, in order to support this relativity, the detection heuristics
must be defined in a way that they allow to be parametrized with context-
specific characteristics. On the other hand, a language is required that allows
a domain expert to provide the necessary, context-specific information for
a concrete SUT (e.g. the performance requirements for the SUT, or a de-
scription of the measurement environment components, etc.). To this end,
we introduce the Measurement Environment (ME) Description meta-model.
Corresponding model instances bind generic detection heuristics to specific
application contexts of APPD by providing context-specific information
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for the parametrization of the detection heuristics. While ME Descriptions
are created by domain experts for each individual application context of
APPD, the remaining models are assigned to the performance expert and are
intended to be created once for each individual, generic detection heuristic
of an SPA (cf. Section 3.1).

In the following, we introduce the abstract syntax of the four meta-models
and describe the corresponding informal semantics. We use UML Class
diagrams to present the abstract syntax of the languages.

5.2. Context-specific Description of the
Measurement Environment

In this section, we introduce the meta-model for the specification of context-
specific characteristics of concrete measurement environments and experi-
mentation related properties. We discuss the design goals for the meta-model
(Section 5.2.1) and describe the abstract syntax with the corresponding
informal syntax (Section 5.2.2).

5.2.1. Design Goals

The following goals guide the design of the ME Description meta-model:

Simplicity The ME Description is the only meta-model a domain experts
has to deal with in the context of using APPD. As discussed in Section 3.1,
the manual effort to provide context-specific information by the domain
expert as well as the effort for setting up the measurement environment
mainly constitute the per-project-effort of APPD and, thus, significantly
affect the cost-benefit ratio of APPD. Hence, it is important that the ME
Description meta-model allows a domain expert to provide the necessary,
context-specific information in a simple way so that the overhead for using
APPD is kept to a minimum. Consequently, the meta-model should be
designed as simple as possible in order to keep the complexity of creating
corresponding model instances low.
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Focus Experiment specification languages that support multiple-purposes
(such as D. Westermann et al., 2013) exhibit a high level of abstraction with
the costs of sacrificing specificity of semantics, i.e. the semantics of indi-
vidual meta-model elements are generic and, thus, context-independent. By
contrast, the ME Description language has the specific purpose of specifying
context-specific information for automatic, measurement-based performance
problem diagnostics. Hence, the corresponding meta-model should be tai-
lored for this purpose, comprising elements with clear, specific semantics. A
tailored meta-model fosters simplicity due to a better understanding of the
specific semantics.

Re-use In order to reduce the additional modelling effort for the domain
experts, the ME Description meta-model must not cover information that is
explicitly captured by other, existing artifacts or models. In particular, neces-
sary artifacts that typically exist in performance-aware software development
projects (cf. Section 3.3) should be re-used for APPD by referencing them
in the ME Description, but, the meta-model must not provide redundant
modelling constructs for the information covered by these artifacts.

Extensibility As mentioned before, the purpose of the ME Description
language is to cover context-specific information (e.g. specification of the
measurement environment) for performance problem diagnostics. However,
the information space in the scope of specific application contexts for APPD
is typically highly diverse and evolves over time (for instance, due to a high
variety of existing measurement tools, evolution of tools and releases of new
tools). Therefore, the meta-model for the ME Description must allow for
flexible extensibility. In particular, evolution or usage of a new measurement
tools must not imply changes on the meta-model.

5.2.2. Abstract Syntax

Figure 5.3 shows the abstract syntax of the ME Description meta-model.
The ME Description element is the root of the meta-model, comprising a set
of Environment Entities and exactly one Experimentation Configuration. As
described in Section 5.1, for APPD the set of measurement tools constitutes
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Figure 5.3.: Measurement Environment Description meta-model

the interface to the SUT as all interactions with the SUT are conducted over
the measurement tools. The set of Environment Entities reflects the set of
measurement tools used in a specific application context. More precisely,
each Environment Entity instance represents a deployed adapter to a mea-
surement tool (cf. Figure 5.1). Thus, assuming that the underlying adapters
conform to the corresponding, common interfaces, each Environment Entity
is identified by a name and specifies under which hostName (or IP) and port
the corresponding adapter is accessible. Furthermore, an Environment Entity
has a nodeRole that describes the role of the corresponding system node
in the measurement environment. Possible roles are: AppServer, DBServer,
MessagingServer and MeasurementNode. While the first three roles repre-
sent nodes of the SUT, the MeasurementNode role stands for all nodes that
are part of the measurement environment, however, that do not belong to the
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SUT (e.g. a load generator node). The Environment Entity meta-model ele-
ment itself is an abstract class. As mentioned in Section 5.1, we distinguish
three different roles of measurement tools: monitoring, instrumentation and
load generation tools. Often, the instrumentation and monitoring roles are
implemented in a single tool. Nevertheless, due to separation of concerns,
we consider load generation, instrumentation and measurement as separate
roles with individual types of interface. Corresponding to the measure-
ment tool roles, we distinguish three concrete Environment Entity types in
the meta-model: Monitoring Entities, Instrumentation Entities and Load
Generation Entities represent adapters to monitoring tools, instrumentation
tools, and load generators, respectively. Each concrete Environment Entity
is characterized by a corresponding type (monitoringType, instrType and
generatorType), modelled as a String attribute. These types refer to the
actual tool implementations used in the specific application context. For
instance, the generatorType of a Load Generation Entity may refer to an
HP LoadRunner

TM
(LoadRunner 2014) instance or an Apache JMeter

TM

(JMeter 2014) installation. The instrType and monitoringType may refer to
monitoring and instrumentation tools like Kieker (van Hoorn et al., 2012),
DiSL (Marek et al., 2012) or our Adaptable Instrumentation and Monitor-
ing (AIM) tool (Wert et al., 2015a). For the purpose of extensibility, we do
not explicitly include all available measurement tool types into the meta-
model. As a ME Description model is intended to be automatically parsed
by an implementation of the APPD approach (e.g. DynamicSpotter (Wert,
2015)), it is the responsibility of the implementation to validate the type
attributes of the Environment Entities and to evaluate whether corresponding
tool adapters exist. As different measurement tools may have tool-specific
configuration parameters, the meta-model allows to specify a set of key-value
pairs (cf. Configuration Element) for each Environment Entity. The Configu-
ration Elements are intended to be passed to corresponding measurement tool
adapters that interpret the configurations and apply them to the underlying
measurement tools. A Load Generation Entity must be assigned with at
least one User Behaviour Specification that describes the behaviour of the
virtual users to be emulated by the corresponding load generator. There are
sophisticating approaches to describe user behaviour for specific load gener-
ator tools (e.g. HP LoadRunner

TM
VUser scripts, or Apache JMeter

TM
test

scripts) or in a generic way (van Hoorn et al., 2008; Shams et al., 2006). Due
to the re-use and extensibility design goals (cf. Section 5.2.1), we abstain
from providing detailed modelling constructs for specifying user behaviour.
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Therefore, the User Behaviour Specification element is only a reference to
an existing artifact describing the user behaviour. The User Behaviour Speci-
fication is characterized by a behaviour specification type (behSpecType) and
a reference String. While the behSpecType specifies the type of the external
artifact (e.g. HP LoadRunner

TM
VUser script), the reference constitutes a

pointer to the actual artifact. Depending on the artifact type, the reference
may contain a file name (e.g. path to a VUser script file), a pointer to another,
external model element (e.g. a User Behaviour Model element as described
in van Hoorn et al., 2008), or any other type of pointer. Again, it is the
responsibility of the APPD implementation to resolve the User Behaviour
Specification references and to ensure that the behSpecType matches the
generatorType of the Load Generation Entity using the corresponding User
Behaviour Specification.

The Experimentation Configuration element covers all boundary conditions
on the experiment execution implied by the specific application context.
First, the Experimentation Configuration serves as a container for all User
Behaviour Specifications that should be used in the application context po-
tentially by different load generators. As proper experiment timings highly
depend on the characteristics of the specific SUT, the Experimentation Con-
figuration allows a domain expert to specify common experimentation times:
default warm-up time, default cool-down time, and default experiment du-
ration. The maxLoad attribute specifies the maximum load that the SUT
should be able to handle without running into performance problems. Finally,
the Experimentation Configuration comprises a set of Performance Require-
ments Specifications (PRS) that determine under which circumstances the
performance requirements can be considered as violated in the specific ap-
plication context. Hence, the Performance Requirements Specifications
determines under which circumstances a performance problem is present
and, thus, when APPD should resume with deeper diagnostics. We provide
two concrete Performance Requirements Specifications: the Response Time
Threshold and the PRS Reference. The Response Time Threshold allows
to specify performance requirements in a very simple way by providing a
fix threshold for the response time of a target service and a corresponding
percentile that specifies in how many percent of cases the threshold must
not be exceeded. The PRS Reference allows to reference an external per-
formance requirements artifact that may be specified using sophisticated
performance requirements and Service Level Agreement (SLA) specification
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languages (Frølund et al., 1998; Leue, 1995; Ren et al., 1997; Lamanna
et al., 2003; Keller et al., 2003). With the requirements specification type
(reqSpecType) and reference attributes, the PRS Reference uses the same
reference mechanism as explained for the User Behaviour Specification
element. Examples of instances for this part of the P2D2M are shown in
Section 6.2.2 and Section 7.2.

5.3. Generic Specification of
Performance Tests

In this section, we introduce three interdependent meta-models describing
languages for generic specification of performance test series, including
an Experimentation Description characterizing the load series, an IaM De-
scription specifying the data to be measured (Wert et al., 2015b), and a
Data Representation model describing the data format for measured data.
While the ME Description introduced in the previous section is intended
to be used by domain experts to provide context-specific information, the
languages introduces in this section constitute the basis for the definition of
generic detection heuristics by performance engineers. Explicit definitions
of detection heuristics imply some important benefits: First, explicit defi-
nitions of performance tests can be more easily maintained and improved
over time. Second, generic, explicitly written down detection heuristics
support interchange of knowledge in performance problem diagnostics and
propagation of best practices. In this way, common mistakes in performance
evaluation as described by Jain, 1991 can be reduced. Finally, the most
important aspect for this thesis is that generic, explicit detection heuristics
are automatable. As key enabler for generic, explicit definitions of detection
heuristics, the languages introduced in this section constitute an important
part of the APPD approach. In the following, we introduce the design goals
for the meta-models and introduce their abstract syntax while discussing the
corresponding, informal semantics. Note that parts of this section are based
on our publication (Wert et al., 2015b) and the supervised Master’s Thesis
(Schulz, 2014).
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5.3.1. Design Goals

The following three design goals apply to all three meta-models introduced
in this section:

Abstraction In order to enable generic definition of detection heuristics, the
languages used for their definition have to abstract from any context-
specific information. In particular, the languages must abstract from
concrete target applications, programming languages of the target
application, used measurement tools as well as performance require-
ments of the specific context. Hereby, we assume that the program-
ming languages are from the set of modern-day managed runtimes (cf.
Section 3.3.1).

Focus Description languages with a clear focus on a certain domain allow
to define expressive models with specific semantics while reducing
complexity and effort of model creation. Though the meta-models
introduced in this section are intended to be generic with respect to
SUTs and measurement tools, they nevertheless are designed for a
particular purpose. The focus of the meta-models lies on the definition
of performance test plans for diagnostics of performance problems.

Declarativity We propose a declarative description of the execution of ex-
periments and the SUT instrumentation in order to decouple the What
from the How. More precisely, while the description languages declar-
atively describe which experiments to execute, what data to measure,
and what the desired data format is, they abstain from determining the
realization.

From the three meta-models introduced in this section, the IaM Description
meta-model is the most complex and challenging with respect to conceptu-
alization and design. The process of instrumenting a target application is
per se application-specific. Hence, we have to develop new instrumentation
description concepts in order to enable a generic IaM Description language.
Furthermore, the design of the IaM Description may influence the measure-
ment overhead of the realized instrumentation instructions. Therefore, we
identified the following additional design goals for the IaM Description
meta-model:
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Orthogonality An instrumentation instruction describes two different as-
pects: Where to measure, and What to measure (cf. Section 2.3). In
general, both aspects are independent from each other and can be
comprehensive and complex. In order to be independently reusable,
these aspects need to be defined independently from each other.

Composability In order to provide a flexible and expressive way of de-
scribing instrumentation instructions, the meta-model needs to be
composable. Besides the orthogonality of Where and What to measure,
individual model elements should cover basic, minimalistic aspects
of the SUT and the measurement data of interest. In this way, in-
strumentation descriptions can be kept simple (e.g. in order to keep
the measurement overhead low), while advanced descriptions can be
composed from elementary parts, when needed.

5.3.2. Abstract Syntax

In this section, we introduce the abstract syntax and the informal semantics
of the three meta-models Experimentation Description, IaM Description and
Data Representation (cf. Figure 5.2).

5.3.2.1. Experimentation Description

As described in Section 3.2.1, the APPD approach is based on the Systematic
Selective Experimentation (SSE) concept. Hence, each detection heuristic
implies execution of at least one, mostly multiple, experiments, whereby
individual experiments differ in the load and the instrumentation of the
SUT during the experiments. A performance engineer that defines detection
heuristics requires a specification language that allows him to describe such
series of experiments in a context-independent way. To this end, we pro-
vide the Experimentation Description meta-model whose abstract syntax is
depicted in Figure 5.4.

An Experimentation Description is intended to be instantiated for the defini-
tion of each individual detection heuristic developed for an SPA. Constituting
the root element of the meta-model, the Experimentation Description ele-
ment consists of an Experiment Plan and a reference to an IaM Description.
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While the Experiment Plan describes the experiments to be executed for the
corresponding detection heuristic, the attached IaM Description specifies the
measurement data to be retrieved from the SUT during the execution of the
Experiment Plan. An Experiment Plan is specified in a generic way that,
however, is relative to the context-specific information provided in the ME
Description meta-model (cf. Section 5.2). For instance, the semantics of the
«depends» relationship includes that during the execution of the specified
Experiment Plan, the load generators specified in the ME Description model
execute the virtual user behaviours specified in the corresponding User Be-
haviour Specifications (cf. Figure 5.3). We distinguish two different types
of Experiment Plans: Experiment and Experiment Series. While an Experi-
ment describes a single performance test, an Experiment Series represents a
sequence of different performance tests. An Experiment can have an arbi-
trary set of experiment specifying parameter values that appear in the final
measurement data as additional specification of data. The Parameter Value
element is further defined in the Data Representation meta-model explained
further below in Section 5.3.2.3. The meta-model provides three different,
concrete Experiment types. The Load Test element represents a performance
test with the maximum allowed load intensity. Hence, the concrete semantics
of this element depends on the maxLoad attribute of the Experimentation
Configuration element in the ME Description model. The Single-user Test
describes a performance test with a minimum load intensity (i.e. one user
in the case of a closed workload), whereby no concurrent user requests are
allowed. The default, context-specific experimentation times specified in
the Experimentation Configuration element of the ME Description model
should be used for both the Load Test and the Single-user Test. Furthermore,
both the Load Test and the Single-user Test have an implicit experiment
specifying Parameter Value that captures the corresponding load intensity.
Finally, the Custom Test allows to specify a performance test with custom
experimentation timings and custom load. However, all value specifications
of the Custom Test are relative to the default values of the Experimentation
Configuration, too. In particular, the attributes of the Custom Test allow to
specify a multiplication factor for the corresponding default values. As exper-
imentation timings and performance requirements are defined by the domain
expert in the ME Description model, the performance engineer does not need
to think about absolute values when using the Experimentation Description
meta-model for defining generic detection heuristics, but, provides relative
scales for the individual attributes. Besides the three Experiment types, the
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Figure 5.4.: Meta-model for the Description of Experiment Series

meta-model provides two types of Experiment Series. The Custom Experi-
ment Series allows to explicitly specify an arbitrary sequence of Experiments.
In contrast, the Scaling Experiment Series describes an implicit sequence
of performance tests, whereby the load intensity is evenly increased from
one experiment to the next. The first experiment starts with the minimum
load (i.e. one concurrent user), and the last experiment is executed with
the maximum load that is specified in the Experimentation Configuration
element of the ME Description model. The numOfSteps attribute specifies
the number of experiments (with a minimum of 2) to be executed as part
of the Scaling Experiment Series and, thus, determines the interval of the
increase in load between two consecutive experiments.
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Figure 5.5.: Overview on the Instrumentation and Monitoring
Description meta-model

5.3.2.2. Instrumentation and Monitoring Description

As discussed in the previous section, an IaM Description is an essential com-
plement to an Experimentation Description, specifying which data should be
retrieved from the SUT during the execution of the specified experiments. In
this section, we describe the abstract syntax and the informal semantics of
the IaM Description meta-model. Note that this section is closely based on
our publication (Wert et al., 2015b).

Overview Following the three general design goals and the two specific
design goals (cf. Section 5.3.1), we created a meta-model for the IaM De-
scription as depicted in Figures 5.5-5.9. Figure 5.5 shows an overview of the
IaM Description meta-model. The IaM Description element constitutes the
root element of the model. As stipulated in the Orthogonality design goal (cf.
Section 5.3.1), we divided the meta-model along two dimensions. On the
one hand, we distinguish between scopes (i.e. where to measure) and probes
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(i.e. what to measure). On the other hand, we distinguish between instru-
mentation and sampling. Hereby, instrumentation is the process of enriching
the target application with measurement probes to retrieve measurement data
directly from the execution of the target application (i.e. monitoring of the
control flow within the target application). The IaM Description does not
specify how instrumentation should be realized in a concrete target applica-
tion, but, declaratively describes where and what to measure. Consequently,
specific instrumentation tools may choose from different instrumentation
techniques applicable in the specific application contexts, as long as they
achieve the desired instrumentation state specified in the IaM Description.
For instance in Java, instrumentation can be realized by bytecode manipu-
lation (Dahm, 1999), augmentation of source code or even by hooking of
events emitted by the Java Virtual Machine (JVM). Similar, techniques exist
in the area of .NET. In contrast to instrumentation, sampling constitutes the
process of periodically retrieving measurement data from target resources.
Hereby, resources may be either hardware resources (e.g. CPU, Memory,
Network Interface, etc.) or software processes with managed statistics that
can be queried periodically (e.g. Database server statistics, JVM Heap
statistics, etc.). Accordingly to the two dimensions of differentiation, an
IaM Description element comprises a set of Sampling Entities and a set of
Instrumentation Entities. A Sampling Entity consists of a Sampling Scope
describing where to sample measurement data for resources, and a set of
Sampling Probes specifying which resources to sample. Analogously, an
Instrumentation Entity comprises an Instrumentation Scope specifying where
to inject measurement probes, and a set of Measurement Probes specifying
what to measure in the corresponding scope, respectively. Finally, a IaM
Description may contain a global Restriction that restricts the scope of all at-
tached Sampling and Instrumentation Entities. Furthermore, both Sampling
and Instrumentation Entities may have local Restrictions as denoted by the
corresponding dependency association in Figure 5.5. We explain the local
restrictions further below.

Instrumentation Scopes Figure 5.6 shows a detailed view on the Instru-
mentation Scope. The Instrumentation Scope element, per se, is an abstract
class with two specializations: Method Enclosing Scope and Synchronization
Scope. The Synchronization Scope represents all points in the execution
of the target application where one or more threads have to wait for the
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Figure 5.6.: Instrumentation and Monitoring Description meta-model: scopes

availability of a software resource that is locked by other threads. Connec-
tion pools, thread pools, concurrent file accesses, or semaphores are typical
places where synchronization occurs. From a technical perspective, the
Synchronization Scope covers all events when a lock is acquired or released.

The Method Enclosing Scope is an abstract class that subsumes all scopes
that, in modern-day managed programming languages (e.g. Java, .NET, etc.),
can be resolved to a set of methods or method invocations. Hereby, we
distinguish six scope types:

Method Scope The Method Scope can be used to directly specify a set of
methods to be instrumented. The methods are specified by a set of
name patterns, whereby the patterns may contain wild-cards. Each
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method whose full qualified name matches at least one of the patterns
is covered by the corresponding Method Scope element.

Constructor Scope The Constructor Scope is conceptually similar to the
Method Scope, however, explicitly covers only class constructors. The
patterns, specified in a Constructor Scope element, represent names of
classes whose constructors should be instrumented. Hence, all class
constructors whose class names match at least one of the patterns are
within the corresponding Constructor Scope.

Allocation Scope The Allocation Scope is closely related to the Constructor
Scope, however, constitutes a wider scope. The intention of the Allo-
cation Scope is to cover invocations of class constructors, instead of
directly instrumenting constructors. Furthermore, the allocation scope
covers all instantiations of objects, even if they cannot be covered by
the Constructor Scope because of technical reasons (e.g. instantiation
through reflection in Java).

For the specification of the Method, Constructor and Allocation Scopes the
name patterns must be specified. Hence, knowledge about the specific appli-
cation is required to specify these type of scopes. Therefore, we categorize
these scopes as application-specific scopes. Besides the application-specific
scopes, the meta-model provides three generic scopes of the Method Enclos-
ing Scope type:

API Scope The Application Programming Interface (API) Scope element
is an abstract class subsuming all scopes that cover abstract APIs.
Abstract APIs represent generic concepts that are common in modern-
day, managed programming languages in the domain of enterprise
software development. The database access API is a typical example
for an abstract API that exists in all programming languages that are
used for developing enterprise software systems. Though the concepts
behind abstract APIs are common in these programming languages,
the way the individual APIs are realized in the different languages and
runtimes may strongly vary. In order to enable a generic language
for instrumentation description, we use abstract APIs in the meta-
model of the IaM Description instead of referring to concrete APIs
that may very from context to context. Conversely, this means that the
individual instrumentation tools and their adapters (cf. Figure 5.1) take
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over the responsibility of mapping abstract APIs to concrete APIs of
the corresponding application contexts. In the following, we describe
the seven API Scopes that are supported by our IaM Description meta-
model and introduce examples how the corresponding abstract APIs
are usually realized in Java (Stärk et al., 2001) and .NET (Box et al.,
2002).

The Entry Points API scope covers all points in the target applica-
tion where the control flow enters the application. In Java, the Entry
Points scope covers all Java Servlets (Hunter et al., 2001) as well
as all interface implementations related to the Java API for RESTful
Web Services (JAX-RS) (Burke, 2009) or the Java API for XML Web
Services (JAX-WS) (Vohra, 2012). In .NET, the Windows Commu-
nication Foundation (WCF) (Lowy, 2010) contains all concrete APIs
that are necessary to realize application entry points, such as Web Ser-
vices or REST interfaces. Prior to WCF, .NET provided the ASP.NET
Web Services API (Tabor, 2001).

The Messaging API scope subsumes all code fragments of the tar-
get application, where remote communication (i.e. communication
beyond simple method invocations) between individual software com-
ponents is conducted. In Java, this scope covers all code fragments
where messages (or procedure invocations) are sent or received us-
ing the concrete APIs Java Message Service (JMS) (Richards et al.,
2009) or Remote Method Invocation (RMI) (Grosso, 2002). In .NET,
messaging and remote procedure calls are typically realized using
the Microsoft Message Queue (MSMQ) middleware (Redkar et al.,
2004) and the WCF or .NET Remoting APIs (Szpuszta et al., 2005),
respectively. Hence, MSMQ, WCF and .NET Remoting define the
concrete scope that the abstract Messaging API scope needs to be
mapped to by a .NET instrumentation tool.

All modern-day languages provide a way to access a relational database.
For instance, the Java Database Connectivity (JDBC) interface (Reese,
2000) is usually used to access a database from Java code. ADO.NET
(Holzner et al., 2003) provides corresponding set of classes for ac-
cessing a database in the world of .NET. In our IaM Description
meta-model, the Database Access scope represents the abstract con-
cept of a common database access layer. Hence, this abstract API is
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intended to be mapped to JDBC and ADO.NET elements in the world
of Java and .NET, respectively.

The Logging API scope covers all code lines of the target application
that are related to logging and, thus, are not critical for the function-
ality of the target application. In modern-languages, usually com-
mon frameworks are used for logging, constituting the concrete APIs
that the abstract Logging API is intended to be mapped to by corre-
sponding instrumentation tools. While the Java Logging API (Java
Logging 2014), Apache log4J

TM
(Gupta, 2005), slf4J

TM
(SLF4J 2014)

or Apache Commons Logging (Commons Logging 2014) are the
most used logging frameworks in Java, in the world of .NET the
following frameworks and libraries are available for logging: NLog
(NLog 2014), SmartInspect

TM
(SmartInspect 2014), Apache log4net

TM

(Log4Net 2013), and Microsoft Enterprise Library (Enterprise Library
2015).

The Object-Relational (OR) Mapping scope represents all frameworks
that are used to map relational database structures to object-oriented
constructs. In Java, the Java Persistence API (JPA) (Keith et al., 2006)
constitutes a standard interface for OR Mapping frameworks. In
.NET, the ADO.NET Entity Framework (Holzner et al., 2003), LINQ
(Calvert et al., 2009) are the mostly used frameworks for realizing OR
Mapping.

The Transaction API scope covers all standard APIs that are used to
implement business transactions. The Java Transaction API (JTA)
(Sriganesh et al., 2006) and the Lightweight Transaction Manager
(LTM) (Lowy, 2010) (i.e. System.Transactions namespace in .NET)
constitute the standard APIs for transaction handling in Java and .NET,
respectively.

Finally, the Component Boundaries scope covers all entry points into
individual software components. In Java, public methods of Enterprise
JavaBeans (Monson-Haefel, 2004) or exported packages of OSGI
bundles (McAffer et al., 2010) represent component boundaries of the
corresponding software component models. In .NET the component
model is natively integrated into the the .NET framework.
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Trace Scope The Trace Scope covers all methods along the dynamic traces
originating from the specified sub-scope. Hereby, the dynamic traces
are the call trees whose root nodes are from the set of methods that
are covered by the sub-scope.

Modifier Scope The Modifier Scope allows to specify a set of method mod-
ifiers as strings (e.g. public, private, etc.). This scope covers all
methods of the target application whose modifiers match all modifiers
specified in the Modifier Scope.

As shown in Figure 5.6, the IaM Description meta-model allows both defi-
nition of application-specific scopes as well as generic scopes. Despite the
requirement for an abstract meta-model (cf. Section 5.3.1), for the defini-
tion of detection heuristics both kinds of scopes (i.e. application-specific
and generic scopes) are essential. The generic scopes can be used to get a
first insight on a concrete SUT without knowing any internals of it. Based
on the measurement data gained from experiments using generic scopes,
the detection heuristics may retrieve application-specific information. The
application-specific information can then be used with application-specific
scopes to dig deeper into the internals of the SUT. Note that the defini-
tions of detection heuristics still remain generic, as long as the usage of
application-specific scopes is parametrized. In particular, for the specifica-
tion of application-specific scopes one must not use concrete values (e.g.
no concrete method names for the patterns of the Method Scope) but use
parameters whose values are derived from previous experiments.

In addition to the different types of scopes, a local Restriction (cf. Figure 5.6)
allows to specify further restrictions to an Instrumentation Scope. In the
following paragraph, we describe the Restriction element in more detail.

Restrictions Figure 5.7 shows the part of the IaM Description meta-model
that contains the Restriction class and related elements. The purpose of the
Restriction is to provide a way to limit the extent of an Instrumentation
Scope or a Sampling Scope (cf. Figure 5.5). A Restriction comprises three
levels: The System Node allows to restrict the instrumentation or sampling
to specific nodes of the SUT. Such nodes can be specified in a specific way
using a hostName and IP (SpecificNode) or the the NodeByRole element
can be used to cover all system nodes that correspond to the corresponding
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role value. In the latter case, the roles are mapped to the System Node Role
of the ME Description (cf. Section 5.2.2). The Process element allows to
limit the instrumentation scope to certain operating system processes iden-
tified by a processName or a processID. Finally, the includes and excludes
sets restrict the scopes on the application level. While the specification of
Process restrictions is SUT-specific, the application-level restrictions refer
to Instrumentation Scope elements that can be both application-specific or
generic as explained in the previous paragraph. Hereby, the application-level
restriction has the following semantics: Let us assume that M is the set of
all methods in the target application, S is the set of methods defined by a
scope X (without regarding the restrictions), and Ini , Ex j are the inclusive,
respectively exclusive, scopes of the local Restriction (cf. Figure 5.6) for X .
Then, the scope X is resolved to the following set of methods:

X = S ∩ *
,

⋂
i

Ini+
-
∩

*.
,

⋂
j

M\Ex j
+/
-

(5.1)

Hence, the Restriction realizes the composability design goal. On the one
hand, the Restriction allows to compose elementary Instrumentation Scopes
to comprehensive scope constructs enabling description of complex scopes.
On the other hand, definitions of Instrumentation Scopes remain simple, if
complex scopes are not required.

All parts of the Restriction element are optional. Hence, if no restrictions
are defined for a certain type of element, then the scope on that level is
unlimited. For instance, if no System Node restriction is specified, then the
corresponding Instrumentation Entity or Sampling Entity (cf. Figure 5.5)
is applied to all nodes of the SUT. Additionally to the local Restrictions of
individual Instrumentation Entities, an IaM Description can have a global Re-
striction which applies to all Instrumentation Entities and Sampling Entities
(cf. Figure 5.5).

Measurement Probes While Instrumentation Scopes describe where to
instrument, Measurement Probes define what to measure. Measurement
Probes are closely related to the result types of measurement data that are
expected to be returned for a measurement. Therefore, as shown in Figure 5.8,
a Measurement Probe corresponds to a Record Type and vice versa. A Record
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Figure 5.7.: Instrumentation and Monitoring Description meta-model: restriction

Type is an element from the Data Representation meta-model (explained in
more detail in Section 5.3.2.3) and describes the structure of measurement
data that is expected for the corresponding Measurement Probe.

The Measurement Probe is an abstract class that has several concrete spe-
cializations. In general, measurement probes are not specific to individual
scopes. Hence, where reasonable, we keep measurement probes independent
from instrumentation scopes so that a measurement probe can be combined
with a possibly wide range of instrumentation scopes. However, some mea-
surement data is very specific to the type of location where it is retrieved
from. For instance, an SQL statement can only be retrieved from database
related scopes. In this cases, we limit the applicability of the measurement
probes by specifying corresponding Object Constraint Language (OCL) con-
straints. The IaM Description meta-model comprises five probe types that
are applicable to all instrumentation scopes (cf. Figure 5.6): The Response
Time probe captures the response time of the correspondingly instrumented
methods (i.e. the difference in time between the control flow entering and
leaving the method). A Response Time probe has a time unit (tu) attribute
that specifies the time unit of the measured response time. The CPU Time
probe measures the CPU demand of the target method. Hereby, the CPU
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Figure 5.8.: Instrumentation and Monitoring Description meta-model: probes

demand is the time a thread consumes on the CPU while processing the
corresponding method. Analogously to the Response Time probe, a time
unit can be specified for a CPU Time probe. The Trace ID probe captures an
identifier for the current trace. Typically, the thread ID constitutes the trace
identifier within an application instance. In the case of remote communica-
tion, the trace ID needs to be transferred from one system node to the other in
order to be able to reconstruct traces from corresponding measurement data.
The Stack Trace probe allows to capture the entire stack trace of a method
execution. As retrieving the stack trace is typically a relatively expensive op-
eration with respect to performance overhead, the Stack Trace probe should
be used with caution. Finally, the Memory Footprint probe measures the
difference in memory that a thread consumes when processing the target
method. The memory unit attribute (mu) specifies the unit of memory for
the measured footprint.
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Besides the generically applicable measurement probes, the meta-model
comprises some probes that are specific to some selected scope types. As
database requests often have a significant impact on the overall performance
of an SUT, for some performance problem detection heuristics it is essential
to capture measurement data related to database requests. To this end the
meta-model provides the DB Result Size and DB Query probes. While, the
DB Query probe captures the SQL statement executed in a database request,
the DB Result Size probe measures the size (i.e. number of rows) of the
corresponding database result. The usage of these two probes is limited to
the Database Access API scope. The Message IDs and Message Sizes probes
are applicable only with the Messaging API scope. The Message IDs probe
captures the ID of transmitted messages in order to correlate transmissions of
messages with their receptions. The Message Sizes probe captures different
sizes of messages, including payload sizes as well as meta-data sizes of
messages. The message sizes are measured using the specified memory unit
(mu). Finally, the Queue Length and Waiting Time probes are intended for
the Synchronization Scope, measuring the number of threads waiting for a
locked software resource and the corresponding waiting times, respectively.
The time unit (tu), for measuring the waiting time, can be specified in the
corresponding Waiting Time probe.

Sampling A Sampling Entity is structured in a similar way as an Instru-
mentation Entity, comprising a Sampling Scope and a set of Sampling Probes
(cf. Figure 5.9). Furthermore, a Sampling Entity specifies a delay (in
milliseconds) determining the frequency of the sampling routine for the
corresponding entity. The Sampling Scope comprises an optional set of
System Nodes and an optional set of Processes. Analogously to the Restric-
tion element (cf. Figure 5.7) the System Nodes and Processes restrict the
sampling of the corresponding Sampling Entity to certain SUT nodes and
operating system processes. In this way for instance, the CPU consumption
of individual processes can be measured. Orthogonally to the Sampling
Scope element, the set of Sampling Probes defines which resource charac-
teristics shell be sampled. Analogously to the Measurement Probe element,
a Sampling Probe corresponds to a Record Type that defines the structure
for the data to be sampled by the corresponding probe. Sampling probes
may cover characteristics of hardware resources, such as Network Utiliza-
tion, CPU Utilization, Disk I/O and Memory Usage, as well as statistics on
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software resources, such as Database Statistics or Messaging Statistics. The
Network Utilization probe periodically captures the bandwidth utilization
of each available network interface. Hereby the utilization is defined by the
ratio of transmitted data per time unit and the available bandwidth. Analo-
gously, the CPU Utilization probe captures the utilization of each CPU core
that is covered by the corresponding Sampling Scope. The Memory Usage
periodically retrieves the usage characteristics of the Heap memory for the
corresponding SUT processes (i.e. used space divided by available space).
The Disk I/O probe measures the frequency of disk reads and writes for the
corresponding processes. Both Messaging Statics and Database Statistics
probes retrieve statistical information from the corresponding servers. For in-
stance, the Database Statistics probe periodically retrieves from the database
management system how many locks are currently hold, how many queries
are processed and what is the current lock holding time. The Messaging
Statics probe captures the capacities and lengths of messaging queues as
well as the corresponding message throughputs.



5. Specification Languages for Performance Problem Diagnostics

Dataset

Dataset 

Row
Record

*
rows

1..*

records

+ name : String

Record Type

+ name: String

+ type : Sup. Types

Parameter

*parameters

1

type

+ value : T

Parameter 

Value

*

parameterValues

1

type + Integer

+ Double

+ String

+ Boolean

<<enum>>

Supported Types
*

specifierValues

Measurement 

Probe

Measure 

Parameter

Specifier 

Parameter

*

experimentSpecifiers1

type

Instantiation Level Definition Level

T

Dataset Type

Sampling 

Probe1recordType

Figure 5.10.: Measurement Data Representation

150

5.3.2.3. Measurement Data Representation

The Experimentation Description and IaM Description meta-models provide
means to specify for a detection heuristic which experiments should be
executed and what kind of measurement data should be gathered during the
execution (cf. Section 5.3.2.1 and Section 5.3.2.2). However, in order to
complete a detection heuristic a performance engineer has to provide generic
analysis algorithms that operate on the gathered measurement data. In order
to specify generic analysis algorithms, the performance engineer must be
able to rely on common measurement data structures (i.e. independent from
monitoring tools) that correspond to the applied IaM Description instance.
To this end, we provide the Data Representation meta-model as shown in
Figure 5.10.
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Following the multi-level modelling approach (Atkinson et al., 2001; Atkin-
son et al., 2011), we divide our Data Representation meta-model into two
levels (i.e. ontological level in Atkinson et al., 2011): Definition Level and
Instantiation Level. The Definition Level of the meta-model provides mod-
elling elements that allow to describe structures of measurement data. Hence,
the Definition Level is intended to be used by performance engineers for
the development of analysis algorithms as part of creating detection heuris-
tics. By contrast, the Instantiation Level comprises elements that represent
concrete measurement data instances as they are returned by the monitor-
ing tools. Thereby, some of the elements on the Instantiation Level can be
considered as ontological instances (Atkinson et al., 2011) of the Definition
Level elements.
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Listing 5.1: OCL rules for the Data Representation meta-model

// unique parameter names in a Record Type

context: Record Type

inv: self.parameters->isUnique(p:Parameter | p.name)

// unique parameter names in a Dataset Type

5 context: Dataset Type

inv: self.experimentSpecifiers->

union(self.recordType.parameters)->

isUnique(p:Parameter | p.name)

10 // correspondence of record’s Parameter Values

// and Record Type Parameters

context: Record

inv: self.parameterValues->

collect(pv:Parameter Value | pv.type).asBag()

15 = self.type.parameters.asBag()

// specifier Parameter Values are unique in a Dataset Row

context: Dataset Row

inv: self.records->first().type.parameters->select

20 (par:Parameter | par.oclIsTypeOf(Specifier Parameter))

->forAll(

sp:Specifier Parameter | self.records->

collect(rec:Record | rec.parameterValues)->

flatten()->

25 select(pv:Parameter Value | pv.type = sp)->

collect(pv:Parameter Value | pv.value)->

asSet()->size() = 1)

// 1) Record Type is unique for a Dataset

30 // 2) correspondence of dataset’s specifier values

// and Dataset Type experiment specifiers

context: Dataset

inv: self.rows->collect(row:Dataset Row |

row.records->collect(rec:Record | rec.type))

35 ->flatten()->asSet()->size() = 1

inv: self.rows->collect(row : Dataset Row |

row.specifierValues->

collect(pv:Parameter Value | pv.type))

->flatten() = self.type.experimentSpecifiers
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As mentioned in Section 5.3.2.2, sampling probes and measurement probes
have corresponding Record Types that describe the structures of the measure-
ment data that is captured by the probes. A Record Type is identified by a
name and comprises a set of Parameters. A Parameter is characterised by a
name and a type, whereby the type is from the Supported Types enumeration
that comprises basic data types. The parameters collection of a Record
Type must not have parameters with the same name (cf. OCL constraint
in Listing 5.1, lines 1-3). We distinguish two concrete specializations of
the abstract Parameter element: Measure Parameter and Specifier Parame-
ter. While a Specifier Parameter describes the circumstances under which
a measurement has been taken, a Measure Parameter describes what has
been measured. For instance, if we measure the response time of a method
at a certain point in time, then the method name and the timestamp of the
measurement are potential Specifier Parameters and the response time is a
Measure Parameter, respectively. The Specifier Parameters and Measure
Parameters are comparable to the notion of Input Parameters and Observation
Parameters, respectively, in the work of D. J. Westermann, 2014. However,
in (D. J. Westermann, 2014), Input Parameters are controllable while our
Specifier Parameters do not necessarily need to be controllable. For instance,
a measurement timestamp is a Specifier Parameter that is not controllable.

Record Types determine the structure of data to be returned by monitoring
tools. However, for diagnostics of performance problems, measurement data
often needs to be annotated with additional, experiment-related information
that cannot be provided by the monitoring tools. For instance, if a monitoring
tool returns a set of response time records for a certain experiment, the
records do not convey the information about the load intensity applied
during the experiment. In order to provide such additional information, the
Data Representation meta-model provides the Dataset Type element. A
Dataset Type decorates a Record Type with additional specifier parameters
(cf. experimentSpecifiers in Figure 5.10) that do not correspond to any
measurement or sampling probes. As specified by the OCL constraint in
Listing 5.1 (lines 6-9), all parameters of a Dataset Type must have a unique
parameter name, including all Record Type parameters and all experiment
specifiers.

On the Instantiation Level, the Parameter Value, Record and Dataset el-
ements constitute ontological instances (Atkinson et al., 2011) of the Pa-
rameter, Record Type and Dataset Type, respectively. The Parameter Value
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captures a single value for the corresponding Parameter (referred to by the
type reference). The value attribute has a parametrized type T that corre-
sponds to the type attribute value of the corresponding Parameter. A Record
bundles the parameter values for the corresponding Record Type. Hence, a
Record can be seen as an instance of a Record Type, whereby the correspond-
ing parameters are filled with values. Consequently, between all parameter
values of a Record and the parameters of the corresponding Record Type
there must be a unique one-to-one correspondences (cf. Listing 5.1, lines
11-16). A Dataset captures a set of equally typed records and additional
parameter values for the experiment specifiers of the corresponding Dataset
Type (cf. Listing 5.1, lines 31-41). A Dataset is partitioned into a set of
Dataset Rows, whereby each Dataset Row comprises a set of Records (cf.
records reference) and a set of Parameter Values for the experiment specifiers
(cf. specifierValues reference). A Dataset Row is characterized by a unique
value assignment of the tuple that comprises all Specifier Parameters of the
corresponding Dataset Type. This constraint is specified in Listing 5.1, lines
18-29. In contrast, with respect to Measure Parameters the records within
a Dataset Row may contain different values for the same Measure Parame-
ters. Hence, a Dataset virtually constitutes a table-like structure, whereby
the columns represent different Record Type parameters and experiment
Specifier Parameters of the corresponding Dataset Type. While the table
cells of Specifier Parameter columns are single-valued, the cells of Measure
Parameter columns contain collections of measured values. In this way, the
Datasets structure the measurement data in a reasonable way, allowing for in-
tuitive retrieval of data of interest. Hence, in order to access the required data
for individual analysis algorithms, during development time, performance
engineers may specify queries in a generic way using the elements from the
Definition Level. At execution time of the analysis algorithms, the queries
are applied to the corresponding Instantiation Level elements to retrieve the
specified data of interest for the specific context.

5.4. Summary

In this chapter, we introduced the P2D2M, a domain-specific language for
the description of performance problem diagnostics. P2D2M is specified by
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means of a meta-modelling and comprises four sub-models. An Experimen-
tation Description language allows to compose different constellations of
performance experiments. For the experiments, an Instrumentation and Mon-
itoring (IaM) Description language allows to specify instrumentation and
monitoring instructions in a generic, context-independent way. Thereby, the
IaM Description language encapsulates domain-specific knowledge about
typical concepts in technologies for enterprise software development, and
common measures that are gathered for the purpose of performance eval-
uation. A Data Representation language prescribes a common format for
the measurement data gathered by the instrumentation and monitoring in-
structions. The Experimentation Description, IaM Description, and the
Data Representation languages prove generic, context-independent means
to describe experiments. These languages constitute the basis for specify-
ing generic detection heuristics as elaborated in the following chapter. In
order to bridge the gap between generic diagnostics algorithms and specific
application contexts, a fourth language, the Measurement Environment De-
scription language, allows to specify context-specific information for APPD
in a light-weight way.
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In Chapter 4, we introduced a methodology to derive a systematic plan
for performance problem diagnostics (cf. Performance Problem Evaluation
Plan (PPEP) in Section 4.4) from unstructured and spread knowledge about
recurrent types of performance problems (i.e. Software Performance Anti-
patterns (SPAs)). While a PPEP lays the basis for a high level diagnostics
algorithm that guides the overall diagnostics process of the Automatic Perfor-
mance Problem Diagnostics (APPD) approach, detailed detection heuristics
are required for individual SPAs within the PPEP instance. In particular, de-
tection heuristics describe concrete diagnostics strategies for individual SPAs
and, thus, constitute a complementary part to the high level algorithm.

In this chapter, we introduce a methodology for the design of accurate detec-
tion heuristics for individual SPAs (Section 6.1). For a selected set of SPAs,
we create detection heuristics following the described methodology. Thereby,
we create a set of test cases (Section 6.2) that are used to evaluate different
heuristics and select the best performing detection strategies (Section 6.3).
Section 6.4 concludes this chapter. Parts of this chapter are build upon some
of our publications (Wert et al., 2013; Wert, 2012; Wert et al., 2014), as well
as the supervised Bachelor’s Thesis of Oehler, 2014.

6.1. A Methodology for Systematic Design
of Detection Heuristics

In this section, we introduce the notion of a detection heuristic. Thereby, we
explain the essence of detection heuristics and their role in the overall APPD
approach. Furthermore, we introduce a methodology for the systematic
design of accurate detection heuristics.
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Figure 6.1.: Relationship between heuristics and the evaluation plan

6.1.1. The Essence of Detection Heuristics

The purpose of a detection heuristic is to provide an experimentation and
data analysis strategy that is able to take decisions on the existence of a
specific SPA in the System Under Test (SUT). Figure 6.1 shows a part
of the PPEP instance introduced in Section 4.4.2 and the incorporation of
corresponding detection heuristics. Considered from the perspective of the
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PPEP and the Systematic Search Algorithm, a detection heuristic refines
the experiment execution, condition evaluation, and result calculation tasks
(cf. Section 4.4.3). Hence, as illustrated in Figure 6.1, a detection heuristic
covers a sequence of an Action Node, a Condition Node, a Category Node,
and a Result Template in a PPEP instance (cf. Section 4.4.1). In particular, a
detection heuristic provides an experimentation strategy represented in the
Action Node and an analysis strategy of measurement data to evaluate the
condition of the Condition Node. In case that the condition is evaluated to
true, a detection heuristic fills the Result Template for the corresponding
Category Node. Each SPA that is represented by a Category Node in the
PPEP must have its own detection heuristic that is solely responsible for
evaluating the related condition. The hierarchical structure of the PPEP
implies a hierarchical structure of the detection heuristics, whereby heuristics
have an implicit dependency to the ancestor heuristics. Hence, according
to the Systematic Search Algorithm (cf. Section 4.4.3) a detection heuristic
will only be executed if the parent heuristic detects the corresponding parent
SPA as a performance problem. Consequently, the detection of a specific
SPA as a problem is the outcome of the joint work of all heuristics along the
path to the root of the hierarchy of heuristics.

Regarding the structure of a detection heuristic, a heuristic comprises two
parts: a definition of experiments and a detection strategy. The experiments
and the corresponding instrumentation are defined using the Experimenta-
tion Description model (cf. Section 5.3.2.1) and the Instrumentation and
Monitoring (IaM) Description model (cf. Section 5.3.2.2), respectively. A
detection strategy is an algorithm that processes the measurement data which
is available in the data format as described by the Data Representation model
(cf. Section 5.3.2.3).

6.1.2. Design Methodology for Heuristics

The design of generic detection heuristics constitutes a major part of the
initial, one-time effort for the overall APPD approach (cf. Section 3.1,
Figure 3.1). As detection heuristics are intended to be re-used in different
contexts, they must be able to provide accurate results for a high variety of
different application contexts. Hence, it is important to invest an adequate
amount of time and effort for the design of generic, flexible and accurate
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detection heuristics. However, due to the re-use of detection heuristics in
different contexts the effort for their creation amortizes over time. To support
performance engineers in reliably designing accurate detection heuristics,
in the following, we introduce a methodology for a systematic design of
heuristics including a set of design guidelines and a design process.

6.1.2.1. Design Guidelines

Alignment with Evaluation Plan As discussed in the previous section
(Section 6.1.1), in the APPD approach detection heuristics are tightly coupled
to the PPEP. Hence, creation of detection heuristics must be aligned and
integrated with the corresponding PPEP instance. In particular, SPAs of
interest must be integrated into a PPEP instance before detection heuristics
for that SPAs can be created. Furthermore, as detection heuristics have
a hierarchical dependency structure implied by the corresponding PPEP
instance (cf. Figure 6.1), design of detection heuristics should be conducted
in a top-down manner. Hence, a heuristic for a certain SPA should be created
only if heuristics for all ancestors of the corresponding SPA already exist.

Reasonable Use of Systematic Experimentation Detection heuristics
should reasonably use the Systematic Selective Experimentation (SSE) con-
cept (cf. Section 3.2.1). In particular, excessive and, with respect to mea-
surement overhead, expensive instrumentation should be avoided. Instead,
expensive instrumentation should be split into several parts that can be col-
lected as part of individual, separate experiments. Often, detection heuristics
require different kind of information from the SUT that can be gathered in
separate experiments, too. For instance, structural information about the SUT
can be retrieved by means of low-load experiments, as the corresponding
instrumentation instructions usually are expensive in terms of measurement
overhead. By contrast, behavioural information and especially load-related
performance metrics can be gathered in high-load experiments while apply-
ing light-weight instrumentation. Furthermore, SSE may be useful to avoid
time-based correlations between different metrics that often involve uncer-
tainties and inaccuracy. For instance, all time-based correlations between the
load intensity and any other performance metric can be replaced by a set of
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experiments with different load intensities. Thereby, the target metric can be
directly observed for the corresponding load intensity of the experiment.

Avoidance of Absolute Values The values for different performance
metrics observed during experiment execution are absolute. For instance, the
response time is measured in an absolute time unit (e.g. milliseconds), the
memory footprint is measured in Bytes, etc. Hence, when designing detection
heuristics it seems to be intuitive to derive absolute thresholds that are used
to decide about the existence of individual SPAs. However, the existence
of performance problems is by definition (cf. Definition 1 in Section 3.1)
always relative to the specific application context and the corresponding
performance requirements. Hence, in most cases absolute thresholds cannot
be generically applied to a high variety of different SUTs. An exception are
“rules of thumb” and best practices providing generic reference values that
apply to a wide range of different systems. In Section 5.2, we introduced the
Measurement Environment (ME) Description model that, inter alia, allows
for the specification of performance requirements for the system services.
For the design of detection heuristics these performance requirements can
be used in a parametrized way as a reference value for the derivation of
thresholds for end-to-end performance behaviour. Besides the specified
performance requirements, the detection heuristics should avoid absolute
thresholds, where possible. Instead, analysis algorithms should apply relative
considerations of values that are independent of specific SUTs.

6.1.2.2. Design Process

In order to ensure high quality detection heuristics that are able to deal with a
high variety of SUTs, detection heuristics must be tested properly during the
design time. Therefore, we propose a design process for detection heuristics
as depicted in Figure 6.2. The process comprises two main parts: Creation
of Test Cases and Selection of a Detection Strategy. In the test cases creation
part, a set of test cases is created that is then used to select an accurate and
generic detection strategy.

The design process of each detection heuristic should always start with the
creation of test cases that are tailored for the SPA for which the detection
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Figure 6.2.: Design Process for Detection Heuristics

heuristic should be created (micro-benchmarks). The set of different, poten-
tially synthetic, test cases are used to investigate the accuracy of the created
detection heuristic under different circumstances. Thereby, the test cases
should cover both possible types of test cases: positive test cases that contain
the corresponding SPA and emit the corresponding performance behaviour,
and negative test cases that do not contain the target SPA. Furthermore, the
test cases should cover a preferably big variety of circumstances, including
different technologies used to implement the corresponding SPA, different
forms of the performance behaviour, as well as different manifestations of
the target SPA. In order to avoid biased test cases, the creation of test cases
should be separated from the realization of corresponding detection heuristic.
To this end, corresponding to the two parts of the process, we distinguish two
roles (Test Case Engineer and Heuristics Engineer) that preferable should
be represented by separate persons in order to avoid biasing effects. Due
to the top-down order of heuristics creation (cf. Section 6.1.2.1), during
design of a new detection heuristic we can assume that all ancestor heuristics
(corresponding to the PPEP) have already been created. This assumption is
important for the second step of the design process: validation of the cre-
ated test cases. Due to the Systematic Search Algorithm (cf. Section 4.4.3)
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guiding the APPD approach, all test cases for a new detection heuristic are
invalid, if they are not detected by all ancestor heuristics of the new heuristic.
In this case, the Systematic Search Algorithm would skip the execution of
the new heuristic, anyway. Hence, all test cases created for a new detection
heuristic must be positive test cases for all ancestor heuristics as implied by
the corresponding PPEP instance. In the second design step, this precondi-
tion must be validated. Finally, all valid test cases must be labeled either as
positive or negative test cases.

For most SPAs, different ways exist how to detect an individual SPA (in
the following referred to as detection strategies). Alternative strategies may
differ in the experimentation strategies, in the type of measurement data
that needs to be collected or in the data analysis algorithms. Furthermore,
individual detection strategies may have some configuration parameters that
span a multi-dimensional configuration space. In such a case, efficient,
experiment-based optimization approaches (like the Adaptive Breakdown
approach by D. J. Westermann, 2014) can be used to find an optimal parame-
ter configuration for a detection strategy. If individual detection strategies
cannot be discarded in advance by means of some logical considerations, all
potential detection strategies need to be realized. The alternative strategies
are then applied to the created test cases in order to find the detection strategy
with the highest detection accuracy. The test case results can be used to
discard badly performing detection strategies or to improve individual detec-
tion strategies if the evaluation results show potential improvement. Hence,
the design of detection heuristics contains an iterative step of evaluating,
filtering and improving the detection strategies. Finally, a single detection
strategy with the highest accuracy needs to be selected for the corresponding
detection heuristic. In the following, we formally explain how we derive the
accuracy of detection strategies that is used to compare different detection
strategies.

Assuming that we are designing a detection heuristic for an SPA A, the vector
~cA comprises a set of n test cases cA,i for SPA A:

~cA = (cA,1, . . . , cA,n) (6.1)

Labeling the test cases yields an expectation vector ~vA describing for each
test case whether it is a positive or a negative test case:

~vA = (vA,1, . . . , vA,n) (6.2)
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vA,i =



1 , test case cA,i contains anti-pattern A (positive test case)

0 , otherwise (negative test case)
(6.3)

The number of positive test cases np
A

and the number of negative test cases
nn
A

are defined as follows:

np
A
= ~vA ∗ ~1 (6.4)

nn
A = (~1 − ~vA) ∗ ~1 (6.5)

Given a vector ~sA = (sA,1, . . . , sA,m) of m alternative detection strategies for
SPA A, we are looking for the detection strategy sA,X that has the highest
detection accuracy. To this end, we apply the detection strategies to the set of
labeled test cases yielding for each detection strategy sA,k a detection vector
~dA,k . The detection vector describes in which test cases the considered SPA

A has been detected by the applied detection strategy sk :

~dA,k = (dA,k,1, . . . , dA,k,n) (6.6)

dA,k,i =



1 , detection strategy sA,k detected A in test case cA,i
0 , otherwise

(6.7)

Based on the expectation vector ~vA and the detection vector ~dA,k for detection
strategy sA,k , we calculate the error vector ~eA,k :

~eA,k = ~dA,k − ~vA (6.8)

Hereby, the error vector has the following semantics:

~eA,k,i =




−1 , strategy sA,k falsely neglected A in cA,i (false negative)
1 , strategy sA,k falsely identified A in cA,i (false positive)
0 , otherwise (true positive or true negative)

(6.9)
Following Swets, 1988, we use the number of false positives and false
negatives to calculate the accuracy of a detection strategy. To this end, we
calculate the number of false positives and false negatives as follows. Let f
be a function that counts the number of scalars in a vector that are equal to
one:

f : {−1, 0, 1} × . . . × {−1, 0, 1} → N, f (~x) =
⌊
1
2
∗

(
~x + ~1

)⌋
∗~1 (6.10)
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Using function f (~x), we calculate for each detection strategy sA,k the number
of false positives (n f p

A,k
), false negatives (n f n

A,k
), true positives (ntp

A,k
), and true

negatives (ntn
A,k

) from the error vector ~eA,k :

n f p
A,k
= f ( ~eA,k,i) (6.11)

n f n
A,k
= f (−1 ∗ ~eA,k,i) (6.12)

ntp
A,k
= np

A
− n f n

A,k
(6.13)

ntnA,k = nn
A − n f p

A,k
(6.14)

Consequently, the false positive rate r f p
A,k

and the true positive rate r tp
A,k

of
detection strategy sA,k are defined as follows:

r f p
A,k
=

n f p
A,k

nn
A

, r tp
A,k
=

ntp
A,k

np
A

(6.15)

Following Swets, 1988, we utilize the Receiver Operating Characteris-
tics (ROC) curve in order to calculate an accuracy measure based on the false
positive rate and the true positive rate. For a tuple (r f p, r tp) the correspond-
ing ROC curve is depicted in Figure 6.3, showing the true positive rate over
the false positive rate. The area beneath the curve constitutes a measure for
the accuracy (Swets, 1988). The diagonal line represents a random process
with an accuracy value of 0.5. Hence, detection strategies with an accuracy
near to 0.5 are comparable to random guessing. Detection strategies with
accuracies smaller than 0.5 have a systematic error, that makes the result ac-
curacy worse than a random guessing approach. Finally, detection strategies
that are in all cases correct ((r f p, r tp) = (0, 1)) have a maximum accuracy
of 1.0.

For a tuple of a false positive rate and a true positive rate the function
a(r f p, r tp) calculates the area under the corresponding ROC curve and, thus,
provides an accuracy measure:

a : R × R→ R (6.16)

a(r f p, r tp) =
(
1 − r f p

)
+

1
2
∗

(
r tp ∗ r f p −

(
1 − r tp

)
∗

(
1 − r f p

))
(6.17)
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Figure 6.3.: ROC Curve

Hence, a detection strategy sA,k for SPA A performs better than an alternative
strategy sA,l , if the following applies:

a(r f p
A,k
, r tp

A,k
) > a(r f p

A,l
, r tp

A,l
) (6.18)

The more test cases are created for an SPA and the higher the variety in
the test cases, the more representative is the calculated accuracy for the
individual detection strategies. Hence, the Test Cases Creation part of the
design process is essential to ensure accurate and at the same time generic
detection heuristics. In the following, we apply the described methodology
to design detection heuristics for the SPAs covered by the PPEP instance
that we discussed in Section 4.4.2.
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6.2. Heuristics Evaluation Setup

In the following, we design twelve detection heuristics for the set of SPAs
covered by the PPEP instance shown in Section 4.4.2. Corresponding to the
design process explained in the previous section, we divide the design of
heuristics into a test cases creation part and a heuristics creation part. In
Section 6.2.1, we introduce a set of test cases that cover different scenarios
for the individual SPAs. The corresponding experiment setup is described in
Section 6.2.2.

6.2.1. Test Cases

Table 6.1 shows an overview on the test cases that we use in Section 6.3 to
evaluate alternative detection strategies for individual SPAs.

In the header row, twelve SPAs are listed for which we are going to design
detection heuristics. Hereby, the last column covers all manifestations of the
One Lane Bridge anti-pattern (cf. Section 4.3). In the rows, 22 test cases are
listed with corresponding labeling for the individual SPAs. While a flag ( )
means that the corresponding performance problem exists in the test case,
the checkmark (X) represents the opposite, meaning that the corresponding
performance problem is not present in the given test case. Finally, a minus
sign (—) means that the test case is not applicable on the corresponding
performance problem due to the hierarchical structure of SPAs. The columns
of Table 6.1 represent the expectation vectors ~vA for the individual anti-
patterns A (cf. Section 6.1.2.2). Note that cells with a minus sign (—) are not
part of the corresponding expectation vector. Consequently, the expectation
vectors have different sizes depending on the corresponding SPA.

We create two negative test cases for the high level Performance Problem
(TC 1, TC 2). While the response times in TC 1 are steadily under the
defined performance requirement threshold, in TC 2, the response times
contain some rare outliers that exceed the threshold. However, according
to the percentile specification of performance requirements, both test cases
meet the performance requirements. The remaining test cases (TC 3 - TC 22)
contain different manifestations of performance problems.
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TC 1 X — — — — — — — — — — —
TC 2 X — — — — — — — — — — —
TC 3 X X — — — — — — — —
TC 4 X X — — — — — — — —
TC 5 X X — — — — — — — —
TC 6 X X — — — — — — — —
TC 7 X X — — — — — — — —
TC 8 X X X — — — — — — —
TC 9 X X X — — — — — — —
TC 10 X X X — — X — — X
TC 11 X X X X X — — X
TC 12 X X X X — —
TC 13 X X X X — —
TC 14 X X X X — — X
TC 15 X X X X — —
TC 16 X X X — — X X X
TC 17 X X X — — X X
TC 18 X X X — — X X
TC 19 X X X — — X X
TC 20 X X X — — X X
TC 21 X X X — — X — —
TC 22 X X X — — X — —
TC 23 X X X — — X — — X

Legend: = test case contains the problem, X = test case does not contain the problem,
— = test case cannot be applied to the problem

TC 1: No Problem w/o Outliers, TC 2: No Problem with Outliers, TC 3: Clear Hiccups,
TC 4: Rising Hiccups, TC 5: Blurred Hiccups, TC 6: Monotone Ramp, TC 7: Blurred Ramp,

TC 8: Stable External Call, TC 9: Varying External Call, TC 10: CPU-intensive App.,
TC 11: Many Diff. DB calls, TC 12: Many Equal DB call, TC 13: Many Similar DB calls,

TC 14: CPU-inten. DB calls, TC 15: Locking DB calls, TC 16: JMS File Transfer,
TC 17: Clear Blob, TC 18: Blurred Blob, TC 19: Direct Message Loop, TC 20: Cascading

Message Loo, TC 21: Clear Sync, TC 22: Blurred Sync, TC 23: Increase Without Sync

Table 6.1.: Overview on test cases and corresponding expectation vectors

168



6.2. Heuristics Evaluation Setup

The test cases TC 3 - TC 5 represent different manifestation of the Applica-
tion Hiccups SPA and at the same time constitute negative test cases for the
Continuously Violated Requirements and the Ramp anti-patterns. Test case
TC 3 comprises clear hiccups, whereby in the hiccup phases the response
times clearly exceed the performance requirements. In test case TC 4, the
hiccups steadily arise from low response times instead of an impulse-like
jump of response times. Finally, in TC 5 the response times in the hiccup
phases vary significantly, including response times that exceed and that do
not exceed the performance requirements threshold.

TC 6 and TC 7 are positive test cases for the the Ramp SPA. The Monotone
Ramp test case represents a quite artificial scenario where response times
grow strictly with the operation time. By contrast, the ramp behaviour in test
case TC 7 is more realistic, comprising varying response times that have an
increasing long-term trend.

The test cases TC 8 and TC 9 simulate an expensive, external service call that
leads to a continuous violation of performance requirements, however, does
not constitute a Traffic Jam anti-pattern as the performance does not get worse
with increasing load. Hence, both TC 8 and TC 9 constitute positive test cases
for the Performance Problem and the Continuously Violated Requirements
anti-patterns. For the Application Hiccups, the Ramp and the Traffic Jam
anti-patterns, TC 8 and TC 9 constitute negative test cases. In TC 8, all
requests to the external service exceed the response time threshold of the
performance requirements. By contrast, in TC 9 the response times exhibit
a high variance varying from small response times that meet performance
requirements to high response times that exceed the threshold.

Test case TC 10 simulates a CPU-intensive application that leads to a Traffic
Jam anti-pattern due to limitations of hardware resources (i.e. CPU). As
implied by the taxonomy on SPAs (cf. Section 4.3), besides the Traffic Jam
anti-pattern, TC 10 is a positive test case for the Performance Problem and
the Continuously Violated Requirements anti-patterns. However, as TC 10
does not cause Database Congestion, Excessive Messaging or a One Lane
Bridge, it is considered as a negative test case for those anti-patterns.

Test case TC 11 simulates a Database Congestion anti-pattern that is caused
by many different database requests that overload the database. As the
definition of a Stifle anti-pattern implies that similar database requests are
repeated, TC 11 does not include a Stifle due to its variety of the database
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requests. Furthermore, as TC 11 comprises many small database requests, it
does not represent an Expensive Database Call anti-pattern.

The test cases TC 12 and TC 13 are very similar to test case TC 11, however
in TC 12 and TC 13, multiple similar database queries are sent per user
request. Consequently, the labeling of TC 12 and TC 13 is equal to the
labeling of TC 11 except that TC 12 and TC 13 are positive test cases for the
Stifle anti-pattern. The difference between TC 12 and TC 13 lies in the level
of similarity of the multiple database queries. While in TC 12 the queries
are repeated identically, in TC 13 the database queries are slightly modified
from one request to the next. While TC 12 represents unintended repetitions
of queries in practice, TC 13 simulates an improper use of SQL’s Where
clause, i.e., data filtering on application level instead of specifying proper
Where-conditions in the SQL statement.

TC 14 and TC 15 simulate an Expensive Database Call by issuing CPU-
intensive database requests and emitting database requests that lead to exces-
sive locking, respectively. According to the SPA taxonomy (cf. Section 4.3),
a positive test case for the Expensive Database Call is implicitly a positive
test case for the Performance Problem, Continuously Violated Requirements,
and Database Congestion anti-patterns. For all other SPAs (except for the
Blob and the Empty Semi Trucks anti-patterns), TC 14 is labeled as a negative
test case. As TC 15 leads to a Traffic Jam without saturating any hardware
resources, the performance problem in TC 15 is at the same time a database
manifestation of the One Lane Bridge anti-pattern.

The test cases TC 16 - TC 20 cover messaging related scenarios. TC 16
represents an Excessive Messaging scenario that neither contains a Blob
anti-pattern nor an Empty semi Trucks anti-pattern. Thereby a messaging
service is misused to transfer big files leading to a highly utilized network.
TC 17 and TC 18 are positive test cases for the Blob anti-pattern. In TC 17,
all software components communicate with each other over a central broker
that constitutes the Blob component. By contrast, in TC 18, in addition to the
excessive communication with the Blob component, individual components
conduct peer-to-peer communication. Instead of a Blob, the test cases TC 19
and TC 20 contain an Empty Semi Trucks anti-pattern. In TC 19, many small
messages are sent via a messaging service in a loop. TC 20 is very similar to
TC 19, however, the loop containing the repeated sending of small messages
is more complex comprising multiple levels of indirection.
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The test cases TC 21 to TC 22 represent different manifestations of the One
Lane Bridge anti-pattern. TC 21 contains a synchronization point on applica-
tion level that applies to all user requests. By contrast, the synchronization
point in TC 22 is passed only by a subset of user requests, leading to a
blurred One Lane Bridge behaviour. Finally, TC 23 is a test case that is
similar to test case TC 10, yielding the same labeling. However, while TC 10
leads to a very high utilization of the CPU at the application server, TC 23
comes with a moderate CPU utilization, while still constituting a Traffic Jam
anti-pattern.

6.2.2. Measurement Environment Setup

Each test case described in Section 6.2.1 is designed as a micro-benchmark,
emulating the desired behaviour without performing any specific task. In or-
der to apply an implementation of a generic detection heuristic on a specific
test case, the specific scenario must be described using the Measurement
Environment Description model (cf. Section 5.2). For all test cases from
Section 6.2.1, we use the measurement environment as specified by the
Measurement Environment Description instance in Figure 6.4. The mea-
surement environment comprises seven system nodes including a load driver
node, a database node, a messaging node, as well as four application nodes.
Depending on the test case, the distributed Application Components (App
Comp. A - D) communicate either only with the Database, or among each
other via the Messaging Broker (e.g. in the cases of messaging related test
cases). We denote each application node with the node role AppServer and
for each of these nodes we specify an Instrumentation Entity for applica-
tion code instrumentation, as well as a Monitoring Entity for gathering of
measurement data. For the evaluation of our detection heuristics we use the
Adaptable Instrumentation and Monitoring (AIM) framework (Wert et al.,
2015a) for instrumentation and monitoring, allowing to dynamically adapt
instrumentation of the target applications. At the database node and the
messaging node, we deploy only a Monitoring Entity for the sampling of re-
source statistics (e.g. CPU utilization, network I/O, etc.). Finally, the virtual
load is generated by a dedicated Load Generation Entity. For our test cases,
we use a custom load driver that is basically a simple Java program emitting
virtual requests to the target application. Consequently, in the corresponding
User Behaviour Specification we specify a Java class name of the class that
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Figure 6.4.: Measurement environment and experimentation configuration for evalu-
ation of heuristics
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represents a virtual user script (testcases.VirtualUser in Figure 6.4). For the
Experimentation Configuration we specify a default experiment duration of
five minutes (300 seconds) and ten seconds for each of both the warm-up
and the cool-down phase. The maximum load is limited to 50 concurrent
users utilizing a closed workload. Finally, for the performance requirements
we use a Response Time Threshold specification. Thereby, all system ser-
vices (*) are not allowed to exceed the one second (1000 ms) response time
threshold in 99% of cases.

6.3. Design of Detection Heuristics

In this section, we introduce different detection heuristics for the selected set
of performance problems. Thereby, we discuss different, alternative detection
strategies for some of the performance anti-patterns. The detection heuristics
are described by means of the corresponding sub-models of Performance
Problem Diagnostics Description Model (P2D2M) (cf. Chapter 5) and textual
description of the detection strategies. Furthermore, for each detection
strategy, the Appendix Section A.1 provides the corresponding algorithms
as pseudo code. We evaluate the detection strategies and heuristics by means
of the created test cases (cf. Section 6.2.1). Note that the evaluation of the
detection heuristics in this section is part of the heuristics design process
and does not constitute the final validation of the APPD approach nor of
the heuristics. A comprehensive validation of the APPD approach and the
heuristics is conducted on real software systems and is discussed in detail in
Chapter 7.

6.3.1. High-level Performance Problem Heuristic

The top level heuristic (cf. PPEP instance in Section 4.4.2) is responsible for
identifying any type of performance problem. By definition a performance
problem exists if performance requirements are violated (cf. Definition 1 in
Section 3.1). Hence, the Performance Problem heuristic just has to investi-
gate if the end-to-end response times exceed the requirements defined by the
domain expert in the corresponding ME Description model (cf. Section 5.2).
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Figure 6.5.: Experiment and instrumentation description for the
Performance Problem Heuristic

Assuming that the Response Time Threshold element of the ME Descrip-
tion model is used for the definition of the performance requirements, the
detection heuristic is unambiguous as it only needs to evaluate the response
time distributions of individual system services. As there is only one rea-
sonable, conceptual way of evaluating that, we introduce only one detection
strategy for the Performance Problem anti-pattern that we evaluate against
the corresponding test cases.

6.3.1.1. Detection Strategy

Figure 6.5 shows the instance of the Experimentation Description model
for the Performance Problem heuristic with an attached IaM Description (cf.
Section 5.2). If a performance problem exists in the SUT, then the problem
must become visible under a high load intensity. Therefore, for the detection
of a performance problem we apply a single Load Test as the experiment
plan. With respect to instrumentation, in this high level detection step, we are
interested in the server-side end-to-end response times. To this end, the IaM
Description contains one Instrumentation Entity covering the Entry Point
scope with a Response Time probe. Applying the specified experiment with
the corresponding instrumentation description on a SUT yields measurement
data that correspond to the data format depicted in Figure 6.6. Figure 6.6
shows an instance of the Definition Level part of the Data Representation
model (cf. Section 5.3.2.3). The corresponding Dataset Type is determined
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Figure 6.6.: Data representation format for the Performance Problem Heuristic

by the Response Time Record type as well as an additional Specifier Pa-
rameter. For the Load Test experiment the Number of Users parameter is
implicitly set to the maxLoad value specified in the Experimentation Con-
figuration element of the ME Description model (cf. Section 5.2). The
Response Time Record type comprises two Measure Parameters and two
Specifier Parameters. The Response Time and the Timestamp parameters cap-
ture the response time of the target method in milliseconds and the absolute
timestamp (in milliseconds) of the corresponding method call, respectively.
The System ID and the Location parameters specify the system node of the
method call and the name of the called method (or service), respectively.

Based on this data format, we define a detection strategy for the Performance
Problem SPA (cf. Algorithm 2, Appendix A.1.1). The inputs of the detection
strategy are a DatasetD of defined Dataset Type containing the measurement
data (cf. Figure 6.6) as well as the provided performance requirements
from the ME Description model specified by a response time threshold ρ
and a corresponding cumulative probability π (percentile) that determines
the portion of requests that must not exceed the response time threshold.
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The detection strategy returns a set L of system services that violate the
performance requirements. For each system service ω ∈ O (e.g. Servlet
names in Java, etc.) the algorithm retrieves the setV of response times and
evaluates whether the corresponding percentile υπ of response times from
V exceeds the provided response time threshold ρ. In this case, the system
service ω is added to the result set L. If the algorithm returns an empty
result set, then no performance problem has been detected. Otherwise, the
detection heuristic reports the violating system services L as the detection
result for the corresponding node of the PPEP.

6.3.1.2. Evaluation

The detection strategy of the Performance Problem heuristic is rather simple,
as it only evaluates whether the response time distribution of each system ser-
vice meets the percentile specification of the performance requirements. In
particular, the detection strategy of the Performance Problem heuristic is di-
rectly derived from the definition of a Performance Problem (cf. Definition 1,
Section 3.1). Consequently, applying the detection heuristic on all 23 test
cases from Table 6.1 yields a detection accuracy of a = 1.0, as the 21 positive
test cases as well as both negative test cases have been correctly detected or
passed, respectively. As the test cases TC 3 - TC 23 have been successfully
detected by the Performance Problem heuristic, they have passed the test case
validation step in the process of Figure 6.2 (cf. Section 6.1.2.2) and, thus,
can be further used to evaluate the heuristics for the Application Hiccups,
the Ramp, and the Continuously Violated Requirements anti-patterns.

6.3.2. Application Hiccups Heuristic

As indicated by the PPEP instance in Section 4.4.2, the detection heuristic
for the Application Hiccups SPA (cf. Table 2.1(c), Chapter 2.4) may reuse
the measurement data from the Performance Problem heuristic as its analysis
is based on the same type of data. Hence, the Application Hiccups Heuristic
uses the same Experimentation and IaM Description as the Performance
Problem heuristic (cf. Section 6.3.1). Consequently, the resulting data
format of the measurement data is the same, too. Based on that data format,
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in the following we define and evaluate two alternative detection strategies
for Application Hiccups.

6.3.2.1. Detection Strategies

We design and investigate three different analysis strategies for the detection
of hiccups in a time series of response times: Moving Percentile Strategy and
Bucket Strategy. These analysis strategies are based on a common strategy
(cf. Algorithm 3 in Appendix A.1.2).

Analogously to the Performance Problem heuristic, the core detection strat-
egy for the Application Hiccups anti-pattern takes a data set D and the
specification of performance requirements (ρ and π) as input. Furthermore,
it requires a configuration parameter φ that specifies the maximum allowed
proportion that the cumulative hiccup time may cover of the experiment
duration. If this proportion is exceeded, the violations of performance re-
quirements are not considered as occurring periodically, but, are considered
to constitute a continuous violation of performance requirements. The al-
gorithm returns a set L of system services that exhibit a hiccup behaviour
in their response time series. To this end, analogously to the Performance
Problem heuristic, the core detection strategy iterates over all system services
ω ∈ O while retrieving a chronologically ordered response time series P. In
the response time series P the algorithm searches for hiccupsH , whereby
each hiccup is specified by a start and an end timestamp. The hiccup iden-
tification task (findHiccups() in Algorithm 3, Appendix A.1.2) is the only
part where the different analysis strategies differ. Based on the response time
series P and the set of hiccupsH , the algorithm calculates the experiment
duration δ and the cumulative duration of hiccups β. If the set of hiccups
H is not empty and the cumulative hiccup duration β does not exceed the
specified proportion of the experiment duration (δφ), then the corresponding
system service ω is added to the result set L. Hence, the system service is
considered as a service that exhibits a response time hiccup behaviour. The
essential part of this algorithm is the hiccup identification task. Hence, in the
following, we investigate the different strategies for the hiccup identification
task.
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Moving Percentile Strategy The idea behind the Moving Percentile strat-
egy is to utilize a moving percentile time series for the detection of hiccups.
Analogously to a moving average (Chou et al., 1975), a moving percentile
time series is derived by calculating the percentile of a window that moves
over the time series. Algorithm 4 (cf. Appendix A.1.2) shows how the mov-
ing percentile technique is used to detect hiccups in a response time series.
Besides the performance requirement parameters (ρ and π), the Moving
Percentile strategy takes a response time series P as input where the hiccups
shell be searched in. Furthermore, these strategy requires an additional con-
figuration parameter χ that specifies the window size (in number of elements)
of the moving window. The strategy returns a setH of detected hiccups for
further processing in the core strategy (cf. Algorithm 3, Appendix A.1.2).
In the first step, the algorithm calculates a moving percentile time seriesM
based on the passed response time series P. Hereby, the strategy uses the
specified window size χ and the cumulative probability π for the calculation
of the percentiles. While iterating over the chronologically ordered data
points µ ∈ M the algorithm evaluates whether the response time of the corre-
sponding percentile data point exceeds the provided response time threshold
ρ. In the case that the response time threshold ρ is exceeded and no current
hiccup is recorded (θ = NULL), the algorithm signals the beginning of a
new hiccup. Hereby, the current hiccup stores the start timestamp of the
hiccup. A hiccup θ ends, if the response time percentile does not exceed the
response time threshold ρ anymore. In this case, the end timestamp is added
to the current hiccup θ, the hiccup is added to the set of detected hiccups
H , and the current hiccup variable θ is set to NULL in order to enable the
recording of a subsequent hiccup. After all data points of the percentile series
M have been processed, the algorithm returns a list of identified hiccups.

Bucket Strategy The Bucket strategy is similar to the Moving Percentile
strategy, however, instead of using a moving window we divide the response
time series into buckets with a fixed, time-based width (Algorithm 5 in
Appendix A.1.2). Except for the missing window size χ, the Bucket strategy
has the same inputs and the same type of output as the Moving Percentile
strategy. As the first step, this strategy dynamically calculates a bucket
width ξ based on the mean time τ between two subsequent requests. Using
the bucket width ξ, the strategy divides the response time series P into a
set of buckets B. Iterating over the chronologically ordered buckets the
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strategy evaluates for each bucket β ∈ B whether it violates the performance
requirements defined by ρ and π. Thereby the same calculation as described
for the Performance Problem heuristic (cf. Section 6.3.1) is applied to
the response times of the corresponding buckets. If a bucket violates the
requirements and no current hiccup is recorded (θ = NULL), then a new
hiccup θ is instantiated and the left border of the current bucket β is used
as the start timestamp for the hiccup. A hiccup ends if a bucket β meets the
performance requirements or the last bucket is processed. In this case the
right border of β is used as the end timestamp of the hiccup θ, the hiccup is
added to the result setH , and the hiccup variable is again set to NULL.

6.3.2.2. Evaluation

The detection strategies for the Application Hiccups anti-pattern are evalu-
ated by means of the test cases TC 3 - TC 23. While the Bucket strategy is
independent of any configuration parameter (except for the context specific
performance requirement specification ρ and π), the Moving Percentile strat-
egy has the window size χ as configuration parameter. Hence, we evaluate
the Moving Percentile strategy for four different window sizes (5, 11, 51,
and 501). Table 6.2 shows the evaluation results for both detection strategies.
While the first column shows the expectation vector for the 21 test cases, the
remaining columns show the detection vectors for both detection strategies.
For the Moving Percentile strategy, the detection vectors are shown for each
examined configuration value of the window size parameter. The last three
rows show the calculation of the detection accuracy a for the individual
configurations of detection strategies by means of the false positives rate r f p

and true positives rate r tp (cf. Equation 6.17 in Section 6.1.2.2).

The Bucket strategy as well as the Moving Percentile strategy with moderate
windows sizes (i.e. 10 < χ < 500) have a false positive rate of zero and a
true positive rate of one. Hence, in this cases an optimal value of a = 1.0 is
achieved for the detection accuracy. The Moving Percentile strategy with
a windows size of χ = 5 falsely detected Application Hiccups in test case
TC 10, yielding a false positive rate of r f p = 0.055 and, thus, an accuracy of
a = 0.972. Due to a very high utilization of the application node’s CPU, the
response times in TC 10 exhibit a high variance including frequent outliers.
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TC 3
TC 4
TC 5 X
TC 6 X X X X X X
TC 7 X X X X X X
TC 8 X X X X X X
TC 9 X X X X X X
TC 10 X X X X X
TC 11 X X X X X X
TC 12 X X X X X X
TC 13 X X X X X X
TC 14 X X X X X X
TC 15 X X X X X X
TC 16 X X X X X X
TC 17 X X X X X X
TC 18 X X X X X X
TC 19 X X X X X X
TC 20 X X X X X X
TC 21 X X X X X X
TC 22 X X X X X X
TC 23 X X X X X X

false positives rate r f p : 0.055 0.0 0.0 0.000 0.0
true positives rate r t p : 1.000 1.0 1.0 0.667 1.0
accuracy a(r f p, r t p ): 0.972 1.0 1.0 0.833 1.0

Table 6.2.: Evaluation results on the Appplication Hiccups detection strategies

falsely detects very short outlier phases (in the range of milliseconds) as
hiccups. Conversely, using an extremely high window size (e.g. χ > 500)
may lead to the effect that Application Hiccups are smoothed out by the
moving window, resulting in false negatives. This effect especially occurs
on coarse-grained measurement data, i.e. only few measurements per time
unit. To sum up, the Bucket strategy and the Moving Percentile strategy with
moderate windows sizes perform equally good on our test cases. However,
as finding a proper value for the window size parameter χ may depend on
the resolution of the measurement data, the Moving Percentile strategy is
less generalizable as the Bucket strategy. Therefore, we select the Bucket
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strategy for further detection of the Application Hiccups anti-pattern in the
remainder of this work.

6.3.3. The Ramp Heuristic

The essence of the Ramp anti-pattern (cf. Table 2.1(b), Chapter 2.4) is an
increase in response times over operation time. We create three different de-
tection strategies for the Ramp that differ not only in their analysis strategies
but also in the experimentation strategies.

6.3.3.1. Detection Strategies

We provide two detection strategies for the Ramp anti-pattern that rely on the
same measurement data that has been used for the high-level Performance
Problem detection heuristic: Linear Regression strategy and Direct Growth
strategy. Hence, for these two detection strategies the instrumentation, ex-
perimentation and data representation descriptions are the same as for the
Performance Problem detection heuristic (cf. Section 6.3.1). Furthermore,
we provide a third detection strategy (Time Window strategy) that is based
on a different experimentation strategy.

Linear Regression Strategy When it comes to identifying whether a set
of data points in a time series shows an increasing trend, the most intuitive
way is an evaluation of the corresponding slope. To this end, the Linear
Regression strategy applies a linear regression on the data points to derive the
slope for evaluation (Algorithm 6 in Appendix A.1.3). This detection strategy
takes a data set D as well as a slope threshold τ as input, and returns a set L
of system services containing a Ramp anti-pattern. For each system service
ω ∈ O, this detection strategy applies a linear regression on the time series
of response times P yielding a slope κ of the corresponding linear curve.
If the slope κ is greater than the specified threshold τ, the corresponding
system service ω is considered to contain the Ramp anti-pattern.
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Direct Growth Strategy The Direct Growth strategy compares response
times measured in the beginning of the load test to response times that
have been measured at the end of the test. This detection strategy reports
an occurrence of a Ramp if the comparison yields a significant difference
between the response times from the beginning of the load test and the
response times from the end. As this detection strategy is based on the same
type of measurement data as the Performance Problem detection heuristic,
one single load test is used to derive the end-to-end response times of the
individual system services. Based on that data, the Direct Growth strategy
applies the following analysis strategy (Algorithm 7 in Appendix A.1.3).
In addition to the response time data set D, this detection strategy takes
an additional parameter α as input, that specifies the significance level for
statistical tests used in the algorithm. Again, the algorithm returns a list
L of system services that exhibit a ramp behaviour. While iterating over
the system services ω ∈ O, the detection strategy chronologically divides
the response time series P into two subsets R1 and R2 for which the mean
values µ1 and µ2 are calculated. In order to decide whether response times
increase over time, the samples R1 and R2 are compared applying a t-test
(Downing et al., 2003). However, as the values in R1 and R2 may be not
normally distributed, we first bootstrap the values according to the Central
Limit Theorem (Downing et al., 2003) which yields the normally distributed
bootstrapped setsB1 andB2. Applying a t-test toB1 andB2, we get a p-value
p providing the information on the significance of difference between the
mean values of B1 and B2. If p is smaller than the specified significance level
α and at the same time µ1 < µ2, then the response times in R2 are smaller
than in R1. In this case, the Direct Growth detection strategy assumes that
response times increased from beginning to the end and reports the system
service ω as a Ramp.

Time Window Strategy While both the Linear Regression strategy and
the Direct Growth strategy are based on the same type of data as the Per-
formance Problem heuristic, the Time Window strategy applies a different
experimentation strategy. Figure 6.7 shows the Experimentation Description
instance for the Time Window detection strategy. The IaM Description is the
same as for the Performance Problem heuristic, including the Entry Points
scope and the Response Time probe. With respect to the experiment plan,
we use a Custom Experiment Series comprising four Single-User Tests and
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Figure 6.7.: Experiment and instrumentation description for the Time Window
strategy

three intermediate Load Tests. The Time Window strategy is based on the
idea that a Ramp grows faster with a higher load intensity than with a low
intensity. Thus, we use the Load Tests to stimulate a potential Ramp anti-
pattern, whereby, no measurements are taken in these experiments. Hence,
the Load Tests serve as intermediate stimulation phases between the Single-
User Tests that constitute the actual tests including gathering of measurement
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Figure 6.8.: Data representation format for the Time Window strategy

data. In order to reconstruct the sequence of the Single-User Tests in the
analysis phase from the measurement data, each Single-User Test refers to
a Specifier Parameter Experiment Step with an increasing parameter value.
Consequently, apart from the Response Time Record type, the corresponding
Dataset Type comprises that Specifier Parameter (cf. Figure 6.8). Based on
that Dataset Type, the Time Window strategy applies the following analysis
(Algorithm 8 in Appendix A.1.3). Besides the dataset D, the detection
strategy takes a statistical significance level α as input. The result is, again,
a list L of system services that contain a Ramp anti-pattern. For each sys-
tem service ω ∈ O a pairwise comparison of the response times series of
neighbouring experiments is conducted. To this end, for each single-user
experiment η ∈ {2, 3, 4} the response time sets Rη and Rη−1 are retrieved
and bootstrapped, yielding normally distributed sets Bη and Bη−1. Applying
a t-test (Downing et al., 2003) on Bη and Bη−1 provides a p-value p. If p is
smaller than the specified significance level α, and the mean value µη of Rη
is greater than the mean value µη−1 of Rη−1, then the response times in Rη
are considered to be significantly greater than in Rη−1. If this applies for all
η ∈ 2, 3, 4, then the corresponding system service ω is considered to contain
a Ramp anti-pattern and, thus, is added to the result list L.

6.3.3.2. Evaluation

Both the Direct Growth and the Time Window strategies require a signifi-
cance level α as configuration parameter for the t-tests. For α, we use the
commonly used value of 0.05 (corresponding to 95% confidence). The de-
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TC 3 X X X X X
TC 4 X X X X X X X
TC 5 X X X X X X X
TC 6 X
TC 7 X X
TC 8 X X X X X X X
TC 9 X X X X X X X
TC 10 X X X X
TC 11 X X X X X
TC 12 X X X X X X X
TC 13 X X X X X X X
TC 14 X X X X X X
TC 15 X X X X X
TC 16 X X X X X X X
TC 17 X X X X X X X
TC 18 X X X X X
TC 19 X X X X
TC 20 X X X X X X X
TC 21 X X X X X X X
TC 22 X X X X X X X
TC 23 X X X X X X X

false positives rate r f p : 0.210 0.368 0.210 0.00 0.0 0.0
true positives rate r t p : 1.000 1.000 1.000 0.50 0.0 1.0
accuracy a(r f p, r t p ): 0.895 0.815 0.895 0.75 0.5 1.0

Table 6.3.: Evaluation results on the detection strategies for the Ramp anti-pattern

tection results of the Linear Regression strategy highly depend on the linear
slope threshold τ. Therefore, we analyze the Linear Regression strategy
for four different magnitudes of the configuration value for τ (10−5 − 10−2).
Table 6.3 shows the evaluation results for the three detection strategies in-
cluding four configuration alternatives of the Linear Regression strategy. The
Direct Growth strategy has a true positives rate r tp = 1.0, however, 4 of
19 test cases have been falsely detected leading to a false positives rate of
r f p = 0.21. Hence, tending to falsely detect a Ramp in negative scenarios,
the Direct Growth strategy exhibits a detection accuracy of a = 0.895 on our
test cases. The Linear Regression strategy behaves very differently depend-
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ing on the value for the slope threshold τ. For small values of τ (τ <= 10−4),
the Linear Regression strategy tends to falsely detect a Ramp anti-pattern
in scenarios that, actually, do not contain a Ramp behaviour. With a opti-
mal true positives rate and a false positives rate of r f p = 0.368 the Linear
Regression strategy has an accuracy of a = 0.815 with a slope threshold
τ = 10−5. A larger threshold τ decreases the false positive rate, for instance
a threshold value τ = 10−4 yields a false positive rate of r f p = 0.315, lead-
ing to a higher accuracy a = 0.842. However, still 4 of 19 test cases have
been falsely detected. For a higher threshold 10−3 ≤ τ ≤ 10−2, the Linear
Regression strategy achieves a optimal false positives rate of zero on our test
cases. However, in that cases the true positive rate decreases to 0.5 and 0.0
for a threshold τ = 10−3 and τ = 10−2, respectively. The resulting detection
accuracies are a = 0.75 and a = 0.5, respectively. In the latter case, the
detection results are as good as with a random guessing approach. From the
evaluation results for the Linear Regression strategy we can conclude that
a reasonable configuration of this strategy highly depends on the concrete
context. Hence, the Linear Regression strategy is not suitable as part of a
generic detection heuristic for the Ramp anti-pattern. The Time Window
strategy yields the best detection results on our test cases with an optimal
accuracy of a = 1.0. Hence, we select the Time Windows strategy for further
detection of the Ramp anti-pattern.

Apart from the evaluation on the test cases considered in this chapter, the
Ramp anti-pattern and, with that, all potential detection strategies for the
Ramp have an inherent obstacle. The test cases TC 6 and TC 7 contain a
rather aggressive Ramp behaviour, so that response times increase consid-
erably within minutes when applying a high load intensity. However, in
practice occurrences of the Ramp anti-pattern are much more protracted,
so that response time increases become noticeable only after days or even
months of operation. Hence, the detection results for the Ramp anti-pattern
are always relative to the experimentation duration and, thus, should be
treated with caution.

6.3.4. Continuously Violated Requirements Heuristic

The Continuously Violated Requirements (CVR) anti-pattern (cf. Sec-
tion 4.3) is to a certain degree complementary to the Application Hiccups
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anti-pattern. While in the later case the response times exceed the perfor-
mance requirements threshold periodically, in the former case, the response
time continuously violate the requirements. Hence, it seems reasonable to
apply similar detection strategies for the CVR anti-pattern as for the Ap-
plication Hiccups anti-pattern while reverting some detection conditions.
Analogously to the Application Hiccups Heuristic, this heuristic requires
the same type of measurement data as the Performance Problem Heuristic.
Hence, for this heuristic we use the same experimentation, instrumentation
and data representation descriptions as shown in Section 6.3.1. Analogously
to the Application Hiccups heuristic, we investigate two different detection
strategies.

6.3.4.1. Detection Strategies

For the detection of continuously violated requirements we apply the same
basic techniques as for the detection of application hiccups: moving per-
centile and bucket analysis. Similar to the core strategy of the Application
Hiccups heuristic, the algorithm retrieves the set O of system services ω ∈ O
for subsequent iteration (Algorithm 9 in Appendix A.1.4). For each system
service ω, the strategy applies the corresponding detection strategy that re-
turns a boolean value indicating whether the corresponding response time
series P of system service ω continuously violates the performance require-
ments. In the following, we explain the different detection strategies and
evaluate them on the corresponding test cases.

Moving Percentile Strategy The algorithm for the Moving Percentile
Strategy (Algorithm 10 in Appendix A.1.4) calculates a percentile time series
M for a given response time series P. While iterating over the percentile
data points µ ∈ M, the detection strategy evaluates whether the response
time of the percentile data point (µ[’Response Time’]) exceeds the response
time threshold ρ from the performance requirements specification. If all
data points µ ∈ M exceed the threshold ρ, then ω is classified as a service
that continuously violates the performance requirements under the applied
load intensity. By contrast, if at minimum one µ ∈ M does not exceed the
response time threshold, then the algorithm does not detect ω as a CVR
instance.
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Bucket Strategy The Bucket Strategy for the detection of continuously
violated performance requirements (cf. Algorithm 11 in Appendix A.1.4)
is very similar to the corresponding strategy in Section 6.3.2. It requires
a configuration parameter φ as input. φ specifies the minimum proportion
of the experiment time in which the response time of ω must exceed the
requirements threshold ρ in order that P is classified as a response time
series that continuously violates performance requirements. This strategy
divides the given response time series P into buckets with a fix width,
in a similar way as described in Section 6.3.2. For the resulting set of
buckets B, this strategy counts the number η of buckets that violate the
performance requirements. If the proportion of buckets that violate the
performance requirements is bigger then the specified proportion φ, then
the corresponding system service ω is detected as an instance of the CVR
anti-pattern.

6.3.4.2. Evaluation

As the detection strategies for the CVR anti-pattern are conceptually very
similar to the Application Hiccups detection strategies (cf. Section 6.3.2),
we evaluate the CVR detection strategies in a similar way. For the window
size of the Moving Percentile strategy we again use four configuration
alternatives (5, 11, 51, and 501), while the Bucket strategy does not have
any configuration parameters. Table 6.4 shows the evaluation results for the
CVR detection strategies. Although all alternatives exhibit a false positive
rate of zero, the Moving Percentile strategy has a true positive rate r tp that is
less than 1.0 for all configuration alternatives. Hereby, the true positive rate
increases with a larger window size χ. In general, the Moving Percentile
strategy for the CVR anti-pattern detection has the same problems as the
Moving Percentile strategy in Section 6.3.2. By contrast, the Bucket strategy
yields an accuracy of 1.0 on the 21 test cases it has been tested on. Therefore,
in the remainder of this thesis, the Bucket strategy is used for the CVR
detection heuristic. The positive test cases for the CVR anti-pattern are used
to evaluate the Traffic Jam anti-pattern in the following.
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detection vectors
expectation

vector
Moving

Percentile Bucket

5 11 51 501
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TC 3 X X X X X X
TC 4 X X X X X X
TC 5 X X X X X X
TC 6 X X X X X X
TC 7 X X X X X X
TC 8 X
TC 9 X X X
TC 10 X X X X
TC 11 X X
TC 12
TC 13
TC 14 X X X
TC 15 X X
TC 16 X X X
TC 17 X X
TC 18 X X
TC 19
TC 20 X
TC 21
TC 22 X X X
TC 23

false positives rate r f p : 0.000 0.000 0.000 0.000 0.0
true positives rate r t p : 0.312 0.437 0.687 0.937 1.0
accuracy a(r f p, r t p ): 0.656 0.718 0.843 0.968 1.0

Table 6.4.: Evaluation results on the detection strategies for continuous violation of
performance requirements

6.3.5. Traffic Jam Heuristic

As shown in the PPEP instance (cf. 4.4.2), the Traffic Jam anti-pattern (cf.
Section Table 2.1(a), Chapter 2.4) subsumes a sub-class of performance prob-
lems under the Continuously Violated Requirements anti-pattern. Hereby,
the dependency between response times and the load is an essential part
of the Traffic Jam anti-pattern. In the following, we provide two different
strategies for detecting a Traffic Jam.
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Figure 6.9.: Experiment and instrumentation description for the Traffic Jam detection

6.3.5.1. Detection Strategies

In order to investigate the Traffic Jam anti-pattern, response times need to
be evaluated in dependence to different load intensities. Hence, for the
detection of the Traffic Jam anti-pattern we need an experimentation strategy
that provides means to gather response times under different load intensities.
Figure 6.9 shows the Experimentation Description instance for the Traffic
Jame detection heuristic. With respect to the instrumentation and monitoring
part, we again capture the response times from the Entry Points scope. As
experiment plan, we use the Scaling Experiment Series with five experiment
steps. Hence, five experiments are executed, whereby the load is increased
from one experiment to the next, starting with a single user and finishing with
the specified maximum load intensity. The resulting data representation has
the same format as shown in Figure 6.6. Based on that data representation
we provide two different detection strategies for the detection of a Traffic
Jam anti-pattern: the Linear Regression strategy and the t-Test strategy.

Linear Regression Strategy The Linear Regression strategy requires
two inputs: a dataset D containing response times for different load in-
tensities, and a parameter τ specifying a slope threshold (Algorithm 12,
Appendix A.1.5). The strategy returns a set L of system services that con-
tain a Traffic Jam behaviour. For each system service ω ∈ O, the strategy
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retrieves a set Pu of pairs comprising number of users and response times.
Applying a linear regression on Pu yields the slope κ of the corresponding
linear curve. A system service ω is considered to contain a Traffic Jam if the
corresponding regression slope κ is greater than the specified threshold τ.

t-Test Strategy Instead of conducting a linear regression, the t-Test strat-
egy applies a statistical test (similar to the Time Window strategy of the
Ramp heuristic in Section 6.3.3) in order to identify a significant increase in
data points. This strategy requires the dataset D, a significance parameter α,
and the performance requirements (ρ, π) as input. The result is a list L of
system services containing a Traffic Jam and a set I of load intensities under
which the SUT violates the performance requirements. For each system
service ω, the strategy conducts the following analysis in order to investigate
whether ω contains a Traffic Jam anti-pattern. Given the sets of response
times Rη (η ∈ {1, 2, 3, 4, 5}), this strategy evaluates for each neighbouring
pair (Rη,Rη−1) whether Rη−1 contains significantly smaller response times
than Rη . Thereby, t-tests are applied (Downing et al., 2003) in the same way
as in the Time Window strategy of the Ramp heuristic (cf. Section 6.3.3).
Note, the higher the index η the higher the load during the corresponding
experiment. A system service ω is considered to contain a Traffic Jam, if
the response times significantly increase for all experiment steps η whose
response times Rη violate the performance requirements (ρ, π).

6.3.5.2. Evaluation

The Linear Regression strategy is parametrized with a threshold τ for the
linear slope. Hereby, the threshold defines the maximum allowed increase
in average response time per additional user in the load intensity such that
no Traffic Jam anti-pattern is reported. We evaluate the Linear Regression
strategy for four different values of τ. We vary the magnitude of τ from
0.1 ms/user to 100 ms/user. For the t-Test strategy we use a fix significance
level of α = 0.05. The evaluation results for the Traffic Jam detection
strategies are shown in Table 6.5. Again, we see that the Linear Regression
strategy performs very differently depending on the threshold τ. With a large
threshold τ = 100, the detection strategy performs worst yielding only one
true positive of 14 positive test cases. Due to the large slope threshold even
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detection vectors
expectation

vector
Linear

Regression t-Test

0.1 1 10 100
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TC 8 X X X X X X
TC 9 X X X X X X
TC 10 X
TC 11 X
TC 12 X
TC 13 X
TC 14 X
TC 15 X
TC 16 X
TC 17 X
TC 18 X
TC 19 X
TC 20 X
TC 21
TC 22 X
TC 23 X X

false positives rate r f p : 0.0 0.0 0.000 0.000 0.0
true positives rate r t p : 1.0 1.0 0.928 0.071 1.0
accuracy a(r f p, r t p ): 1.0 1.0 0.964 0.535 1.0

Table 6.5.: Evaluation results on the Traffic Jam detection strategies

significant increases in response time are neglected. Consequently, in this
case the accuracy is very low with a value of 0.535. With τ = 10, the Linear
Regression strategy yields only for one test case a wrong detection result.
Finally, for small threshold values (0.1 ≤ τ ≤ 1) the Linear Regression
strategy provides optimal detection results with an accuracy of 1.0. These
results show that compared to the Linear Regression strategy for the Ramp
anti-pattern (cf. Section 6.3.3), in this case the Linear Regression strategy
provides more robust detection results for a reasonable range of the threshold
τ. As explained before, the Linear Regression strategy for the Traffic Jam
anti-pattern executes for each load intensity an individual experiment that
provides a robust set of measurement points for each value of the load
intensity. These sets of measurement data compensate any outliers leading
to a robust linear regression curve. By contrast, in the case of the Ramp
detection, the measurement points for the Linear Regression strategy came
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from a single experiment. Hence, each value on the abscissa has only one
corresponding value on the ordinate. Therefore, the Linear Regression
strategy for the Ramp anti-pattern is more sensitive to outliers and, thus,
is less robust. The t-Test strategy detects all test cases correctly and, thus,
achieves a detection accuracy of a = 1.0. Although, the Linear Regression
strategy with a small threshold τ performs as good as the t-Test strategy on
our test cases, it still remains an unintuitive task to provide a proper value
for the slope threshold. Therefore, in the remainder of this work, we use the
t-Test strategy for the detection of the Traffic Jam anti-pattern. As the test
cases TC 10 to TC 23 have been correctly identified as positive test cases
for the Traffic Jam anti-pattern, in the following, they are used as test cases
for the One Lane Bridge, Database Congestion and Excessive Messaging
anti-patterns.

6.3.6. One Lane Bridge Heuristic

The One Lane Bridge (OLB) anti-pattern (cf. Table 2.1(e), Chapter 2.4)
constitutes a software bottleneck leading to request congestion due to a
limited software resource instead of a saturation of a hardware resource. We
distinguish different types of OLB anti-patterns: general OLB, Dispensable
Synchronization, Database OLB or Bottleneck Service (cf. Section 4.3).
As all types of OLBs can be detected in the same way (apart from the
instrumentation scope), in this section, we subsume the detection of all the
different types of OLBs under a single detection heuristic.

6.3.6.1. Detection Strategies

The OLB anti-pattern is closely related to the Traffic Jam. While a Traffic
Jam refers to a congestion in general, an OLB subsumes all Traffic Jams
that are caused by a software resource. Hence, in order to identify an OLB,
response times need to be analyzed in correspondence with the utilization of
CPUs under different load situations. We create two detection strategies that
take both aspects into account in order to investigate the OLB anti-pattern:
the Fix Threshold strategy and the Queueing Theory strategy. Both detection
strategies are based on the same experimentation strategy described by the
Experimentation Description instance shown in Figure 6.10. Analogously to
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Figure 6.10.: Experiment and instrumentation description for the OLB detection

the Traffic Jam heuristic (cf. Section 6.3.5), we use a Scaling Experiment
Series with five experiments. With respect to the IaM Description, we
add a Sampling Entity with an unlimited scope and CPU Utilization as
probe. The scope of the Instrumentation Entity depends on the type of OLB
(general OLB, Dispensable Synchronization, Database OLB or Bottleneck
Service) to be analyzed. Accordingly to the IaM Description, in addition
to the response time dataset (cf. Figure 6.6) the experiments yield a CPU
utilization dataset as shown in Figure 6.11. Besides the Number of Users
parameter as experiment specifier, the dataset refers to a CPU Utilization
Record as Record Type. The CPU Utilization Record contains a Specifier
Parameter for the specification of the system node where the CPU utilization
is measured, as well as two Measure Parameter that allow to capture the
timestamp and the CPU utilization.

Fix Threshold Strategy The Fix Threshold strategy leverages the fact
that the OLB anti-pattern is a special case of the Traffic Jam anti-pattern
characterized by not saturated utilization of CPU resources. Hence, the Fix
Threshold strategy builds upon the t-Test strategy of the Traffic Jam Heuristic
(cf. Section 6.3.5) adding an analysis of CPU utilizations (cf. Algorithm 14,
Appendix A.1.6). This strategy takes a CPU utilization dataset DCPU and a
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Figure 6.11.: Data representation format for the OLB detection

CPU utilization threshold θ as input and returns a boolean value. The return
value indicates whether the Traffic Jams identified in the system services by
the Traffic Jam Heuristic are caused by the OLB anti-pattern or not. While
iterating over all system nodes ζ ∈ C and all experiments with different
load intensities υ ∈ U , the algorithm investigates whether the mean CPU
utilization U of the corresponding system node ζ exceeds the CPU threshold
θ. If none of the utilizations exceeds the threshold, corresponding services
that have been detected by the Traffic Jam Heuristic are considered to contain
an OLB anti-pattern.

Queueing Theory Strategy The Queueing Theory strategy utilizes laws
from the queueing theory (cf. Section 2.2.1) in order to identify an anomalous
balance between CPU utilization and response times. Following Menascé et
al., 2004, the average number N of requests in a multi-server queue system
is given by Equation 6.19. Hereby, ν denotes the number of servers, U
the average utilization of the servers, and C (ν,U) is Erlang’s C formula
(Menascé et al., 2004) describing the probability that an arriving request must
wait in a multi-server queue. Combining Equation 6.19 with Little’s Law and
the Service Demand Law (cf. Section 2.2.1) allows to derive a theoretical
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response time R that depends on the mean CPU utilization U, the number
of CPU cores ν and the service demand D of the corresponding request.
Equations 6.23-6.25 show the derivation of R from the given laws.

Avg. number of requests: N =
U

1 −U
C (ν,U) + νU (6.19)

Utilization: U =
λ

νµ
(6.20)

Little’s Law: N =λR (6.21)

Service Demand: D =
1
µ

(6.22)

(6.19) + (6.20) ⇒ N =
λ

νµ

1
1 −U

C (ν,U) +
λ

µ
(6.23)

(6.21) ⇒ R =
1
νµ

1
1 −U

C (ν,U) +
1
µ

(6.24)

(6.22) ⇒ R =
D
ν

1
1 −U

C (ν,U) + D (6.25)

The Queueing Theory strategy utilizes this formula to derive an upper thresh-
old τ for the response times that can be described by queueing theory. If an
average response time exceeds that threshold, we can assume that a Traffic
Jam occurs that cannot be explained by CPU congestion, hence, constituting
an OLB anti-pattern. Under very low utilization the average service demand
D of a request can be approximated with its average response time %s. To
this end, this detection heuristic calculates for each instrumented location
ω ∈ O the average single-user response time %s, as well as the number of
CPU cores ν for all system nodes. For each tuple of an instrumented location
ω ∈ O, a load intensity υ ∈ U , and a system node ζ ∈ C, this detection
strategy calculates the response time threshold τω,υ,ζ utilizing Equation 6.25.
Hereby, the algorithm uses the number of cores ν on system node ζ , the
aggregated average utilization U of the corresponding CPUs on node ζ ,
and the average single-user response time %s as an approximation for the
service demand D of operation ω. If at least one average response time %m
of operation ω exceeds the corresponding threshold τω,υ,ζ then this violation
cannot be explained by the queueing theory, leading to the assumption that
ω contains an OLB anti-pattern.
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detection vectors
expectation

vector
Fix

Threshold
Queueing

Theory
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TC 10 X X X X X X X
TC 11 X X X X X X X
TC 12
TC 13
TC 14 X X X X X X X
TC 15
TC 16 X X
TC 17 X X
TC 18 X X
TC 19 X
TC 20 X
TC 21
TC 22
TC 23 X X X

false positives rate r f p : 0.556 0.667 0.667 0.667 0.667 0.222
true positives rate r t p : 1.000 1.000 1.000 1.000 1.000 1.000
accuracy a(r f p, r t p ): 0.722 0.667 0.667 0.667 0.667 0.889

Table 6.6.: Evaluation results on the One Lane Bridge detection strategies

6.3.6.2. Evaluation

In this section, we evaluate the Queueing Theory strategy and five configu-
ration alternatives (CPU threshold θ ∈ {60%, 70%, 80%, 90%, 95%}) of the
Fix Threshold strategy by means of the test cases TC 10 - TC 23. Table 6.6
shows that none of the strategies achieved an optimal detection accuracy.
For the CPU threshold values 70 ≤ θ ≤ 95, the Fix Threshold strategy
yields constant detection results with an accuracy of a = 0.667. Although
all positive test cases have been detected correctly, 6 of 9 negative test cases
have been falsely detected. In the test cases TC 16 - TC 20, the throughput
is limited by the capacity of the network and corresponding transmission
protocols. However, the Fix Threshold strategy neglects network utiliza-
tion. As in these test cases all CPU utilizations are very low, however, the
response times grow with the load intensity (due to network limitations), the
Fix Threshold strategy falsely detects an OLB anti-pattern in these test cases.
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In test case TC 23, the response times increase with the load intensity due
to a moderate utilization of the CPU. However, with a high CPU utilization
threshold that moderate utilization is missed and results in a false positive.
A CPU threshold of θ = 60 resolves the false positive in TC 23, yielding a
detection accuracy of a = 0.722. The Queueing Theory strategy performs
best with an accuracy of a = 0.889. First, as indicated by the name and de-
scribed before, the Queueing Theory strategy is based on queueing theory (cf
Section 2.2.1) and, thus, correctly identifies scenarios where response times
grow due to moderate utilization of resources (e.g. TC 23). Furthermore,
besides the utilization of the CPU, the Queueing Theory strategy takes the
network utilization into account. In this way, this strategy provides correct
detection results for the test cases TC 16 - TC 18. However, in test cases
TC 19 and TC 20, the Queueing Theory strategy still falsely detects an OLB
anti-pattern. In these cases, the problem is that network utilization cannot be
that easily treated as the CPU utilization. In particular, it is very difficult to
predict the maximum throughput of a network connection without having de-
tailed information about the characteristics of the transmitted data (e.g. size
of messages), configuration of different transmission protocols (e.g. TCP)
as well as the usage patterns of the network by the target application (e.g.
number of connections). As estimating the maximum throughput of network
connections is a topic on its own, in this thesis, we abstain from providing
a solution to that problem. As the Queueing Theory strategy performed
best, in the remainder of this work it is used for the detection of the OLB
anti-pattern.

Besides the correct classification of the positive test cases, the Queueing
Theory strategy correctly pointed to the root causes of the observed OLB anti-
patterns. In particular, in test cases TC 12 and TC 13, this strategy identified
the methods that issued the high amount of database requests as the points
of congestion. In TC 15, the detection strategy reported the database call
method (with corresponding query) as the guilty method. Finally, in the test
cases TC 21 and TC 22 the corresponding synchronized methods have been
identified correctly as the root cause.
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Figure 6.12.: Experiment and instrumentation description for the
Database Congestion detection

6.3.7. Database Congestion Heuristic

Besides the OLB anti-pattern, the Database Congestion anti-pattern con-
stitutes another sub-category of performance problems under the Traffic
Jam anti-pattern. In this section, we provide detection strategies for the
identification of database-intensive performance problems.

6.3.7.1. Detection Strategies

Database-intensive performance problems result either in a high resource
utilization of the database server (i.e. CPU utilization) or in excessive locking
of the database requests. Hence, for the detection of the Database Conges-
tion problem, the IaM Description must contain both sampling of the CPU
utilization as well as sampling of database statistics (cf. Figure 6.12). Hereby
the scope is limited to all system nodes that correspond to the DB server
role. Similar to the response time considerations in the Traffic Jam Heuristic,
for the Database Congestion Heuristic we are interested in the progress of
CPU utilization and the database’s locking behaviour in dependency of the
load. Therefore, this heuristic utilizes the same experimentation plan as the
Traffic Jam Heuristic, executing a Scaling Experiment Series with five exper-
iment steps (cf. Figure 6.12). The execution of the experiments described
by the experiment specification in Figure 6.12 yields two dataset types: a
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Figure 6.13.: Data representation format for the Database Congestion detection

CPU utilization dataset DCPU as already shown in Figure 6.11 for the OLB
Heuristic, and a database statistics dataset DDB (cf. Figure 6.13). The
latter dataset contains two Specification Parameters capturing the Number of
Users during the corresponding experiments and the system Node where the
measurements have been taken from. Furthermore, four Measure Parameters
capture the measurement’s Timestamps, the number of Queries, the number
of Lock Waits, as well as the corresponding Waiting Times. Based on this
data types, we provide two alternative detection strategies.

Fix Threshold Strategy The Fix Threshold strategy (cf. Algorithm 16,
Appendix A.1.7) evaluates two aspects: the utilization of the database server
as well as the progression of locking behaviour. For the utilization analysis
this strategy uses a defined threshold tCPU that specifies when a database
server has to be considered as overloaded. For each load situation υ and each
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database node ζ this strategy evaluates whether the utilization U exceeds
the specified threshold tCPU . If U exceeds tCPU for any tuple (υ, ζ ), then
this strategy reports the presence of a Database Congestion anti-pattern.
Otherwise, the Fix Threshold strategy evaluates the growth of locking times
over load intensity. To this end, the algorithm calculates for each tuple (υ, ζ )
the lock waiting times Q′ per database request. By conducting pairwise t-
tests (Downing et al., 2003) on the neighbouring sets of waiting times Q′ and
Q′p (Q′p are the waiting times with the next smaller load intensity than in Q′)
this detection strategy examines whether the locking times increase with the
load. If the t-tests yield statistically significant differences for all Q′ whose
corresponding load intensities υ lead to violating performance requirements
in the Traffic Jam heuristic, then this detection strategy considers the SUT
to contain a Database Congestion anti-pattern. If neither the CPU threshold
tCPU is exceeded nor the locking times grow significantly with the load, then
the Fix Threshold strategy assumes that the Database Congestion anti-pattern
is not present in the SUT.

Queueing Theory Strategy The Queueing Theory strategy (cf. Algo-
rithm 17, Appendix A.1.7) is equal to the Fix Threshold strategy except for
the fact that no fix threshold tCPU is used for the analysis of the database
utilization. In order to avoid the need to specify an absolute, potentially
context-specific threshold, this strategy dynamically calculates a threshold
tqt
CPU

based on the number of CPU cores nC and a relative response time in-
crease factor fR that is context independent. Thereby, this detection strategy
inverts the Erlang’s C formula (Menascé et al., 2004) in order to find the
CPU utilization tqt

CPU
(for a CPU with nC cores) under which the response

times increase by a factor of fR compared to a low-utilization scenario.
The Queueing Theory strategy then applies the same algorithm as the Fix
Threshold strategy, however, uses the dynamically calculated threshold tqt

CPU
instead of the fix threshold tCPU .

6.3.7.2. Evaluation

The evaluation results of the Database Congestion detection strategies (cf.
Table 6.7) show that both detection strategies (Fix Threshold and Queueing
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60 70 80 90 95

Te
st

C
as

es

TC 10 X X X X X X X
TC 11
TC 12
TC 13
TC 14
TC 15
TC 16 X X X X X X X
TC 17 X X X X X X X
TC 18 X X X X X X X
TC 19 X X X X X X X
TC 20 X X X X X X X
TC 21 X X X X X X X
TC 22 X X X X X X X
TC 23 X X X X X X X

false positives rate r f p : 0.0 0.0 0.0 0.0 0.0 0.0
true positives rate r t p : 1.0 1.0 1.0 1.0 1.0 1.0
accuracy a(r f p, r t p ): 1.0 1.0 1.0 1.0 1.0 1.0

Table 6.7.: Evaluation results on the DB congestion detection strategies

Theory), provide optimal detection results with an accuracy of 1.0. With rea-
sonable CPU thresholds between 60% and 95% utilization, the Fix Threshold
strategy is equally good independent of the threshold. In the negative test
cases (TC 10, TC 16-TC 23) both the database’s CPU utilization as well as
the database locking times are very low, leading to a correct classification
by the detection strategies. The positive test cases exhibit either a signifi-
cantly growing locking times behaviour or a very high CPU utilization (near
to 100%). In the former case, both detection strategies use the same sub-
strategy to identify growing locking times. Hence both strategies provide
correct results in those cases. In the case of very high CPU utilization at the
database server, both detection strategies managed to identify that situation.
None of the negative test cases exhibit a moderate CPU utilization at the
database server. Therefore, we cannot make any statements on how the
detection strategies would perform in such cases. For further detection of the
Database Congestion anti-pattern we select the Queueing Theory strategy as
it is independent of any configuration parameters.
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Figure 6.14.: Experiment and instrumentation description for the Stifle detection

6.3.8. The Stifle Heuristic

The Stifle anti-pattern (cf. Table 2.1(k), Chapter 2.4) is a root cause of
the Database Congestion problem manifested in a high amount of small,
similar database queries. Hence, in order to detect a Stifle anti-pattern the
corresponding heuristic must capture the database access behaviour of the
application logic components. In this section, we provide a detection strategy
for the Stifle anti-pattern and evaluate its detection accuracy based on the
corresponding test cases.

6.3.8.1. Detection Strategy

In order to uncover a Stifle anti-pattern, the detection strategy has to ana-
lyze the database access of the application for individual system services.
Therefore, the Stifle heuristic applies a Single-User test while capturing the
Response Times of the application’s Entry Points as well as the Database
Queries at the database access level (cf. Figure 6.14). In this way, mea-
surement data can be captured that allows to reconstruct the relationship
between individual system services and according database requests without
distorting effects of concurrent user requests.

The experiment defined in Figure 6.14 yields measurement data that is struc-
tured along two dataset types: a Response Time dataset DR as already used
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Figure 6.15.: Data representation format for the Stifle detection

for previous heuristics (cf. Figure 6.6), and a Database Query dataset DSQL

capturing the queries of individual database requests (cf. Figure 6.15).

As first analysis step, the detection strategy correlates both datasets DR and
DSQL yielding a grouping DC of system service calls and corresponding
database requests. For each system service ω, the Stifle detection strategy
retrieves the set Q of emitted database queries. Applying a clustering on Q
provides a set of clusters ζ ∈ Q ′, whereby each cluster represents a set of
structurally equal database queries. Clusters ζ with a size that is greater than
one indicate queries that have been issued multiple times per user request,
hence, constituting a Stifle anti-pattern. Clusters with an extremely large
size (e.g. hundreds or thousands of database requests per user) very likely
cause a high Database Congestion problem by introducing I/O overhead
at the database server as well as significant communication overhead. The
Stifle heuristic reports all queries (with the corresponding system services) as
potential Stifle anti-patterns whose corresponding clusters have a size greater
than one, while sorting the Stifle candidates by their number of repetitions
(i.e. cluster sizes) in descending order.

6.3.8.2. Evaluation

Five test cases have passed the Database Congestion heuristic as positive
test cases (TC 11 - TC 15). Hence, the Stifle heuristic is evaluated by
means of that five test cases comprising two positive scenarios and three
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expectation
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vectors
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TC 11 X X
TC 12
TC 13
TC 14 X X
TC 15 X X

false positives rate r f p : 0.0
true positives rate r t p : 1.0
accuracy a(r f p, r t p ): 1.0

Table 6.8.: Evaluation results on the Stifle detection strategy

negative scenarios. Applying the Stifle heuristic on these test cases yields an
accuracy of 1.0 as shown in Table 6.8. Both positive test cases (TC 12 and
TC 14) containing repetitions of equal or similar database requests per user
request have been correctly identified as a Stifle anti-pattern. In this cases
the heuristic where able to extract the corresponding system service as well
as the guilty SQL statement. Test cases TC 14 and TC 15 contain only one
database request per user request, hence, as correctly classified by the Stifle
heuristic, this test cases do not contain a Stifle. Finally, in test case TC 11,
many database requests are issued per user request, however, they are all
different with respect to the query structure. Hence, this heuristic correctly
classified this test case as a negative test case for the Stifle anti-pattern.

6.3.9. Expensive Database Call Heuristic

The Expensive Database Call (EDC) anti-pattern leads to a similar symp-
tom as the Stifle anti-pattern, resulting in a high overhead at the database,
either due to high locking times or high utilization of processing resources.
However, while the Stifle anti-pattern is manifested in many small database
requests, the EDC anti-pattern constitutes the opposite behaviour of a single,
long-running database request. In the following, we provide and evaluate a
detection strategy for the EDC anti-pattern.
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Figure 6.16.: Experiment and instrumentation description for the
Expensive Database Call detection

6.3.9.1. Detection Strategy

Typically, EDC instances only reveal under high load, while they remain
unnoticed under low load. Furthermore, the higher the load intensity, the
more the EDC execution time dominates the overall response time of the
system service. In order to analyze this behaviour at the SUT, the EDC
detection heuristic executes two experiments, one with a low and one with a
high load intensity. Therefore, we define for the experiment plan a Scaling
Experiment Series with two experiment steps comprising a Single-User
Test and a Load Test (cf. Figure 6.16). In order to enable analysis of
the response time proportions between database query times and system
service times, the detection strategy instruments the Entry Points and the
Database Access scopes with a Response Time probe and a Tracing probe.
Additionally, the Database Access scope is instrumented with the Database
Query probe to retrieve the SQL statements of expensive database calls (cf.
Figure 6.16). The instrumentation specification yields measurement data
structured along three dataset types: a Response Time dataset as already
used by the Performance Problem Heuristic (cf. Section 6.3.1), a Database
Query dataset as used by the Stifle heuristic (cf. Section 6.3.8), and a Tracing
dataset shown in Figure 6.17. The Tracing dataset captures the Trace ID,
the Enter - and Exit Timestamps, and the operation name (i.e. Location) for
the corresponding operation calls. Besides the datasets, the EDC detection
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Figure 6.17.: Data representation format for the Expensive Database Call detection

strategy (Algorithm 19, Appendix A.1.9) takes a set V = {(ςi, %i, ϕi)}i
as input. The elements of V represent system services ςi that violate the
performance requirements (detected by the Performance Problem heuristic,
cf. Section 6.3.1) as well as the corresponding, average single-user response
times %i and high-load response times ϕi . The trace information is used to
correlate system service calls with the corresponding database requests (i.e.
DB Queries). For each query η that has been executed as part of a system
service ς this detection strategy calculates the mean execution time νs under
single-user load and the execution time νh under the maximum specified
load intensity. A database request ς is considered as an EDC instance, if the
proportion of the execution time νh (query time under high load) and the
response time ϕ (response time of corresponding system service under high
load) exceeds a specified threshold τ (νh > τϕ), the proportion grows with
the load:

νh
ϕ
> τ ∧

νh
ϕ
>
νs
%

(6.26)

Equation 6.26 means that the execution time of the corresponding database
request increasingly dominates the overall response time the higher the load
is, which is an indicator for an EDC instance.
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expectation
vector

detection
vectors

Te
st
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es

TC 11 X X
TC 12 X X
TC 13 X X
TC 14
TC 15

false positives rate r f p : 0.0
true positives rate r t p : 1.0
accuracy a(r f p, r t p ): 1.0

Table 6.9.: Evaluation results on the Expensive Database Call detection strategy

6.3.9.2. Evaluation

The EDC heuristic is evaluated on the same test cases as the Stifle heuristic
(cf. Table 6.9). From the five test cases, the EDC heuristic correctly identified
the two positive test cases (TC 14 and TC 15) that contain long running
database calls, either due to long locking times or high database utilization.
The heuristic also correctly classifies the test cases TC 11 - TC 13 as negative
test cases for the EDC anti-pattern, although they also lead to a Database
Congestion problem. In these cases, the heuristic successfully distinguished
several short requests from some few long running requests. Furthermore,
similar to the Stifle heuristic, the EDC heuristic correctly pinpointed to the
queries that took a long time to be processed by the database.

6.3.10. Excessive Messaging Heuristic

The Excessive Messaging anti-pattern is manifested in a high communication
overhead on the network induced by inter-component communication of
distributed software components. In this section, we introduce and test
different detection strategies for the Excessive Messaging anti-pattern.
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Excessive Messaging detection

6.3.10.1. Detection Strategies

The detection of the Excessive Messaging anti-pattern requires analysis of
the message transmission behaviour as well as the network utilization. The
detection strategies introduced in the following are based on the same ex-
perimentation and instrumentation specification, while applying different
analysis algorithms on the corresponding measurement data. The experi-
mentation description is depicted in Figure 6.18. As Excessive Messaging
is a cause of the Traffic Jam anti-pattern (cf. Taxonomy in Figure 4.2), its
negative effect on performance increases with the load intensity. Hence, the
detection heuristic has to analyze the messaging behaviour and the network
utilization in dependency of the load intensity. Therefore, analogously to
the Traffic Jam heuristic, a Scaling Experiment Series with five experiment
steps is used. Thereby, the heuristic samples Network Utilization of all ap-
plication nodes and the messaging server, as well as the Messaging Statistics
from the Messaging Server (cf. Figure 6.18). Corresponding to the two
Sampling entities in Figure 6.18, the Excessive Messaging experiments yield
two datasets for the resulting measurement data. The Network I/O dataset
(cf. Figure 6.19) captures statistics like network bandwidth (Speed), number

209



6. Detection Heuristics

experiment

Specifier

record

Typename = Network I/O Record

: Record Type

name = BytesTransferred

type = Long

: Measure Parameter

name = Timestamp

type = Integer

: Measure Parameter

name = Node

type = String

: Specifier Parameter

parameters

: Dataset 

Type
name = Number of Users

type = Integer

: Specifier Parameter

name = Interface Name

type = String

: Specifier Parameter

name = BytesReceived

type = Long

: Measure Parameter

name = Speed

type = Long

: Measure Parameter

Figure 6.19.: Network I/O dataset format

of transferred and received bytes from corresponding network interfaces
identified by the Specifier Parameters Node and Interface Name. As already
explained for previous dataset types, the Number of Users parameter cap-
tures the load intensity during the corresponding experiment. The Messaging
Statistics dataset (cf. Figure 6.20) captures sampled values for the average
message size and the sizes of message queues that are specified by a queue
name. These two datasets provide the measurement data that is required to
analyze an existence of an Excessive Messaging anti-pattern in a SUT. In
the following, we explain three different analysis strategies that process this
data.

Network Utilization Threshold Strategy Besides an analysis of the queue
sizes, the Network Utilization Threshold strategy (cf. Algorithm 20, Ap-
pendix A.1.7) analyzes the network utilization measured on the network
interfaces of the individual system nodes. Therefore, this strategy calculates
a utilization threshold τ that depends on the average message size µ. If the
message size is larger than a TCP packet, then the detection strategy uses
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Figure 6.20.: Messaging statistics dataset format

90% of the network interface’s bandwidth as the threshold τ. In the case of
small messages (µ smaller than a TCP packet), we use the following formula
(Huang, 2003) that, based on Nagle’s congestion control algorithm (Minshall
et al., 2000), describes the maximum network throughput in dependence of
the message size:

τ = 0.9ρ
(⌊
π

µ

⌋
+ 1

)
µ

2
(6.27)

Hereby, Rp is the TCP packet rate, π the TCP packet size (usually 1460 -1500
bytes), and µ is the average message size. Using the network throughput
threshold τ, for each tuple (ν, υ) of a system node ν and a load intensity υ,
this detection strategy examines whether the network throughput θ exceeds
the threshold τ. In the case that θ exceeds τ, this detection strategy reports
an excessive messaging problem. Otherwise, the strategy further analyzes
the progression of the queue sizes (cf. Algorithm 21, Appendix A.1.7) in
dependency of the load intensity. Therefore, the strategy conducts pairwise
t-Tests (Downing et al., 2003) on sampled queue size sets S and Sp , whereby
Sp contains the sampled queue sizes for the next smaller load intensity than
in S. If the mean value of of S is larger than the mean value of Sp , and the
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corresponding t-Test shows a significant difference of the samples S and Sp ,
the strategy concludes that the values in S are significantly larger than in
Sp. If this applies for all S whose corresponding load intensity lead to a
violation of performance requirements in the Traffic Jam heuristic, then this
detection strategy reports an occurrence of Excessive Messaging.

Network Utilization Stagnation Strategy The Network Utilization Stag-
nation strategy (cf. Algorithm 22, Appendix A.1.7) does the same analysis of
the queue sizes as the Network Utilization Threshold strategy. However, with
respect to the evaluation of the network throughput, this detection strategy
avoids to use a fix threshold. Instead, this strategy examines whether the
network throughput stagnates at a certain level with an increasing load. A
stagnation of the network throughput indicates a saturation of the maximal
possible throughput, limited either by the physical bandwidth or effects of
different algorithms implemented as part of certain transmission protocols
(such as Nagel’s congestion control, flow control, etc. with TCP). For each
network interface of the system nodes, this strategy compares the network
throughput θ under load intensity υ with the network throughput θp under the
next smaller load υp . If θ < θp + ε for a specified tolerance value ε , then the
throughput θ is considered as not significantly higher than θp . If this applies
for all experiment steps (i.e. load intensities) which resulted in performance
requirements violation in the Traffic Jam heuristic (cf. Section 6.3.5), then
this detection strategy identifies the network throughput behaviour as an
Excessive Messaging problem.

Message Throughput Strategy The Message Throughput strategy (cf.
Algorithm 23, Appendix A.1.7) renounces the analysis of the network
throughput and utilization. Instead, this detection strategy analyzes the
throughput of messages that pass the messaging server in dependency of
the load intensity. Therefore, the Message Throughput strategy applies a
similar analysis algorithm on the message throughput measures as the Net-
work Utilization Stagnation strategy does on the network throughput values.
In particular, for each load intensity υ, the strategy compares the message
throughput µ with the throughput µp under the next smaller load intensity.
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detection vectors
expectation

vector Threshold Stagnation Message
Throughput

Te
st

C
as

es
TC 10 X X X X
TC 11 X X X X
TC 12 X X X X
TC 13 X X X X
TC 14 X X X X
TC 15 X X X X
TC 16 X
TC 17 X
TC 18 X
TC 19 X X
TC 20 X X
TC 21 X X X X
TC 22 X X X X
TC 23 X X X X

false positives rate r f p : 0.0 0.0 0.0
true positives rate r t p : 0.0 0.6 1.0
accuracy a(r f p, r t p ): 0.5 0.8 1.0

Table 6.10.: Evaluation results on the Excessive Messaging detection strategy

then this detection strategy reports an occurrence of the Excessive Messaging
anti-pattern.

6.3.10.2. Evaluation

In this section, we evaluate the detection strategies for the Excessive Messag-
ing anti-pattern by means of 14 test cases (TC 10 - TC 23). Table 6.10 shows
the detection results for the Excessive Messaging detection strategies. The
Network Utilization Threshold strategy classifies all test cases as negative
test cases, yielding an accuracy of 0.5. The problem with this strategy is
that the calculated thresholds miss to incorporate some important details
of network technologies that further limit the maximal network throughput.
Therefore, in all positive test cases the calculated utilization threshold τ was
to large. The Network Utilization Stagnation strategy has a higher accuracy
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fails to detect Excessive Messaging. The Message Throughput strategy pro-
vides the most accurate results (a = 1.0). The benefit of that strategy is the
independence of complex networking considerations. Focusing on the actual
goal to detect excessive messaging, this strategy classifies all corresponding
test cases correctly.

6.3.11. The Blob Heuristic

An existing Blob anti-pattern (cf. Table 2.1(h), Chapter 2.4) generates a
high communication overhead through remote communication between a
central Blob component and other components, hence, constituting a cause
for the Excessive Messaging anti-pattern. A detection heuristic for the Blob
anti-pattern must be able to identify such Blob components by analyzing the
messaging behaviour of individual software components. In the following,
we introduce two alternative detection strategies for the Blob and evaluate
them by means of the corresponding test cases.

6.3.11.1. Detection Strategies

As the Blob anti-pattern is a descendant node of the Traffic Jam anti-pattern
(cf. Figure 4.2, Section 4.3), the effect of the communication overhead
induced by the Blob component increases with the load intensity. Therefore,
the Blob heuristic analyzes the messaging behaviour of software components
under a high load, applying a load test as experiment plan (cf. Figure 6.21).
Instrumenting the Messaging scope on all application servers, the detection
heuristic captures information about transmitted messages. Figure 6.22
shows the data format for the measurement data gathered for the Blob
detection. The dataset is based on the Messaging Record that captures for
each sent or received message the Message ID, the Timestamp of reception or
dispatch, the ID of the involved software component, as well as a boolean flag
indicating whether the record represents a message dispatch or a message
reception. Based on that measurement data format, we provide two different
detection strategies for the Blob anti-pattern.
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Figure 6.21.: Experiment and instrumentation description for the Blob detection
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Figure 6.22.: Data representation format for the Blob detection

Mean Analysis Strategy This detection strategy calculates for each com-
ponent its contributing part π to the overall messaging time and compares
π to the mean contribution over all components. Therefore, the detection
strategy correlates all message dispatches and receptions using the Message
ID. Let C be the set of components involved in messaging. For each mes-
sage transmission a → b from component a ∈ C to component b ∈ C the
transmission time is calculated using the timestamps. This data processing
step yields for each component ζ ∈ C a cumulative message transmission
time ν ∈ M including the transmission times of messages that have been
dispatched as well as received by component ζ . Let µ and σ be the mean
of the setM and the standard deviation, respectively. Applying the Three
Sigma Rule (Pukelsheim, 1994), the Mean Analysis strategy examines for
each component ζ ∈ C whether the corresponding messaging contribution π
exceeds the threshold τ = µ + 3σ. A messaging contribution that exceeds τ
indicates that the corresponding component exhibits excessive messaging
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compared to other components. In this case, this detection strategy reports
the corresponding component as a Blob component.

Component Exclusion Strategy The Component Exclusion strategy is
based on a similar idea as the Mean Analysis strategy, however, applies
another way of calculating the messaging contribution. In particular, this
strategy calculates the set C of components involved in messaging, and the
set of messaging timesM in the same way as the Mean Analysis strategy.
Each message transmission involves two components (i.e. the sender and the
receiver). Hence, each message dispatch or reception of a Blob component
ζb contributes to the messaging time of another component ζ such that
the messaging contribution measure for ζ is distorted. In order to avoid
this effect, the Component Exclusion strategy calculates the messaging
contribution for a component ζ by comparing the overall messaging time
ω =

∑
ν∈M (ν) to the overall messaging time ωζ excluding component ζ .

Let Mζ ⊂ M be the set of all messaging times excluding the message
transmission times where component ζ were involved. Then, ωζ is defined
as the sum overMζ :

Mζ =
⋃

c∈C\{ζ }

(M (c)) (6.28)

ωζ =
∑
ν∈Mζ

(ν) (6.29)

From the cumulative messaging times ω and ωζ , for the Component Exclu-
sion strategy we define the messaging contribution πζ of component ζ as
follows:

πζ = 1 −
ωζ

ω
(6.30)

Furthermore, the Component Exclusion strategy calculates for each compo-
nent ζ an individual Three Sigma threshold τζ utilizing the messaging time
setMζ . Assuming that µζ and σζ are the mean and the standard deviation
ofMζ , respectively, then the individual threshold is:

τζ = µζ + 3σζ (6.31)

The Component Exclusion strategy identifies a component ζ as a Blob, if its
contribution πζ exceeds the threshold τζ (πζ > τζ ).
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detection vectors
expectation

vector
Mean

Analysis
Component Exclusion

Analysis

Te
st

C
as

es
TC 16 X X
TC 17 X
TC 18 X
TC 19 X X
TC 20 X X

false positives rate r f p : 1.0 0.0
true positives rate r t p : 0.0 1.0
accuracy a(r f p, r t p ): 0.0 1.0

Table 6.11.: Evaluation results on the Blob detection strategies

6.3.11.2. Evaluation

Both Blob detection heuristics are free of configuration parameters. We
evaluate the detection strategies on five messaging-related test cases (TC 16
- TC 20) that have been successfully detected by the Excessive Messaging
heuristic. Table 6.11 shows the evaluation results. Remarkable is the fact that
the detection strategies yield completely contrary detection results. While
the Component Exclusion Analysis strategy achieves the optimal accuracy of
a = 1.0, the Mean Analysis strategy is incorrect in all test cases, exhibiting
an accuracy of a = 0.0. In the test cases TC 16, TC 19 and TC 20 only
two software components are involved in messaging. For the Mean Analy-
sis strategy this means that the messaging contribution of each component
equals to the overall messaging time. Hence, the standard deviation σ of
messaging contributions is zero and each individual messaging contribution
ν ∈ M equals to the mean contribution µ. Consequently, both components
that are involved in messaging are identified as Blob components. Moreover,
the Mean Analysis strategy uses the messaging contributions of all compo-
nents involved in messaging to calculate a common threshold τ. In the test
cases TC 17 and TC 18, however, the messaging contribution of the Blob
component biases the mean value µ and the standard deviation σ. Thus, the
resulting 3-Sigma threshold τ is to large to detect the messaging contribution
of the Blob component as critical. The Component Exclusion Analysis
strategy overcomes both problems by calculating an individual threshold τζ
for each component ζ ∈ C by excluding its messaging contribution from the
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common set of messaging contributions. Due to the high accuracy, in the
remainder of this work we use the Component Exclusion Analysis strategy
to detect the Blob anti-pattern.

6.3.12. Empty Semi Trucks Heuristic

The Empty Semi Trucks (EST) anti-pattern (cf. Table 2.1(i), Chapter 2.4) is
characterized by a high amount of small messages transmitted between two
components as part of a single user request. However, if a component exhibits
a high message transmission rate due to a high load, whereas the frequency
of message transmissions per user request is low, we do not consider it as
an EST anti-pattern. Thus, in order to detect an EST anti-pattern we need to
analyze the messaging behaviour of single user requests. In the following,
we describe a detection strategy for the EST anti-pattern and evaluate it using
the corresponding test cases.

6.3.12.1. Detection Strategy
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Figure 6.23.: Experiment and instrumentation description for the Empty Semi
Trucks detection
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Figure 6.24.: Data representation format for the Empty Semi Trucks detection

Conducting a Single-User Test, the EST detection strategy measures the
Message Sizes at all application servers involved in Messaging, as well as
the Trace IDs along a dynamic Trace originating from the Entry Points scope
(cf. Figure 6.23).

In this way, measurement data can be gathered that allows to reconstruct the
call trees from system services to the message dispatch operations. Although
the Trace Scope yields a very fine grained and broad instrumentation of the
target application, the resulting high measurement overhead is not critical
for this detection strategy, because the EST heuristic does not depend on
performance measures (e.g. response times) to detect an EST anti-pattern.
The specified instrumentation yields two types of datasets: a Tracing dataset
(as already used by the Expensive Database call heuristic in Figure 6.17) and
a Message Size dataset (cf. Figure 6.24).

For each method called along the dynamic trace, the Tracing dataset captures
the Trace ID, the method name (cf. Location), as well as the Enter and Exit
Timestamps. The Message Size dataset captures for each sent message the
overall Message Size, the Size of the Payload, the software Component ID,
and again a Timestamp.

The EST detection strategy uses the Trace IDs and the Enter and Exit Times-
tamps to reconstruct a trace instance τ ∈ T for each single user request.
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methodOne(...)

LOOP [24x]

anotherMethod(...)
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message size: 240 Bytes 
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methodTwo(...)
...

Figure 6.25.: Exemplary Trace (Wert et al., 2014)

Information on the message size and the corresponding payload size are at-
tached to each message-dispatching method in the trace τ. Repeating parts of
the trace are aggregated and represented as loops while counting the number
ν of executions of the corresponding loop body. Finally, trace instances with
the same structure are clustered and aggregated with respect to the message
size information. This step yields a set of clusters C with representative
traces ζ ∈ C. An example of such a trace is depicted in Figure 6.25. Hereby,
the send operation occurs in a branch of the call tree within a LOOP which
has been iterated 24 times. Messages that are repeatedly sent in a loop are
candidates for aggregation. The saving potential π in network overhead
can be calculated using the number ν of loop iterations, the average overall
message size σ and the payload size β:

π ← (ν − 1)(σ − β) (6.32)

The higher the saving potential π the more critical is the corresponding EST
instance. This detection heuristic reports all traces containing a message
dispatch method in a loop as an EST occurrence, ordering the instances
descending by their saving potential.

6.3.12.2. Evaluation

The EST detection heuristic is evaluated on the same test cases as the Blob
heuristic (TC 16 - TC 20). Table 6.12 shows that the detection heuristic
classified all test cases correctly, yielding a detection accuracy of a = 1.0.
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expectation
vector
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vector

Te
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es

TC 16 X X
TC 17 X X
TC 18 X X
TC 19
TC 20

false positives rate r f p : 0.0
true positives rate r t p : 1.0
accuracy a(r f p, r t p ): 1.0

Table 6.12.: Evaluation results on the Empty Semi Trucks detection strategy

For the positive test cases the EST heuristic correctly pinpointed to the loops
in the stack traces that are responsible for the EST behaviour.

6.4. Summary

In this chapter, we described the notion of a detection heuristic for APPD.
We elaborated a process for the development of accurate detection heuristics
that are generically applicable on different scenarios. Thereto, we proposed
to create a set of micro-benchmarks (i.e. test cases) that are used to compare
alternative detection strategies. Based on a set of test cases, we derived a
measure for the accuracy of alternative detection strategies. For a selected
set of performance problems, we created several detection strategies and
evaluated their accuracy on a set of test cases. The evaluation of detection
strategies confirmed our presumption that strategies that are based on fix,
absolute thresholds cannot be generically applied on different scenarios as
they lack the ability of abstraction.
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In this chapter, we evaluate the research goals of this thesis to automate
performance problem diagnostics and, thus, enable non-experts to uncover
performance problems. Thereby, we evaluate each research hypothesis
that has been described in Section 3.4 along five studies and discuss the
evaluation results. On the one hand, the studies cover the evaluation of
individual parts of our Automatic Performance Problem Diagnostics (APPD)
approach, such as the Systematic Selective Experimentation (SSE) concept,
the performance problem taxonomy, the Performance Problem Diagnostics
Description Model (P2D2M), and the detection heuristics. On the other hand,
some of the studies constitute an end-to-end validation of the APPD approach.
Some of the validations described in this chapter have been published in
Wert et al., 2014; Wert et al., 2015a.

The remainder of this chapter is structured as follows. In Section 7.1, we
describe the design of the validation of APPD. In particular, we derive
validation questions from the research hypotheses described in Section 3.4,
give an overview on conducted studies and discuss to which degree the cases
studies cover the mentioned validation questions. Subsequently, we describe
three end-to-end case studies with APPD (Section 7.2 - Section 7.4), a con-
trolled experiment on the SSE concept (Section 7.5), and an empirical study
(Section 7.6). In Section 7.7, we summarize and discuss the results from
the individual studies and examine the threats to validity to our conclusions.
This chapter is concluded with a summary in Section 7.8.

7.1. Design of Validation

As elaborated in the Chapters 3-6, the APPD approach comprises different
integral parts including the SSE concept, the performance problem taxonomy,
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the P2D2M, and the detection heuristics. Hence, with respect to validation,
there are different aspects that must be covered by the validation. Besides
the dimension of validation aspects, the validation should preferably cover
multiple different cases in order to increase the significance of the validation
results. Furthermore, according to Böhme et al., 2008 and H. Koziolek, 2008,
there are different types of validation in the area of mode-based prediction
methods. Adopting the validation types from Böhme et al., 2008 and H.
Koziolek, 2008 to the area of measurement-based diagnostics of performance
problems allows us to further differentiate the depth of validation for indi-
vidual aspects of validation. In this section, we explain the different aspects
of APPD that need to be validated, introduce the conducted studies, and
describe how the studies cover the validation aspects.

7.1.1. Validation Goals and Questions

In Section 3.4, we introduced the research hypotheses that guided the contri-
butions of the thesis at hand. In the following, we take up each individual
hypothesis to derive corresponding goals of validation. Thereby, we break
down the research hypothesis into more fine-grained validation questions
that represent the aspects of validation. According to the seven research hy-
pothesis (cf. Section 3.4), we define the following seven validation goals.

Validation Goal 1 — Functionality of APPD

The first validation goal aims at evaluating the functionality of the APPD
approach. This validation goal is derived from the following research hy-
pothesis:

Hypothesis 1: There is an adequately big set of performance
problem types which are generically detectable by a set of ex-
plicit experiments and analysis rules. (Section 3.4)

This hypothesis comprises three aspects that are represented by the following
validation questions:

VQ 1.1 – Problem Types: Are the types of performance problems identified
for the performance problem taxonomy automatically detectable by
measurement?
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VQ 1.2 – APPD Generalisability: Along which dimensions of case vari-
ability and to what extent is APPD generically applicable?

VQ 1.3 – Diagnostics Accuracy: How accurate are the diagnostics results
provided by the APPD approach?

Validation Goal 2 — Appropriateness of the Performance Problem Taxon-
omy

In Chapter 4, we conducted a categorization of Software Performance Anti-
patterns (SPAs) to identify interrelationships between different problem
types that allow to structure SPAs hierarchically along a taxonomy. For
the overall APPD approach it is an essential point to evaluate whether the
identified interrelationships reflect the performance problem constellations
in real scenarios. Thereto, we derived the following validation question from
Hypothesis 2:

Hypothesis 2: Different types of performance problems, their
symptoms and causes share common characteristics allowing to
structure them along a taxonomy. (Section 3.4)

VQ 2.1 – Taxonomy Representativeness: Are the interrelationships captured
in the performance problem taxonomy representative for real perfor-
mance problems encountered in practice, in the area of enterprise
software systems?

Validation Goal 3 — Efficiency of APPD

In Hypothesis 3, we state that a taxonomy potentially increases the efficiency
of performance problem diagnostics:

Hypothesis 3: A taxonomy on performance problems system-
atizes performance problem diagnostics and increases its effi-
ciency. (Section 3.4)

This statement can be evaluated on two different levels, by theoretical elabora-
tion or measurement of the efficiency. Accordingly, we derive two validation
questions for this validation goal:

VQ 3.1 – Theoretical Complexity: Does the Systematic Search Algorithm
of APPD increase the efficiency of the diagnostics process?
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VQ 3.2 – Actual Time Complexity: What is the real time complexity of the
APPD approach when applying it to enterprise software systems?

Validation Goal 4 — Appropriateness of P2D2M

Investigating the research challenge behind Hypothesis 4 (Section 3.4), in
Chapter 5 we introduced P2D2M, a language for describing context specific
measurement environments as well as generic specification of performance
test plans for diagnostics of performance problems. A generic description
language comprises two aspects that need to be evaluated. On the one hand,
the expressiveness of the language has to be investigated. On the other
hand, we have to evaluate how generic the language is. Based on these
considerations, we derive the following two validation questions from the
corresponding hypothesis:

Hypothesis 4: Performance test specifications can be general-
ized by a language which allows to describe instrumentation
instructions and performance test series in a system-independent
and monitoring tool-independent way. (Section 3.4)

VQ 4.1 – P2D2M Expressiveness: Is the expressiveness of the P2D2M
model sufficient to describe real performance problem diagnostics
scenarios?

VQ 4.2 – P2D2M Generalization: To which extent are heuristics, described
with P2D2M, generically applicable to various performance problem
diagnostics scenarios?

Validation Goal 5 — Necessity of SSE

In Section 3.2.1, we claim that, in certain scenarios, the SSE approach
constitutes a solution to the trade-off between measurement accuracy and
measurement resolution:

Hypothesis 5: The conflicting requirements of high measure-
ment accuracy and detailed measurement data can be achieved
by a sophisticated experimentation concept. (Section 3.4)

As SSE is an essential part of the APPD approach, a validation of this
hypothesis is important. Hence, we have to investigate whether the SSE
concept is beneficial compared to alternative experimentation approaches.
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Per se, the SSE concept is independent of the APPD approach. Hence,
investigating the scope of applicability of SSE is another interesting aspect.
For this validation goal we derived the following two validation questions:

VQ 5.1 – SSE Benefit: Does the SSE concept provide any benefit in perfor-
mance analysis scenarios compared to alternative concepts?

VQ 5.2 – SSE Scope: Is the SSE concept applicable beyond performance
problem diagnostics?

Validation Goal 6 — Automation of APPD

While Hypothesis 1 – Hypothesis 5 guided the research in this thesis and
the conceptualization of all the integral parts of APPD (i.e. SSE, taxonomy,
P2D2M, detection heuristics), Hypothesis 6 aims at the main goal of the work
at hand: automation of performance problem diagnostics.

Hypothesis 6: The composition of a taxonomy on performance
problems, a language for generic description of instrumentation
instructions, monitoring as well as performance test series, and
the SSE concept enable full automation of performance problem
diagnostics. (Section 3.4)

Evaluating the automation of an approach comprises two aspects that are
covered by the following validation questions:

VQ 6.1 – Automation: Given all required inputs, is a realization of the
APPD approach able to automatically diagnose performance prob-
lems?

VQ 6.2 – Up-front Effort: What are the up-front efforts in practice to enable
an automatic diagnosis?

Validation Goal 7 — Practicability of APPD

Although a fully automated diagnostics approach does not require human
interaction to provide corresponding diagnostics results, humans are involved
in providing required inputs and in interpreting the generated results. As
covered by Hypothesis 7, this aspect is especially important with respect to
the question of applicability in real software development projects.
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Hypothesis 7: Applying our APPD approach in the scope of
established software development processes entails a manual
effort which is negligible compared to traditional, manual per-
formance problem diagnostics. (Section 3.4)

Evaluation of the external applicability of APPD includes three aspects that
are represented by the following validation questions:

VQ 7.1 – External Perception: How do external (non-expert) users of the
APPD approach perceive the complexity and the associated manual
effort to use APPD?

VQ 7.2 – Result Interpretability: Are external (non-expert) users able to
correctly interpret the results of APPD?

VQ 7.3 – Cost Reduction: Does the APPD approach reduce the costs for per-
formance problem diagnostics in real, industrial software development
projects?

7.1.2. Studies

For the investigation of the validation goals and the corresponding validation
questions introduced in the previous section, we conducted multiple studies
that, on the one hand, investigate individual parts of APPD, and on the other
hand, constitute end-to-end validations of the APPD approach. Overall, we
conducted five studies, one of which aims at evaluating the SSE concept in
isolation through a controlled experiment, three case studies for the end-to-
end validation of the APPD approach, and one empirical study that involves
external users. As most of these studies depend on a realization of APPD, in
the following we shortly introduce DynamicSpotter, an implementation of
APPD.

7.1.2.1. Realization of the Automatic Performance Problem
Diagnostics Approach

Except for the SSE evaluation study, the remaining four studies assume a
full realization of the APPD approach. Hence, to show the applicability of
our APPD approach and to enable the practical evaluation of the validation
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questions, we developed the performance problem diagnostics framework
DynamicSpotter (Wert, 2015) that is a realization of the APPD approach. In
particular, DynamicSpotter encapsulates the SSE concept, the Systematic
Search Algorithm (cf. Section 4.4.3) and P2D2M (cf. Chapter 5). Fur-
thermore, DynamicSpotter allows for providing detection heuristics and
measurement tool adapters as extensions. For the studies conducted in this
chapter, we fed DynamicSpotter with the Performance Problem Evalua-
tion Plan (PPEP) instance elaborated in Section 4.4.2, realized the detection
heuristics selected in Chapter 6 as corresponding DynamicSpotter extensions,
and developed adapters for different measurement and load generation tools.
Furthermore, we created an Eclipse-based graphical user interface (GUI)
for DynamicSpotter in order to increase the usability. A GUI is especially
important for an empirical study where external users should be as little as
possible distracted by an insufficient user interface. Note, though the devel-
opment of the DynamicSpotter extensions (e.g. heuristic implementations
and measurement tool adapters) entailed a significant manual up-front effort,
all extensions are generic, publicly available and, thus, can be reused for
further performance problem diagnostics scenarios without the need to invest
the manual up-front efforts, again.

7.1.2.2. Overview on Conducted Studies

In the following, we give a short overview on the studies conducted in this
chapter:

Study 1 — TPC-W

In this case study, we conduct an end-to-end validation of the APPD ap-
proach. Thereby, we apply APPD to a Java implementation (TPC-W Java
2015) of the e-commerce benchmark TCP-W (Menascé, 2002) that repre-
sents a Web-based bookstore. The used realization of the TPC-W benchmark
is a typical three tier application that comprises a Web-based representa-
tion layer, an application layer written in Java, and a database layer that
is accessed through JDBC. We conduct the case study on TPC-W in two
parts. In the first part, we take the TPC-W implementation provided by the
University of Wisconsin (TPC-W Java 2015) as is and deploy the application
as described in the corresponding documentation. We apply DynamicSpotter
to investigate the original TPC-W implementation for existing performance
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problems. We then solve the performance problems identified by Dynam-
icSpotter to show that the diagnosed performance problems constitute true
positives, instead of false positives. In the second part of the case study,
we extend the TPC-W implementation and setup in order to investigate the
ability of DynamicSpotter to diagnose communication related performance
problems (i.e. problems related to messaging and database access). Thereby,
we consciously inject performance problems into the previously resolved
implementation of TPC-W. Based on the injected performance problems we
are able to analyze the accuracy of the diagnostics results of DynamicSpotter
with respect to false positives and true positives. The TPC-W case study is
described in detail in Section 7.2.

Study 2 — nopCommerce

The goal of the nopCommerce case study is to investigate the scope of
applicability of DynamicSpotter and, thus, to analyze the ability of the
APPD approach to generalize from concrete Systems Under Test (SUTs)
including involved technologies (e.g. programming languages and run-time
environments). nopCommerce (NopCommerce 2015) is an open-source
e-commerce software that is based on the .NET framework. In order to
investigate whether our APPD approach is able to analyze SUTs that are
not Java-based, we inject performance problems into the nopCommerce
application and let DynamicSpotter search for that problems. Thereby, we
show, that DynamicSpotter and, thus, APPD is independent of the program-
ming language and run-time environment of the target system, as long as
corresponding measurement tool adapters are able to support the introduced
abstraction layer covered by P2D2M (cf. Section 5.1). The nopCommerce
case study is described in more detail in Section 7.3.

Study 3 — Industrial Large-scale System (ILS)

While TPC-W and nopCommerce constitute e-commerce systems with a
low to moderate complexity (TPC-W has approx. 4 thousand of lines of
code (LOC) and nopCommerce approx. 700 thousand, respectively), the goal
of this case study is to investigate whether DynamicSpotter (and inherently
the APPD approach) is able to handle the complexity of large-scale software
systems. Therefore, we apply DynamicSpotter on an Industrial Large-scale
System (ILS). ILS is a closed-source enterprise resource management soft-
ware that has a user base in the range of millions and a code extent of more
than 5 millions of LOC. We show that DynamicSpotter is able to identify
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a performance bottleneck in one service of ILS. Section 7.4 describes this
case study in more detail.

Study 4 — Systematic, Selective Experimentation for Resource Demand
Estimation (SSE-4-RDE)

This controlled experiment aims at evaluating the SSE concept in isolation.
In order to show both the benefits of SSE compared to alternative experimen-
tation approaches, and the scope of applicability of SSE, we apply SSE to a
scenario beyond performance problem diagnostics. In particular, we use SSE
to automate resource demand estimation for the calibration of architectural
performance models (cf. Section 2.2.2). Using our framework for dynami-
cally adaptable instrumentation and monitoring (AIM, Wert et al., 2015a),
we compare the accuracy of the resource demands derived with the SSE
concept against the resource demands derived using alternative approaches.
We show that SSE yields more accurate resource demands than alternative
approaches. This experiment is described in detail in Section 7.5.
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Study 5 — Empirical Study

While the primary goal of Study 1 to Study 3 is to apply the APPD approach
on representative software systems to evaluate its functionality and technical
applicability, these studies do not cover the validation of the practicability
(i.e. applicability by external, non-expert users) of the APPD approach.
Therefore, we conduct an empirical study in which external participants have
to use DynamicSpotter to analyze a SUT for potential performance problems.
The empirical study is of a mixed-type including a case study where the
test persons have to use DynamicSpotter directly, and a questionnaire-based
interview to capture the perception and opinion of the test persons about
the APPD approach. The study shows that users prevailingly perceive the
complexity of applying the APPD approach as low and rate the results
of APPD as useful. The empirical study is described in more detail in
Section 7.6.

7.1.3. Overview on Validation

In the previous two sections, we defined the validation questions for the vali-
dation (Section 7.1.1) and gave an overview on the studies that are described
in this chapter (Section 7.1.2). In this section, we discuss the correspon-
dence between individual studies and the validation questions, giving an
overview on the coverage of the validation questions by the investigations
in the studies. Furthermore, for each validation question, we differentiate
between different levels of validation by adopting the validation types from
Böhme et al., 2008 and H. Koziolek, 2008 to our domain.

7.1.3.1. Types of Validation

Böhme et al. (Böhme et al., 2008) and Koziolek (H. Koziolek, 2008) in-
troduced three types of validation in the area of evaluating a model-based
performance prediction approach. The validation types indicate how deep
the relevance of the approach under validation is evaluated. In H. Koziolek,
2008, a Type 1 Validation aims at evaluating the Feasibility of a performance
prediction approach. Hereby, the prediction accuracy is investigated while
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the approach is applied by its authors. Type 2 Validation evaluates the Prac-
ticability of an approach, whereby external users (i.e. not the authors of the
approach) apply the corresponding approach to get the performance predic-
tions. Finally, Type 3 Validation takes into consideration Costs and Benefits
when applying the corresponding approach in real software development
projects. Usually, validations of Type 3 are very expensive and lengthy and,
thus, are conducted only in exceptional cases. The validation types have
been already adopted to different areas of research, such as design decision
research (Durdik, 2014), improvement of software architecture models (A.
Koziolek, 2014), or business process simulations (Heinrich et al., 2014).

In the following, we extend the validation types from Böhme et al., 2008 and
H. Koziolek, 2008, and explain their relation to the context of this thesis.

Validation Type 0 — Appropriateness Validation Type 0 aims at evalu-
ating the appropriateness of theoretical concepts and description languages
by theoretical considerations (such as qualitative analyses or logical conclu-
sions). In the case of languages, the appropriateness is shown by exemplary,
reasonable instantiations using corresponding language constructs. In par-
ticular, this type of validation is conducted without practical execution of
an approach. Consequently, Type 0 validations are limited to the evaluation
of concepts, and are not suitable to evaluate approaches that need to be
executed to provide meaningful results. In the context of this thesis, we
apply validations of this type to show the appropriateness of our description
language P2D2M and to discuss the appropriateness of our performance
problem taxonomy.

Validation Type 1 — Feasibility Similar to H. Koziolek, 2008, validations
of Type 1 provide that authors apply their problem diagnostics approach on
certain target systems in order to evaluate the diagnostics accuracy. Hereby,
performance problems can be either consciously injected into the target
system, or the approach is applied to uncover unknown instances of perfor-
mance problems. In the former case, the diagnostics results are compared
to the expectations derived from the problem injection phase to analyze the
accuracy of the diagnostics approach. In the latter case, the accuracy of the
diagnostics approach can be analyzed with respect to false positives and true
positives rates by resolving detected performance problems and showing the
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resulting improvement in performance. However, statements regarding false
negatives and true negatives rates cannot be made because, in advance to
the execution of the diagnostics approach, it is unclear which performance
problems exist in the target system.

A Type 1, end-to-end validation of a diagnostics approach implies a Type 1
validation of all integral parts and concepts of the diagnostics approach. With
respect to modelling languages, a Type 1 validation investigates whether
circumstances of real cases can be sufficiently reflected (i.e. modelled)
with the corresponding modelling language. Procedure models (such as
SSE) are tested on their applicability to real problems and classifications
(e.g. performance problem taxonomy) are evaluated with respect to their
representativeness of real occurrences of performance problems.

In the field of performance problem diagnostics, validations of this type have
been conducted for various approaches (Parsons, 2007; Trubiani et al., 2011;
Grechanik et al., 2012; Nistor et al., 2013).

Validation Type 2 — Practicability Similar to H. Koziolek, 2008, val-
idations of Type 1 provide that authors apply their problem diagnostics
approach Analogously to H. Koziolek, 2008, the practicability of a perfor-
mance problem diagnostics approach can only be evaluated by involving
external test persons that preferably are software developers without deep
expertise in performance problem diagnostics. The test persons apply the
diagnostics approach to analyze a target system for performance problems
and interpret corresponding diagnostics results. Evaluating the ability of
non-expert users to correctly apply the diagnostics approach and reasonably
interpret corresponding diagnostics results allows to draw conclusions about
the practicability of the diagnostics approach. In the field of performance
valuation, Martens et al., 2008 conducted an empirical study to investigate
the effort of creating reusable, component-based performance models.

Validation Type 3 — Cost-Benefit Similar to H. Koziolek, 2008, valida-
tions of Type 1 provide that authors apply their problem diagnostics approach
Type 3 validation of a performance problem diagnostics approach assumes
that the approach is used in real, industrial software development projects.
Thereby, benefits of the diagnostics approach, such as savings in costs of
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repeated tasks, are confronted with additional up-front costs and efforts that
are induced by the application of the diagnostics approach. In order to get
an adequate estimate of the cost-benefit ratio, an expert knowledge-based
diagnostics approach needs to be applied over a long period of time and,
preferably, in different software development projects in order to amortize the
initial costs of externalizing and formalizing the knowledge on performance
problems. Consequently, validations of Type 3 are extremely expensive
with respect to effort and time. Martens et al., 2011 conducted an empirical
study to evaluate the benefits and costs of component-based performance
evaluation compared to monolithic evaluation. To the best of our knowledge,
for performance problem diagnostics approaches, validations of Type 3 have
not been conducted in research, yet.

7.1.3.2. Coverage of Validation

Having introduced the research goals, an overview on the studies and the
validation types, in this section, we discuss the coverage of research goals
and validation types by the studies. Table 7.1 gives an overview on validation
questions (first column), studies (columns 2-6) and corresponding validation
types (last column). For validation questions that partly have been answered
by theoretical elaborations in this thesis, the second last column points to the
corresponding Chapters.

In Section 4.2, we analyzed different SPAs from literature and conducted a
categorization to identify SPAs that are detectable by measurement. Hence,
the theoretical elaboration in Section 4.2 constitutes a Type 0 validation
for question VQ 1.1. Furthermore, the end-to-end case studies (TPC-W,
nopCommerce and ILS) cover a Type 1 validation of question VQ 1.1 by
confirming the findings from Section 4.2 through practical application on
representative target systems. Validation question VQ 1.2 aims at evaluating
the generalisability of the APPD approach. Hence, we need to investigate
whether the realization of APPD (DynamicSpotter) can handle diversity
along multiple dimensions like type and size of target systems, programming
languages and run-time environments of target systems, as well as different
measurement tools and load generators. In the three end-to-end case studies
we cover diversity in all mentioned dimensions. Hence, these case studies
constitute a Type 1 validation of VQ 1.2. By investigating the accuracy of
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VQ 1.1 X X X — — Section 4.2 Type 0,1

VQ 1.2 X X X — — — Type 1

VQ 1.3 X X X — — — Type 1
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l2

VQ 2.1 X X X — — — Type 1
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l3 VQ 3.1 — — — — — Section 4.4.3 Type 0

VQ 3.2 (X) (X) (X) — — — Type 1
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l4 VQ 4.1 X X X — — Section 6.3 Type 0,1

VQ 4.2 X X X — — — Type 1
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l5 VQ 5.1 — — — X — — Type 1

VQ 5.2 X X X X — — Type 1

G
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l6 VQ 6.1 X X X — — — Type 1

VQ 6.2 (X) (X) (X) — X — Type 2

G
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l7

VQ 7.1 — — — — X — Type 2

VQ 7.2 — — — — X — Type 2

VQ 7.3 — — — — — Section 9.2.1 Type 3

VQ 1.1: Problem Types, VQ 1.2: Generalisability, VQ 1.3: Diagnostics Accuracy,
VQ 2.1: Taxonomy Representativeness, VQ 3.1: Theoretical Complexity,

VQ 3.2: Actual Time Complexity, VQ 4.1: P2D2M Expressiveness,
VQ 4.2: P2D2M Generalization, VQ 5.1: SSE Benefit, VQ 5.2: SSE Scope,
VQ 6.1: Automation, VQ 6.2: Up-front Effort, VQ 7.1: External Perception,

VQ 7.2: Result Interpretability, VQ 7.3: Cost Reduction

Table 7.1.: Overview on the coverage of validation
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APPD in the end-to-end case studies, we conduct a Type 1 validation of
validation question VQ 1.3.

A correct diagnosis by APPD on representative target systems implies that
the underlying taxonomy on performance problems is appropriate and rea-
sonably represents the relationships between performance problem types in
real scenarios. Conversely, if APPD uses a performance problem taxonomy
that does not adequately represent performance problems in real scenarios,
then APPD cannot provide accurate diagnostics results. Based on this con-
sideration, we can conclude that the end-to-end case studies constitute a
Type 1 validation of VQ 2.1, too.

In Section 4.4.3.2, we qualitatively analyzed the complexity of the System-
atic Search Algorithm that, basically, determines the time complexity of an
APPD diagnostics run. There, we have shown that, a systematic search on
a performance problem taxonomy is more efficient than a naive diagnos-
tics process without a taxonomy. Hence, the theoretical time complexity
(VQ 3.1) has been evaluated by a theoretical elaboration (Type 0 validation)
in Section 4.4.3.2. Validation question VQ 3.2 aims at investigating whether
the findings of Section 4.4.3.2 can be confirmed by measurement. By taking
the execution time of DynamicSpotter in the end-to-end case studies we can
investigate whether the diagnostics can be conducted in a reasonable time
(i.e. multiple hours, in order to be integrable as part of nightly checks in con-
tinuous integration). However, as we do not apply an alternative (e.g. naive)
diagnostics approach in the corresponding case studies, we cannot compare
the execution time of DynamicSpotter to any baseline. Hence, validation
question VQ 3.2 is only partly evaluated as part of a Type 1 validation.

In Section 6.3, we used P2D2M to describe detection heuristics in a generic
way. Hence, Section 6.3 inherently contains a Type 0 validation of VQ 4.1
showing that the language defined by P2D2M has a sufficient expressiveness
to specify the corresponding heuristics. Furthermore, the end-to-end case
studies show that the context-specific Measurement Environment (ME) De-
scription part of P2D2M is appropriate to describe the different scenarios
(Type 1 validation). As the target systems in the case studies vary with
respect to different aspects, the case studies cover a Type 1 validation of
validation question VQ 4.2, as APPD and the integral detection heuristics are
applied in different scenarios without adopting the detection heuristics.
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Validation Goal 5 aims at validating the benefits and the scope of the SSE
concept. The SSE-4-RDE experiment completely covers the evaluation of
this validation goal. As we apply the SSE concept in an entirely different
context, the SSE-4-RDE experiment constitutes a Type 1 validation of both
validation questions, VQ 5.1 and VQ 5.2. As SSE is a part of the APPD
approach, the application of APPD in the end-to-end case studies (TPC-W,
nopCommerce and ILS) further evaluates the scope of SSE (VQ 5.2).

In the end-to-end case studies, DynamicSpotter runs fully automatically, once
configured. Hence, the TPC-W, nopCommerce and ILS case studies contain
a Type 1 validation of VQ 6.1. By discussing the efforts that were required to
get DynamicSpotter running in the different case studies, we partly evaluate
VQ 6.2. However, as in the end-to-end case studies all up-front efforts are
executed by us, the evaluation of validation question VQ 6.2 may be biased
by our insider knowledge. Therefore, we additionally evaluate that validation
question in the empirical study that constitutes a Type 2 validation.

Finally, both the external perception (VQ 7.1) and the interpretability of Dy-
namicSpotter results by external users (VQ 7.2) are covered by the empirical
study (Type 2 validation). The costs and benefits of the APPD are qualita-
tively discussed in the Conclusion of this thesis (Section 9.2.1). However,
as a corresponding practical evaluation would imply a disproportionately
expensive validation of Type 3, in this thesis, we abstain from quantitatively
evaluating the long-term costs and benefits of APPD.

7.2. Case Study: TPC-W

In this case study, we apply DynamicSpotter on TPC-W, an e-commerce
benchmark provided by the Transaction Performance Processing Coun-
cil (TPC) (TPC 2015). This case study is divided into two parts. In the
first part, we take the original implementation of the TPC-W benchmark
provided by the University of Wisconsin (TPC-W Java 2015) and deploy it
as is. We then configure and apply DynamicSpotter to that setup. Dynam-
icSpotter identifies multiple performance problems in the original version of
the TPC-W implementation and configuration. By resolving these problems,
we show that the detected problems are no false positives, but, constitute
actual performance problems. As the first part of this case study does not
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cover inter-component communication, in the second part of this case study,
we extend the TPC-W scenario using the resolved implementation of TPC-W.
Thereby, we create a distributed scenario of TPC-W that comprises multiple,
distributed software components that communicate with each other using
messaging. In contrast to the first part, in the second part we consciously
inject performance problems into the SUT in order to (i) analyze whether Dy-
namicSpotter is able to detect communication-related performance problems
and (ii) to be able to investigate the false negative rate of DynamicSpotter in
this scenario.

In the following, we introduce TPC-W as the target application (Section 7.2.1)
followed by detailed descriptions of the two case study parts (Section 7.2.2
and Section 7.2.3). The results and insights of this case study are summarized
in Section 7.2.4.

7.2.1. The Application Under Test: TPC-W

TPC-W (TPC-W 2015) is a benchmark created by TPC for the purpose of
evaluating and comparing the scalability behaviour of different e-commerce
solutions including database, middleware and the web infrastructure. TPC-W
is a typical 3-tier application comprising a Web-based presentation layer,
an application layer and a persistence layer. The primary intention of TPC-
W is to emulate a typical e-commerce application in a representative way,
especially focusing on a representative performance behaviour. Therefore,
TPC-W emulates a Web-based book store that provides typical services like
search functions for books, displaying details of products, ordering processes,
customer registration, etc. The TPC-W specification prescribes three main as-
pects: rules for setting up the SUT, workload specifications and performance
metrics to use for comparison of different solutions. Although TPC-W has
been deprecated by TPC as a benchmark, it is negligible for our case study as
we do not use TPC-W as a benchmark in the original sense. In particular, we
do not evaluate or compare different e-commerce solutions. Rather, we use
TPC-W as a representative target application for the evaluation of our APPD
approach. However, as TPC-W is a performance benchmark that, according
to the specification, is tailored for high performance, for the evaluation of
APPD it is especially interesting to analyze whether the used implementation
of TPC-W meets that requirement.
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As the performance metrics defined in the TPC-W specification refer to
the underlying infrastructure (servers, network, etc.) rather than to the
application, they are of little relevance for our case study. In contrast,
the workload specification is an interesting aspect for our case study. In
particular, we use the Remote Browser Emulator (RBE) specified by TPC-W
as a load generator in the first part of the case study. The RBE emulates a set
of browsers that represent virtual users. Hence, the workload generated by the
RBE is a closed workload with a fix number of virtual users and a think time
distribution that is prescribed by the TPC-W benchmark specification. In
the TPC-W specification, a workload is described by a Customer Behaviour
Model Graph (CBMG) that is basically a Markov Model describing the
transition probabilities between individual transactions (Menascé, 2002).
TPC defines three types of workload for TPC-W: Browsing, Shopping and
Ordering Mix. The difference between the workload types is the distribution
of transition probabilities between individual transactions.

In this case study, we use a Java implementation of the TPC-W created by the
University of Wisconsin (TPC-W Java 2015). The implementation is based
on the Java Servlet technology (Hunter et al., 2001) for the representation
layer and entry point to the application layer. Hence, each system service is
represented by a corresponding Java Servlet. For the communication with
the database, this implementation uses plain SQL over JDBC (Reese, 2000).
Besides the implementation of the TPC-W application, the used bundle
(TPC-W Java 2015) contains an implementation for the RBE. We use this
RBE implementation as a load driver in the first part of this case study.

7.2.2. Part I - Standard TPC-W

In this part of the case study, we analyze the TPC-W implementation with-
out previous modifications of the target application. Hence, we investigate
whether DynamicSpotter is able to identify instances of performance prob-
lems that we (as experimenters) were not aware of in advance.
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Figure 7.1.: Standard TPC-W: experiment setup

7.2.2.1. Experiment Setup

The experiment setup for the first part of the TPC-W case study is shown
in Figure 7.1. The measurement environment comprises three nodes: Ap-
plication Node, Database Node and Measurement Node. The TPC-W ap-
plication component runs within an Apache Tomcat

TM
application server

on the Application Node. Besides TPC-W, an Adaptable Instrumentation
and Monitoring (AIM) agent (Wert et al., 2015a) runs within the application
server that provides the means for DynamicSpotter to dynamically instru-
ment the Java bytecode of the target application and, as needed, to adapt the
instrumentation. Furthermore, the AIM component is responsible for col-
lecting the measurement data from the instrumented bytecode as well as the
sampled statistics of the hardware resources (e.g. CPU utilization, network
I/O, etc.). The TPC-W component access a MySQL

TM
database that runs on

the Database Node via a 100Mbit Ethernet network connection. The AIM
component that is co-located with MySQL

TM
is responsible for sampling

statistics of hardware resources on the Database Node. The Measurement
Node hosts DynamicSpotter as well as the RBE as a workload generator for
TPC-W. The emulated browsers of RBE access the services provided by the
TPC-W application via HTTP. For detailed information on the measurement
environment we refer to Table A.1 in Appendix A.2.1.

As TPC-W is a database-intensive application, the amount of generated
test data is an essential aspect that affects the performance behaviour of
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the overall TPC-W application. We use the test data generator that is part
of the TPC-W implementation to generate 288 thousand customers and
100 thousand items for the initial database content. For the experiments
conducted by DynamicSpotter we use the following configuration of the
RBE:

• The emulated browsers are started incrementally during the ramp-up
phase in order to avoid an oscillating performance behaviour due to a
temporary overload situation.

• As workload type, we use the Shopping Mix as it contains both read
as well as write accesses to the database.

• Using a think time factor of 0.1, according to the TPC-W specification
(TPC-W 2015), the think time for each emulated user varies between
0.7 and 7 seconds.

As described in Section 5.2, to apply the APPD approach through Dynam-
icSpotter we have to describe the context specific information by means of
the ME Description part of P2D2M. Figure 7.2 shows the corresponding ME
Description instance covering all context specific information that is needed
to start an automatic diagnostics run of DynamicSpotter. First, the ME De-
scription contains an Experiment Configuration that specifies a ramp-up and
a cool-down phase of 100 seconds, an experiment duration of 10 minutes
(600 seconds), and a maximal load of 100 users. With respect to the per-
formance requirements, we prescribe for all services of TPC-W a response
time threshold of 1 second that, in 99% of cases, must not be exceeded. As
already mentioned, as workload specification we use the Shopping Mix as
defined by the RBE specification of TPC-W. The AIM component on the
Application Node (cf. Figure 7.1) has two corresponding entities in the
ME Description model: an Instrumentation Entity and a Monitoring Entity.
Although AIM encapsulates both functionalities, due to separation of con-
cerns, we have to distinguish the entity roles in the ME Description model.
In contrast, the AIM component at the Database Node is represented only
by a Monitoring Entity in the ME Description model, as instrumenting the
code of the database management system (here: MySQL

TM
) is not possible

and not required for APPD. Finally, the Measurement Node has a Load
Generation Entity with corresponding configurations (i.e. thinkTimeFactor
and rampUpBehaviour) and a Monitoring Entity that samples statistics of
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Figure 7.2.: Standard TPC-W: Measurement Environment Description
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the database management system by remotely issuing SQL requests to the
statistics tables of the database.

In this case study, we configured DynamicSpotter to use the entire PPEP
instance as derived in Section 4.4.2. For the nodes of the PPEP instance,
DynamicSpotter uses the corresponding detection heuristics comprising the
detection strategies that have been selected in Section 6.3 based on the
evaluations of the different alternatives. Besides the standard extensions that
are bundled with DynamicSpotter, we created an additional DynamicSpotter
extension that constitutes an adapter to the RBE workload generator of the
TPC-W benchmark.

Overview on Study Execution The investigation in the first part of the
case study has been conducted in three iterations. First, we applied Dy-
namicSpotter to the original version of the TPC-W application in the setup
described in Section 7.2.2.1.

As shown in Figure 7.3, DynamicSpotter identified a performance problem
that has been caused by multiple instances of different manifestations of
the One Lane Bridge (OLB) anti-pattern. On the one hand, a long-running
database request exhausted the database connection pool so that incoming
user requests had to wait for free connections. On the other hand, an unneces-
sary synchronization block further limited the performance of the application.
Hereby, synchronization on Java side has been used to synchronize a select
for the maximum id in a table with a subsequent insert using that id. As
JDBC and most databases support this scenario by automatically generating
ids, the corresponding synchronization block is unnecessary. Overall, these
two problems lead to average response times of tens of seconds for the most
TPC-W services. We resolved the long-running database request by fixing the
corresponding SQL statement and adding an additional index in the accessed
database table. Furthermore, we replaced the synchronization block with
a built-in solution of JDBC and MySQL that is significantly more efficient
than a Java-side synchronization. Thereupon, on the supposedly resolved
version of TPC-W, we started a second run of DynamicSpotter. Although
the response times of all TCP-W slightly improved , DynamicSpotter, again,
reported some performance problems. However, as depicted in Figure 7.3,
this time different instances of performance problems emerged compared
to the first run of DynamicSpotter. The resolution of the OLB anti-patterns
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Figure 7.3.: Standard TPC-W: overview on results

enabled a more frequent emission of another, expensive database request.
That database request lead to an overload of the CPU on the database node,
thus, has been detected as an Expensive Database call by DynamicSpotter.
Furthermore, DynamicSpotter reported a Stifle anti-pattern. However, the
corresponding database request has been repeated only twice with the same
SQL statement and, thus, did not constitute the root cause for the bad per-
formance behaviour. Based on the second finding by DynamicSpotter, we
resolved the Expensive Database Call by rewriting the corresponding SQL
statement resulting in a considerably more efficient solution. Finally, we
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applied DynamicSpotter a third time. As shown in Figure 7.3, the solution
of the Expensive Database Call finally resolved all performance problems,
the response times of all TPC-W services improved considerably, and Dy-
namicSpotter did not find any performance problems in the resolved TPC-W
instance, anymore.

7.2.2.2. Discussion of Results

In the following, we discuss the diagnostics results in more detail for each
iteration of the experiment execution.

Experiment Iteration 1 Figure 7.3 shows that, in the first iteration of this
part of case study, DynamicSpotter detected the SPAs along the path from
the OLB manifestations to the root of the taxonomy. In the following, we
discuss the detection results for each individual node in the taxonomy.

By applying the high level Performance Problem heuristic (cf. Section 6.3.1),
DynamicSpotter identified a performance problem in the initial state of the
TPC-W implementation. According to the experimentation plan of the Per-
formance Problem heuristic, DynamicSpotter applied the maximum load
of 100 users. The resulting performance behaviour of the shopping cart
interaction of TPC-W is depicted in Figure 7.4, representatively for other
services of TPC-W. Figure 7.4a shows the response times over experiment
time. The horizontal line shows the response time threshold of one second as
defined in the ME Description model in Section 7.2.2.1. We can see, that the
response times of the shopping cart interaction exceed the threshold nearly
for every request. The cumulative distribution function of the response times
is depicted Figure 7.4b. Additionally, the dotted vertical line shows the
response time threshold and the dashed horizontal line the target percentile
from the performance requirement as defined in the ME Description model.
The intersection point of these two lines defines the point, where the CDF
curve must have reached a cumulative probability of 99%. However, Fig-
ure 7.4b shows that the 0.99 percentile of the response times has a value
of about 28 seconds, hence, significantly larger as the prescribed response
time threshold. Based on this observation, DynamicSpotter reported an
occurrence of a Performance Problem. Other services of TPC-W show a
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Figure 7.5.: Ramp detection: shopping cart interaction (Iteration 1)

similar performance behaviour, indicating that the root cause of the observed
Performance Problem affects multiple services.

According to the performance problem taxonomy, DynamicSpotter resumed
its diagnostics with analysing the Application Hiccups, the Ramp and the
Continuously Violated Requirements anti-patterns. As we can see in Fig-
ure 7.4a, the response times exhibit a continuity over experiment time. In
particular, as correctly identified by DynamicSpotter, there are no hiccups in
the response times. The same applies for the Ramp anti-pattern. Figure 7.5
shows the detection results of the Ramp heuristic. According to the Time
Window strategy of the Ramp heuristic (cf. Section 6.3.3), in Figure 7.5 we
see the four experiment executions on the x-axis and the single-user response
times of the individual experiments on the y-axis with corresponding confi-
dence intervals. We see that the confidence intervals are overlapping and the
average response times do not exhibit an increasing trend. Consequently, the
t-test analysis in the Ramp heuristic could neither identify any significant
difference in the response time samples nor identify an increase in response
times. Hence, DynamicSpotter did not detect a Ramp anti-pattern in TPC-W.
By contrast, by applying the Bucket detection strategy as part of the Contin-
uously Violated Requirements heuristic, DynamicSpotter correctly identified
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the continuity in the response times marking the corresponding anti-patterns
in the taxonomy as an existing problem.

As next step, DynamicSpotter conducted an analysis of the Traffic Jam anti-
pattern by applying a scaling experiment series (cf. Section 5.3.2.1). The
response times for the individual load intensities as well as the confidence
intervals for the response times are depicted in Figure 7.6. Under a load
intensity of 1 to 60 concurrent users, the response times are very low and
have a small variance. However, for a high load intensity the mean response
time as well as the variance grow significantly. In Figure 7.6b we can see that,
for more than 60 users, the confidence intervals of the response times under
different load intensities do not overlap and the mean response times grow
with the load intensity. According to this observation, the t-Test strategy of
the Traffic Jam heuristic (cf. Section 6.3.5) identified a significant increase
in response times, making DynamicSpotter report an occurrence of a Traffic
Jam anti-pattern.

Regarding the Excessive Messaging anti-pattern, DynamicSpotter did not
identify any messaging activities in the measurement data, hence, marking
this anti-pattern as not present in TPC-W. As Excessive Messaging has
not been detected, DynamicSpotter skipped the analysis of the Blob and
the Empty Semi Trucks anti-patterns because of the Systematic Search
Algorithm (cf. Section 4.4.3). The Database Congestion anti-pattern has
been detected, neither. Hereby, DynamicSpotter did neither identify an
increase in locking times nor a significant utilization of the database. In
particular, for all load intensities, the CPU utilization of the database node
does not exceed 40% (cf. Figure 7.7a). Consequently, the analysis of
the Stifle and the Expensive Database Call (EDC) anti-patterns have been
skipped by DynamicSpotter.

As part of the OLB heuristic, DynamicSpotter investigates the CPU utiliza-
tion on the application and the database server. As depicted in Figure 7.7a,
the utilization is relatively low on both nodes. Consequently, the response
time threshold that is dynamically calculated by the OLB heuristic based on
the CPU utilizations is very low, as shown by the dashed line in Figure 7.7b.
For high load intensities (> 60 users), the response time of the shopping cart
interaction significantly exceeds the dynamic threshold. Based on this analy-
sis, DynamicSpotter detects an OLB behaviour in 7 services of TPC-W. In
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order to locate the root cause of the identified OLB instances, DynamicSpot-
ter applied the OLB heuristic two more times, with the database access scope
(i.e. Database OLB) and the synchronization scope (i.e. Dispensable Syn-
chronization anti-pattern). Hereby, DynamicSpotter detected two database
queries that constitute an OLB and three synchronized blocks in the Java
code of TPC-W that constitute a Dispensable Synchronization anti-pattern.
The response times and corresponding calculated thresholds are depicted in
Figure 7.8, Figure 7.9, and Figure 7.10.

The queries, identified by DynamicSpotter as Database OLB instances, both
serve as a search request. While one of them searches for a book in the
database, the other query conducts an author search (cf. Figures 7.8a,7.8b).
Both queries contain a SOUNDEX expression in the SQL statement that al-
lows to do a similarity search based on the pronunciation of words. However,
as SOUNDEX is a database function that, in the case of a full table search,
is evaluated for each line in the database table, it hinders an efficient usage
of existing database indexes. As a result, these database requests become a
bottleneck with an increasing load. Interestingly, DynamicSpotter did not de-
tect these queries as Database Congestion anti-patterns as neither the locking
times increased nor the database node was significantly utilized. We presume
that the detected Dispensable Synchronization anti-pattern instances limit
the full effect of the long-running queries to the database utilization. The
synchronization scope OLB instances include the getConnection method of
the database connection pool, as well as two synchronization blocks around
multiple database requests. In the latter cases, Java-side synchronization
is used to solve the problem of atomically increasing the primary key of
a database table while inserting a new line into the same table. Though,
with respect to functionality, this is a valid solution, regarding performance,
Java-side synchronization over multiple database requests in many cases
results in a performance bottleneck. Finally, long waiting times at the get-
Connection method of the database connection pool are rather a side-effect
of the remaining problems than a root cause of the observed performance
problem. The long-running database queries, as well as the dispensable
synchronization blocks quickly exhaust the capacity of the connection pool
by holding database connections for a long period of time.
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Figure 7.8.: Database OLB detection (Iteration 1)
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Figure 7.9.: Dispensable Synchronization detection 1 (Iteration 1)
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the database function SOUNDEX, we resolved the problem by adding an
additional column to the corresponding database table. The inserted column
contains for each entry in the corresponding table a pre-calculated value of
the SOUNDEX function applied to the primary key of the corresponding row.
Furthermore, we create an additional database index using the newly created
column. According to the change in the database schema, we adopted the
corresponding SQL queries. For the resolution of the Dispensable Synchro-
nization instances, we used an efficient solution that is a built-in feature
in JDBC as well as most database implementations. Thereby, we replaced
the synchronization blocks that contained at least a SELECT query for the
maximum id of a table and a subsequent INSERT query with the incremented
id. Instead, we used the atomic feature of automatically incrementing the
primary key when conducting an insert. In this way, we not only eliminated
the synchronization block, but also reduced the number of required database
queries.

Experiment Iteration 2 In the second iteration of the experiment, we ap-
plied DynamicSpotter on the TPC-W implementation that we have resolved
at the end of the first iteration. Figure 7.3 gives an overview on the detection
results. Although, for most TPC-W services, the performance behaviour
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improved considerably, the services still violate the specified performance re-
quirements. Figure 7.11 shows the response times over experiment time and
the cumulative distribution function of the response times for the shopping
cart interaction. Compared to the first iteration where the median response
time had a value of 11 seconds, in the second iteration the median has a
value of 16 milliseconds. Nevertheless, in Figure 7.11a we can see, that the
response times continuously exceed the response time threshold (i.e. per-
formance requirement). Furthermore, Figure 7.11b shows that the response
time distribution has a long tail that leads to a violation of performance
requirements despite of the low median response time. In particular, the 0.99
percentile has a value of 2.35 seconds which is significantly higher as the
required value of 1 second.

While most TPC-W services, similarly to the shopping cart interaction,
showed an improvement of the performance behaviour from the first to the
second experiment iteration, the performance of the best sellers interac-
tion degraded in the second iteration. Figure 7.12 shows the cumulative
distribution functions for the response times of the best sellers interaction
for both experiment iterations. We can observe that the distribution in the
second iteration has a lower standard deviation with a value of 4.72 seconds
compared to 5.35 seconds in the first iteration. However, with a value of
17.84 seconds the median is significantly higher than before (11.45 seconds).
The best sellers interaction is the only service that shows a degradation
in performance compared to the first iteration. This is an indicator for a
performance problem in the best sellers service that has not been solved in
the first iteration.

Based on the measurement data shown in Figure 7.11 for the shopping cart
interaction (representatively for other TPC-W services) and the results for the
best sellers service (Figure 7.12), DynamicSpotter identified a Performance
Problem that exhibits a Continuous Violation of performance requirements.
Hence, DynamicSpotter resumed its diagnostics with the Traffic Jam anti-
pattern. Considering the response times of the best sellers interaction over
load intensity in Figure 7.13a, we see that response times are relatively
low (i.e. less than 1 second) for load intensities smaller than 80 concurrent
users. However, for the maximum load of 100 users, the response times
increase considerably to values between 15 and 20 seconds. As depicted
in Figure 7.13b, the high CPU utilization of the database node (near to
100%) under a load of 100 users provides an explanation for the significant
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Figure 7.11.: Performance Problem detection: shopping cart interaction (Iteration 2)
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Figure 7.12.: Comparing cumulative distribution function (CDF) of the best sellers
interaction between experiment iteration 1 and 2
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increase in the response times. Based on the data shown in Figure 7.13a and
the extremely high database utilization, DynamicSpotter identified both a
Traffic Jam as well as a Database Congestion anti-pattern. However, in the
second iteration no OLB anti-pattern has been detected due to the high CPU
utilization on the database node.

Because of the detected Database Congestion anti-pattern, DynamicSpotter
conducted an investigation of the EDC and the Stifle anti-pattern. Although
both anti-patterns have been identified, in the case of the Stifle anti-pattern
DynamicSpotter reports an SQL query that has been repeated only twice.
Hence, though a resolution of the Stifle anti-pattern may lead to a small
performance improvement, it is not the root cause of the observed perfor-
mance problem in the best sellers service. Regarding the EDC anti-pattern,
DynamicSpotter reports a database query as root cause that is issued by
the best sellers service. While the response time ratio of the query and the
corresponding best sellers service is very small for a single user experiment
(≈ 1%), the ratio increases significantly to 97% for the high load experiment
with 100 users. Hence, considering the median response time of the best
sellers service (17.84 seconds), 17.3 of 17.84 seconds are spent in the diag-
nosed database request. Instead of nesting SQL queries for more complex
database requests, the developers of the used TPC-W implementation create
a temporary database table to store the intermediate results of a sub-query.
Subsequently another SQL query is applied on that table, and the temporary
table is removed again. This invocation sequence is conducted for each
request to the best sellers service leading to an overload of the database node
under high load. Interestingly, DynamicSpotter did not diagnose that perfor-
mance problem in the first iteration of the experiment. Actually, as the OLB
anti-patterns from the first iteration have hidden the EDC instance, the EDC
problem became visible only after the resolution of the OLB instances. The
OLB instances, inter alia, limited the throughput of the best sellers service,
hence, alleviating the EDC problem. With their resolution the throughput
increased, leading to a much higher load at the database node, caused by the
database query that created the temporary table.

Experiment Iteration 3 We resolved the EDC problem detected in the sec-
ond experiment iteration by replacing the creation of the temporary database
table with a nested SQL query. On this third version of the TPC-W imple-
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mentation, we again applied DynamicSpotter. This time, DynamicSpotter
did not identify any performance problems. As shown in Figure 7.14 for the
shopping cart and best sellers interaction (representatively for all services
of TPC-W), the response times do not exceed the specified response time
threshold anymore. Hence, all performance problems in the used TPC-W
implementation have been detected by DynamicSpotter. In this way, we were
able to quickly resolve those performance problems yielding a performance
improvement of about 3 magnitudes in the response times compared to the
initial version of the TPC-W implementation.

7.2.3. Part II - Extended TPC-W

The second part of the TPC-W case study builds upon the final TPC-W
implementation from the first study part in which all performance problems
have been resolved. The focus of this part of the study lies on the evaluation
of the diagnostics of communication-related SPAs, meaning anti-patterns
that lead to a performance problem due to an inefficient communication
pattern between software components. In particular, this includes the Blob,
Empty Semi Trucks (EST) and the Stifle anti-patterns. In contrast to the first
part of the case study, in this part we follow the fault injection technique
(Hsueh et al., 1997) by consciously injecting different types of performance
problems into the purged implementation of TPC-W. Fault injection is the
only way to evaluate the diagnostics accuracy of the APPD approach with
respect to false negatives. In the following, we introduce the experiment
design and discuss the diagnostics results. This part of the case study is part
of a supervised Bachelor’s Thesis (Oehler, 2014) and has been published
in Wert et al., 2014. The following sections contain fragments from that
publication.

7.2.3.1. Experiment Design

In this part of the case study, we investigate four different scenarios. While
in the first three scenarios the individual anti-patterns (i.e. Blob, EST and
Stifle) are evaluated in isolation, the fourth scenario contains a combination
of all anti-patterns. The purpose of the fourth scenario is an investigation of
the mutual influence of the different anti-patterns. As the experiment setup
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Figure 7.14.: Response times of shopping cart and best sellers
interaction (Iteration 3)
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for the evaluation of the Blob and EST anti-patterns is different compared to
the first part of this study, we extend the TPC-W application as described in
the following sections.

Experiment Setup The evaluation of diagnosing the Stifle anti-pattern
is conducted on a similar measurement environment as already shown in
Section 7.2.2.1 for the first part of the case study. The only difference is that,
in this part of the study, we use another tool for load generation to investigate
how generically the APPD approach can deal with different types of load
generation tools. Instead of applying the RBE for load generation, we use HP
LoadRunner

TM
(LoadRunner 2014) that is a load generation tool commonly

used in industry. Except for a dedicated Load Driver Node on which HP
LoadRunner

TM
is deployed, the experiment setup for the evaluation of the

Stifle anti-pattern is the same as shown in Figure 7.1 for the first part of the
case study. By contrast, an evaluation of the Blob and the EST anti-patterns
requires a distributed system that allows to investigate the communication
behaviour between software components.

Therefore, we extend the standard TPC-W application to a more distributed
system as depicted in Figure 7.15. The extended version of TPC-W con-
stitutes a federation of three book shops (TPC-W instances). Each TPC-W
instance comprises its own application server and its own database instance.
The TPC-W instances communicate with each other to enable processing
of requests that cannot be served by the individual shops in isolation. The
communication is conducted over a TPC-W Controller component using Java
Message Service (JMS) for message transmission. The TPC-W Controller is
deployed on a separate Controller Node. As messaging server we use Apache
ActiveMQ

TM
that runs on a dedicated Messaging Node. Analogously to the

experiment setup in the first part of this case study, on each Application
Node and Database Node an AIM agent is deployed for instrumentation
and monitoring, respectively. Furthermore, an AIM agent is deployed on
the Controller Node to enable instrumentation and monitoring of the TPC-
W Controller component, and another AIM component is deployed on the
Messaging Node to sample hardware resource statistics on that node.

To guarantee an equal load intensity on all TPC-W instances, we configure
LoadRunner

TM
to equally distribute the user requests to the three TPC-W

instances. In contrast to the workload definition of the TPC-W specification,
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Figure 7.15.: Extended TPC-W: experiment setup

a LoadRunner
TM

script usually defines a fix sequence of interactions for a
virtual user instead of a Markov Model. The script for one iteration of a
user in this part of the case study is depicted in Figure 7.16 as a Unified
Modeling Language (UML) activity diagram. A user visits the home page of
the TPC-W store, browses to a category of books and searches for a specific
book. Subsequently, the virtual user conducts a search for a subject yielding
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Figure 7.16.: Extended TPC-W: usage script

a list of books which of a book is select to view the product details. Then, the
user adds a set of items to the cart, whereby the amount of items is a random
number. Finally, the user checks out the cart, conducts a login and finishes
the session with purchasing the items in the cart. Between individual user
requests we use a randomly distributed think time between 0.5 and 2 seconds.
Each experiment conducted by DynamicSpotter has an experiment duration
of 10 minutes in the stable phase plus a warm-up and a cool-down phase
of approximately 3 minutes. Because of the modification of the experiment
setup we adjust the performance requirements to the following specification.
The response time of each user request should not exceed the value of 2
seconds in 99% of cases under a maximum load of 180 concurrent users.

Experiment Scenarios To enable an evaluation of the communication-
related SPAs, we extend the standard TPC-W as described below, yielding
four different experiment scenarios.

Stifle Scenario As already mentioned, the evaluation of the Stifle anti-
pattern is based on the experiment setup of the first part of the case study.
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Figure 7.17.: Request processing in the Blob Scenario (Wert et al., 2014)

However, regarding the TPC-W implementation, we injected two instances
of the Stifle anti-pattern. First, in the case that a book search request is
resolved to a set of books, a database request is issued for each book in that
list. Thereby, an initial SQL query retrieves a set of book IDs followed by a
loop over the IDs to retrieve product details from the database. The second
Stifle instance is injected into the purchase service. A purchase request
requires an update of the stock value for each item in the cart. Instead of
conducting a batch update on all items, in the Stifle Scenario, each item is
updated separately.

Blob Scenario Based on the experiment setup shown in Figure 7.15, we
inject a Blob anti-pattern by adapting the architecture of the traditional TPC-
W. Assuming that the shopping functionality is equal across all shops within
a federation, we move the application logic of all shops to the TPC-W Con-
troller component, while the web servers and the corresponding databases
stay with the individual shops. In this way, the TPC-W Controller compo-
nent constitutes a typical Blob comprising a major part of the processing
logic. The result is an unnecessarily high amount of messages that are
transmitted for each user request between the TPC-W Controller and all
TPC-W Instances. Figure 7.17 illustrates the control flow between the com-
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ponents for a simple user request. First, each user request is delegated to
the TPC-W Controller. As soon as the TPC-W Controller requires data, the
controller retrieves the data from the corresponding database via the TPC-W
Instance. Thus, for each user request at least four messages are transmitted
over JMS.

EST Scenario Analogously to the Blob Scenario, the EST Scenario is
based on the extended experiment setup. However, the application logic
of the shopping system is located with the individual TPC-W Instances
such that most requests can be processed by the requested TPC-W Instances
without the need to communicate with the TPC-W Controller or other TPC-W
instances. However, if a search request for a product yields an empty result,
the corresponding TPC-W Instance requests the TPC-W Controller to serve
the user request by conducting the search request on another TPC-W Instance.
In the case that the search request on the second TPC-W Instance has been
successful, each found item is transmitted as an individual JMS message,
first to the TPC-W Controller and, finally, to the originally requested TPC-W
Instance. As the result of a delegated search request is transmitted as a
sequence of small massages instead of an aggregated message, it constitutes
a typical EST anti-pattern.

Combined Scenario The Combined Scenario contains all introduced anti-
patterns: Stifle, Blob and EST. Based on the extended experiment setup,
this scenario combines the characteristics of the other three scenarios. The
application logic is centralized in the TPC-W Controller, the results of
delegated search requests are transmitted as a series of small messages, and
the two Stifle instances cause frequent database requests.

7.2.3.2. Discussion of Results

Applying DynamicSpotter on the individual scenarios we obtained the results
as shown in Figure 7.18. On the left, one can see the performance problem
taxonomy used for execution of DynamicSpotter. The remaining columns
show the detection results for the individual scenarios, whereby the left parts
shows the expected detection results and the right parts show the actually
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Figure 7.18.: Extended TPC-W: overview on results

obtained results by applying DynamicSpotter. At first glance, DynamicSpot-
ter provides correct results for all cases except for one false positive in the
EST Scenario and two false negatives in the Combined Scenario. In the
following, we discuss the results for each scenario in more detail.

Results for the Stifle Scenario The response times of the book search
interaction are depicted in Figure 7.19 for all investigated scenarios over
increasing load intensity (i.e. data from the Traffic Jam heuristic). We see
that, in the Stifle Scenario, response times grow with the load intensity and
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Figure 7.19.: Response times of the book search interaction for the four scenarios
(Wert et al., 2014)

exceeded the performance requirement threshold of 2 seconds under the
maximum load of 180 users. Based on that information, DynamicSpotter
correctly detected the Performance Problem, Continuously Violated Require-
ments and the Traffic Jam anti-patterns, while the Application Hiccups and
the Ramp anti-patterns have not been detected.

As a result of this, DynamicSpotter triggered the investigation of the Exces-
sive Messaging and the Database Congestion anti-patterns (cf. Figure 7.18).
DynamicSpotter did not detect the Excessive Messaging anti-pattern in the
Stifle Scenario, as in this scenario no messaging has been used by the soft-
ware components. Although, the CPU utilization of the database node was
quite low (smaller than 30%), the locking times increase significantly with
the load, from 0 seconds to 22.6 seconds. Consequently, DynamicSpotter
detected the Database Congestion anti-pattern and resumed the diagnostics
with the Stifle and EDC heuristics. Thereby, no expensive database calls have
been found, however, DynamicSpotter identified two Stifle instances. An
update SQL statement in the purchase service of TPC-W, has been executed
between 2 and 4299 times (with different parameters) per transaction, de-
pending on how many and which items have been bought. In the book search
service, the Stifle heuristic detected a select query that has been executed 6 to
2006 times, depending on the search result. Thus, DynamicSpotter has found
both Stifle instances which have been injected in the Stifle-Scenario.
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Figure 7.20.: Message throughput over load intensity

Results for the Blob Scenario As indicated by the corresponding curve
in Figure 7.19, from a high level perspective the Blob Scenario exhibits
a similar behaviour as the Stifle Scenario. Hence again, the Performance
Problem, Continuously Violated Requirements and the Traffic Jam anti-
patterns have been detected. Further below in the performance problem
taxonomy, DynamicSpotter did not identify a Database Congestion anti-
pattern as the utilization of all database nodes did not exceed 90% and
locking on database tables is negligible.

Figure 7.20 shows the message throughput at the messaging server. The mes-
sage throughput of the TPC-W Controller does not scale with the number of
users, but stagnates with an increasing load intensity. Hence, DynamicSpot-
ter detected an Excessive Messaging problem and resumed its analysis with
the Blob and EST anti-patterns. The EST anti-pattern has not been detected
in the Blob Scenario as no message transmissions have been found that were
executed in a loop. However, DynamicSpotter successfully detected the
injected Blob anti-pattern. Table 7.2 shows some details on the detection
of the Blob anti-pattern. The first column lists the software components
involved in messaging. The second column comprises the messaging times
for the individual components. Column three and four show the calculated
messaging contributions of the components as well the corresponding thresh-
olds, respectively (cf. Component Exclusion strategy in Section 6.3.11).
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component messaging
time [s] contribution [%] threshold result

total 83 116 — — —

TPC-W 1 24 776 29.8 148.5 No Blob
TPC-W 2 29 943 36.0 150.9 No Blob
TPC-W 3 28 396 34.1 150.4 No Blob

TPC-W Controller 83 116 100.0 41.1 Blob

Table 7.2.: Detailed results on Blob detection in the Blob Scenario (Wert et al., 2014)

Finally, the last column indicates which components have been detected as a
Blob. The sum over all message transmission times yields a value of 83116
seconds (including parallel transmission of messages). As all messages pass
the TPC-W Controller, its contribution to the total messaging time is 100%.
The threshold for the Controller component is 41.1. As the messaging time
contribution exceeds the threshold, the Blob heuristic detected the TPC-W
Controller as a Blob component. In contrast, the messaging time contribu-
tions of the remaining components are below the corresponding thresholds.

Results for the EST Scenario With respect to the anti-patterns on the
higher levels of the performance problem taxonomy, for the EST Scenario
applies the same as for the Blob Scenario: the response time requirement has
been continuously violated, response times increase with the load intensity
(cf. Figure 7.19) and the Database Congestion anti-pattern has not been
detected because of low database utilizations and negligible database locking
times. The heuristic for Excessive Messaging detected a stagnating message
throughput under a load of about 90 users. As a consequence, DynamicSpot-
ter applied the Blob and EST heuristics. Thereby, the EST heuristic identified
two message dispatching methods that were executed in a loop between 64
to 100 times. The identified methods are responsible for transmitting the
result of the book search request from one TPC-W instance via the TPC-W
Controller to another TPC-W instance by sending each found item as a
single message. The number of loop iterations (64 to 100) corresponds to the
number of items found for the search requests. Each message has an average
payload of 24 Bytes while exhibiting an additional overhead of 160 Bytes.
Thus, 64 messages constitute a network traffic of 11.5 KB. Aggregating
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these messages to one message yields a saving potential of 9.8 KB (63 times
the message overhead of 160 Bytes) which is 85.6% of the network traffic
generated by one request. Hence, the EST anti-pattern has been correctly
detected. Besides the two EST instances, DynamicSpotter identified the
TPC-W Controller as a Blob component in the EST Scenario. At first glance,
this detection constitutes a false positive, however, a deeper consideration
provides a reasonable explanation for this observation. Actually, the detected
EST anti-pattern is at the same time a Blob anti-pattern, as all messages that
were transmitted by the EST instances passed through the TPC-W Controller.
This messaging behaviour caused a high messaging overhead. Thus, though
we preliminary did not expect DynamicSpotter to detect a Blob in the EST
Scenario, the detection results are indeed correct.

Results for the Combined Scenario As expected, in the Combined Sce-
nario, DynamicSpotter detected the Excessive Messaging anti-pattern, as
well as the Blob and the EST instances as root causes for the Excessive
Messaging. The detection details on the Blob and the EST are very similar
to the Blob Scenario and the EST Scenario, respectively. However, while the
Combined Scenario contains two Stifle instance, the Stifle anti-pattern and
the corresponding parent in the performance problem taxonomy (Database
Congestion anti-pattern) have not been detected. More precisely, according
to the performance problem taxonomy, DynamicSpotter did not investigate
the Stifle anti-pattern as the Database Congestion anti-pattern has not been
detected (cf. Figure 7.18). Investigating the measurement data shows that
all database utilizations are quite low (below 20%) and database locking
times do not increase significantly with the load. Thus, the Database Con-
gestion anti-pattern did not become visible in the Combined Scenario. The
Excessive Messaging caused by the Blob and the EST instances throttle the
performance of the overall system to a degree that no Database Congestion
anti-pattern could occur. Hence, the Blob and the EST instances hide the
Stifle anti-pattern.
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7.2.4. Conclusions on Validation Questions

In this section, we summarize our insights from the TPC-W case study and
draw corresponding conclusions on the validation questions described in
Section 7.1.1.

In this case study, we have shown for the SPAs covered by the used perfor-
mance problem taxonomy that they are detectable by measurements (VQ 1.1).
Solely from the TPC-W case study we cannot draw a comprehensive conclu-
sion on validation question VQ 1.2. However, within the two case study parts
we have applied the APPD approach on two entirely different experiment
setups using different types of load generators. Hence, we can conclude
that APPD is generic with respect to the constellation of the SUT’s setup
as well as used types of load generators. In general, regarding validation
question VQ 1.3, the TPC-W case study shows that APPD is able to uncover
self-injected instances of performance problems (i.e. known in advance
by authors of APPD) (second part of case study), as well as performance
problem instances that the authors of APPD were not aware of in advance
(first part of the case study). Thereby, the study shows that performance prob-
lems that occur in isolation in the SUT are detected accurately. In scenarios
with multiple instance of performance problems, the circumstances are more
complicated. In particular, the most critical performance problem instances
(i.e. most narrow performance bottlenecks) may hide other instances of
performance problems so that hidden performance problems do not become
visible by observable symptoms. Hence, measurement-based diagnostics
approaches, like APPD, inherently are not able to detect hidden performance
problems. In such cases, the APPD approach detects only the most criti-
cal performance problems. In order to overcome this problem, APPD has
to be applied iteratively while resolving identified performance problems
within each iteration (cf. study execution of part 1, Section 7.2.2.1). In this
way, hidden instances of performance problems are gradually uncovered by
resolving the problems that have hidden them.

Regarding validation question VQ 2.1 we can conclude that the performance
problem instances observed in the TPC-W case study were reflected by
the used performance problem taxonomy. In particular, the identified root
causes were observable by the corresponding symptoms as described by the
taxonomy. An interesting insight of this case study is that some instance
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of performance problems are not of an exclusive problem type. More pre-
cisely, as shown in the EST Scenario in the seconds part of the study, some
instances of performance problems have multiple types at once. So far, our
taxonomy does not provide for reflecting performance problem instances
of multiple types. However, as shown in the case study, with the current
taxonomy schema, this kind of performance problems can be detected as
well. Hereby, a correlation of different detected problem instances over their
root cause location may be a useful feature to better identify such multi-type
performance problems.

With the taxonomy used in this case study, the diagnostics runs took between
three and five hours, depending on the existing performance problems. This
constitutes reasonable times to be executed as nightly or weekly evaluation
tests for performance, for instance, as part of continuous integration of
software products. In the third iteration of the first study part, the execution
took only 15 minutes. Hence, confirming the qualitative considerations of the
time complexity in Section 4.4.3, the diagnostics is faster the less problems
the SUT contains.

Similarly to validation question VQ 1.2, we cannot draw a comprehensive
conclusion on Validation Goal 4 just from the TPC-W case study. Never-
theless, in this study we have applied P2D2M to describe the two parts of
the case study. The expressiveness of P2D2M was sufficient to specify all
aspects of the target system for an automatic execution of DynamicSpotter.
Furthermore, we were able to apply all detection heuristics of APPD without
a need for modification or adoption. This shows that the description lan-
guages (i.e. P2D2M) used to describe the heuristics in a generic way allow
to abstract from the characteristics of concrete scenarios.

A successful (i.e. accurate) diagnostics by DynamicSpotter inherently shows
the applicability of the SSE concept, as detailed measurement data has been
gathered without significant distortion of the data (cf. VQ 5.2). Analogously,
validation question VQ 6.1 is inherently answered by the successful exe-
cution of DynamicSpotter. With respect to the efforts required to apply
DynamicSpotter on TPC-W (VQ 6.2), we summarize which tasks have been
necessary. However, we abstain from providing a quantitative analysis of
the effort. First of all, for this case study we had to do some tasks that
are common for all scenarios where performance testing is applied. This
includes the setup of the measurement environment as well as creation of
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the load generator scripts. In the first part of the case study, we had to create
a DynamicSpotter adapter for the RBE load generator of TPC-W. Though
this is a very specific case, with that we saved the efforts of creating a load
script as the RBE includes the workload specification. The second part of the
study rather reflects a scenario that is representative for industrial projects
where an established load generation tool (e.g. HP LoadRunner

TM
) is used.

However, in this case we had to record a load script for LoadRunner
TM

.
The APPD-specific tasks include the deployment of measurement tools (e.g.
AIM agents) as well as the description of the scenario using P2D2M. The
latter task is usually a matter of minutes. The complexity of deploying mea-
surement tools depends on the concrete measurement tools and the existing
knowledge or available documentation. Usually this task does not take more
than a couple of hours.

7.3. Case Study: nopCommerce

While the TPC-W case study (cf. Section 7.2) has been conducted with a
Java-based target application, in this case study, we apply the APPD approach
on a .NET application. In this way, we evaluate the generalisability of the
APPD approach with respect to the underlying technologies of the SUT.

In the following, we describe the experiment design of this case study
including a description of the target application as well as the experiment
setup. Subsequently, we discuss the results of this case study. Finally, we
summarize the conclusions from this case study to the investigated validation
questions.

7.3.1. Experiment Design

In this section, we introduce the application under test, the experiment setup
as well as the procedure and execution details of this case study.
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Figure 7.21.: Architecture of the nopCommerce application

7.3.1.1. The Application Under Test: nopCommerce

In this case study, we use nopCommerce (NopCommerce 2015) as the target
application of investigation. Similar to the business domain of TPC-W, nop-
Commerce is an open-source e-commerce solution. Hence, nopCommerce
is used to run custom online shops. As nopCommerce is written in the
programming language C#, it is intended to be executed on a .NET run-time
(Box et al., 2002). As shown in Figure 7.21, the nopCommerce application
is structured along a 3-tier architecture.

The application comprises six main components, while four of them realize
the Model-View-Controller (MVC) pattern. The application provides two
different presentation components depending on the user role: while the
Nop.Admin component provides views for administrators of the customized
online shop, the Nop.Web component constitutes the presentation layer for the
end-users of the shop. Both presentation components require utility services
from the Nop.Web.Framework component that provides basic presentation
layer functionalities. The presentation layer in nopCommerce builds upon
the MVC pattern (Freeman, 2013). Thereby, Controller classes constitute
the entry point into the backend of nopCommerce, which is important for
the instrumentation of the application using the instrumentation descrip-
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tion part of P2D2M. The presentation components access the Nop.Services
component that encapsulates the business logic of the online shop and pro-
vides corresponding services to the presentation components. Finally, the
Nop.Services component retrieves data from the database via the data access
layer represented by the Nop.Data component. Utility services that are used
by the application layer and the data access layer are encapsulated in the
Nop.Core component.

7.3.1.2. Experiment Setup

The experiment setup of this case study comprises three physical system
nodes. As depicted in Figure 7.22, the nopCommerce application runs within
a Microsoft Internet Information Services (IIS)

TM
web server.

As elaborated in this thesis, a realization of the APPD approach requires
measurement data from the interior of the target application in order to
apply corresponding detection heuristics. As we did not found any free
monitoring tools in the area of .NET, we extended the AIM framework (Wert
et al., 2015a) with the capability to instrument .NET applications and gather
corresponding measurement data. Therefore, we created a light-weight .NET
agent for AIM. The AIM.NET agent contains measurement probes written in
C# that are realized by means of Aspect-oriented Programming (AOP) using
the PostSharp

TM
tool. The AIM.NET agent communicates with an AIM-

Wrapper Java process that collects the measurement data gathered in the
.NET process. Therefore, we us a Java-.Net bridge (JNBridge

TM
) that allows

inter-process communication between Java and .NET processes. In contrast
to Java, .NET does not provide means to realize dynamically adaptable
instrumentation. Hence, in order to enable the SSE concept within APPD,
the AIM-Wrapper (cf. Figure 7.22) realizes adaptation of instrumentation
by restarting the target application. Thereby, the AIM-Wrapper stops the
SUT for each instrumentation request, statically adapts the instrumentation
of the application and restarts the SUT again. Though this approach is
not as efficient as the dynamically adaptable instrumentation of AIM in
Java, it enables automatic execution of DynamicSpotter and, hence, enables
a realization of APPD on .NET applications. Finally, the AIM-Wrapper
provides instrumentation and measurement services to DynamicSpotter that
runs on a dedicated Measurement Node.
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Figure 7.22.: Experiment setup

As the database management system for nopCommerce we use Microsoft
SQL Server Express

TM
that runs on a Database Node. Furthermore, we deploy

an AIM component on the Database Node to sample hardware resource
statistics during measurements. As load generator we use Apache JMeter

TM

that is a load generation tool with similar capabilities as HP LoadRunner
TM

.
Apache JMeter

TM
runs on the same node as DynamicSpotter.

Besides the source code of the application, the nopCommerce bundle (Nop-
Commerce 2015) contains test data for a demo shop. In this case study, we
use that test data for instantiating the target application.

7.3.1.3. Study Procedure

The goal of this case study is to show the broad applicability of the APPD
approach and its ability to abstract from concrete technologies. In particular,
in the nopCommerce case study our focus is not on detecting unknown in-
stances of performance problems. As preliminary performance tests showed
that nopCommerce did not exhibit performance problems in our experiment
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setup, we apply fault injection (Hsueh et al., 1997) to investigate whether
DynamicSpotter is able to detect the injected performance problem in a .NET
environment. Thereto, we inject a synchronized method into the logic of the
ShoppingCartService of the Nop.Services component (cf. Figure 7.21). The
synchronized method contains a Dispensable Synchronization anti-pattern
constituting a root cause for an OLB.

Due to license restrictions of the AOP tool PostSharp
TM

, we were not able to
realize the whole functionality of AIM for .NET applications. Consequently,
the AIM.NET agent supports only a sub-set of model elements from the
Instrumentation and Monitoring (IaM) Description model of P2D2M (cf.
Section 5.3.2.2). In particular, in this case study, instrumentation of database
access operations was not possible. Note, as this is not a fundamental re-
striction of .NET, corresponding measurement and instrumentation tools for
.NET that support our IaM Description language can be created by means of
an extended licence of PostSharp

TM
. Due to the limitations in the instrumen-

tation capabilities, in this case study, we used only a part of the performance
problem taxonomy to apply DynamicSpotter on nopCommerce. The tax-
onomy used in this case study is shown in the left column of Figure 7.23.
Compared to the taxonomy used in the TPC-W case study, we reduced this
instance by the messaging-related and database-related SPAs.

Similarly, to the second part of the TPC-W case study, we use a closed work-
load, whereby each user session is defined by a fix sequence of interactions.
The usage script contains four steps in sequence. First, the user visits the
home page of the nopCommerce store and browses to the books category
in the store. The user then selects a book to view the details and, finally,
adds that book to the cart. In between each two user interactions we use
a randomly distributed think time between 500 milliseconds and 1 second.
The maximum number of users is limited to 100 concurrent users. As perfor-
mance requirements we prescribe that, in 99% of cases, the response times
must not exceed the value of one second. Each experiment is executed for
10 minutes with a preceding warm-up time of 2 minutes and a corresponding
cool-down phase.
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Figure 7.23.: Results overview

7.3.2. Discussion of Results

As described in the previous section, we injected a Dispensable Synchroniza-
tion anti-pattern into the nopCommerce application. For the performance
problem taxonomy used in this case study, Figure 7.23 shows the expected
as well as the actual detection results of DynamicSpotter applied on nop-
Commerce.

As we can see, the diagnostics results of DynamicSpotter coincide with the
expectation. As first step, DynamicSpotter detected a performance prob-
lem in the shopping cart interaction of the nopCommerce application. The
response times of the shopping cart service under a high load intensity of
100 concurrent users are depicted in Figure 7.24a. The response times show
a typical, periodic pattern indicating that user requests pile up at a bottle-
neck. Overall, the response times continuously violate the performance
requirements by exceeding the response time threshold. The cumulative
distribution function of these response times in Figure 7.24b illustrates the
performance requirement violation. In particular, we see that the 99% per-
centile of the respone times has a value of 7 seconds which is significantly
larger then the required threshold of 1 second. Based on this observation and
the continuity of the performance requirement violation, DynamicSpotter
detected a Performance Problem caused by a Continuously Violated Require-
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Figure 7.24.: Performance Problem detection: shopping cart interaction
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ments anti-pattern in the shopping cart service. In the remaining services of
nopCommerce, DynamicSpotter did not detect any performance problem.
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As the response times exceed the threshold in more than 50% of cases, the
Application Hiccups detection heuristic did not detect periodic hiccups. Fig-
ure 7.25 shows the detection results of the Ramp detection heuristic. The
graph shows the mean response times with their confidence intervals for the
four single-user experiments conducted by the Time Window detection strat-
egy of the Ramp heuristic. In between the individual single-user experiments
the heuristic applied high-load experiments to provoke a potential Ramp
anti-pattern. However, as we can see in Figure 7.25, the response times do
not increase with the operation time. Consequently, the Ramp anti-pattern
has not been detected.

On the next level of the performance problem taxonomy, DynamicSpotter
investigated the Traffic Jam anti-pattern. The response times of the shop-
ping cart interaction in dependence on the load intensity are depicted in
Figure 7.26a. The mean response times and the corresponding confidence
intervals are shown in Figure 7.26b. In both figures, we can observe linear
growth in the response times when increasing the load intensity. Further-
more, Figure 7.26b shows that the confidence intervals of the response times
are very narrow and do not overlap under different load intensities. This
means that the corresponding t-Tests of the Traffic Jam heuristic confirm
a statistically significant increase in the response times. Consequently, the
Traffic Jam heuristic successfully identified an instance of the Traffic Jam
anti-pattern.

With respect to the Database congestion anti-pattern, DynamicSpotter did nei-
ther observe a high CPU utilization at the Database Node (cf. Figure 7.27a),
nor identified a rise in locking times with increasing load intensity. Hence,
DynamicSpotter did not detect a Database Congestion anti-pattern. The CPU
utilization of the Application Node (cf. Figure 7.27a) stagnates at approxi-
mately 50%. Consequently, the response time threshold that is dynamically
caluclated by the OLB detection heuristic is relatively low compared to the
significantly increasing response times of the shopping cart interaction (cf.
Figure 7.27b). Therefore, the OLB detection heuristic reported an occur-
rence of the OLB anti-pattern in the shopping cart service. Conducting an
OLB analysis on the synchronization scope, DynamicSpotter successfully
identified the injected, synchronized method as the root cause of the detected
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performance problem. In particular, the injected method dominated the
response times of the shopping cart service.



7.3. Case Study: nopCommerce

1.0 1.5 2.0 2.5 3.0 3.5 4.0

51
4

51
6

51
8

52
0

52
2

ShoppingCartController

experiment

re
sp

on
se

 ti
m

e 
[m

s]

avg. response times with confidence interval

Figure 7.25.: Ramp detection: shopping cart interaction

7.3.3. Conclusions on Validation Questions

In this case study, we analyzed the applicability of the APPD approach on a
target system that has been developed for and runs on a run-time environment
other than Java.

With respect to validation question VQ 1.1, once more, we have shown
that the SPAs along the path from the OLB anti-patterns to the root of the
performance problem taxonomy are detectable by measurement. This obser-
vation analogously applies to validation question VQ 2.1, showing that the
corresponding path in the performance problem taxonomy is appropriate for
performance problems in real applications. Regarding other anti-patterns like
messaging-related or database-related SPAs, we cannot draw any conclusions
from this case study, as only a Dispensable Synchronization anti-pattern has
been injected and analyzed. The main focus of this case study was on the
validation of validation question VQ 1.2 with respect to the aspect whether
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APPD is able to abstract from specific technologies used by the SUT. From
the successful conducting of this case study, we can draw the conclusion
that, in general, APPD is generic with respect to the underlying technologies
of the SUT. Thereby, APPD was applicable to a .NET application without
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Figure 7.26.: Results on Problem Diagnostics (1)
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of APPD. However, this conclusion only applies on systems and common
technologies within the domain of enterprise software systems. In particular,
we cannot make any statements about the applicability of APPD to software
systems beyond that domain.

This case study clearly showed the dependency of APPD on the availability
of proper instrumentation and measurement tools. As the .NET community,
compared to the Java community, is rather closed and focused on commerce,
there are only little or no free instrumentation and measurement tools. The
lack of proper (free) instrumentation and measurement tools for .NET was
the main challenge in this case study for a successful application of APPD
on nopCommerce. Though we found a way to extend our tool AIM for .NET
applications, due to license limitations, we were not able to fully support
the IaM Description model of P2D2M for .NET applications. However, by
providing a proof of concept, we can conclude that, in principle with a
proper license and enough time for development, an instrumentation and
measurement tool for .NET can be built that is similar to corresponding tools
in Java (e.g. Kieker (van Hoorn et al., 2012), DiSL (Marek et al., 2012), AIM
(Wert et al., 2015a), etc.) and, thus, fully supports the IaM Description part
of our P2D2M model. In particular, the limitation of instrumentation in this
case study was not due to insufficient expressiveness of the IaM Description
part of P2D2M (VQ 4.1). On the contrary, this case study further validated the
expressiveness of P2D2M. On the one hand, the detection heuristics, which
are described with the corresponding sub-models of P2D2M, were generically
applicable on an entirely different context compared to the TPC-W case
study. This shows the expressiveness (VQ 4.1) as well as the generalisability
(VQ 4.2) of the experimentation, IaM and data representation sub-models of
P2D2M. On the other hand, the ME Description part of P2D2M provides a
sufficient expressiveness to capture the system-specific information in the
.NET scenario (VQ 4.2).

Due to limitations of the .NET run-time, in this case study, we were not able
to apply dynamically adaptable instrumentation. Instead, we realized the
SSE concept by means of restarting the target application for each change in
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any need of adopting the detection heuristics or any other core concepts

the instrumentation state. Compared to dynamically adaptable instrumen-
tation, restart-based instrumentation is considerably less efficient, which
is reflected in the execution time. Although in this case study a smaller
performance problem taxonomy has been used as in the TPC-W case study,
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the diagnostics run of DynamicSpotter took 4 hours and 40 minutes. Hence,
with respect to validation question VQ 3.2, we can draw the conclusion that a
dynamic realization of the SSE concept is more efficient than a restart-based
realization with static instrumentation. Nevertheless, this case study shows
that the SSE concept can be realized by different means without affecting the
quality of the diagnostics process of APPD, except for the diagnostics dura-
tion. In this way, we positively validated the automation of APPD (VQ 6.1)
in scenarios where dynamically adaptable instrumentation is not possible.
Thereby, we had to invest a higher up-front effort due to the lack of proper
measurement tools. However, our efforts of extending AIM for the .NET
environment belongs to the category of one time tasks (cf. Section 3.1).
In particular, the resulting measurement tools can be reused in different
contexts.

7.4. Case Study:
Industrial Large-scale System

In the TPC-W and the nopCommerce case studies (cf. Section 7.2 and Sec-
tion 7.3) we applied the APPD approach to mid-size enterprise applications
(less than 1 million of LOC). Furthermore, both TPC-W and nopCommerce
were from the same domain of applications as both applications constitute
an e-commerce solution. In this case study, we evaluate the APPD approach
on a large-scale application (more than 5 millions of LOC) that is from the
domain of enterprise resource management solutions. In particular, we are
interested whether APPD, including all its integral parts, is able to handle
the high complexity and scale of the target application’s code.

Due to reasons of confidentiality, in this case study, we do not provide
details on the target application that would provide insights on the vendor or
identity of the application. Furthermore, all measurements and performance-
related values in this section are normalized by presenting all time values in
normalized time units (ntu).
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7.4.1. Experiment Design

In the following, we describe the characteristics of the target application that
are of interest for this case study. Furthermore, we describe the experiment
setup.

7.4.1.1. The Application Under Test: Industrial Large-scale System

The SUT investigated in this case study is an industrially used, Java-based en-
terprise resource management application. Comprising more than 5 millions
of LOC, the ILS application constitutes a large and complex application that
meets our requirements for the scalability evaluation of the APPD approach.
As ILS has a huge user basis (in the order of millions of users), performance
and especially scalability is a crucial extra-functional requirement for ILS.
Deployed in a data center, the ILS must be able to serve hundreds of thou-
sands to millions of users simultaneously without considerable, negative
effects on performance. Therefore, ILS is an application that is particularly
interesting for performance problem diagnostics. As ILS is built upon com-
mon Java-technologies like Java Servlets, Enterprise JavaBeans, and SQL
over JDBC, the application is representative for other Java-based enterprise
applications.

7.4.1.2. Experiment Setup

The measurement environment of this case study comprises four physical
nodes. On the Application Node we use JBoss

TM
as the application server

that is the container for the application logic component of the ILS. Anal-
ogously to the setup in the TPC-W case study (cf. Section 7.2), besides
the target application, an AIM agent runs within the application server to
enable instrumentation and measurement of the application under test. The
ILS application access a high-performance database that runs on a dedicated
Database Node. The AIM component on the Database Node is responsible
for sampling hardware resource statistics (e.g. CPU utilization). As load gen-
erator we use HP LoadRunner

TM
that is deployed on a dedicated Load Driver

Node. Finally, we use a separate Measurement Node for DynamicSpotter
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that controls load generation, instrumentation and collection of measurement
data.
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Figure 7.28.: Experiment setup

As the usage behaviour for load generation we use a LoadRunner
TM

script that
has been provided by the performance testing team of the ILS application.
The script comprises a fix sequence of six user interactions, each containing
a call to a service of the target application. In between the user interactions,
the LoadRunner

TM
script contains a randomly distributed think time between

80% and 120% of a basis value of Tt normalized time units (ntu). Due to
reasons of confidentiality, we denote the ILS services as Service 1 - Service 6.
For the ILS services, we define the performance requirement that in 95%
of cases the response times of the services must not exceed a threshold of
Rt ntu. In our setup, the performance requirement shell be valid for a load
intensity up to 500 concurrent users.

For the configuration of DynamicSpotter, we use the entire performance
problem taxonomy covered by the PPEP instance that has been derived
in Section 4.4.2. The used taxonomy is depicted in the left column of
Figure 7.29. Each experiment that is executed by DynamicSpotter has a
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duration of Et ntu with additional warm-up and cool-down phases of a third
of Et .
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7.4.2. Discussion of Results

Applying DynamicSpotter on the ILS, we encountered interesting effects
and promising diagnostics results. Both are discussed in the following. We
first give an outline on the study execution followed by a detailed discussion
of the results.

Overview on Study Execution

Similar to the TPC-W case study, the ILS case study has been conducted in
three iterations. In the first iteration, we applied DynamicSpotter on the de-
scribed setup of ILS using the provided load script. As shown in Figure 7.29,
DynamicSpotter detected a Performance Problem that is manifested in an Ap-
plication Hiccups anti-pattern. The applied performance problem taxonomy
and the set of detection heuristics created in this thesis do not cover more
detailed manifestations of the Application Hiccups anti-pattern. Therefore,
based on the DynamicSpotter results in the first iteration, we continued the
performance problem diagnostics by manually analyzing the target system
as well as the experiment configuration. Thereby, we came to the conclusion
that the observed hiccups have been caused by an improperly chosen config-
uration of the load script. After slightly modifying the configuration of the
load generation, we started a second diagnostics run of DynamicSpotter. In
this second iteration, DynamicSpotter identified a performance problem that
has been caused by a database call manifestation of the OLB anti-pattern
limiting the performance of one service of the ILS. Due to the complexity of
the ILS application and missing expert knowledge about the specific details
of the implementation of ILS, we were not ale to fix the identified instance
of the OLB anti-pattern. In order to show that the anti-pattern reported by
DynamicSpotter as the root cause for the observed performance problem is a
true positive, we removed the corresponding interaction from the load script.
With the modified script, we applied DynamicSpotter a third time whereby,
this time, no performance problem has been reported by DynamicSpotter.
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Figure 7.29.: Overview on results

In the following, we discuss the results of the individual study iterations in
more detail.

Iteration 1

In the first iteration of applying DynamicSpotter to ILS, performance prob-
lems have been detected in all services provided by the ILS application.
Representatively for all services, the response times over experiment time
for Service 1 and Service 5 are depicted in Figure 7.30a and Figure 7.30b,
respectively. The graphs show that most requests have a low response time
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Figure 7.30.: Performance Problem detection (1): Service 1 and Service 5
(Iteration 1)
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Figure 7.31.: Performance Problem detection (2): Service 1 and Service 5
(Iteration 1)
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Figure 7.32.: Performance Problem detection (3): Service 1 and Service 5
(Iteration 1)
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that lies under the performance requirement threshold. However, periodi-
cally, the response times increase significantly for a short period of time,
which in sum leads to a violation of performance requirements. Considering
the corresponding cumulative distribution functions (cf. Figure 7.31a and
Figure 7.31b), we see that in both cases the median of the response times
is slightly below the requirements threshold. However, a long tail in the
response times distribution leads to the violation of the performance require-
ment. While the threshold has a value of 0.03 ntu, the 95% response time
percentiles of Service 1 and Service 5 have a value of 0.58 ntu and 0.24 ntu,
respectively. Based on this analysis, DynamicSpotter detected a performance
problem in each service of ILS.

Continuing the diagnostics run with the Application Hiccups heuristic, Dy-
namicSpotter observed the hiccups behaviour as shown in Figure 7.32a and
Figure 7.32b for the two considered services. In both response time series,
DynamicSpotter detected six hiccups that map to the previously mentioned
periodic increases in response times. Again, this applies to all six analyzed
services of ILS, yielding a positive detection of the Application Hiccups
anti-pattern. As the response times in between the hiccups are below the re-
sponse time threshold, the Continuously Violated Requirements anti-pattern
has not been detected. Neither has the Ramp anti-pattern been detected. At
this point, DynamicSpotter terminated its diagnostics process as no further,
detailed heuristics for hiccups-related anti-patterns were available.

We resumed with a manual diagnostics of the root cause for the identified
Application Hiccups anti-pattern. Thereto, we manually repeated the load
test while additionally measuring the CPU utilization on both nodes, ap-
plication and database node. The resulting CPU utilization depicted over
experiment time (cf. Figure 7.33a) exhibits an interesting pattern. Both
curves (application and database CPU utilization) exhibit a wavy pattern,
whereby the peaks and troughs of both curves are inverse to each other.
Hence, a peak of the database node’s CPU utilization is accompanied by a
trough of the CPU utilization curve of the application server, and vice versa.

Comparing the response time hiccups in Figure 7.32a and Figure 7.32b
with the wave patterns of the CPU utilizations, we see that the frequency
of hiccups is the same as the peak frequency in the CPU utilization curves.
Hence, it can be assumed that the observed response time hiccups are closely
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related to the CPU utilizations. As the peaks of the database node’s CPU
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Figure 7.33.: Manual analysis: CPU utilizations of database and application server
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utilization have a value of 100%, the database constitutes the bottleneck in
this scenario. However, the periodically high CPU utilization on the database
node is rather a symptom than a root cause. If the processing capacity on
the database node would be just to small, the corresponding CPU utilization
would have been permanently high under a stable load intensity. However,
the wave pattern is rather an indicator that the generated virtual users are
synchronized which leads to temporary overload situations on the database
which, in turn, again leads to reinforced synchronization. Combining this
cyclic cause-effect relationship with a closed workload for load generation
leads to the observed oscillating behaviour. Assuming that this consideration
applies in the investigated scenario, this would mean that load generation
is not properly configured for our experiment setup. Manually analyzing
the used load script, we observed that the think time distribution and the
observed time between the occurrences of two subsequent hiccups is in the
same range. This observation strengthens our presumption that the oscillating
effect is caused by the load script (or configuration of load generation) rather
than by the ILS application. In order to mitigate the oscillating effect, we
increased the variance in the think time distribution. Thereto, we configure
LoadRunner

TM
to draw a random value within the range of 50% and 150% of

the base value Tt (instead of 80% - 120%). In this way, user requests are more
unifomly distributed on the time line, while the mean load intensity stays
the same as before. Repeating the load test with the modified load script,
we obtained CPU utilizations as depicted in Figure 7.33b. For both servers
(application and database server) the major waves in the CPU utilization
curves disappeared. The utilization on the application server is very stable at
approximately 18% utilization. By contrast, the utilization on the database
server varies considerably between 30% and 80%, however, there is no
periodic pattern observable. The modified load script constitutes the basis
for the second iteration of the case study.

Iteration 2

Using the modified load script, we applied DynamicSpotter a second time
on our setup of the ILS. As illustrated in the second column (i.e. Iteration 2)
in Figure 7.29, DynamicSpotter again detected a Performance Problem.
However, this time, no Application Hiccups anti-pattern has been observed

297

but an instance of the Continuously Violated Requirements anti-pattern.
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Figure 7.34.: Performance Problem detection (1): Service 1 and Service 5
(Iteration 2)
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(b) Service 5: cumulative distribution function

Figure 7.35.: Performance Problem detection (2): Service 1 and Service 5
(Iteration 2)
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Analogously to the first iteration, Figure 7.34 and Figure 7.35 show the
response times over experiment time, as well as the corresponding cumulative
distribution functions for Service 1 and Service 5 of the ILS application under
a high load of 500 concurrent users.

Although the response times of Service 1 (cf. Figure 7.34a) occasionally ex-
ceed the response time threshold, prevailingly, they are below the threshold.
Considering Figure 7.35a, we see that the distribution of response times of
Service 1 meets the specified performance requirements. In particular, the
95% percentile, with a value cmaller than 0.01 ntu, is considerably smaller
than the requirement of 0.2 ntu. Except for Service 5, the remaining services
of ILS show a similar behaviour as Service 1, hence, they meet the perfor-
mance requirements. By contrast, the response times of Service 5 frequently
exceed the specified response time threshold (cf. Figure 7.34b). Considering
the corresponding cumulative distribution function in Figure 7.35b reveals
that in approximately 50% of cases the response times are greater than the
threshold. With a value of 0.45 ntu the 95% percentile is more than twice
as large as the allowed threshold of 0.2 ntu. Consequently, DynamicSpotter
detected a performance problem in Service 5 of the ILS application. As
the response times do not exhibit any periodic patterns or any considerable
trends, DynamicSpotter neither detected an Application Hiccups anti-pattern
nor a Ramp instance. By contrast, a Continuously Violated Requirements
anti-pattern has been detected, resulting in an investigation of the Traffic Jam
anti-pattern.

The results of the Traffic Jam investigation for Service 5 are depicted in
Figure 7.36. The measured response time values over load intensity (cf.
Figure 7.36a) show a significant increase in the variance of the response
times with increasing load intensity. Though the minimal response times
decrease slightly with increasing load intensity, the maximum response
times grow considerably. Considering the average response times with
corresponding confidence intervals provided by the Traffic Jam heuristic (cf.
Figure 7.36b), we observe very narrow confidence intervals with average
response times that grow with the load intensity. As the confidence intervals
under different load intensities do not overlap, the t-Tests of the Traffic Jam
heuristic show a statistically significant increase in the response times. Based
on this observation, DynamicSpotter detected a Traffic Jam anti-pattern in
Service 5 of the ILS.
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Figure 7.36.: Traffic Jam detection: Service 5
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Consequently, DynamicSpotter resumed its diagnostics with the Excessive
Messaging, Database Congestion and OLB heuristics. As the ILS application
does not use messaging technologies for inter-component communication,
DynamicSpotter did not detect an Excessive Messaging anti-pattern. Neither
the Database Congestion anti-pattern has been detected because, in average,
the CPU utilization of the database node does not exceed 50% (cf. Fig-
ure 7.37) and database locking times do not grow considerably with the load
intensity. However, DynamicSpotter detected an OLB instance in Service 5.
Figure 7.37 shows that, with respect to CPU utilization, non of the servers
is utilized to capacity. Although, the utilizations ,as expected, grow with
the load intensity, under the maximum load of 500 concurrent users, the
application and database CPU utilizations are still below 20% and 50%,
respectively. The dashed line in Figure 7.38a, illustrates the response time
threshold that has been calculated by the OLB detection heuristic by means
of the described progression of the CPU utilizations using queueing theory
(cf. Section 6.3.6). The solid line representing the average response times
of Service 5 crosses the threshold curve at a load of 370 users. Hence, for
high load intensities the increase in response times cannot be explained by
queueing theory anymore. Therefore, DynamicSpotter detected an OLB
anti-pattern in Service 5.
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Figure 7.38.: OLB detection
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Diagnosing the root cause for the identified OLB instance, DynamicSpotter
could not locate any software bottlenecks in the application logic of the
ILS. However, applying the OLB heuristic on the database access scope,
DynamicSpotter uncovered a database query whose response time behaviour
is similar to the response times of Service 5. Figure 7.38b shows the OLB
detection results for the executeQuery operation executing a specific SQL
query. Again, the response times exceed the calculated threshold curve under
a high load intensity. Furthermore, the response time of this database query
dominates the response time of Service 5, proving that the identified database
query constitutes the root cause for the uncovered performance problem.

Iteration 3

In order to show that the OLB instance identified in the second iteration is a
true positive, in the third iteration, we tried to solve the problem. However,
due to missing expert knowledge in the complex internals of the ILS appli-
cation, we were not able to solve the problem ourselves without breaking
the functionality of the application. Alternatively, we replaced the identified
guilty service of ILS to show that the problem identified by DynamicSpotter
actually constitutes a performance problem. On the modified ILS, we again
applied DynamicSpotter. This time, DynamicSpotter did not report any
performance problems. All services met the specified performance require-
ments. In this way, we have shown that the performance problem observed
in Iteration 2 has been caused by the replaced service. This, in turn, shows
that the diagnostics result of DynamicSpotter has been correct.

7.4.3. Conclusions on Validation Questions

In this case study, we applied the APPD approach on a large-scale application.
On the one hand, the results of this study confirm the findings from the
previous case studies (TPC-W, Section 7.2 and nopCommerce, Section 7.3).
On the other hand, this case study provides new insights on limitations
and assumptions on the applicability of APPD. In this section, we draw
conclusions from the results of this case study to the validation questions
under investigation (cf. Section 7.1.1).
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With respect to validation question VQ 1.1, this case study once more showed
that the investigated SPAs are detectable by a measurement-based approach.
In particular, in this case study, an OLB manifestation as well as an Appli-
cation Hiccups anti-pattern (though caused by the load script) have been
detected. Compared to the previous case studies, in this study we evaluated
an additional dimension of generalisability (cf. VQ 1.2). The results of this
case study show that the APPD approach is able to handle different scales of
the target systems, including large, industrial applications. With respect to
the diagnostics accuracy of APPD (cf. VQ 1.3), this case study revealed an
interesting insight. On the one hand, in the second iteration of the ILS case
study we have shown that DynamicSpotter accurately detected a performance
problem and uncovered its root cause. However, the first iteration of the
case study shows that the diagnostics quality of the APPD approach highly
depends on the quality and appropriateness of the used load description and
configuration. Though according to queueing theory, closed workloads guar-
antee a stable state of the SUT (i.e. no infinite growth of queues), they can
lead to adverse effects that do not represent real situations. In this case study,
we have seen that a closed workload may induce an oscillating behaviour.
Such a behaviour may result in symptoms that, accordingly to the perfor-
mance problem taxonomy, do not reflect the actual root cause of the existing
performance problem in the SUT. Due to the assumption of APPD that
experiments are executed under a stable, non-oscillating load intensity (cf.
Section 3.3), in Iteration 1, DynamicSpotter wrongly identified an Applica-
tion Hiccups anti-pattern in the ILS application. Actually, ILS contained an
OLB anti-pattern that leads to continuously violated requirements. However,
the oscillating behaviour was induced by the feedback effect of the closed
workload. Hence, properly creating and configuring a representative load
description is a crucial factor for the accuracy of APPD.

Regarding validation question VQ 2.1, this case study allows for a conclusion
that is twofold. After having solved the problem with the load description
in Iteration 1, the performance problem taxonomy elaborated in this thesis
represented the cause-effect-chain (path from root cause to root node of the
taxonomy) of the uncovered OLB manifestation very well. However, in this
case study we also experienced that other external effects, such as the utilized
load script, can affect the actual cause-effect relationship. Hence, root causes
of certain performance problems may result in unexpected symptoms. In the
concrete example of Iteration 1, the OLB instance caused an Application
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Hiccups anti-pattern, which is not covered by the elaborated performance
problem taxonomy. Thus, such external effects should be avoided as much
as possible when applying APPD. In particular, the challenge of avoiding
external effects is an interesting topic for future work.

With respect to Validation Goals 3-6, this case study confirms the conclusions
from the previous two case studies. The expressiveness of the P2D2M
was sufficient to capture the context specific information of the industrial
scenario. Furthermore, the experimentation and instrumentation description
part of P2D2M provided an adequate generalization so that all heuristics were
applicable without the need for adaptation. Using AIM as instrumentation
framework, the SSE concept within DynamicSpotter was fully automated.
The manual efforts for preparing DynamicSpotter for the ILS application are
comparable with respect to amount and type of tasks to the the TPC-W case
study (cf. Section 7.2).

7.5. Controlled Experiment: Automatic
Resource Demand Estimation

The end-to-end case studies for the APPD approach (Sections 7.2-7.4) inher-
ently evaluate the feasibility of the SSE concept in the scope of performance
problem diagnostics. Conducting a controlled experiment, in this section,
we evaluate the SSE concept in a different experiment-based performance
analysis context. In this way, we investigate the benefits of SSE and its scope
of applicability.

We utilize the SSE concept to automate measurements for the derivation of
resource demands that are used to calibrate an architectural performance
model. Thereby, we use a Palladio Component Model (PCM) of TPC-W as
an architectural performance model to be calibrated (cf. Section 2.2.2). By
comparing different combinations of measurement tools and experimentation
concepts, we evaluate the accuracy of the resource demands derived with the
SSE concept against the alternatives.

In the following, we first introduce the Resource Demand Estimation (RDE)
approach applied in this experiment. Subsequently, we describe the exper-
iment design, discuss the results of the experiment and conclude with a
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discussion of the implications on the investigated Validation Goal 5. This
experiment has been conducted as part of the supervised Bachelor’s Thesis
by Schulz, 2014 and has been published in Wert et al., 2015a. The following
sections may contain fragments of this publication.

7.5.1. Resource Demand Estimation Approach

The Resource Demanding Service Effect Specification (RD-SEFF) of the
PCM (cf. Section 2.2.2) plays a central role in this experiment, as it captures
the performance-relevant behaviour of software components including ab-
stractions of computations that consume hardware resources like CPU, I/O,
etc. Hereby, the resource demands of individual computation blocks basically
determine the performance behaviour of the modelled system. Hence, the
quality of the resource demands that are used to calibrate a PCM model is an
essential factor that affects the overall quality of the performance predictions
resulting from a (simulative or analytical) solution of the PCM model. Thus,
properly conducting resource demand estimation is important to achieve
accurate performance prediction results.

In an evolutionary application scenario of PCM, measurement-based deriva-
tion of resource demands is a common approach under the assumption that
a runnable target system already exists. In a CPU-bound application, the
response times of individual methods under a single-user load intensity can
be used to calculate a good estimate for the actual CPU demand. Thus, given
a method m that calls the methods m′ ∈ MC as well as the corresponding
response times r (m) and r (m′), respectively, the exclusive CPU demand
d(m) of method m is:

d(m) = r (m) −
∑

m′∈MC

r (m′) (7.1)

Based on this consideration, in this experiment we use the following approach
to automatically derive resource demands by measurements. Let us assume
that we are interested in the detailed CPU demands along the call path of
a single service of the target application. Our resource demand estimation
approach comprises four sequential, conceptual steps:
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Figure 7.39.: Subtraction of distributions (Schulz, 2014)

system to capture all required information for reconstructing the call
tree. However, as we do not retrieve performance metrics in this step,
the overhead of the excessive instrumentation can be ignored.

2. Response time measurements: Based on the call tree derived in the
first step, we retrieve a sample of response times for each method
along the call tree.

3. Resource demand calculation: Finally, we derive the exclusive re-
source demands for each method in the call tree by using the call tree
structure and the measured response times to calculate the difference
shown in Equation 7.1.

As the second step provides a sample of response times for each method, in
the last step of the approach we need a way to subtract samples. A sample is
an empirical representation of a distribution. Hence, in order to enable the
subtraction in the third step, we define a subtraction operation 	 on samples
as follows: Let S1 and S2 be two samples from the distributions F1 and F2.
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The difference Fdi f f = F1 	 F2 is defined over the set of p-quantiles x̃p of
the distribution functions:

Fdi f f = F1 	 F2 : x̃p

(
Fdi f f

)
= x̃p (F1) − x̃p (F2) , p ∈ (0, 1) (7.2)

The difference function 	 is illustrated in Figure 7.39 by means of cumulative
distribution functions. Analogously, the sum function Fsum = F1 ⊕ F2 is
defined by the following equation:

Fsum = F1 ⊕ F2 : x̃p (Fsum) = x̃p (F1) + x̃p (F2) , p ∈ (0, 1) (7.3)

Practically, we calculate a difference sample Sdi f f = S1	S2 from the samples
S1 and S2 by taking a fix set of p-quantiles and applying Equation 7.2. For a
method m that calls the methods m′ ∈ MC , let Sm and Sm′ be the samples
of measured response times of m and m′ ∈ MC , respectively. The resource
demand distribution is then approximated by the sample Dm:

Dm = Sm 	
⊕

m′∈MC

Sm′ (7.4)

This RDE approach constitutes a proof of concept for automatic resource
demand estimation. In particular, this approach has some limitations that are
subject to future research. First, this approach assumes a deterministic call
tree, meaning that for the same input data the the same call tree is executed.
Second, because of the definition of the subtraction and addition functions
	 and ⊕, this approach assumes for all methods a unimodal distribution of
the response times. Relaxing these assumptions requires further research in
this area. However, as RDE is not the main focus of this thesis, we abstain
from further evolving the RDE approach. Furthermore, since TPC-W, as the
target application in this experiment, meets the mentioned assumptions, the
described RDE approach is sufficient to evaluate the scope of applicability
of the SSE concept.

7.5.2. Experiment Design

In this controlled experiment, we apply different approaches to derive the
resource demands for a PCM model of a target application. Thereby, we com-
pare the resource demand accuracy of the different approaches. Hence, the
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different approaches constitute the controlled variables of this experiments
whose influence on the accuracy is investigated. As target application we
use the TPC-W benchmark as already used in Section 7.2. As explained in
Section 7.2.1, TPC-W is web-commerce benchmark representing a 3-tier ap-
plication. As part of the EU funded CloudScale project (Brataas et al., 2013)
a PCM model of the TPC-W benchmark has been created. In this experiment,
we calibrate that model with resource demands derived from our TPC-W
setup using different approaches and compare the quality of the resulting
performance model. In the following, we introduce the different investigated
RDE scenarios and the execution procedure of the experiment.

7.5.2.1. Scenarios

While the RDE approach introduced in the previous section describes the
conceptual steps to be conducted for an automatic, measurement-based RDE,
it does not prescribe how to conduct the corresponding measurements. In this
experiment, we analyze different experimentation and instrumentation ap-
proaches that are applied to realize the described RDE approach. Depending
on the instrumentation approach, the monitoring overhead of measurement
probes may significantly affect the accuracy of the derived resource demand.
There are two different experimentation approaches that can be applied to
realize the described RDE approach:

1. We conduct a full instrumentation of the target application while
executing one single-user test that covers the first and second step of
the RDE approach. This is the standard experimentation approach that
does not follow the SSE concept. In particular, this experimentation
approach can be conducted with any instrumentation and monitoring
tool that allows a full instrumentation of the target application.

2. According to the SSE concept, we automatically execute several ex-
periments using adaptable instrumentation to instrument each method
individually in each single experiment. Consequently, this exper-
imentation approach assumes the ability to dynamically adapt the
instrumentation state of the target application.

We conduct both experimentation approaches with two different instrumen-
tation and monitoring tools: our AIM framework (Wert et al., 2015a) and
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the Kieker framework (van Hoorn et al., 2012). Both approaches allow to
conduct a full instrumentation of the target application at start-up of the appli-
cation. Furthermore, AIM allows to dynamically adapt the instrumentation
of the target application by dynamic bytecode manipulation and Java class
swapping (Dmitriev, 2001). Ehlers et al. (Ehlers et al., 2011) introduce a
semi-adaptive instrumentation and monitoring approach for Kieker. Hereby,
semi-adaptive means that, initially, the target system is fully instrumented,
but, measurement probes can be disabled if not needed. However, for each
disabled probe still a minimal overhead remains for checking the state of the
measurement probe. The combination of experimentation approaches and
measurement tools results in four different RDE scenarios that realize the
RDE approach described in the previous section:

Kieker-full: In this scenario, we use Kieker to fully instrument the
target application to measure the response times of all call tree methods
in one single experiment. Hence, regarding the RDE approach the first
two steps are conducted as one experiment.

AIM-full: Analogously to the Kieker-full scenario, in this scenario
we use AIM to fully instrument the target application. Again, only one
experiment is executed to derive the resource demands.

Kieker-adaptive: In this scenario, we use the adaptive Kieker ap-
proach (Ehlers et al., 2011) with switchable measurement probes.
Thus, the target application is fully instrumented with probes which
can be individually disabled if not required. Utilizing the switchable
probes we realize the RDE approach by automatically executing a set
of experiments (one for each method of the call tree) while activating
during each experiment only the probe for the corresponding method.

AIM-adaptive: In this scenario, we apply the same process as in the
Kieker-adaptive scenario, however instead of activating and deactivat-
ing probes, we utilize AIM’s capability of re-instrumenting the target
application.

While the first two scenarios constitute the baselines for this experiment, the
latter two scenarios follow the SSE concept by applying selective instrumen-
tation combined with systematic experimentation.
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7.5.2.2. Study Procedure

For each RDE scenario, we apply the study procedure as shown in Fig-
ure 7.40. First, resource demands are automatically derived conducting the
RDE approach described in Section 7.5.1 within the corresponding RDE
scenarios. In this experiment, the service of interest is the home interaction
of the TPC-W application. The result is a set of resource demands for the
individual methods of the corresponding call tree. These resource demands
are used to calibrate the TPC-W model yielding a calibrated PCM model.
Subsequently, the model is simulated with an extrapolated number of user
(here: 30 users) to obtain prediction results for the end-to-end response times
of the home interaction. Independently from model simulation, we conduct
a reference measurement with 30 concurrent users on the corresponding
TPC-W setup. Thereby, we measure the end-to-end response times of the
investigated TPC-W service. All experiments (RDE derivation and reference
measurement) are executed for 10 minutes with an equally distributed think
time in the range of 1 to 2 seconds for each user interaction. For the PCM
simulation run the PCM usage scenario is configured analogously. Finally,
the prediction results are compared to the measurement data of the reference
measurement in order to calculate a relative prediction error as a measure
of accuracy for the different RDE scenarios. Let P be a set of predicted
end-to-end response times with mean µP and median x̃0.5(P). Furthermore,
let M be a set with mean µM and median x̃0.5(M) containing the end-to-end
response times from the reference measurement. We define two measures for
the relative prediction error, the relative mean error emean and the relative
median error emed:

emean =
�����
µP − µM
µM

�����
(7.5)

emed =
�����
x̃0.5(P) − x̃0.5(M)

x̃0.5(M)

�����
(7.6)

We use both measures to compare the accuracy of different RDE scenarios.
The more accurate an RDE scenario predicts the measured response times,
the more eligible is the underlying experimentation approach.
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Figure 7.40.: SSE-4-RDE study procedure

7.5.3. Discussion of Results

Simulating four different PCM models that are calibrated with the resource
demands from the different RDE scenarios, we obtained diverse results.
Figure 7.41 shows the statistics (by means of box-plots) of the predicted
response times for the four scenarios (Kf,Ka,Af,Aa) compared to the response
times from the reference measurement (R). The resource demands derived
in the Kieker-full scenario yield highly dispersed, simulated response times
compared to the remaining scenarios. As the OperationExecutionProbe
of Kieker is relatively complex, it introduces a high monitoring overhead
when conducting full instrumentation. Consequently, the derived resource de-
mands exhibit a corresponding, wide-spread distribution that becomes visible
through the PCM simulation results in Figure 7.41. Especially conspicuous
is the long tail in the Kieker-full predictions that causes an asymmetry in
the corresponding distribution. With respect to the prediction accuracy the
Kieker-full scenario provides the most inaccurate resource demands. As
shown in Table 7.3, the relative mean error of the predictions in the Kieker-
full scenario has a value of 51.2%, and the relative median error of 42.4%,
respectively. With a relative mean error of 22.2% and a median error of 25%,
the resource demands in the AIM-full scenario lead to more accurate predic-
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R: reference measurement
Kf: Kieker-full Ka: Kieker-adaptive Af: AIM-full Aa: AIM-adaptive

Figure 7.41.: Comparing predictions with measurements (Schulz, 2014)

tion results than with the Kieker-full scenario. This is due to the light-weight
implementations of the measurement probes in AIM. In particular, as AIM
allows for dynamic adaptation of instrumentation and arbitrary compositions
of instrumentation instructions, the probes are kept minimalistic in AIM in
order to reduce the monitoring overhead. By contrast, as Kieker’s focus is
not on dynamically adaptable instrumentation, its probes are packed with
multiple aspects to be measured at once which results in a higher monitoring
overhead as can be seen in Figure 7.41. The light-weight probes of AIM
have also a positive effect on the variance of the derived resource demands,
as the corresponding prediction results have a less dispersed distribution.

Following the SSE concept, both adaptive approaches (Kieker-adaptive and
AIM-adaptive) perform better than the full instrumentation approaches with
one single experiment. With a relative mean error of 13.9% and median
error of 16.9% the Kieker-adaptive scenario provides resource demands
that lead to an accurate prediction result (error significantly less than 30%,
H. Koziolek, 2008). With relative errors less than 4% the AIM-adaptive
scenario provides even more accurate results. Thus, we may conclude
that the deactivated probes in the Kieker-adaptive scenario still introduce
a small monitoring overhead which impairs the accuracy of the derived
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mean
value
[ms]

mean
error
[%]

median
value
[ms]

median
error
[%]

Reference
Measurement R 1.80 — 1.75 —

K
ie

ke
r

full Kf 2.72 51.2 2.49 42.4

adaptive Ka 2.05 13.9 2.04 16.9

A
IM

full Af 2.20 22.2 2.19 25.0

adaptive Aa 1.74 3.1 1.74 0.3

Table 7.3.: Prediction errors (Schulz, 2014)

resource demands. As we can see in Figure 7.41, the distribution of the
predicted response times for the AIM-adaptive scenario has a very small
variance. In particular, the variance is significantly smaller than in the
reference measurement. The narrow distribution is a result of the applied
subtraction function 	 (cf. Section 7.5.1). For instance, in the extreme case
that we subtract a distribution F2 from F1, whereby F2 is a translation of F1,
all differences of the p-quantiles have the same value d:

x̃p (F1) − x̃p (F2) = d, p ∈ (0, 1) (7.7)

Consequently, the resulting distribution Fdi f f = F2 	 F1 contains only one
single value d and has a variance of zero. Hence, though the AIM-adaptive
scenario provides most accurate prediction results with respect to mean and
median values, because of the underlying RDE approach, the distribution
has a significantly smaller variance than the reference measurements. This
effect applies also to the remaining scenarios, however there, the variances
caused by the higher monitoring overhead compensate this effect.

7.5.4. Conclusions on Validation Questions

Summarizing the insights gained from the results of this controlled experi-
ment (cf. Section 7.5.3), according to Table 7.1, we draw some conclusions
on validation Goal 5 (cf. Section 7.1.1). First of all, with respect to validation
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based performance analysis tasks which are sensitive to monitoring overhead
(such as RDE or performance problem diagnostics), an SSE-based approach
is considerably advantageous compared to an approach with a single, full-
instrumented experiment. Furthermore, a semi-adaptable instrumentation
like the adaptive version of Kieker Ehlers et al., 2011 leads to a significantly
smaller monitoring overhead than a full instrumentation approach. How-
ever, compared to a fully adaptable instrumentation approach as realized
by AIM, the disabled probes of a semi-adaptable instrumentation approach
still introduce a noticeably high monitoring overhead which may impair
the measurement accuracy. Hence, the SSE concept is more effective with
fully adaptable than with semi-adaptable instrumentation approaches. Conse-
quently, for the automation of performance analysis tasks, the SSE concept
is only applicable with measurement tools that allow to dynamically adapt
the instrumentation of the target application. Alternatively, the SSE concept
can be applied in performance analysis scenarios where the target application
can be automatically restarted to change the instrumentation. Because of
the intention of SSE to adapt the instrumentation to the current, focused
goal of an experiment, SSE fosters the creation of light-weight measurement
probes that reduce the monitoring overhead. An inherent drawback of the
SSE concept is the missing dependency on instance level between measure-
ment points from different experiments. By contrast, full instrumentation
with a single experiment allows for correlation of measurement values on
instance level. For instance, the response time of a called method can be
directly subtracted from the measured response time of the parent method.
As explained in Section 3.2.1, with the SSE concept correlation of metrics, in
most cases, can only be conducted statistically. As shown in this experiment,
in some cases, this assumption may lead to some additional challenges (e.g.
finding a way to properly subtract distributions) and limitations. Depending
on the needs these limitations may be more or less critical. Let us illustrate
this on the example of this experiment. On the one hand, if we are interested
in the mean and median of the predicted response times, the contraction of
the resulting distribution through the subtraction function is less critical as
the relative errors are very low. On the other hand, if there is a requirement
that simulation results should represent the entire response times distribution,
then the advantage of the SSE approach may turn into a drawback as the
resulting distribution exhibits a considerably smaller variance. Hence, the
application of the SSE concept should always be aligned with the goals
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the APPD approach mainly utilize statistical values (e.g. means, quantiles,
etc.) of measurement data, the limitations of SSE are less relevant for our
diagnostics approach.

With respect to validation question VQ 5.2, we have shown that, in general,
the SSE concept can be applied beyond the context of performance problem
diagnostics. The SSE concept is particularly suitable in performance analysis
scenarios where detailed monitoring is required and at the same time reducing
the overhead of measurement probes plays a crucial role. As mentioned
before, prior to applying SSE, the limitations of SSE should be aligned with
the goals of the performance analysis activity.

7.6. Empirical Study

While the case studies described so far evaluate the technical applicability,
strengths and limitations of APPD (Section 7.2-Section 7.4), they do not
capture the perception of external users. In this empirical study, we let
users apply parts of the APPD approach on a mid-size target application and
gathered their opinion on the APPD approach by means of a questionnaire.
The study described in this section has been conducted as part of a supervised
Bachelor’s Thesis (Merkert, 2014). The content of this section is based on
the detailed description in Merkert, 2014. Due to the large extent of the
empirical study, in this section, we give only a rough insight into the design
and execution of the study and summarize major results and findings. For
further details on the conducted empirical study we refer to the Bachelor’s
Thesis of Merkert, 2014.

7.6.1. Experiment Design

In this section, we describe the main aspects of the design of this study.
In particular, we discuss the decision on the type of study, introduce the
Goal Question Metric (GQM) plan that were used to structure the study, and
describe our design of the execution plan of the study.
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7.6.1.1. Type of Empirical Study

Runeson et al. (Runeson et al., 2009) distinguish three major types of studies.
(i) A survey serves for the “collection of standardized information from a
specific population, or some sample from one, usually, but not necessarily
by means of a questionnaire or interview” (Robson, 2002). (ii) With a
controlled experiment the dependencies between controlled and observed
variables are analyzed (Robson, 2002; Wohlin et al., 2001). (iii) Finally,
action research (close to case studies) aims at conducting a change in the
topic of research, while the purpose of a case study is pure observation
(Robson, 2002; Runeson et al., 2009).

The primary goal of our empirical study is to grasp the user perception
of the APPD approach. In order to capture that perception, the subjects
(i.e. the participants) of the empirical study first have to form an own
opinion about APPD. To this end, they have to apply the implementation of
APPD (i.e. DynamicSpotter) for the diagnostics of performance problems
on a representative scenario. Due to this requirement, a pure survey is not
applicable for our validation goal, as a survey would only capture the existing
opinion of the subjects (Robson, 2002) who, potentially, have never heard
of the APPD approach before. For a controlled experiment (Runeson et al.,
2009) we would have to divide our set of subjects into a treatment group
using DynamicSpotter and a control group that do not use DynamicSpotter.
Due to the expectation during the design of the study that our set of subjects
will be relatively small, we discarded the option of conducting a controlled
experiment. Finally, a pure case study (as described in Sections 7.2 – 7.4)
does not capture the perception of users. Based on these considerations, we
decided to conduct a study of a mixed type, which is an established approach
in empirical software engineering (Runeson et al., 2009). We combine a
case study, in which the subjects apply DynamicSpotter, with a survey to
capture their formed opinion. Due to the extent of information that the
subjects require to fully understand the context in our study, we conduct
the study as a face-to-face experiment (Seale, 2011, pp. 181), meaning that
subjects are treated individually. In this way, subjects can clarify facts that
are unclear through interaction with the experimenter during the execution
of the experiment without affecting other subjects. For the survey part, we
conduct an interview that is guided by a questionnaire. A questionnaire
allows for a standardized conduction (e.g. same wording, same process, etc.)
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Goal 1 Goal 2 Goal 3

Analyze DynamicSpotter

for the
purpose of

grasping the
complexity

grasping the
understandability

outlining the
general applicability

with
respect to the setup effort the results the user’s opinion

from the
viewpoint

of a potential user of DynamicSpotter
(e.g. developer, performance engineer, . . . )

with
respect to DynamicSpotter’s usage cycle

Table 7.4.: GQM goals (Merkert, 2014)

of the experiment iterations for the individual treatments of the subjects. For
the case study part, we prepare the open-source, Java-based e-commerce
system broadleaf (Broadleaf 2015) as the system under test. Using the fault
injection technique (Hsueh et al., 1997), we insert performance problems into
broadleaf that shell be analyzed by the subjects using DynamicSpotter.

7.6.1.2. Goal-Question-Metric Plan

In order to systematically answer the validation questions associated with the
empirical study (cf. Section 7.1.3), we use the GQM approach (Basili, 1992).
With the GQM approach, Basili et al. (Basili, 1992) propose to structure
the measurement plan for answering certain research questions along three
levels: Goals, Questions and Metrics. Goals describe the purpose of the
investigation while capturing the context, issue, object and viewpoint of the
investigation. A question is a means to achieve the goal by measurement.
Finally, a metric allows to quantitatively answer a question.

Based on the validation questions VQ 7.1 and VQ 7.2 (cf. Section 7.1.3), we
defined three GQM goals that are depicted in Table 7.4 (Merkert, 2014). In
all three goals, the object of investigation is DynamicSpotter representing
the APPD approach. Furthermore, the viewpoints of and the contexts in
the goals are the same. In particular, the goals are investigated from the
viewpoint of potential users of DynamicSpotter in the context of its usage
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cycle. According to validation question VQ 7.1, Goal 1 aims at grasping the
complexity of setting up DynamicSpotter for a specific context. Goal 2 aims
at grasping the understandability of the results provided by DynamicSpotter.
Finally, Goal 3 captures the general opinion of the subjects with respect to
DynamicSpotter.

The GQM goals are broken down into 14 questions that are investigated in
the empirical study. Adopted from Merkert, 2014, the questions are shown
in Table 7.5. Questions Q1-Q6 evaluate on different levels of complexity the
ability of the subjects to correctly configure DynamicSpotter for a successful,
automatic execution. As Goal 2 aims at grasping how good the subjects
understand the results of DynamicSpotter, we divided corresponding GQM
questions into four cognitive levels. Bloom et al. (Bloom et al., 1984) in-
troduce a taxonomy for distinguishing different levels of knowledge. Using
four of the six cognitive levels, we are able to distinguish at which level
the subjects understand the results provided by DynamicSpotter. In partic-
ular, we distinguish between Comprehension, Interpretation, Application
and Evaluation. Comprehension means that subjects are able to correctly
reproduce the obtained knowledge. While the Interpretation level covers the
ability to transfer the obtained knowledge to a modified context, the Applica-
tion level requires a successful application of that knowledge. Finally, the
Evaluation level aims at the ability to reason beyond the obtained knowledge.
Question Q7 evaluates whether the subjects understand the concepts behind
the anti-patterns detected by DynamicSpotter (Comprehension). Question
Q9 investigates whether subjects are able to interpret the results (e.g. charts)
provided by DynamicSpotter. Questions Q10 and Q11 aim at evaluating the
ability of subjects to pinpoint the root cause of performance problems by
means of the results provided by DynamicSpotter. And finally, Q8 and Q12
investigate whether subject are able to propose solutions for the detected
performance problems. The questions for Goal 3 directly capture the opin-
ion of the subjects about DynamicSpotter and the APPD approach. The
GQM questions constitute the basis for deriving corresponding questions for
the questionnaire. In this thesis, we abstain from describing corresponding
metrics and the questionnaire design and refer to Merkert, 2014 for further
details.
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No Question

Goal 1

Q1 Did probands understand the configuration requirements of DynamicSpotter?

Q2
Are probands able to configure a complete DynamicSpotter project with
every aspect of an analysis?

Q3 How long does the configuration task take?

Q4 How complex is DynamicSpotter regarding the analysis of the SUT?

Q5
Are study participants able to correctly configure measurement adapters
in an existing DynamicSpotter project?

Q6 How difficult is the selection of a specific measurement adapter type?

Goal 2

Comprehension

Q7 Did the probands understand the presented performance problems?

Interpretation

Q9 Did the probands understand the charts of a specific performance problem?

Application

Q10
Were probands able to detect the source code responsible
for the performance problem?

Q11 Are the results adequate to located the root causes of the performance problems?

Evaluation

Q8 Is the output of DynamicSpotter results exhaustive?

Q12
Were the probands able to determine correct solutions
for a Stifle anti-pattern with a pre-defined set of possible adjustments?

Goal 3

Q11 Are the results adequate to located the root causes of the performance problems?

Q13 Would the probands reuse DynamicSpotter for their projects?

Q14 Does DynamicSpotter hide the complexity of the SUT?

Table 7.5.: GQM questions (Merkert, 2014)
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7.6.1.3. Execution Design

The design of the study execution highly depends on some boundary con-
ditions coming from the limits of feasibility of the empirical experiment
as well as the inherent characteristics of the APPD approach. As already
discussed in the case studies (Section 7.2-Section 7.4), an automatic run
of DynamicSpotter is not a matter of minutes, but rather a matter of hours.
Hence, a live execution of DynamicSpotter within the empirical experiment
would mean that subjects have to wait several hours for the termination of
DynamicSpotter. However, the willingness of potential subjects to attend an
empirical experiment decreases if the experiment takes too long. According
to Sjoberg et al. (Sjoberg et al., 2007), one hour is a good orientation for
the duration of an empirical experiment. Hence, we need to find a way to
evaluate DynamicSpotter by the subjects without significantly exceeding the
proposed experiment duration of one hour. To this end, we split the empirical
experiment into two parts while extracting the execution of DynamicSpotter
from the execution of the empirical experiment. The process in Figure 7.42
shows the main steps of each iteration of the empirical experiment.

At the beginning of each individual treatment of a subject, the experimenter
gives an introduction into the context, the APPD approach, as well as a short
tutorial on the usage of DynamicSpotter. Subsequently, the experimenter
guides the subject through the first part of the experiment by reading out
the task descriptions as well as corresponding questions from the question-
naire. Thereby the subject is asked to fully configure DynamicSpotter for
an automatic execution. However, this includes only those tasks that are
specific to the APPD approach. In particular, all tasks that are common in all
measurement-based performance analysis approaches are conducted by the
experimenter in advance to the empirical experiment. For instance, setting
up the measurement environment (including the SUT, load generator and
measurement tools) as well as creating load scripts, are tasks that need to
be conducted for any measurement-based performance analysis approach.
Including these tasks into the empirical experiment would bias the subject’s
perception of the complexity of applying the APPD approach. In the first
part of the experiment, we cover the first goal of the GQM plan, evaluating
the subject’s perception of the configuration part of DynamicSpotter. In this
part of the experiment, the subjects use the Eclipse-based (Eclipse 2015) user
interface of DynamicSpotter to create the corresponding configuration.
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introduction

Dynamic

Spotter

configuration

Dynamic

Spotter

execution

interpretation

 of results

duration: 20 min

duration: multiple hours

 offline execution in advance
duration: 30 min

duration: 30 min

Part I Part II

Figure 7.42.: Experiment execution plan

After the subject has created a complete configuration, ideally, DynamicSpot-
ter would be executed to diagnose performance problems. However, due to
the reasons discussed before, we skip that step in the empirical experiment.
Instead, we execute DynamicSpotter with a correct configuration offline, in
advance to conducting the empirical experiment. In that offline execution,
DynamicSpotter has been applied to the same experiment setup of the tar-
get application (broadleaf ) as the subjects are confronted with in Part I of
the empirical experiment. DynamicSpotter detects all previously injected
performance problems including three instances of the OLB anti-pattern (cf.
Table 2.1(e), Chapter 2.4) and two instances of the Stifle (cf. Table 2.1(k),
Chapter 2.4). The injected performance problems exhibit differently high
complexity in their root causes in order to evaluate the interpretability of
DynamicSpotter results on different levels.

Directly after the DynamicSpotter configuration part, the empirical experi-
ment is continued with Part II. Thereby, the subjects are asked to interpret
the results provided by DynamicSpotter from the offline execution. Part II of
the experiment aims at investigating Goal 2 of the GQM plan. Hereby, we
evaluate the ability of the subject to interpret the results of DynamicSpotter
on different levels of complexity regarding the diagnosed performance prob-
lems. The empirical experiment is finalized with the part of the questionnaire
that covers the evaluation of GQM Goal 3.
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7.6.2. Discussion of Results

From the invited potential test persons, 24 persons agreed to participate in
the empirical experiment. Due to a mortality number of 2 (Carver et al.,
2003), 22 persons remained as subjects for our experiment. In this section,
we present the result of the empirical study with respect to the three GQM
goals that have been introduced above.

The results presented in the following are a summary of the detailed discus-
sion of results by Merkert, 2014. For details beyond the presented summary
we refer to the corresponding Bachelor’s Thesis (Merkert, 2014).

Goal 1 – Configuration Complexity

The fact that the subjects correctly understand the requirements for applying
DynamicSpotter is a precondition for evaluating the actual intention of GQM
Goal 1. Thereto, question Q1 tests the level of comprehension of the subjects.
The study results significantly show a positive answer to question Q1. Hence,
as the subjects entirely understood the requirements for DynamicSpotter, we
can exclude distortion of further results due to lack of understanding. For the
evaluation of GQM question Q3, we took the time for subjects configuring
a DynamicSpotter project. We terminated the configuration task after 15
minutes, if the subjects have not finished the configuration, yet. With Q3 we
investigate whether pressure of time is a possible root cause for potentially
biased results of the remaining questions. With an average duration of 11
minutes and only some few outliers (4 of 22) who did not finish within 15
minutes, we evaluate the available time as adequate. Hence in the following,
we can exclude pressure of time as potential cause for biased results.

Question Q4 directly captures the subjects’ perception of the complexity of
configuring DynamicSpotter for the analysis of a SUT. The collected answers
to corresponding questions from the questionnaire show a significant result:
81% of the subjects perceive the difficulty of setting up DynamicSpotter
as low. However, though most subjects rated the difficulty of configuring
DynamicSpotter as low, the results for question Q2 show that most subjects
did some mistakes in the configuration of DynamicSpotter. Hereby, the
most frequent source of failure was an incorrect selection of measurement
adapters in the DynamicSpotter configuration for the measurement tools that
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were deployed with the measurement environment of the SUT. Question
Q6 confirms that observation, as subjects significantly rate the selection of
measurement adapters as the most difficult part of the configuration task.
Nevertheless, according to Q4, the subjects rated the overall complexity of
setting up DynamicSpotter as low. A possible explanation for the discrepant
results of the questions Q2, Q4, and Q6 is the following. The mistakes
that have been made by the subjects during the configuration are perceived
as minor mistakes that could have been avoided by better documentation
of the measurement adapters. Therefore, the mistakes and the perception
regarding question Q6 (difficulty of selecting measurement adapter) did not
significantly influence the subjects’ overall perception of the complexity of
configuring DynamicSpotter. Evaluating whether subjects are able to extend
an existing DynamicSpotter configuration project (Q5), from the results for
question Q5, we conclude that subjects who, in the first place, managed
to successfully configure a DynamicSpotter project are also able to extend
those projects.

Summing up the results for GQM Goal 1, we can conclude that, in gen-
eral, the subjects of the experiment perceived the complexity of setting up
DynamicSpotter for the analysis of a SUT as low. Because of insufficient
documentation of measurement adapters and (at this point in time) prelimi-
nary user interface, many subjects provided an erroneous configuration for
DynamicSpotter. All in all, the subjects correctly understood the main con-
cepts behind APPD and, based on that understanding, rated the complexity
of configuring DynamicSpotter as low.

Goal 2 – Result Interpretability

The second goal of the GQM plan is evaluated along the taxonomy on
cognitive levels adopted from Bloom’s Taxonomy (Bloom et al., 1984). In
this way we can more precisely evaluate the interpretability of the results
provided by DynamicSpotter. As explained above, we distinguish four
cognitive levels. Furthermore, we injected two Stifle instances and three
OLB instances into the investigated broadleaf application. In this part of the
experiment, DynamicSpotter presents the diagnostics results to the subjects
for the injected problems. An important fact is that the injected problems
are on a different level of complexity with respect to their root cause. For
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instance, an obvious OLB instance is a synchronized method that contains
a sleep for a delay of the corresponding execution thread. By contrast, in a
more complex OLB instance the root cause for the delay is hidden in the call
hierarchy within a synchronized block.

Question Q7 evaluates the ability of the subjects to understand the concepts
behind the considered SPAs. According to the experiment results for question
Q7, the subjects understood the concepts behind the OLB and Stifle anti-
patterns. Hence, the subjects positively achieved the first cognitive level with
respect to the interpretability of the DynamicSpotter results.

With respect to the Interpretation level, question Q9 investigates the ability of
the subjects to transfer their knowledge on the anti-pattern concepts (for OLB
and Stifle) to the concrete occurrences of these anti-patterns as reported by
DynamicSpotter. Thereby, the participants are asked to interpret the charts
provided by DynamicSpotter for the individual occurrences of anti-pattern
instances. Though most subjects correctly understood the graphs for the
OLB instances, only a slight majority of the subjects was able to correctly
transfer their knowledge about the Stifle anti-pattern to the Stifle graphs.
From that result, we conclude that the representation of diagnostics results
by DynamicSpotter for the Stifle anti-pattern may be misleading. Hence,
with respect to the user interface, the representation of the Stifle anti-pattern
exhibits potential for improvement.

For the third cognitive level (Application) the levels of complexity of the
injected performance problems plays a crucial role. GQM question Q10 aims
at evaluating the ability of the subjects to pinpoint the root causes of the
performance problems in the source code of broadleaf, based on the results
provided by DynamicSpotter. For the Stifle anti-pattern, a clear majority
(64%) of the subjects pinpointed to the correct location in the source code.
The remaining subjects, also selected that location, however, they identified
other, wrong locations as the root cause for the Stifle anti-pattern, as well.
Hence, we can conclude that, regarding the Stifle anti-pattern, a majority
of the subjects reached the Application cognitive level with the help of the
diagnostics results from DynamicSpotter. The fact that, with respect to
the Stifle anti-pattern, more subjects reached the Application level than the
Interpretation level confirms our presumption that the Stifle charts provided
by DynamicSpotter have potential for improvement. Regarding the OLB
anti-pattern, the subjects were only able to pinpoint the root cause up to the
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medium complexity of the injected OLB instances. The lack of knowledge
about the details of broadleaf is an explanation for the inability to pinpoint
the root cause for the complex OLB instance. Nevertheless, asking the
subjects for their opinion about the usefulness of the DynamicSpotter results
for locating root causes of performance problems, we obtained positive
results. Question Q11 shows that a clear majority of subjects agree that the
diagnostics results provided by DynamicSpotter are useful to identify the
root cause of a performance problem.

Going a step beyond the scope of APPD, with question Q12 we investigated
whether the subjects are able to select correct solutions to the identified
performance problems from a predefined set of options. The results for Q12
show that most subjects were not able to select correct solutions.

Overall, with respect to GQM Goal 2, we can conclude that subjects of the
experiment perceive the results provided by DynamicSpotter as useful for
locating root causes of performance problems. However, due to the lack
of knowledge about the internals of the SUT, in some cases the subjects
were not able to correctly describe the root cause of diagnosed performance
problems based on the available diagnostics results.

Goal 3 – Opinion on Applicability

Goal 3 solely aims at capturing the opinion of the subjects about the applica-
bility of the APPD approach. As already discussed before, the results of Q11
show that subjects perceive the results provided by DynamicSpotter as useful
and adequate to locate root causes of performance problems. Considering
the results of question Q11 for GQM Goal 3 is essential, as the main focus
of the APPD approach lies on supporting the localization of root causes (i.e.
diagnostics) of performance problems. Furthermore, evaluating the results of
question Q14 we come to the conclusion that the APPD approach hides the
complexity of the SUT. In particular, it is remarkable that subjects who did
not knew the target application at all were able to partly pinpoint root causes
of performance problems by means of the diagnostics results provided by
DynamicSpotter. This means, that subjects did not need to understand the
internals of broadleaf to be able to analyze the performance problems. As
part of GQM question Q13, we asked the subjects whether they would use
DynamicSpotter for diagnosing performance problems in their own software
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projects. A clear majority (87%) of the subjects agreed with the statement
that they would reuse DynamicSpotter. Hence, we can conclude that, all
in all, the subjects perceived the APPD approach as a useful support in
diagnosing performance problems.

7.6.3. Conclusions on Validation Questions

The main goal of the empirical study was the evaluation of the validation
questions VQ 6.2, VQ 7.1 and VQ 7.2. Summarizing the results for the
thee GQM goals, we draw the following conclusions on the validation ques-
tions.

The answer to validation questions VQ 6.2 and VQ 7.1 is twofold. Apart
from the tasks that need to be done for any measurement-based performance
analysis approach, the evaluation of GQM Goal 1 shows that external users
of the APPD approach perceive the up-front complexity and the associated
effort as low. However, the empirical study also shows that the complexity
and effort highly depends on the documentation of the tooling for APPD
(i.e. DynamicSpotter) and the functional scope of the corresponding user
interface. This is especially important because APPD constitutes an approach
that automates a complex task. Hence, the remaining manual effort highly
depends on the usability of the tool that realizes APPD.

The second GQM goal only partly shows that external users are able to
fully interpret the results provided by the APPD approach. However, due to
the circumstances in the empirical study, the results of Goal 2 and Goal 3
constitute a positive answer to validation question VQ 7.2. First, according to
the opinion of the experiment subjects, the diagnostics results of the APPD
approach are adequate to locate the root cause of a performance problem.
Second, more than 90% of the subjects didn’t knew the target application
before. This is very likely the reason why subjects partly failed to pinpoint
the root cause of some performance problems in the experiment. However,
this circumstances are not representative for real application scenarios of the
APPD approach. In real application scenarios, the users of APPD are usually
developers of the target application. Hence, the results provided by APPD
may be of greater help for them than for users that are not familiar with the
SUT. Though, subjects are partly able to pinpoint the root causes by means
of the APPD results, they are not able to select proper solutions to those
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problems. Hence, according to its main focus, the APPD approach is useful
to diagnose performance problems, but does not provide sufficient support in
finding adequate solutions. In particular, resolution of performance problems
is a topic on its own that is addressed by Heger, 2015.

7.7. Discussion

In this chapter, we conducted a validation of the APPD approach with
regards to different aspects. Therefore, we conducted five studies that pro-
vide interesting insights on the investigated validation goals. This includes
confirmation of hypotheses as well as unexpected aspects that affect the
applicability of the APPD approach. In this section, we summarize the con-
clusions from the individual studies. Furthermore, we discuss the threats to
validity of our validation.

7.7.1. Conclusion

Summarizing and aggregating the insights from the conducted studies, we
discuss the conclusions for the seven validation goals outlined in the begin-
ning of this chapter.

Validation Goal 1 – Functionality of APPD

In the three case studies with TPC-W, nopCommerce and the ILS, different
types of SPAs have been investigated. In particular, each SPA from the
investigated performance problem taxonomy has been correctly diagnosed
in at least one of the case studies (except for the Ramp anti-pattern). Hence,
with respect to validation question VQ 1.1 we can conclude that the set of
considered SPAs is detectable by systematic experimentation.

Furthermore, the case studies covered technical variability with respect to
different dimensions which shows the generalisability of the APPD approach.
The following dimensions of variability have been investigated:
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• programming languages: While the TPC-W benchmark and the ILS
are Java-based applications, with the nopCommerce case study we
investigated the applicability of APPD in the area of .NET. The case
studies have shown that the generic concepts of APPD, in particular
the instrumentation description part of P2D2M are not restricted to a
particular programming language or run-time environment. Though,
in the nopCommerce case study, we were restricted with respect to the
instrumentation capabilities due to license issues, in general, there are
no major restrictions that would limit the applicability of the APPD
approach to target applications that are not Java-based.

• server technologies: Within the case studies different products have
been used as application server (Apache Tomcat

TM
for TPC-W, JBoss

TM

for ILS, IIS
TM

for nopCommerce) and database server (MySQL
TM

for TPC-W, MS SQL Server Express
TM

for nopCommerce, high-
performance database for ILS). In this way, we have shown that
instrumentation and collection of measurement data can be applied on
different underlying technologies, while the resulting measurement
data have a common representation for APPD. Hence, we can con-
clude that APPD is independent of the underlying server technology.

• load generators: In the case studies we used three different load
generators (Apache JMeter

TM
, HP LoadRUnner

TM
, and TPC-W RBE)

demonstrating that APPD and ,especially, the ME Description lan-
guage of P2D2M reasonably abstract from concrete measurement and
load generation tools.

• system characteristics: Finally, the case studies cover applications and
experiments setups with different characteristics. This includes differ-
ent experiment setups (3 versus 7 system nodes in the TPC-W case
study), different business domains of the applications (e-commerce
versus enterprise resource management), and different scales and com-
plexity of the applications (middle-size versus large-scale systems).
The studies confirm that the applicability and functionality of APPD
are independent of all these characteristics.

Hence, with respect to validation question VQ 1.2 we can conclude that
APPD is generically applicable on systems with different characteristics,
environment setups and technologies. Regarding validation question VQ 1.3,
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all three case studies show that, in general, APPD provides accurate and
precise diagnostics results if all assumptions for APPD are met. Besides
these confirming results, the case studies revealed two unexpected insights
on the accuracy of APPD under specific conditions. First, both parts of
the TPC-W case study have shown that multiple instances of performance
problems can hide each other. In such cases, APPD is only able to detect
the most critical problem. From that observation, we have to conclude that
the application process of APPD must be iterative. Hence, if the APPD
approach detects a performance problem, the problem needs to be resolved
before APPD can be applied again to uncover the next performance problem
instance. The second unexpected insight emphasizes the importance of the
workload configuration and description for a successful diagnostics by APPD.
In the industrial case study we experienced that an improperly configured
load generation can induce symptoms that indicate wrong occurrences of
performance problems. Therefore, it is important that workload descriptions
used for APPD are representative for real usage scenarios and are configured
properly for the underlying setup of the measurement environment. Thereto,
approaches for deriving effective load models can be applied (Barber, 2004;
Krishnamurthy et al., 2006; van Hoorn et al., 2014).

Validation Goal 2 – Appropriateness of the Performance
Problem Taxonomy

Under the assumption that all assumptions for APPD are met, in all con-
ducted case studies, the applied performance problem taxonomy reasonably
represented the cause-effect chains of the occurred instances of performance
problems. This applies for both injected as well as previously unknown
instances of SPAs. However, the ILS case study has shown that the appro-
priateness of the performance problem taxonomy can be impaired, if the
assumption on stable load intensities is not met. In such cases, root causes
of performance problems may exhibit other symptoms than described by
the performance problem taxonomy. Hence, for Validation Goal 2 we can
conclude that the taxonomy appropriately represents the cause-effect rela-
tionship of performance problems in real scenarios, if the assumption on
stable load intensities during corresponding measurement experiments is
met.

331



7. Validation

Validation Goal 3 – Efficiency of APPD

In Section 4.4.3.2, we discussed the theoretical complexity of the Systematic
Search Algorithm and, hence, of a diagnostics run of the APPD approach.
These considerations, with respect to efficiency, clearly illustrate the benefit
of the Systematic Search Algorithm compared to an alternative, naive ap-
proach. In particular, the theoretical complexity considerations prove that in
a specific application context, the absolute execution time of APPD would be
smaller than of a naive diagnostics approach with comparable configurations
of the experiments. However, besides the theoretical considerations, the
absolute execution time of APPD highly depends on the configuration of
the concrete application scenario. From the case studies we can conclude
as a rule of thumb that the execution time of APPD is the longer the more
complex the SUT is. This is due to the fact that more complex system are
usually tested with higher load intensities and, thus, require longer warm-up
phases for stabilization of measurements and longer experiment durations to
obtain significant measurement data. In general, we have shown that APPD
can be executed in a couple of hours. Thus, APPD can be embedded into
regular, automated processes (e.g. daily, weekly, monthly, etc.), for instance
as part of continuous integration.

Validation Goal 4 – Appropriateness of P2D2M

Using the Measurement Environment (ME) Description part of the P2D2M,
in all case studies we were able to capture all scenario-specific aspects that
are required to bridge the gap between the generic core of APPD and the
concrete application contexts. Hence, with respect to the investigated con-
texts, the expressiveness of the Measurement Environment (ME) Description
model is sufficient for real application scenarios. As already discussed above
(for Validation Goal 1), the investigated scenarios cover a broad range of
different techniques, tools and environment. A successful, uniform descrip-
tion of these diverse scenarios shows that the corresponding language is
appropriately generic. With respect to the generic sub-models of P2D2M
(i.e. Experimentation Description, IaM Description and Data Representation
sub-models) we can draw the same conclusion. In Chapter 6, we used these
meta-models to describe detection heuristics in a generic way. Successfully
applying the generically defined heuristics to diverse, concrete scenarios
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shows the appropriateness of the corresponding languages. In particular,
the diversity in the case studies shows that the corresponding modelling
languages are neither too specific, as they abstract from context-specific
details, nor the languages are too abstract, as they provide the required ex-
pressiveness to define detection heuristics for different types of SPAs. All in
all, with respect to the three end-to-end case studies conducted in this chapter,
we can draw the conclusion that P2D2M is appropriate for the purpose of
performance problem diagnostics.

Validation Goal 5 – Necessity of SSE

Besides the end-to-end case studies, we have applied the SSE concept for
automated resource demand estimation in the SSE-4-RDE experiment (cf.
Section 7.5). Hence, SSE is not only an enabler for the automation of perfor-
mance problem diagnostics, but can be applied to further experiment-based
performance evaluation scenarios (e.g. resource demand estimation). With
respect to validation question VQ 5.2, the case studies in this chapter indicate
a broader scope of applicability for the SSE concept. Furthermore, com-
paring an automated SSE-based approach for resource demand estimation
against a simple, single-experiment approach, in the SSE-4-RDE experiment,
we showed the benefit of SSE with respect to the trade-off between resulting
monitoring overhead and detail of measurement data. While SSE allows
to achieve both requirements (i.e. low monitoring overhead and detailed
measurement data), alternative approaches sacrifice one of the requirements
in favor for the other requirement.

Validation Goal 6 – Automation of APPD

In all case studies, the execution of the APPD approach was fully auto-
mated using DynamicSpotter, an implementation of APPD. By means of
dynamically adaptable instrumentation with AIM (Wert et al., 2015a), for
Java-based applications, the SSE concept has been realized very efficiently.
In particular, adaptation of instrumentation is possible without restart of
the target application. However, as experienced in the nopCommerce case
study (cf. Section 7.3), dynamically adaptable instrumentation cannot be
realized in all contexts. As an alternative, the SSE concept and, thus, the
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APPD approach can be realized by automating the restart of the application
under test to enable adaptation of instrumentation. APPD cannot be applied
in contexts where neither dynamically adaptable instrumentation is possible
nor an automated restart of the target application.

With respect to the up-front effort to prepare a concrete application context
for the application of APPD, in general, the experiences in the case studies
were comparable. In all case studies we had to set up the measurement
environment and create corresponding usage profiles (or load scripts). These
two task constitute the major part of the up-front effort to run APPD. How-
ever, these tasks are not specific to APPD, but need to be executed for any
measurement-based approach for performance evaluation. Furthermore, we
had to deploy measurement tools and calibrate the ME Description for Dy-
namicSpotter. Assuming that the created adapters for different measurement
tools and load generators are reusable for future scenarios, the remaining
tasks have been conducted in a couple of hours. Hence, from our subjective
point of view, the manual effort to set up APPD for a new specific applica-
tion context is negligible compared to manual diagnostics of performance
problems.

To get a more objective opinion on that validation question, we evaluated
the perception of external users of the APPD approach in the empirical
study (cf. Section 7.6). Though a comprehensive documentation is required
for DynamicSpotter and all available measurement adapters to increase its
usability, the empirical study showed that external users perceive the manual
effort for setting up DynamicSpotter as low.

Validation Goal 7 – Practicability of APPD

Validation Goal 7 has been evaluated with the empirical study in Section 7.6.
As already mentioned before, the empirical study shows that external users
prevailingly perceive the complexity of applying the APPD approach as low.
However, the study also shows that the manual effort of using the APPD ap-
proach highly depends on the usability of the corresponding implementation
and user interface. In particular, many tasks for configuring DynamicSpotter
can be facilitated by an advanced user interface. For instance, a graphical
modelling interface for the creation of the measurement environment descrip-
tion would reduce the overhead compared to textual syntax. However, as the
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usability of DynamicSpotter is not the focus of the validation in this chapter,
we conclude that, overall, the complexity of applying the APPD is perceived
as low.

With respect to validation question VQ 7.2, the empirical study provides two
major insights. On the one hand, it shows that external users perceive the
diagnostics results provided by the APPD approach as useful for uncovering
performance problems and locating their root causes. On the other hand,
in the empirical study we gained the following insight: users of the APPD
approach should be experts with respect to the SUT in order to be able to
reasonably interpret the diagnostics results of APPD. Hence, developers of
the target application constitute the ideal target group for interpreting the
reports that are provided by the APPD approach.

Due to feasibility reasons, we are not able to conduct a Type 3 validation
of the APPD approach. Therefore, we cannot make any statements on the
economic efficiency of APPD (VQ 7.3).

7.7.2. Threats to Validity

In this section, we discuss the threats to construct and external validity of
the conclusions derived from the conducted studies. Threats to construct
validity aim at ensuring that the right issue (the one that was intended to be
evaluated) has been evaluated (Sjoberg et al., 2007). In particular, threats
to construct validity arise if some unintended aspects in the design or setup
of the corresponding experiment affect the observed results that are used
to draw conclusions. External validity is about the ability to project the
conclusions from the investigated set of subjects or objects to the general
class of that subjects or objects, respectively.

7.7.2.1. Construct Validity

Analogously to Heisenberg’s uncertainty principle (Busch et al., 2007) in
physics, in measurement-based software performance evaluation a common
threat to construct validity is the distortion of measurements through the
injection of measurement probes. In particular, the higher the monitoring
overhead the more the measurement data are distorted. With the SSE concept
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in the APPD approach we inherently avoid high monitoring overheads. When
detection heuristics of APPD apply experiments to measure performance
metrics (e.g. response times, throughput, etc.), they apply selective, minimal-
invasive instrumentation to keep monitoring overhead small. Expensive
instrumentation is only applied when structural data is retrieved (e.g. call
trees). However, in this cases the monitoring overhead is irrelevant as no
performance metrics are measured.

In the second part of the TPC-W case study and in the nopCommerce case
study, we applied the fault injection technique (Hsueh et al., 1997) for the
evaluation of APPD. Fault injection is not suited to derive any conclusions on
the ability of APPD to diagnose performance problem instances that were un-
known to the authors of APPD. While diagnostics of unknown performance
problems has been investigated in the first part of the TPC-W case study and
the ILS case study, fault injection is an established approach (Hsueh et al.,
1997) and has its rationale in the remaining case studies. In the nopCom-
merce case study our goal was to show the ability of APPD to abstract from
implementation details and, thus, to deal with a wide range of technologies
(e.g. .NET area). Hereby, the source of investigated performance problems is
subordinate. Despite fault injection, we obtained interesting and unexpected
insights on the applicability of APPD from the corresponding case studies.

In the second part of the TPC-W case study we extended the TPC-W applica-
tion ourselves for the investigation of communication-related SPAs. Though
this may constitute a threat to construct validity, we strove to preserve the
complexity of the TPC-W as well as its core functionality.

In the SSE-4-RDE experiment we introduced an automated RDE approach.
We acknowledge that this approach constitutes only a proof of concept for
resource demand estimation. In particular, the described approach builds on
some assumptions and limitations, such as CPU-bound applications under
test, deterministic behaviour of system services and uni-modal distributions
of response times. However, as all assumptions were met by the target
application, we assume that the effect of this threat to construct validity is
minimal.

The major threat to construct validity in the empirical study is the difficulty
of evaluating the APPD approach without the influence of the usability of
DynamicSpotter. On the one hand, we required an adequate user interface
to reasonably be able to conduct the study. On the other hand, a user
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interface has the disadvantage that it may bias the opinion of the experiment
participants. For instance, the participants may get a negative impression
of the overall APPD approach, if the user interface exhibits an insufficient
usability. Unfortunately, we did not find a way to reasonably avoid that
threat to construct validity. With respect to the threats of construct validity
of the questionnaire, we reduced the threats by piloting the questionnaire
with some pretests. Thereby, we were able to identify some issues (e.g. too
many tasks, wording issues, etc.) that we fixed before conducting the actual
experiments. Furthermore, as already mentioned in Section 7.7.1, the fact
that the subjects of the empirical study where unfamiliar with the SUT lead
to some negatively biased results.

7.7.2.2. External Validity

In our studies we did not practically investigate other SPAs of the created
taxonomy in Figure 4.2 (cf. Section 4.3) than the anti-patterns that are
included in the used PPEP instance (e.g. GC Hiccups anti-pattern, Dormant
References, Unbalanced Processing, etc.). However, as the set of investigated
SPAs comprises conceptually different types of performance problems, we
presume that our evaluation results are representative for the remaining anti-
patterns of the taxonomy. An in depth investigation of the remaining SPAs
is a task for future work.

Primarily, all conclusions stated in Section 7.7.1 only apply to the conducted
case studies. However, the case studies cover a broad range of technologies
and application domains. Furthermore, the investigated applications (at least
nopCommerce and ILS) constitute real, industrially used software products
that are representative for other enterprise software systems. Hence, we have
reason to assume that our findings in the case studies are representative for
other software systems in the domain of server-based, enterprise software
systems.

In our case studies, we investigated the software systems on a static in-
frastructure. In particular, we did not conduct any evaluation of the APPD
approach on applications that run on elastic cloud platforms. Consequently,
we cannot provide any statements about the applicability of APPD on cloud-
based applications. Moreover, we presume that some of the assumptions of
APPD would not hold with a typical cloud application running on an elastic
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infrastructure (e.g. assumption on stable load intensity) posing a risk for the
diagnostics accuracy of APPD.

Regarding SSE, in this thesis, we applied the concept on two entirely dif-
ferent performance evaluation contexts (i.e. RDE and performance problem
diagnostics). In both contexts the SSE concept constituted an enabler for
reasonable automation of the corresponding performance evaluation tasks.
Whether SSE can be applied in further performance evaluation areas is a
research question for future work. However, due to the entirely different
nature of the both investigated contexts, we presume, that the SSE concept
can be applied in a similar way in further experiment-based scenarios where
reducing monitoring overhead plays an important role.

The participants of the empirical study prevailingly were from a scientific
domain (students and scientists). Hence, in general, we cannot project the
findings of the conducted empirical study to the class of software engineers
including developers from industry. However, evaluating APPD in an indus-
trial context falls into the same category as the Type 3 validation that has
been omitted due to reasons of feasibility.

7.8. Summary

In this chapter, we validated our APPD approach with respect to the re-
search hypotheses defined in Section 3.4. From the hypotheses, we derived
more fine-grained validation questions that have been investigated in this
chapter. Overall, we conducted five studies that cover all validation ques-
tions except for the investigation of the economical cost-benefit ratio of the
APPD approach. We conducted three case studies to evaluate the end-to-end
functionality and applicability of APPD. The case studies have been con-
ducted on a Java implementation of the e-commerce benchmark TPC-W, an
open-source .NET e-commerce solution, and a large-scale, industrial Java
application for enterprise resource management. In the different case studies,
we used different tools for load generation. Despite the high variety in the
case studies, APPD has been successfully applied in all case studies and, in
general, was able to accurately diagnose performance problems. By means
of a controlled experiment we investigated the benefits and limitations of the
SSE concept. In the controlled experiment, we applied the SSE concept for
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automatic measurements of resource demands used for the calibration of per-
formance models. The experiment shows that, apart from some limitations,
SSE is a promising concept to overcome the trade-off between measure-
ment accuracy and precision. Finally, we conducted an empirical study in
which external participants applied the APPD approach. The external users
evaluated APPD as a useful support in diagnosing performance problems.
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In this chapter, we provide a survey on research work that is related to our
approach as well as its integral parts. As elaborated in this thesis, we provide
contributions in different research areas. Figure 8.1 gives an overview on
the main concepts and artifacts of the Automatic Performance Problem
Diagnostics (APPD) approach (solid-border boxes) as well as the research
areas (dashed-border boxes) they are related to.

With the taxonomy on performance problems described in Chapter 4, we
contribute to the research field of Definition and Classification of Perfor-
mance Problems. In the area of Experiment-based Performance Evaluation
we introduced the Systematic Selective Experimentation (SSE) concept
(cf. Chapter 3.2.1) to mitigate the trade-off between precision and accu-
racy of measurement data. Performance Problem Diagnostics Description
Model (P2D2M) as a tailored specification language for performance problem
diagnostics (cf. Chapter 5) constitutes a contribution in the field of Models

Performance Problem Detection & Diagnostics

Automatic Performance Problem Diagnostics (APPD)

Taxonomy SSE P2D2M

Definition & 
Classification of 

Performance Problems

Models & Languages 
for 

Performance Testing

Experimentation-based
Performance
Evaluation

Figure 8.1.: Areas of Related Work
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and Languages for Performance Testing. The latter two research areas are
closely interrelated as most experiment-based approaches utilize models to
describe the experimentation plans. The performance problem taxonomy,
SSE and P2D2M constitute the main building blocks for the overall APPD
approach. Therefore, with APPD the main contribution of this thesis is in the
field of Performance Problem Detection and Diagnostics. In the following,
we discuss related work in the four research areas shown in Figure 8.1, with a
strong focus on the field of Performance Problem Detection and Diagnostics.
This chapter is structured as follows. In Section 8.1, we discuss research
work that address definition and classification of performance problems.
Due to the close interrelation, in Section 8.2, we consider related work in
the research areas of experimentation and models in measurement-based
performance evaluation. Finally, we discuss performance problem detection
and diagnostics approaches along different sub-categories in Section 8.3.

8.1. Description and Classification of
Performance Problems

Generically describing and classifying knowledge about performance prob-
lems is a prerequisite for an engineering approach in detecting and diagnos-
ing performance problems. This especially applies to automation of such
engineering approaches. In his early work on performance analysis, Jain in-
troduces a systematic approach on performance analysis of computer systems
(Jain, 1991). Thereby, the author describes common mistakes, techniques
and best practices in conducting performance measurements, selecting proper
metrics and workloads, and reasonably interpreting performance data. The
work of Jain is based on the following assumption:

“Most performance problems are unique. The metrics, work-
load, and evaluation techniques used for one problem generally
cannot be used for the next problem. Nevertheless, there are
steps common to all performance evaluation projects that help
you avoid the common mistakes [. . . ]” (Jain, 1991)

In that context, the term performance problem has a general meaning that
covers any concern related to performance evaluation (e.g. capacity man-
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agement, performance tuning, performance model calibration, etc.). While
Jain’s assumption is true for the field of performance evaluation in general,
in the field of analyzing software performance problems, subsequent work
on software performance anti-patterns by Smith et al. (Smith et al., 2002b;
Smith et al., 2002a; Smith et al., 2003) and research work based thereon
(Trubiani et al., 2011; Parsons, 2007) have shown that many performance
problems are recurrent. Prior to the notion of software performance anti-
patterns, performance problems were simply referred to as performance
bottlenecks. Jain defines a performance bottleneck as “the resource with the
highest utilization”(Jain, 1991). While this definition is limited to hardware
resources, Neilson et al. provide a definition of a software bottleneck as a
“[. . . ] task [that] exhibits a high utilization which is also high relative to the
utilizations of each of its servers, either direct or indirect” (Neilson et al.,
1995). Franks et al. extend that definition for the context of layered services,
whereby services depend on other services including their waiting times
(Franks et al., 2006).

Performance bottlenecks constitute a rather general notion of performance
problems that is applicable in abstract models of computer systems such
as queueing networks or layered queueing networks (Franks et al., 1996).
However, the notion of performance bottlenecks does not cover the diversity
of different aspects and manifestations of recurrent performance problems
in real enterprise software systems. By contrast, the notion of software
performance anti-patterns allows to describe different types of recurrent per-
formance problems with their characteristic aspects. The notion of software
performance anti-patterns is derived from the idea on software anti-patterns
(Brown et al., 1998), design patterns (Gamma et al., 1994) and architectural
patterns (Buschmann et al., 2007). Software performance anti-patterns have
been introduced by Smith et al. (Smith et al., 2002b; Smith et al., 2002a;
Smith et al., 2003; Smith et al., 2000) whereby each anti-pattern is specified
by a name, a description of the problem, and a set of possible solutions.
Besides the work from Smith et al., anti-patterns (partly) with a software per-
formance impact have been defined by others as well. While the anti-patterns
described by Smith et al. are technology independent, Tate (Tate, 2002; Tate
et al., 2003) and Dudney et al. (Dudney et al., 2003) introduce anti-patterns
that are specific for Java and Java Enterprise applications. Chis et al. in-
troduce memory patterns that result in an inefficient use of the Java Heap
and, thus, may result in poor performance, e.g. due to increased garbage
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collection (Chis et al., 2011). Hallal et al. introduce anti-patterns in the
domain of multi-threaded software (Hallal et al., 2004). As multi-threading
is closely related to performance, many of the anti-patterns defined by the
authors have a negative impact on the performance. Smaalders reports on a
set of performance anti-patterns that have been experienced at Sun Microsys-
tems during refactoring of the Solaris operating system (Smaalders, 2006).
The individual anti-patterns that are relevant for enterprise software systems
from research work as well as industrial collections have been described in
Chapter 2.4 of this thesis. These anti-patterns constitute the basis for our
taxonomy on performance problems.

While the notion of anti-patterns lays the basis for classifying different kind
of performance problems, considering the relationship between individual
anti-patterns and identifying categories on anti-patterns is another impor-
tant step towards understanding the nature of performance problems and
improving performance problem diagnostics.

Based on the notions of bottlenecks, software bottlenecks and layered bottle-
necks, Meszaros, 1996 and Petriu et al., 1997 introduce a pattern language
for the analysis of contention in layered reactive systems. Similar to our per-
formance problem taxonomy, the pattern language in (Petriu et al., 1997) con-
stitutes a hierarchical structure on bottlenecks and solutions. While the top
layers of the hierarchy describe different types of bottlenecks like Memory
Capacity, Intermediate Server Bottleneck or Processing Capacity, the lower
levels constitute different solution strategies for the individual bottlenecks.
For instance, Petriu et al., 1997 propose to apply the Server Multi-threading
pattern to alleviate the Intermediate Server Bottleneck. Thereby, Thread
Pooling, Thread per Request and Thread per Session constitute different
solution strategies. Unlike our taxonomy, the pattern language in (Meszaros,
1996) and (Petriu et al., 1997) is limited to bottlenecks. Furthermore, the
purpose of the pattern language is to document common solutions to different
types of bottlenecks. By contrast, our performance problem taxonomy aims
at capturing the cause-effect relationships between individual performance
anti-patterns.

Moha et al. propose a taxonomy and classification scheme for software
architectural defects (Moha et al., 2005). In their taxonomy, the authors
differentiate between anti-patterns as “bad solutions to recurring design
problems”, design defects as “bad use of design patterns”, and code smells
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that “refer to symptoms or problems at the code level”. Besides the tax-
onomy, the authors propose a scheme that comprises two dimensions for
the classification of software architectural defects. In the first dimension,
the authors distinguish between intra-classes, inter-classes and behavioural
defects. That dimension is similar to our classification dimensions Type of
Pattern and Level of Abstraction in Chapter 4.2.1. In the second dimension,
Moha et al. distinguish between anti-patterns, design defects and distorted
anti-patterns. Though Moha et al. consider defects that are not specifically
related to performance, the general purpose of their classification is simi-
lar to ours. In particular, the authors emphasize the need for formalizing
software architectural defects and corresponding processes and techniques
to uncover them. With our classification of performance anti-patterns, the
derived Performance Problem Evaluation Plan (PPEP) (cf. Chapter 4.2.1)
and the detection heuristics (cf. Chapter 6.3) we address the same goal in
the domain of performance anti-patterns.

Based on years of experience in fixing code defects, Reimer et al. report
on a categorization of critical problems that typically occur in large-scale
Java (J2EE) systems (Reimer et al., 2004). Thereby, Reimer et al. partition
critical problems into the following five categories: Resource Management,
Concurrency, Server-side Java, Persistent Data Management, and Implemen-
tation Contract Violation. With respect to their static analysis tool SABER,
the authors further classify code defects in Java into six classes. Thereby,
the classification is based on the underlying artifacts that are analyzed and
rules applied to detect the defects. Though Reimer et al. do not consider
performance-related problems, their classification scheme shows a similarity
to one aspect of our classification. Similarly to (Reimer et al., 2004), with our
classification template, inter alia, we categorize performance anti-patterns
along the dimension Detection Method (cf. Chapter 4.2.1).

Hallal et al. introduce a classification scheme for anti-patterns that are related
to multi-threading (Hallal et al., 2004). The authors consider 38 anti-pattern
that they partition into two main categories: (i) correctness problems that
lead to wrong or no results of computation and (ii) efficiency and quality
problems that provide a correct result, however, at the expense of perfor-
mance and other quality attributes. Due to their impact on performance, the
latter category of anti-patterns is closely related to the anti-patterns consid-
ered in this thesis. On a more detailed level, Hallal et al. further refine the
categories into six detailed categories of multi-threading anti-patterns: Dead-
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locks, Livelocks, Race Conditions, Efficiency Problems, Quality and Style
Problems, and problems leading to Unpredictable Consequences. Using this
classification scheme the authors introduce a description template for archiv-
ing anti-patterns in the field of multi-threading. Compared to the anti-pattern
description by Smith et al., 2000, Hallal et al. include a categorization aspect
into their template for describing multi-threading anti-patterns. However, nei-
ther Smith et al., 2000 nor Hallal et al., 2004 explicitly consider the aspect of
causal relationships between anti-patterns. By contrast, we provide a causal
taxonomy on performance problems by including explicit consideration of
cause-effect relationships in our categorization template.

Analyzing the work of Brown et al., 1998, Smith et al., 2000 and Tate (Tate,
2002; Tate et al., 2003), Parsons derives a hierarchy for the classification of
anti-patterns, whereby the hierarchy comprises four levels of categorization
(Parsons, 2007). Starting with anti-patterns in general (root of the hierarchy),
Parsons distinguishes between performance anti-patterns and anti-patterns
that are related to other quality attributes. Performance anti-patterns are
further partitioned along a technological dimension (Java (EJB), .NET, etc.).
Finally, on the fourth level, Parsons distinguished between deployment,
design and programming anti-patterns. While deployment anti-patterns de-
scribe common mistakes in distributing software components or configuring
deployment, design anti-patterns represent recurrent design decisions that
lead to poor performance. Finally, programming anti-patterns are errors that
are unconsciously introduced by developers during the implementation phase.
By means of the categorization hierarchy, Parsons highlight the categories of
anti-patterns that are detectable by the Performance Anti-pattern Detection
(PAD) tool described in (Parsons, 2007). Unlike our classification and taxon-
omy on performance problems, the hierarchy in (Parsons, 2007) is on a more
abstract level and does not consider characteristics and interrelationships of
individual anti-patterns.

To sum up, the related work in describing and classifying performance
problems provides essential explicit knowledge about recurrent types of
performance problems. Various anti-patterns have been defined and classified
in different domains. Definitions of software performance anti-patterns
cover generic, technology-independent as well as technology-specific anti-
patterns. Though multiple classification schemes exist for anti-patterns, none
of the discussed research works explicitly considers causal effects between
individual types of anti-patterns. By contrast, in this, thesis we provide a
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causal taxonomy on performance problems that increases the systematology
of diagnosing performance problems.

8.2. Experimentation and Models
in Measurement-based
Performance Evaluation

Common methods, techniques and considerations in experiment-based per-
formance evaluation have been introduces in (Jain, 1991) and (Menascé et al.,
2001). General performance testing approaches are described in (Weyuker et
al., 2000) and (Avritzer et al., 1996). In this section we focus on approaches
that apply systematic experimentation to achieve a certain goal. Furthermore,
we consider research work that provides models for specification and man-
agement of performance tests. The discussed approaches are compared to
P2D2M as well as our SSE concept.

Westermann introduces the Software Performance Cockpit (SoPeCo) ap-
proach for measurement-based, experimental derivation of performance
models (D. J. Westermann, 2014). In that context, performance models are
regression functions that describe a functional dependency between a set of
independent variables and a set of dependent variables of a measurement-
based evaluation context. Westermann proposes a systematic execution of
measurement experiments to capture such functional dependencies. For a
systematic derivation of performance models, the SoPeCo approach provides
a language for the specification of the evaluation context, experiments to
be executed in that context, as well as execution strategies for the experi-
ments (D. Westermann et al., 2013). The SoPeCo approach comprises four
steps: context definition, understanding performance behaviour, derivation
of performance model, and validation of performance model. The first step
encapsulates all tasks required to set up and describe the evaluation context
by means of the corresponding specification language. In the second step,
assumptions on influences between independent and dependent variables of
the evaluation context are tested and improved. During performance model
derivation, a set of experiments is executed and different regression strategies
are applied to derive a regression function. Finally, the prediction accuracy
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of the derived regression function is validated. The SoPeCo framework
fully automates the execution of experiments and the subsequent analysis
tasks. Due to its focus on deriving regression functions, the SoPeCo specifi-
cation language is more abstract than the P2D2M introduced in this thesis
(Chapter 5). In particular, in (D. J. Westermann, 2014), the measurement en-
vironment is simply described by a set of parameters whose semantics come
from extensions for the SoPeCo framework that need to be provided by the
users of SoPeCo. Complex hierarchical situations, such as comprehensive
instrumentation descriptions, cannot be described easily by a plain set of
parameter values. By contrast, P2D2M provides a language that is tailored
for performance problem diagnostics and, thus, allows to intuitively describe
experiments for that purpose. Similar to the SSE concept, SoPeCo applies
systematic experimentation. However, as SoPeCo entirely abstracts from the
internals of individual experiments, it does not explicitly cover instrumen-
tation aspects. By contrast, in addition to systematic experimentation, the
selective, goal-oriented instrumentation in each experiment is a core part of
the SSE concept.

With the same goal of deriving measurement-based performance models,
Thakkar et al., 2008 propose a framework that is similar to the SoPeCo frame-
work by D. J. Westermann, 2014. The framework in (Thakkar et al., 2008)
supports the performance engineer throughput the entire experimentation
cycle by automating the tasks from test specification over test execution to
data analysis and model building. Analogously to the work of Westermann,
Thakkar et al. apply statistical methods for test case selection and reduction,
as well as for model building. Similarly to the implementation of our APPD
approach (i.e. DynamicSpotter), the framework of Thakkar et al. allows
for connecting different load generation tools, such as HP LoadRunner

TM
.

In contrast to our work,Thakkar et al., 2008 do not explicitly introduce a
language for specifying experiments. Furthermore, though Thakkar et al.
apply systematic experimentation for the derivation of performance models,
in contrast to our SSE concept, they do not consider selective instrumenta-
tion.

Woodside et al. (Woodside et al., 2001) propose a workbench for automated
derivation of resource functions. In that context, resource functions describe
parametric dependencies between some influencing parameters an resource
demands (such as CPU demand) of software components or entire target
systems. In general, they pursue the same goal as already described for
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D. J. Westermann, 2014 and Thakkar et al., 2008. The workbench provided
by Woodside et al. automatically executes a set of experiments for the
parameter space spanned by the influencing parameters. Their experiment
specification language is limited to the description of parameter variations
and is way to abstract for the purpose of diagnosing performance problems
by measurement. Overall, the difference of the work in (Woodside et al.,
2001) to our SSE concept and our P2D2M is analogous to the work by
D. J. Westermann, 2014 and Thakkar et al., 2008: no consideration of
selective instrumentation and experiment specification languages that are
on an abstract level with respect to the purpose of diagnosing performance
problems.

For the derivation of performance-relevant properties of infrastructures
Hauck et al. introduce the GINPEX approach (Hauck et al., 2011). Using
a custom load driver, GINPEX applies multiple experiments with different
load profiles to analyze the performance-relevant parameters of the infras-
tructure under test. Hauck et al. propose the following process for the
application of the GINPEX approach: (i) In the first step a load driver that is
shipped with GINPEX needs to be deployed on all machines that belong to
the infrastructure under test. (ii) The load drivers are then used to conduct
diverse experiments, while gathering different measurements. (iii) In the
third step, the measurements are analyzed to derive performance-relevant
properties of the infrastructure. (iv) Finally, the results are integrated in a
performance model, for instance, in order to derive software performance
predictions. For the specification of experiments, Hauck et al. provide a
tailored meta-model. A model instance comprises a description of the target
environment, a set of sensors to be measured, as well as a structure on tasks
to be executed. The are different types of tasks including control flow tasks
and machine tasks. While the control flow tasks allow to build complex
task structures, machine tasks constitute different load components, such as
CPU load, network load, etc. In this way, experiments can be specified with
different load constellations and progression. With respect to systematic
experimentation, the difference between the work in (Hauck et al., 2011)
and our SSE is the same as it was the case for the work of D. J. Westermann,
2014. Though Hauck et al. apply systematic experimentation, they do not
consider the aspect of selective instrumentation. Regarding the experiment
specification language of Hauck et al., there are similarities to P2D2M with
respect to the intention of the individual model parts, including specification
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of the measurement environment, metrics and experiment series. However,
as the focus in (Hauck et al., 2011) is on performance analysis of infrastruc-
ture properties, their model is tailored for that specific purpose and, thus,
aims at modelling other aspects than the P2D2M.

Bertolino et al. propose a model-driven approach for monitoring (Bertolino
et al., 2011). The proposed approach comprises two major parts: a generic,
yet domain-specific meta-model and a generic monitoring infrastructure. The
former part is called Property Meta-Model (PMM) and allows to generically
specify observable properties of the target system. The model allows to
describe prescriptive and descriptive, as well as qualitative and quantitative
properties. For quantitative properties, PMM provides means to specify
metrics. The properties can be assigned to different categories of software
quality that are evaluated, including performance, security, trust and depend-
ability. The second part of the approach is a monitoring infrastructure called
GLIMPSE. The purpose of glimpse is to interpret PMM instances, apply
them on the target systems, and to conduct data interpretation, transmission
and aggregation. Similar to the Instrumentation and Monitoring (IaM) De-
scription part of P2D2M described in this thesis, PMM allows to describe
monitoring instructions. However, the focus of the languages is a different.
While, PMM has a strong focus on specifying properties and their metrics,
the IaM meta-model in P2D2M encapsulates domain-specific knowledge in
instrumentation and monitoring for performance evaluation. In particular,
the IaM meta-model contains concrete elements on typical, partly complex,
instrumentation scopes and probes. In this way, the IaM description language
allows to describe complex instrumentation instruction in a compositional,
yet intuitive way.

Bošković et al., 2009 introduce an approach for Model Driven Performance
Measurement and Assessment with Relational Traces (MoDePeMART). Un-
der the assumption of a model-driven development process, MoDePeMART
provides means to declaratively specify performance metrics in a domain spe-
cific language. Thereby, the model elements of the MoDePeMART language
directly refer to elements of the target system model. Similar to Bertolino
et al., 2011, the modelling approach proposed by Bošković et al., 2009 for
measurement specification depends on the availability of a system model.
Furthermore, a MoDePeMART model instances is specific to one concrete
system model. In contrast, instances of our IaM Description language can
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be created in a generic way so that they can be applied to a broad range of
target systems.

The Object Management Group introduces the Structured Metrics Meta-
Model (SMM) standard for the specification of model-based measurements
(Object Management Group, 2015a). The central element in SMM is a
measure that, in a generic way, allows to describes calculations of certain
properties of a software system. In this way, a measure can be used to
describe metrics of different kinds including quality attributes like response
times, system size, failure rates, etc. The scope of a measure can be lim-
ited by using OCL expressions or a dedicated scope meta-model element.
Besides simple measures, SMM provides the notion of collective measures
to describe aggregated measures such as average, minimum or maximum.
Measurements capture the results for individual measures. Based on the
SMM standard, Van Hoorn introduces the MAMBA approach that, basically,
extends SMM and facilitates its usage (van Hoorn, 2014). In particular,
MAMBA provides additional aggregate functions, collective measures, as
well as the support for describing periodic measures and querying mea-
surement data. Furthermore, MAMBA provides tool support for model
execution and integration of raw measurement data. Hence, both SMM and
MAMBA provide comprehensive and expressive means to describe mea-
surement data. Therefore, these modeling languages are closely related to
the data representation part of our P2D2M. In particular, within P2D2M we
could theoretically use SMM or MAMBA. However, in the APPD approach,
auxiliary functions like measurement aggregation or ranking are integrated
into the individual heuristics and are tailored for the individual needs of
the heuristics. SMM and MAMBA are way to complex for the needs of
the APPD approach. Therefore, the data representation part of P2D2M is a
light-weight meta-model compared to SMM and MAMBA.

Apart from MAMBA, Van Hoorn proposes a model-driven instrumenta-
tion as part of the SLAstic approach (van Hoorn, 2014). SLAstic is an
approach for model-driven, online capacity management and is discussed
in Section 8.3.2. In the context of the SLAstic approach, all aspects of
the target system are represented in a system model, including software
architecture, behaviour and performance characteristics. For model-driven
instrumentation, van Hoorn proposes to specify instrumentation directives as
annotations, for instance on operations or software components, in the corre-
sponding system model. Assuming that a model-driven software engineering
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(MDSE) development process is applied, model-to-model and model-to-text
transformations are used to derive implementation skeletons from the system
model. This also applies for the instrumentation directives. For example,
instrumentation annotations in the system model may be transformed to
configuration files for corresponding Aspect-oriented Programming (AOP)
tools that weave instrumentation instructions into the source code of the
target application. Similar to our IaM Description part of P2D2M, the in-
strumentation approach proposed by Van Hoorn uses modeling to describe
instrumentation. However, they differ in one essential aspect. In (van Hoorn,
2014), instrumentation instructions are modeled as annotations that decorate
elements from a comprehensive system model. Hence, unlike IaM in P2D2M,
the instrumentation instructions of the SLAstic approach are not first-class
model entities but depend on the availability of a comprehensive system
model. By contrast, APPD and P2D2M do not require a system model.

Bernardino et al., 2014 discuss the requirements and design decisions for
a domain-specific language for specifying performance tests. The authors
propose that a corresponding language should cover three aspects: (i) A
monitoring specification describes where and what should be measured in
the target system. This part also includes the description of the measurement
environment. (ii) A scenario specification should allow to describe user and
workload profiles, including configurations like warm-up and cool-down
phases, as well as constellations of different workload classes. (iii) Finally,
the behaviour of each workload class needs to be specified by means of a
user script. The description of requirements in (Bernardino et al., 2014)
perfectly maps to P2D2M in this thesis. However, while we provide concrete
meta-models in this thesis (cf. Chapter 5), Bernardino et al. discuss only the
requirements and design decisions without showing concrete realizations of
their considerations.

8.3. Performance Problem Detection
and Diagnostics

There is a large body of literature in the field of detecting software problems
in general. Approaches for the detection of functional errors are often
based on statical code analysis (Reimer et al., 2004; Evans, 1996; Detlefs,
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1996). In contrast to functional aspects, performance is a software quality
attribute that is inherently dynamic. Hence, in order to detect performance
problems the dynamic aspects of a software system need to be analyzed. This
can be either accomplished by analyzing performance models and system
models that are annotated with performance characteristics, or by conducting
measurements on an implemented system. Accordingly, the related work in
the field of performance problem detection and diagnostics can be roughly
divided into purely model-based and measurement-based approaches. In
the latter case, the approaches may also use system models for detection of
performance problems, however, the models are either directly derived from
measurements or are used to support measurement-based detection.

8.3.1. Model-based Detection

The major benefit of model-based performance evaluation approaches is
their applicability in early development phases. In this way, design-level
performance problems can be uncovered and resolved before they reach
the implementation or even operations phase. In this sub-section, we de-
scribe related work in the field of model-based detection and diagnostics of
performance problems. Table 8.1 gives an overview on the research work
discussed in this section and provides a classification along five aspects. The
first two columns give a reference to the corresponding work and a short
description, respectively. The third column (Model) shows the modeling
languages that the different approaches are applied to. The Detection and
Diagnostics columns indicate whether the approaches solely discover the
existence of a performance problem, or whether they also conduct a diag-
nostics, hence, provide insights on the location and nature of the problem’s
root cause. The Anti-patterns column denotes approaches that are based on
the notion of performance anti-patterns (Smith et al., 2000). Finally, the
last column indicates whether the approaches are fully automated or not. In
the following, we discuss the individual approaches in more detail and their
relation to our APPD approach.

Based on Layered Queueing Network (LQN) models, Franks et al. provide
a framework for identifying bottlenecks in the corresponding models and
providing solutions for their mitigation (Franks et al., 2006). The work in
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(Franks et al., 2006) is limited to one single type of problems (i.e. bottle-
necks). Furthermore, due to the big semantic gap between LQN models and
the actual target systems, the feedback provided by the proposed approach
entails extensive interpretation effort by the software engineers.

Williams et al. introduce the PASA (Performance Assessment of Software
Architectures) method describing a systematic process for performance eval-
uation (Williams et al., 2002). Similar to the methods SAAM (Software
Architecture Analysis Method, Kazman et al., 1996) and ATAM (Architec-
ture Tradeoff Analysis Method, Kazman et al., 1998), the PASA method is
based on scenarios that describe different usage patterns of the target system.
The PASA process comprises nine steps which of one is architectural anal-
ysis. This step includes identification of architectural styles, identification
of performance anti-patterns, as well as performance modeling and analysis.
Hence, as part of the PASA method, Williams et al. propose to identify and
refactor performance anti-patterns based on available architectural models
to improve the performance of a system under design. However, Williams
et al. do not propose any tool support or automation for the detection of
performance anti-patterns.

Xu describes the Performance Booster (PB) approach for automatic diagnosis
of performance problems at design time (Xu, 2012). PB is a rule-based ap-
proach that operates on performance models (i.e. Layered Queueing Network
models). Xu proposes to derive performance models from specifications of
the target system. Thereby, the target system needs to be modeled using
Unified Modeling Language (UML) and the UML MARTE (Modeling and
Analysis of Real-Time and Embedded Systems, Object Management Group,
2015b) profile. The MARTE profile allows to annotate a UML model with
performance characteristics. Based on this information, a performance model
can be automatically derived. The performance model is then solved to ob-
tain performance measures. Xu defines a set of diagnostics and change rules
that describe performance problem localization and model improvement
strategies. Building on the bottleneck definition in (Franks et al., 2006), Xu
considers two types of performance problems: bottlenecks as causes for low
throughput and long paths as cause for high response times. Furthermore,
Xu shows the causal relationship between the two performance problem
types. Bottlenecks and long paths are detected by applying corresponding
diagnostics rules on the performance measures obtained from performance
model solving. By automatically applying change rules on the LQN model,
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PB mitigates the detected performance problems. In order to provide mean-
ingful design feedback, Xu propose to manually transform the changes on
the LQN model to the design model (i.e. UML). Due to the focus on LQN
models and the notion of performance problems as defined in (Franks et al.,
2006), the PB approach is limited to the detection of bottlenecks and long
paths. Hence, in contrast to anti-pattern-based approaches, PB is not able
to provide insights on the nature of the detected problems. Moreover, the
interpretation step from the changes on the LQN model to corresponding
activities on the design model has to be conducted manually.

Benoit introduces an automatic diagnostics approach for performance prob-
lems in database management systems (Benoit, 2005). In this context, Benoit
define the process of diagnosing a problems as “[. . . ] determining which
resource(s) is responsible for the performance problem” (Benoit, 2005).
Benoit uses a decision tree to guide the diagnostics process. The inner nodes
of the tree evaluate different performance metrics of the database manage-
ment system. The leaf nodes represent resources that constitute the root
cause of a performance problem. Hence, the systematic search in (Benoit,
2005) follows a similar idea as our APPD approach with the performance
problem taxonomy. However, while our taxonomy organizes different perfor-
mance anti-patterns, the decision tree in (Benoit, 2005) is limited to specific
performance questions in the domain of database management systems.

The research group around Cortellessa have conducted some research work
in detecting and solving performance anti-patterns based on different system
model representations. In their early work, Cortellessa et al. describe a
framework for automated generation of architecture-level feedback when
conducting analyses on performance models (Cortellessa et al., 2007). The
authors propose a multi-level approach for performance evaluation of a
model. Starting with an abstract system-level model, the proposed approach
conducts an analysis of the corresponding derived performance model (e.g.
Layered Queueing Networks). The obtained performance metrics are used
to automatically generate feedback on further actions by means of so called
interpretation matrices. Considering different performance metrics and cor-
responding performance requirements, the interpretation matrices describe
different potential scenarios and corresponding actions for further analysis.
If in a system-level model a violation of requirements has been detected,
the corresponding interpretation matrix proposes to refine the model and
to search for anti-patterns on the sub-system level of the model. As soon
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as the model has been changed due to a proposed solution alternative, the
process starts from beginning to evaluate the change. Though in (Cortellessa
et al., 2007), the feedback is generated automatically by means of the inter-
pretation matrices, the whole process is not fully automated. In particular,
performance engineers have to further interpret and apply the actions sug-
gested by the matrices. Furthermore, as the proposed approach works on low
level performance models, the gap between the generated feedback and the
actual system is still big.

In (Cortellessa et al., 2010a; Cortellessa et al., 2014), the authors use first-
order logic predicates to formalize descriptions of performance anti-patterns.
This work assumes that a system model is available in a custom XML format.
The XML model captures three view types of the target system. (i) The static
view captures all relevant elements of the system as well as their relationships.
(ii) The dynamic view describes interactions between individual elements.
(iii) Finally, the deployment view captures the allocation of the software
elements to hardware resources. Based on the system model representations,
Cortellessa et al. provide system-independent specifications of performance
anti-patterns in form of first-order logic rules. The rules contain supporting
functions as well as fix thresholds that are used to evaluate certain metrics.
The threshold values need to be set by software architects based on some
heuristics. Finally, a rule engine applies the anti-pattern rules to the system
model and, as the result, provides a list of detected anti-patterns.

In (Cortellessa et al., 2010b), the authors apply the same concepts to detect
and solve performance anti-patterns in systems that are modeled using UML.
Thereby, the static, dynamic, and deployment aspects of the target system are
modeled using UML notation. Furthermore, the UML model is annotated
with performance characteristics using the UML MARTE profile. Analo-
gously to the first-order logic predicates in (Cortellessa et al., 2010a), in
(Cortellessa et al., 2010b), the authors formalize performance anti-patterns
as Object Constraint Language (OCL) rules and a set of actions to resolve
the anti-patterns on the UML model. An OCL rule engine is employed for
evaluation of the corresponding rules on the UML model to detect perfor-
mance anti-patterns. While the detection of anti-patterns is fully automated,
the resolution remains a manual task in (Cortellessa et al., 2010b).

By contrast, in (Trubiani et al., 2011), the authors provide a fully automatic
approach for detecting and solving performance anti-pattern in software
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systems that are modeled with the Palladio Component Model (PCM). Anal-
ogously to the research work in (Cortellessa et al., 2010a) and (Cortellessa
et al., 2010b), Trubiani et al. provide a formalization of the performance
anti-patterns by means of rules based on PCM meta-model elements, as well
as corresponding actions to solve identified anti-patterns in a PCM instance.
As the target system may contain multiple anti-patterns and each anti-pattern
may have several solution alternatives, Trubiani et al. propose an iterative
process of detecting and solving performance-antipatterns to find the best
fitting solution.

As the detection of performance anti-patterns in (Cortellessa et al., 2010a;
Cortellessa et al., 2010b) and (Trubiani et al., 2011) is based on heuristics
that may produce false positives, Cortellessa et al. propose a process to
extract “guilty” anti-patterns that actually lead to a performance requirement
violation. First, performance requirements and a system model are evaluated
by means of analytical methods or through simulation. The result is a system
model annotated with performance characteristics and a set of violated per-
formance requirements. Using one of the described approaches (Cortellessa
et al., 2010a; Cortellessa et al., 2010b; Trubiani et al., 2011) the annotated
system model is evaluated against a set of performance anti-pattern rules,
yielding a set of detected anti-patterns. The set of identified anti-patterns is
then compared to the set of violated requirements to extract only those anti-
patterns that actually lead to a performance requirement violation. Finally,
anti-patterns are ranked by means of calculated guiltiness scores.

The work conducted by the research group of Cortellessa shares some simi-
larities with our approach. Analogously to those work we utilize the notion
of performance anti-patterns to provide meaningful feedback as the result of
performance problem diagnostics. Furthermore, all described approaches by
Cortellessa et al. and Trubiani et al. share the common core of formalizing
performance anti-patterns by means of rules that are based on corresponding
meta-model elements. For the APPD approach we encapsulated the for-
malization of anti-patterns in from of detection heuristics. The notion of
detection strategies of our heuristics expressed as algorithms come closest to
the rules specified by Cortellessa et al. In addition to the detection strategies,
our detection heuristics encapsulate experimentation rules that describe how
to detect corresponding performance anti-patterns by experimentation. A
detailed, yet essential, difference to our detection heuristics is the explicit
and intentional usage of fix thresholds in the anti-pattern rules. In (Trubiani
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et al., 2011), the authors say: “The binding of thresholds is a critical point
of the whole approach.” Furthermore, in this thesis we have shown that fix
thresholds hinder generic applicability of the heuristics to different target
systems (cf. Chapter 6). The same applies for the anti-pattern rules specified
by Cortellessa et al., as the authors assign the responsibility of determining
reasonable threshold values to software architects or domain experts.

To sum up, apart from typical benefits of model-based performance problem
detection approaches, such as the possibility of design time evaluation,
these approaches inherently entail some drawbacks. Firstly, model-based
approaches assume the availability of a system model (e.g. modeled in UML,
PCM, etc.) which is an assumption that often does not apply in practise and
industrial development projects. Secondly, as design time models exhibit
a high abstraction level, they inherently are not able to cover performance
problems that are manifested in the implementation details of a target system.
Finally, due to the abstraction level, models usually exhibit deviations in their
performance predictions compared to the actual implemented system. These
inaccuracies may also impact the diagnostics approaches that are based on
the modeled performance characteristics. In order to take advantages from
both model-based and measurement-based approaches, we propose to apply
approaches such as described in (Trubiani et al., 2011) during the design
phase of a development process, and approaches as described in this thesis
during the implementation and testing phase.

8.3.2. Measurement-based Detection

While model-based performance problem detection approaches can be ap-
plied during design time, measurement-based approaches require a runnable
implementation of fragments or the entire target system for their execution.
Hence, measurement-based detection approaches can either be applied dur-
ing development (e.g. as part of continuous integration and testing phases)
or during operation. Approaches that can be applied during development
detect performance problems before they appear in operation. By contrast,
operation-phase approaches have a rather reactive nature, as they report
performance problems that have already been experienced by the users of
the target system.
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8.3. Performance Problem Detection and Diagnostics

In this sub-section, we consider the related work in the field of measurement-
based detection and diagnostics of performance problems. The Tables 8.2,
8.3, 8.4 show the different approaches that are discussed in the follow-
ing and provides a classification of the related work in this area. Analo-
gously to Table 8.1, the second and the third columns provide references and
short descriptions for the individual approaches. Considering the variety of
measurement-based approaches for performance problem detection, we iden-
tified four main categories. The first category comprises generic approaches
that are able to detect multiple, different types of performance problems.
By contrast, the approaches in the second category focus on the detection
of specific types of performance problems. The third category comprises
approaches that apply performance regression testing to detect degradations
in performance. Finally, approaches that realize online performance and
capacity management are related to performance problem detection, too.
In particular, the self-adaptation aspect of these approaches is triggered by
detected inefficiencies and problems in performance. Besides the four main
categories, we further categorize the measurement-based approaches along
another seven aspects. The Phase column indicates in which development
phase an approach is applicable. Hereby D, T and O stand for Design Phase,
Testing Phase and Operations Phase, respectively. Furthermore, we dis-
tinguish between approaches that only do a pure detection and those that
conduct a diagnostics of performance problems. In this context, diagnostics
covers two aspects. (i) Root causes of performance problems must be lo-
calized (as precise as possible). (ii) Information on the nature and type of
performance problems and their root causes must be provided. The Mult.
Types column explicitly reflects the difference between the first two main
categories for all approaches. The Anti-patterns column indicates whether
the corresponding approaches use the notion of anti-patterns (Smith et al.,
2000) for their detection or diagnostics. Approaches that have a checkmark
in the Impl.-Level column are able to detect performance problems that are
manifested in the implementation details of a target system rather than in
the design or deployment. Finally, the last column indicates whether the
approaches are independent of specific technologies of the target system.
The last row in Table 8.4 shows the classification of the APPD approach into
this scheme.

363



8. Related Work

In the following we discuss the approaches shown in Table Tables 8.2, 8.3,
8.4 in more detail and explain in which aspects the APPD approach differs
from existing approaches.

Detection of Multiple Performance Problem Types

The work that is closest related to our APPD approach is the Paradyn tool
introduced by Miller et al., 1995. Actually, the work in this thesis has been
inspired by the Paradyn approach. Paradyn is a tool for automatic detection
of performance bottlenecks in large-scale parallel programs. Paradyn com-
bines dynamic instrumentation with systematic search to localise specific
locations of performance bottlenecks. In (Miller et al., 1995), dynamic
instrumentation is realized by dynamic modification of the binary program
conducted by platform-specific Paradyn daemons. Thereby, an instrumen-
tation instruction is defined by an instrumentation point (i.e. location), a
primitive (i.e. the instrumentation code to be injected) and predicates that
check conditions for instrumentation primitives to be executed. Guided by
the systematic search process as well as other influencing factors (such as
monitoring overhead) Paradyn’s Performance Consultant decides where and
which instrumentation instructions shell be placed. The data collected by the
instrumentation instructions is aligned along an abstract data structure. The
data structure is a matrix (metric-focus grid) of metrics (such as CPU times,
blocking times, etc.) and locations (system nodes, software objects, software
blocks, etc.). Furthermore, the data is captured in from of time histograms,
to capture the relation to the execution time of the program. The systematic
bottleneck diagnostics is guided by the W3 model that spans a three dimen-
sional space of search aspects: (i) Why does a performance bottleneck occur?
(ii) Where is the location of the bottleneck? (iii) When did the bottleneck
occur? Along the Why-axis different hypotheses about typical manifestations
of performance bottlenecks are tested. Furthermore, these hypotheses can
be refined, which results in a hierarchical structure that is similar to our
performance problem taxonomy. The Why-axis enables a systematic search
from abstract symptoms to concrete manifestations of a bottleneck. The
When-axis is used to narrow down the location of a bottlenecks. Hereby,
system elements (e.g. system nodes, components, code blocks, hardware
resources, etc.) are structured in an hierarchical way to enable a systematic
search for the location. Finally, the When-axis allows to identify the time
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frame when a performance problem occurred. The APPD approach has
been inspired by the Paradyn approach with respect to two aspects: (i) The
idea of dynamically adapting the instrumentation of the target system is
the basis for the SSE concept. In addition to (Miller et al., 1995), the SSE
concept combines dynamic instrumentation with systematic experimentation.
In this way, the analysis of the target system can be conducted in a more
goal-oriented and effective way. In particular, experimentation allows to
analyse the target system under different load intensities, according to the
performance problem under investigation. (ii) Systematically searching for
performance problems from generic symptoms to concrete root causes is the
core idea in both approaches, Paradyn and APPD. While the understand-
ing of performance problems in (Miller et al., 1995) has a rather generic
nature (i.e. notion of bottlenecks), in this thesis, we utilize the notion of
performance anti-patterns. As already discussed in Section 8.1, anti-patterns
encapsulate more semantics about the nature of corresponding performance
problems. In particular, the anti-patterns encapsulate domain knowledge
(e.g. messaging related problems, database related problems, etc.) as well as
typical manifestations and root causes. By contrast, Miller et al. refer to a
root cause of a performance problem abstractly as “parts of the program that
contribute significant time to its execution” (Miller et al., 1995). On top of
Paradyn,Karavanic et al., 1999 include knowledge from historical data from
previous runs of Paradyn to increase the efficiency of Paradyn in finding
bottlenecks.

Parsons et al. describe an approach for automatic detection of performance
anti-patterns in the domain of component-based enterprise applications that
are written in Java using Java EE technologies (Parsons et al., 2004; Par-
sons, 2007; Parsons et al., 2008). The authors introduce the Performance
Antipattern Detection (PAD) tool that is based on the principles of a knowl-
edge base and a rule engine. The PAD approach comprises three main
parts: monitoring, analysis and detection. The monitoring part is respon-
sible for collecting measurement data throughout the entire target system.
This includes identification of software components, their interaction and
communication patterns, objects that are transferred across components, and
utilization of hardware resources. Monitoring is conducted on component
level, hence, internals of the components are not monitored. The monitoring
data is used to reconstruct a run-time design of the system in the analysis
part. A run-time design captures structural as well as behavioural aspects
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of the system under execution. Structural aspects cover the identification
of software components and their relationships. Run-time paths, tracked
objects and communication patterns are core behavioural concepts in PAD.
Basically, the run-time design constitutes a model that reflects the system
under execution. The run-time design is permanently analyzed by a rule
engine for potential anti-patterns. Thereby, each performance anti-pattern is
formulated as a set of rules using the Java rule engine (Friedman-Hill, 2013).
If any of the anti-pattern rules fires, an occurrence of the corresponding anti-
pattern is reported. Though Parsons et al., similarly to our approach, utilize
the notion of anti-patterns for measurement-based detection of performance
problems, the PAD approach differs from the APPD approach with respect
to some aspects. The PAD approach is a knowledge-based approach instead
of an experiment-based approach as it is the case with APPD. To gather
enough data for a representative run-time design, the approach by Parsons et
al. needs to be executed for a longer period of time. Hence, PAD is rather
intended to be used at operation time. By contrast, the APPD approach is
explicitly designed for the testing phase of a software development process.
In this way APPD allows to diagnose and fix of performance problems before
they reach the operations phase. Furthermore, Parsons et al. focus on Java
EE anti-patterns within the categories of design and deployment anti-patterns.
In particular, the authors explicitly exclude anti-patterns that are related to
implementation details. By contrast, in this thesis, we have shown that the
APPD is able to deal with different target technologies as well as different
types of anti-patterns (design and implementation anti-patterns).

Peiris et al. propose a non-intrusive performance anti-pattern detection
(NiPAD) approach (Peiris et al., 2014). Instead of instrumenting the tar-
get application, the NiPAD approach solely requires system-level metrics
that can be monitored without instrumentation of the application’s code
(e.g. CPU utilization, network utilization, etc.). Based on the values of the
system-level metrics the NiPAD approach applies classification techniques
to distinguish systems that contain a performance anti-pattern from those
that do not contain an anti-pattern. Given two applications which of one
contains a performance anti-pattern, the assumption is that a discriminant
function exists that separates the values of the system-level metrics of the
applications. The metric values are obtained by executing performance tests.
The discriminant function is derived by applying different machine learning
approaches whereby labeled scenarios are used for learning the scenarios
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that contain performance anti-patterns. In (Peiris et al., 2014) the authors
demonstrate a proof of concept for the non-intrusive detection approach by
means of the One Lane Bridge (OLB) anti-pattern. Due to the high level
observation of the target system, apart from detecting that an anti-pattern
exists, the NiPAD approach inherently lacks the ability of diagnosing the root
causes of performance problems. Moreover, from the work in (Peiris et al.,
2014) it does not become clear whether the NiPAD approach is applicable to
other anti-patterns than the OLB.

Grechanik et al. propose another approach that applies machine learning
techniques for identification of performance bottlenecks (Grechanik et al.,
2012). Thereby the authors utilize performance testing based on the idea of
feedback-directed learning. The work in (Grechanik et al., 2012) is based on
the assumption that occurrences of performance problems depend on input
data of performance tests. With their approach FOREPOST, Grechanik et
al. focus on efficiently finding proper input data that triggers a performance
problem without the need to fully explore the parameter space of input
data. Starting with a small set of performance tests with random allocations
of input variables, FOREPOST extracts execution traces that are used to
derive rules for data input. The rules describe dependencies between input
values and corresponding performance behaviour or computational load,
respectively. Hence, the rules constitute discriminant functions that separate
input data for “good” and “bad test cases”, whereby the “good test cases”
uncover bad performance behaviour. The rules are used in a feedback loop
to partition the input data (in good and bad data) for further test cases from
which, again, rules are extracted. This cycle is repeated until the set of rules
does not change anymore. Bottleneck methods are uncovered by identifying
expensive methods in the traces that occur in good test cases but not in the
set of bad test cases. The identification of proper input data for performance
and load tests is an essential topic for measurement-based diagnostics of
performance problems. Hence, this aspect of the work in (Grechanik et
al., 2012) is complementary to our APPD approach, as we have shown
that APPD depends on proper load scripts (cf. Section 7.7). The problem
detection part of the FOREPOST approach is limited to the localization of
expensive methods. In particular, the FOREPOST approach does not provide
information on the nature of performance problems. By contrast, by utilizing
the notion of anti-pattern our approach provides more semantics in the results
of the diagnostics.
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Marwede et al., 2009 introduce the anomaly correlation approach RanCorr
for the localization of causes of anomalies. RanCorr is based on the work-
ing assumption that anomaly scores (e.g. response time deviations from a
base-line) for individual software components are available. Based on these
anomaly scores, Marwede et al. utilize the calling behaviour of components
to localize components that are responsible for an anomaly. Using monitor-
ing data, a calling dependency graph is derived. The nodes of the calling
dependency graph constitute operations that call other operations. The graph
captures the dynamic aspects of a request trace as well as correspondences to
architectural elements (i.e. software components and deployment contexts)
the operations belong to. Utilizing the fact that anomalies propagate through
all parent nodes of the calling dependency graph, Marwede et al. conduct an
analysis of the backward propagation of anomaly scores to uncover the guilty
software components. While our approach is explicitly designed for the
testing phase of a development process, the RanCorr approach is intended to
support operators of a software application. Furthermore, though RanCorr
is able to locate a performance problem, it does not provide insights on the
type of the problem. By contrast, the results of the APPD approach provide
information on the location and type of a problem’s root cause.

Ehlers et al. propose a self-adaptive monitoring approach for localization
of performance anomalies at operation time of a target system (Ehlers et al.,
2011). Using the Kieker monitoring framework (van Hoorn et al., 2012),
Ehlers et al. fully instrument the target application with measurement probes
that can be enabled and disabled when needed. Guided by some evaluation
goals, performance engineers define rules that describe the on-demand ac-
tivation and deactivation of measurement probes. For the localization of
performance anomalies, Ehlers et al. propose to refine instrumentation in
the corresponding location whenever the calculated anomaly score for an
operation exceeds a threshold. The monitoring rules are continuously evalu-
ated based on the calculated anomaly scores. For the calculation of anomaly
scores, the authors use forecasting techniques that allow to predict future
values in a time series. Observed measurement values (i.e. response times)
are compared to the forecasted values to detect anomalies. Anomaly scores
for each operation are derived from the rates of observed anomalies. With
their approach, Ehlers et al. are able to detect performance anomalies and
precisely localize the their source. The systematic analysis of the source of a
problem by refining instrumentation on demand is an approach that is very
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similar to the systematic search in our APPD approach. However, in contrast
to APPD, the approach in (Ehlers et al., 2011) is intended to be used during
operation of a software system. Furthermore, through the proposed approach
is able to precisely localize the source of a performance anomaly, it does not
provide insights on the type of the localized performance problem.

Di Marco et al. propose a model-driven approach for measurement-based
detection of performance anti-patterns (Di Marco et al., 2014). Assuming
that an architectural model exists for the target system, Di Marco et al. utilize
the information available in the model to narrow the scope for measurement-
based anti-pattern detection. In their previous work (Cortellessa et al., 2014)
(cf. Section 8.3.1), Di Marco et al. introduced an anti-pattern formalization
approach. Thereby, performance anti-patterns are described by means of first-
order logic rules (predicates) along four view types: static (e.g. components
and interfaces), dynamic (e.g. messages and operation calls), deployment
(i.e. component allocation), and performance view (e.g. response times). In
(Di Marco et al., 2014), the authors exploit the information in the system
model to pre-calculate predicates from the static, dynamic and deployment
views. In this, way the set of anti-patterns is filtered prior to execution of
the target system. During execution only a sub-set of all anti-patterns needs
to be analyzed with respect to the performance view. Gathering monitoring
data, the proposed approach dynamically evaluates the performance view
predicates to identify actual performance anti-patterns in the target system.
Though the approach in (Di Marco et al., 2014) is a measurement-based
approach, it assumes the availability of a fully specified, architectural system
model. However, in many cases, this assumption cannot be met in practice.
Furthermore, the analysis of anti-patterns in (Di Marco et al., 2014) is
conducted on the component level and, thus, does not cover anti-patterns
that are manifested in the implementation details of the target system.

Detection of Specific Performance Problem Types

Toddler is an approach for performance problem detection by analysing
memory access patterns (Nistor et al., 2013). Nistor et al. focus on the
detection of one particular type of performance problems: inefficient nested
loops. The authors categorize loop-related performance problems along two
dimensions resulting in four categories of loop-related problems. Thereby
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Nistor et al. differentiate between problems that are caused by inner or
outer loops and whether the problem is caused by redundant computations or
inefficient computations. All these cases provide potential for performance
improvement by reducing redundancy. The performance problems from the
four categories described in (Nistor et al., 2013) exhibit the common char-
acteristic that the memory access patterns are repeated between individual
loop iterations in an equal or similar way. The authors exploit that fact by
detecting this kind of performance problems by analyzing the memory access
patterns of loops during execution of performance tests or even unit tests.
Though Toddler very effectively detects inefficient nested loops, the scope
of applicability is limited to one single type of performance problem. In
particular load and scalability related performance problems are not covered
by this approach.

Espinosa et al introduce an approach for automatic evaluation of performance
problems in parallel programs (Espinosa et al., 1998). The authors focus on
identifying inefficient intervals in the execution traces. Inefficient intervals
are time periods in which the full potential of parallelization could not be
used. Based on a classification of performance problems that constitute
inefficient parallelization intervals, Espinosa et al. define a set of rules that
represent the individual root causes of the specific performance problems.
The rules constitute a knowledge base that is used to evaluate traces that are
retrieved through monitoring the application. A inefficient interval problem
is reported if at least one of the rules matches to the monitored traces. In
contrast to our approach, the focus in the work by Espinosa et al., 1998 lies
on detecting problems that only occur in the domain of parallel programs.

An approach for automatically localizing communication performance prob-
lems is presented by Vetter, 2000. The author proposes an approach for
Message Passing Interface (MPI) applications that uses a decision tree for
classifying communication-related performance problems in an execution of
the application. The approach comprises three phases in order to be applied
on a target system: modeling phase, classification phase and source code
mapping phase. The modeling phase encapsulates the learning process of a
decision tree. Thereto, different micro-benchmarks are executed containing
scenarios with and without communication performance problems. During
execution of the benchmark, MPI events are monitored that are used for
calibration of the decision tree. The decision tree is then used in the classifi-
cation phase for the identification of inefficiencies in MPI communication. In
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the final phase, the identified inefficiencies are mapped to the source code of
the application. With respect to the goal, the work of Vetter is similar to the
communication-related detection heuristics of the APPD approach. However,
in contrast to the heuristics of APPD, the approach in (Vetter, 2000) requires
learning of the decision tree for each individual target system the approach
is applied on. Furthermore, the performance problems that can be detected
by the approach in (Vetter, 2000) are specific to the technology MPI.

Yan et al. introduce a profiling approach for detecting run-time bloat (Yan
et al., 2012). Thereby, run-time bloat denotes excessive memory usage that
leads to performance degradation due to the overhead caused by according
memory management activities (e.g. garbage collection). The reference prop-
agation graph constitutes the central concept in (Yan et al., 2012), capturing
the life cycles of Java objects. The graph comprises three different types of
nodes, for object creation, assignment of objects, and object usage. In order
to derive the reference propagation graph, Yan et al. fully instrument the
target application using the special virtual machine RVM (Research Virtual
Machine). By analyzing the paths in the reference propagation graph, the
proposed approach is able to automatically identify inefficiencies in memory
usage. Typical inefficiencies that can be detected by this approach are shortly
living objects and created objects that are never used. Both cases lead to an
unnecessarily increased garbage collection activity. Furthermore, by means
of the propagation graph the approach in (Yan et al., 2012) is able to pinpoint
to the code locations where the corresponding objects are unnecessarily
created. Besides the fact that the approach proposed by Yan et al. focuses
on the detection of one specific type of performance problem, the analysis
approach completely differs from the APPD approach. Firstly, Yan et al.
apply full instrumentation of the target application leading to performance
overheads in the range of 3000% - 5000% (Yan et al., 2012). Secondly, the
proposed approach analyzes the memory usage behaviour without consid-
ering the actual performance effect of the detected memory inefficiencies.
In particular, the approach may report code places that potentially can be
improved with respect to the memory usage behaviour, that in fact, however,
do not impair the performance behaviour.

Chen et al. introduce the CauseInfer approach for performance diagnosis of
distributed, cloud-centric applications (Chen et al., 2014). In a distributed
environment of services, CauseInfer non-intrusively (without instrumentation
of the application) detects violations of Service Level Objectives (SLO) and
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localizes the causes for the observed violations. Thereby, Chen et al. focus
on root causes of performance problems that are manifested in improper
utilization of physical and logical resources. CauseInfer comprises two
main concepts: causality graphs and cause inference. Based on collected
monitoring data (TCP traces, resource utilizations, etc.) CauseInfer creates
a two-layered hierarchical causality graph including causality between sub-
services and causality between collected metrics on each service node. If
CauseInfer detects a violation of an SLO, it starts inferring the root cause
by traversing the causality graph. Thereby, a root cause is typically a metric
that caused the SLO violation. A close similarity to our APPD approach is
the idea of conducting systematic search for the root cause by utilizing a
causality-based hierarchical structure. However, the notion of causality is
different in our APPD approach. In (Chen et al., 2014) the causality graph is
dynamically built for each target system describing the dependency between
services and metrics. By contrast, the performance problem taxonomy of the
APPD approach is a generic, system-independent structure. Furthermore,
though CauseInfer comprises a diagnostics of performance problems (i.e.
cause inference), the level of detail of the diagnostics results differs from
the APPD approach. In particular, Chen et al. do not analyze the internals
of the application, hence, are not able to diagnose the actual application-
internal root causes that lead to increased utilization of physical or logical
resources.

Detection of Performance Regressions

Regression testing is a common approach in identifying functional prob-
lems in software (Leung et al., 1989). Unit testing is a well-known and
established means to realize regression testing (Onoma et al., 1998). In
recent decades the idea of regression testing has been applied to the field
of performance evaluation. A performance regression is a degradation in
performance compared to a baseline or some historic measurement data.
In this context, detection of performance regressions is a sub-discipline of
detecting performance problems. In the following, we consider different
approaches that apply performance regression testing for identification of
performance problems.
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Bulej et al. introduce the regression benchmark approach as a combination of
regression testing with benchmarking concepts (Bulej et al., 2005). While re-
gression testing traditionally aims at uncovering functional regressions in an
application, performance benchmarking is used to evaluate and compare the
performance aspects of software systems. In order to identify performance
regressions in middleware software, Bulej et al. propose to utilize established
performance benchmarks. As existing middleware performance benchmarks
are tailored for revealing performance issues in the tested middleware solu-
tions, they constitute a promising means to conduct performance regression
testing. Thereto, the benchmarks need to be highly automated to be executed
repeatedly and tightly coupled to the development process and continuous
integration. In this way performance problems can be detected early in the
development phase. The shortcoming of regression benchmarking is the
limited general applicability of the benchmarks to other types of software
applications. In (Bulej et al., 2005), the authors do not explain whether and
how regression benchmarking can be applied to diagnose the root causes of
observed performance regressions.

Foo et al. propose a performance regression detection approach that utilizes
regression test repositories (Foo et al., 2010). For each executed regression
test (i.e. load test), the approach by Foo et al. gathers a large set of metrics
including workload-specific metrics (e.g. arrival rates) as well as perfor-
mance metrics ( e.g. CPU utilization, response times, etc.). Based on the
gathered metrics, the proposed approach calculates performance signatures.
Therefore, correlations are identified on the metrics using concepts from
the domain of data mining. Once a performance signature is calculated,
the approach compares it to a corresponding, historical signature from a
regression testing repository. If the new signature significantly deviates
from the historical signature, the approach by Foo et al. signals a potential
performance regression. Thereby, the approach reports a set of metrics that
violate the correlation. Further interpretation of the results as well as root
cause analysis have to be conducted manually by the performance engineer.
In contrast to APPD, the approach in (Foo et al., 2010) is limited to detection
of performance regression, abstaining from analysing the root cause.

Heger et al. introduce an approach for Performance regression Root Cause
Analysis (PRCA) (Heger et al., 2013). The PRCA approach utilizes unit
tests and the commit history of the target application’s source code to iden-
tify performance regressions and isolating their root causes. Analogously
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to functional regression testing, Heger et al. utilize unit tests to test the
performance of individual operations. Employing the revision history of
the source code, the PRCA approach compares measured response times to
older revisions. Statistical techniques (e.g. ANOVA) are applied to identify
performance regressions (i.e. significant increase in response times). In case
that a regression has been identified, PRCA conducts a binary search on
the revision graph to isolate the commit that introduced the performance
regression. For that commit, PRCA measures the response times for all
operations along the call tree of the unit test operations. The response times
are compared to corresponding measurements for previous revisions. In
this way, PRCA is able to identify the methods that are responsible for
the observed performance regression. Apart from regression detection, the
PRCA approach conducts a root cause diagnostics. However, in contrast
to our APPD approach, PRCA solely points to the location of a root cause
without providing information on the type of problem. Furthermore, as in
(Heger et al., 2013) unit tests are used for executing the performance tests,
the operations of interest are tested with a single-user load. Performance
problems that are sensitive to load cannot be detected under a low load of
one single thread.

A performance regression detection approach that is based on control charts
is introduced in (Nguyen et al., 2012). When comparing two sets of measure-
ments, control charts allow to differentiate the causes for deviations in some
target metrics. In particular, control charts indicate whether deviations are
caused by some changes in the input data or due to some defects. Nguyen
et al. propose to use control charts for automatic detection of performance
regressions when a large amount of performance metrics are collected during
regression test execution. Control charts entail two essential assumptions that,
in general, cannot be met in the domain of performance testing: non-varying
load within a single performance test and uni-modal normal distribution
of the target performance metrics. In (Nguyen et al., 2012), the authors
propose solutions to mitigate these assumptions for the application of control
charts for performance regression testing. Applying the approach on two
case studies, Nguyen et al. show that control charts constitute a promising
means for automatically detecting performance regressions. However, the
work in (Nguyen et al., 2012) is limited to regression detection and does not
cover diagnostics of root causes.
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Pradel et al. introduce the SpeedGun regression testing approach for auto-
matic detection of performance degradations in thread-safe classes (Pradel
et al., 2014). SpeedGun comprises two main components: a generator for
concurrent performance tests and a regression analysis component. Given
two different versions of a class (e.g. Java class), the test generator creates
a performance test with multiple concurrent threads that test the classes
under different conditions. Furthermore, the authors propose an algorithm
that automatically determines a reasonable length for the execution of the
concurrent performance tests. Given the generated tests, SpeedGun executes
the tests on both versions of the classes under test and compares the mea-
surement results. SpeedGun reports a performance regression if the results
for the newer version of the class exhibit a degradation in performance. The
SpeedGun approach is able to detect potential for performance optimization
in thread-safe classes. As SpeedGun works on a very detailed level of granu-
larity (i.e. implementation level of classes), the corresponding detection of
performance regressions is tightly coupled to the actual root causes for the
regressions. However, the approach by Pradel et al. is limited to concurrency
problems and does not diagnose the nature (i.e. the specific problem types)
of the detected performance regressions.

A performance regression detection approach that is independent of the
applied workload during performance testing is introduced in (Ghaith et al.,
2015). Ghaith et al. address the problem that, in the context of performance
regression testing, workloads vary from one regression test to the next.
Instead of comparing response times, the authors propose to use transaction
profiles that are workload-independent. Transaction profiles encapsulate
the sum of all service demands of a user request, excluding waiting times
for resources. In order to automatically derive a transaction profile, the
approach in (Ghaith et al., 2015) derives a queueing network model of
the target system by means of the measurement data collected during the
regression tests. Applying concepts from queueing theory and reversely
solving the queueing network model, the proposed approach automatically
derives the resource demands for the transaction profile. Finally, transaction
profiles of different system versions are compared to identify regressions
in performance and the affected resources (e.g. CPU, network, etc.). Apart
from pinpointing the affected resources, the approach in (Ghaith et al., 2015)
does not analyze the root causes of observed performance regressions.
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Waller et al., 2015 show an example of incorporating performance regression
benchmarking into continuous integration (Duvall et al., 2007). During the
development of the monitoring framework Kieker (van Hoorn et al., 2012),
the authors applied the micro-benchmark MooBench (Waller et al., 2013) as
part of continuous integration to regularly and promptly evaluate the progres-
sion of the monitoring overhead of the Kieker framework. Waller et al. report
that no performance regressions occurred in the released versions of Kieker
anymore since MooBench has been incorporated into continuous integration
of the Kieker framework. In contrast, applying MooBench on a series of
earlier revisions of Kieker reveals some performance regressions. Based on
these observations, the authors suggest to apply regression benchmarking
from the very beginning of the implementation phase.

To sum up, regression testing is an excellent means to identify problems
in an early stage of implementation. In particular, regression testing is
tightly incorporated into the continuous integration method (Duvall et al.,
2007). However, as we have shown, except for Heger et al., 2013 none of
the approaches provides means for diagnostics of performance problems.
Integrating our APPD approach into continuous integration overcomes this
problem and, yet, allows to regularly scan the target system for performance
problems.

Online Performance and Capacity Management

Cloud computing and virtualization techniques promise some benefits for the
operation of software applications. This includes lower resource consump-
tion and, therewith, lower operation costs while at the same time providing
the flexibility to achieve quality of service requirements. These technologies
constitute an enabler for self-adaptive software systems, that depending on
the circumstances (e.g. load situation, available resources, etc.) are able to
adopt their architecture and resource allocation in order to meet Quality of
Service (QoS) requirements or to save operation costs. Cheng et al., 2009
provide a survey on challenges and state-of-the-art approaches in the field
of self-adaptive systems. Approaches for realizing self-adaptive software
systems, such as (Garlan et al., 2004; Kramer et al., 2007; Oreizy et al.,
1999; Diaconescu et al., 2005; Huber et al., 2011; Kounev et al., 2010;
van Hoorn, 2014), have one goal in common that is related to the field of
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performance problem detection: the approaches try to anticipate, predict or
detect performance problems at run-time in order to proactively or reactively
resolve the problems by adapting the architecture or resource allocation of
the target system.

Focusing on virtualized environments, the Descartes research group (Kounev
et al., 2010; Huber et al., 2011; Huber et al., 2014; Brosig et al., 2011)
develops a model-based approach for self-adaptive software systems. The
Descartes approach utilizes run-time system models that describe archi-
tectural aspects, the run-time environment as well as performance-related
aspects of the target system. Using workload forecasting, the approach
evaluates the effects of different system adaptation alternatives that could
be applied to meet the quality of service requirements in the near future.
Thereby, the Descartes approach utilizes the run-time models to conduct
what-if analyses by means of performance prediction techniques. The anal-
ysis step provides the necessary information to decide which adaptation
alternatives to execute. Finally, the adaptation of the target system is applied
by re-allocating software components, removing or adding further resources,
etc.

Van Hoorn et al. introduce the SLAstic approach (van Hoorn et al., 2009; van
Hoorn, 2014) that pursues a similar goal as the Descartes approach. Combin-
ing the SLAstic approach with the Kieker monitoring framework (van Hoorn
et al., 2012), van Hoorn, 2014 provide a framework for online capacity man-
agement of software systems that are built using component technologies.
While Kieker is responsible for continuous monitoring and analysis of the
target system, SLAstic is a technology- and implementation-independent
approach for online capacity management. Similar to the Descartes approach,
Van Hoorn utilizes run-time system models for analysis of adaptation al-
ternatives. The system models include structural and behavioural aspects
of the target architecture. Measurements gathered by Kieker are expressed
using the MAMBA modeling language and are attached to the architectural
models. As a joint work with the Descartes group, Van Hoorn uses the
S/T/A (strategies/tactics/actions) modeling language (Huber et al., 2014) for
describing adaptation plans.

During the analysis step, the described approaches implicitly evaluate the
run-time models for potential performance problems. Hence, this part is con-
ceptually similar to model-based performance problem detection approaches
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(cf. Section 8.3.1). Diagnosing root causes of performance problems is not
of primary relevance for the self-adaptation of software systems. Therefore,
the Descartes and SLAstic approaches only evaluate whether individual adap-
tation alternatives lead to insufficient performance or not, without further
investigation of the root causes.
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In this section, we conclude the work at hand by providing a summary on
the main contributions, insights and validation results (Section 9.1). Further-
more, we discuss the benefits, assumptions and limitations of the presented
approach in Section 9.2. Finally, in Section 9.3 we give an outlook on
research ideas and directions for future work.

9.1. Summary

In this work, we presented an automatic approach for measurement-based
diagnostics of performance problems. Conducting a systematic, experiment-
based search for performance problems and their root causes, the presented
Automatic Performance Problem Diagnostics (APPD) approach imitates
the process that is, otherwise, executed manually by performance experts.
The full automation of the APPD approach allows it to be incorporated into
regular testing, for instance as part of continuous integration. To automate the
diagnostics process the APPD approach combines multiple concepts. Firstly,
APPD is based on the notion of Software Performance Anti-patterns (SPAs),
i.e. recurrent performance problem types. Using a taxonomy on recurrent
performance problem types, the APPD approach executes a set of systematic
experiments to search for root causes of performance problems. Within the
domain of enterprise software systems, the APPD approach is fully generic
(i.e. technology- and context independent). This is realized by a set of
generic description languages that allow to describe experimentation plans as
well as instrumentation and monitoring instructions in a generic way. By this
means, the detection heuristics for individual performance problem types
can be specified in a context-independent manner. Overall, in this thesis we
made the following contributions:
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Taxonomy on Performance Problems In this thesis, we introduced the
notion of a performance problem taxonomy. The proposed taxonomy cap-
tures the knowledge about individual performance problem types (i.e. SPAs)
and reflects the causality relationships between individual symptoms and
causes of performance problems. We introduced a generic method to derive
a taxonomy on performance problems from a set of performance problem de-
scriptions. Thereby, we developed a categorization scheme covering multiple
aspects of SPAs. Based on the categorization of SPAs, a static taxonomy on
performance problems can be derived. Finally, the taxonomy is augmented
with additional information on diagnostics activities. Applying the method
on 27 SPAs from literature, in this thesis, we created a taxonomy on common
performance problem types occurring in practice. The APPD approach uses
the taxonomy as a decision tree for a systematic search for root causes of
performance problems.

Systematic Experimentation and Diagnostics Approach We introduced
the Systematic Selective Experimentation (SSE) concept for experiment-
based performance evaluation scenarios. The SSE concept addresses the
problem of the contradicting nature of performance measurement data with
respect to accuracy and precision. Because of the monitoring overhead in-
troduced by any measurement probe, in general, it is not possible to obtain
accurate (i.e. low deviation from reality) and precise (i.e. highly detailed)
performance measurement data, at once. The SSE concept overcomes this
trade-off by a set of independent, light-weight experiments. For each ex-
periment, the target application is selectively instrumented with a minimal
monitoring overhead. Correlating measurement data across experiments
allows to derive precise and accurate performance data. The APPD approach
utilizes the SSE concept to systematically iterate the performance problem
taxonomy while conducting specific experiments for individual types of
performance problems.

Problem Diagnostics Specification Languages In order to decouple
the generic processes and algorithms for performance problem diagnostics
from specific application contexts (including technologies, tools, etc.) in
which they are applied, we developed a set of abstraction languages. An
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experimentation description language allows to specify different experi-
ments for performance problem diagnostics. A generic instrumentation and
monitoring description language provides means to specify instrumentation
instructions in an abstract way, without the need of knowing the target system
in advance. Measurement data that is gathered during experimentation is
captured in a common, context-independent format. Finally, a description
language for the specification of concrete measurement environments bridges
the gap between generic diagnostics algorithms and specific application con-
texts.

Detection Heuristics Within the APPD approach, detection heuristics
encapsulate the generic knowledge about the evaluation of individual per-
formance problem types. This includes strategies on experiment executions
as well as analysis algorithms. In this thesis, we introduce a process for
developing accurate and generic detection heuristics. For a selected, versatile
set of SPAs from the previously mentioned performance problem taxonomy,
we created multiple detection strategies and evaluated them by means of
the proposed process. The result is a set of 12 detection heuristics covering
the diagnostics of 12 diverse performance problems, symptoms and root
causes.

We evaluated the APPD approach along seven research hypotheses address-
ing different aspects of the individual contributions of this thesis as well as
the overall approach. The validation goals included the appropriateness of the
performance problem taxonomy and the description languages, the necessity
of the SSE concept, as well as the functionality, efficiency, automation and
practicability of the overall APPD approach. Thereto, we conducted three
end-to-end case studies covering most validation aspects, one controlled
experiment to evaluate the benefits of the SSE concept, and an empirical
study to capture the external users’ perception of the APPD approach.

The case studies showed that the taxonomy reasonably represents the cause-
effect relationships of real performance problems as long as the assumptions
for APPD are met. Hence, the taxonomy correctly guided the diagnostics
process until the root causes of the performance problems have been found.
Furthermore, with the specification languages we were able to describe the
diverse scenarios of the case studies, showing the expressiveness and gen-
eralisability of the proposed languages. By applying the SSE concept on a
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performance evaluation scenario beyond performance problem diagnostics,
we demonstrated the scope of its applicability and evaluated its promise to
overcome the trade-off between accuracy and precision of measurement data.
With respect to the overall APPD approach, the case studies as well as the
empirical study yielded promising results. First of all, APPD is generically
applicable on diverse contexts with different technologies, scales and appli-
cation domains (within enterprise software systems). If all assumptions for
the application of APPD are met (cf. next section), APPD provides accu-
rate diagnostics results that pinpoint root causes of detected performance
problems. As part of the empirical study, external users applied the APPD
approach on an unfamiliar target system. Prevailingly, the users were able to
diagnose the performance problems in the target system with the support of
the diagnostics results of APPD. Most study participants evaluated APPD as
a useful approach for automatic performance problem diagnostics.

9.2. Benefits, Assumptions and Limitations

In this section, we summarize the benefits of the APPD approach as well as
its assumptions and limitations.

9.2.1. Benefits
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Figure 9.1.: Comparing the cumulative manual effort of using APPD and traditional
diagnostics of performance problems
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The main goal of APPD is to reduce the manual effort per project (i.e.
concrete application context) required to conduct performance problem diag-
nostics, by automating tasks which are often repeated manually in practice.
Figure 9.1 qualitatively illustrates the cumulative effort over time (i.e. num-
ber of projects) comparing traditional diagnostics of performance problems
with APPD.

The cumulative effort of the traditional diagnostics approach is proportional
to the number of projects. Upfront, there is no initial effort required, however,
with the traditional diagnostics approach the per-project-effort (i.e. the
slope of the curve) is relatively high due to the tedious, manual tasks (e.g.
execution of performance tests, analyzing measurement data, etc.) which
are recurrent among separate projects. At the beginning of each project,
the effort is low as performance evaluation is often omitted until serious
performance problems emerge, for instance in the operations phase. However,
as soon as a performance problem is observed in operation, a lot of effort
and resources are spent to quickly diagnose and resolve the performance
problems. By contrast, APPD requires an initial investment of manual effort
in order to externalize and formalize expert knowledge including creation
and extension of the performance problem taxonomy and the detection
heuristics. As formalization of knowledge is a conceptually and practically
complex task, presumably, the initial effort associated with that task is
significantly higher than the per-project-effort of the traditional diagnostics
approach. Furthermore, for each project, APPD needs to be configured and
the measurement environment needs to be set up entailing additional per-
project-effort when using APPD. However, assuming that the effort to set up
APPD is significantly smaller than the per-project-effort of the traditional
diagnostics approach, there is a number of projects determining the break
even point where the initial effort of APPD starts to pay off. Thus, in the long
term, APPD is more efficient in terms of effort than the traditional diagnostics
approach. As APPD is intended to be executed fully automatically, once set
up, the manual effort to conduct an APPD run is close to zero. Hence, APPD
allows to conduct performance problem diagnostics on a regular basis while
avoiding high effort and costs for manual investigation.

Automatically executing APPD as part of integration testing (Jorgensen et al.,
1994) and continuous integration (Duvall et al., 2007) makes continuous
diagnostics of performance problems feasible with respect to effort and costs
and, thus, allows to detect performance problems early in the development
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process. Moreover, our approach allows the involved stakeholders to focus
more on the core tasks associated with their roles. For instance, relieving
performance engineers from repeatedly detecting similar performance prob-
lems in different contexts, our approach provides performance engineers
more time to externalize and formalize their knowledge on detection of
performance problems. In turn, this knowledge can be used to improve
APPD.

The precise and implementation-related diagnostics results provided by
APPD enable non-performance experts to understand performance prob-
lems and their root causes. Hence, with the feedback provided by APPD
developers and system operators (who are the actual experts of a concrete
target system) can be directly involved into the problem resolution process,
instead of employing external performance experts who need lead time to
get familiar with the target system.

9.2.2. Assumptions and Limitations

The main assumptions for the applicability of the APPD approach are dis-
cussed in Section 3.3. The focus of the APPD approach is on diagnosing per-
formance problems in the application logic of user-based enterprise software
systems. Consequently, APPD assumes that the programming languages
used to build the target applications support common concepts in the field
of enterprise software development (e.g. database access, messaging, etc.).
APPD is an experiment-based approach, hence, requiring the availability of
a testing environment including corresponding measurement tools as well
as load scripts and load generators. Finally, as occurrences of performance
problems are relative to the performance requirements, APPD assumes per-
formance requirements to be available at the service level. For further details
on the summarized assumptions, we refer to Section 3.3.

Apart from the assumptions described in Section 3.3, there are further as-
sumptions and limitations regarding the APPD approach and its constituent
parts.

Validity of the Performance Problem Taxonomy When using the per-
formance problem taxonomy (Chapter 4) in the scope of APPD or elsewhere
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as a guidance in performance problem diagnostics, it is important to keep
in mind the original intention of the taxonomy. The categorization scheme,
taxonomy design and Performance Problem Evaluation Plan (PPEP) pre-
sented in Chapter 4 aim at supporting a diagnostics process as conducted
by the APPD approach. The causal relations between individual nodes in
the taxonomy are based on observations that are obtained from performance
experiments. Thereby, the stability of the load intensity during individual
experiments is an important assumption. If this assumption is not met, the
taxonomy may not correctly reflect the causal relations between symptoms
and causes of performance problems observed in the corresponding software
system. In the industrial case study (Section 7.4) we observed this effect
leading to an incorrect performance problem detection. Thereby, an oscil-
lating load intensity lead to periodic peaks in the response times making
APPD detect another performance problem type in the target system than
the system actually contained.

Coverage of Performance Problem Types The APPD approach is based
on explicit knowledge that is encoded into the performance problem tax-
onomy (Chapter 4) and the detection heuristics (Chapter 6). Therefore,
the APPD approach can only analyze those performance problems that are
included in the performance problem taxonomy in place, and for which corre-
sponding detection heuristics exist. As both the taxonomy and the detection
heuristics can be easily extended, APPD’s coverage of performance problem
types grows with the knowledge that is externalized and formalized over
time.

Importance of Load Scripts APPD is an approach that builds on existing
artifacts and tools, including measurement tools and load generators as
well as corresponding load scripts. Load scripts significantly affect the
diagnostics results of the APPD approach. In particular, the applied load
scripts determine which parts of the target system are investigated by APPD.
Furthermore, APPD is only able to detect performance problems that emerge
under the applied load intensity and workload mix. Existing performance
problems that are not covered by the load scripts will not be detected by
APPD. Similarly, performance problems that only occur after several weeks
or month of operation of the target system (e.g. the Ramp anti-pattern,
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Table 2.1(b), Chapter 2.4) cannot be detected with performance test durations
in the range of minutes. Thus, the diagnostics quality of APPD highly
depends on the available load scripts. Therefore, it is essential to derive
representative and effective load scripts.

Iterative Application of APPD The case studies conducted in this thesis
(Chapter 7) revealed an important insight regarding the application of the
APPD approach. In the case of multiple simultaneous performance problems,
often only one performance problem dominates the performance of the soft-
ware system while hiding other problems. As APPD diagnoses performance
problems by means of performance observations, in such cases it would
detect only the most severe performance problem and neglect the remaining,
hidden performance problems. Therefore, it is important to apply APPD
iteratively. If APPD diagnoses a performance problem, the problem must
be resolved before APPD can be applied again to reveal further potential
problems.

Applicability of SSE The SSE concept (Section 3.2.1) allows to gather
precise and accurate performance data by conducting independent exper-
iments with selective instrumentation and monitoring. Depending on the
goals of a performance evaluation scenario, the independence of experi-
ments may constitute a drawback. As individual measurement values come
from different experiments, they cannot be correlated individually. Instead,
measurements are set into relation by means of statistical measures like
average, median, etc. In general, with the SSE concept, important correlation
information may get lost in the statistical aggregations. Therefore, before
adopting the SSE for performance evaluation scenarios other than considered
in this thesis (i.e. performance problem diagnostics and resource demand
measurements) the applicability of the SSE concept needs to be evaluated
with respect to the described concern.

9.3. Future Work

In this section, we discuss potential enhancements of the APPD approach
that can be addressed by future work (Section 9.3.1) as well as long-term
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research directions related to the field of performance problem diagnostics
(Section 9.3.2).

9.3.1. Enhancing Automatic Performance
Problem Diagnostics

Explicit Knowledge on Performance Problems The taxonomy
described in this thesis covers some of the most frequent performance prob-
lem types in practice. However, the presented performance problem taxon-
omy is not exhaustive. There are further recurrent performance problem types
that are not included in the presented taxonomy. Many performance prob-
lems are explicitly described in numerous Internet blogs, technical reports
and scientific literature, or constitute implicit knowledge of performance
experts. Conducting a comprehensive survey on recurrent performance prob-
lem types is an essential task for future work to increase the scope of the
APPD approach. A survey would include a thorough literature review as
well as interviews with performance engineers and performance consultants
who experience many different performance problems in different contexts.
The method introduced in this thesis (Chapter 4) can then be applied on the
information gathered in the survey to derive a comprehensive taxonomy on
recurrent performance problem types.

Instrumentation Description Language In this thesis, we introduced an
Instrumentation and Monitoring (IaM) description language that is tailored
for performance evaluation. The language encapsulates domain knowl-
edge about typical instrumentation scopes in the field of enterprise software
systems as well as typical performance measures (i.e. probes) of interest.
Besides the scopes and probes defined in this thesis there may be further
instrumentation places and measures that are required for performance eval-
uation. With respect to the IaM description language there are two potential
tasks for future work. Firstly, a mechanism is required that allows to extend
the IaM language in a non-intrusive way regarding the instrumentation tools
and tool adapters that interpret corresponding model instances. Secondly,
further generic scopes and probes need to be defined as well as their mapping
to different technology specific elements.
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Repository for Tool Adapters A big advantage of the APPD approach is,
that it superimposes existing measurement and load generation tools instead
of replacing them. However, as most existing tools use proprietary configu-
ration languages, they do not support the generic languages introduced in
this thesis. In this work we proposed to provide light-weight adapters for
the tools to enable APPD to use corresponding tools. The existence of a
comprehensive repository of adapters for common measurement tools would
significantly lower the hurdle for using APPD in a new application context.
Creating such a repository and developing adapters for instrumentation, mon-
itoring and load generation tools that are often used for performance testing
is an important part for future work.

Improving Diagnostics Efficiency The APPD approach is intended to
be incorporated into continuous testing, for instance, as part of nightly tests
or weekend tests. On the one hand, the execution time of APPD should be
in a reasonable range of time to be integrated into continuous testing. On
the other hand, the diagnostics duration increases with a larger taxonomy
on performance problems. Therefore, improving the efficiency of the APPD
approach is another aspect of improving the acceptance and applicability
of the approach. This can be accomplished by means of three directions.
Firstly, the duration of experiments can be optimized. Up to now, a domain
expert defines a fix duration for individual performance experiments. This
can be optimized by means of statistics. For instance, experiments can be
terminated if a certain level of confidence in the measurement data is reached.
Secondly, so far, there is no prevention of executing duplicate experiments
(e.g. for different problems under investigation). Hence, a more sophisticated
management of gathered measurement data would allow to more effectively
reuse existing measurement data instead of repeating lengthy performance
tests. Finally, analysis of measurement data can be optimized with respect to
performance by realizing pipelining and parallelization of the corresponding
algorithms.

9.3.2. Long-term Research Directions

Evaluation of Costs and Benefits In this thesis, we evaluated the fea-
sibility, applicability and practicability of the APPD approach. In order to
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evaluate the economic benefits of APPD, the approach needs to be integrated
into real software development projects and has to be examined over a long
period of time. Thereby, two aspects need to be evaluated. Firstly, does
APPD reduce the amount of performance problems that emerge during oper-
ations? And secondly, how big are the ongoing costs to maintain and apply
the APPD approach throughout the lifecycle of a software product. Con-
ducting a comprehensive, empirical study, preferably in multiple contexts,
would provide important insights on the economic benefits of the APPD
approach.

Making Use of DevOps Principles In recent years, DevOps principles
emerged in the field of software engineering, leading to a paradigm shift that
brings software development and operations closer together. DevOps aims
at improving the information flow between development and operations. Up-
to-date and detailed information from the opposing party creates benefits in
both areas, development and operations. In the field of performance problem
diagnostics, DevOps principles can be applied to improve the efficiency
and accuracy of diagnostics. As discussed before, the accuracy of APPD
highly depends on the load scripts used for testing. DevOps principles
may help to derive more representative and effective load scripts. Applying
approaches for automatic workload derivation during operation (Vögele et
al., 2015; van Hoorn et al., 2008; van Hoorn et al., 2014) to derive up-to-date,
representative load scripts for APPD provides for more accurate diagnostics
results. Furthermore, high-level monitoring during operations may provide
initial hypotheses that may more efficiently guide performance problem
diagnostics in the testing phase. For instance, problematic software services
can already be identified or certain types of performance problems can be
already excluded before applying in-depth diagnostics by APPD. In this way,
the diagnostics efficiency of APPD can be significantly increased.

Machine Learning for Performance Problem Diagnostics Detection of
performance problems is basically a binary classification problem. Therefore,
performance problem diagnostics is an interesting application case for the
research field of machine learning. Machine learning techniques have the
advantage to be more generically applicable on different kind of problem
types than explicitly defining detection rules and algorithms for individual
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performance problem types. Primary research results in utilizing machine
learning for the detection of performance anti-patterns have been presented
by Peiris et al., 2014. However, Peiris et al. focused on non-intrusive
detection by means of high level metrics and analyzed only one type of
performance problems. Hence, many research question and challenges are
still open with respect to this field of research:

• Are other performance anti-patterns than considered by Peiris et al.,
2014 also detectable by means of machine learning techniques?

• Are root causes of performance problems detectable by means of de-
tailed performance metrics when using machine learning techniques?

• What is an effective way of learning performance problems and where
to get the huge amount of required training data from?

Assuming that machine learning techniques can be effectively applied to
detect different types of performance anti-patterns, integrating the APPD
approach with corresponding techniques is an interesting research direction
for future work. Detection heuristics that, up to now, need to be explicitly de-
signed and evaluated by performance experts could be, for instance, replaced
by self-learning algorithms.

Transfer to Other Domains In this thesis, our focus was on the perfor-
mance of enterprise software systems. Though we applied the APPD ap-
proach solely for performance problem diagnostics within the scope of enter-
prise software, evaluating its applicability to other domains is an interesting
direction for future research. The core concepts of the APPD approach, such
as the causal problem taxonomy, systematic search and systematic, selective
experimentation, are per se generic. The scope of these concepts can be
evaluated along two dimensions. Firstly, it is an interesting question which
aspects of APPD need to be adopted to apply it on a different domain of
applications (e.g. desktop applications, embedded systems, etc.). Presum-
ably, other application domains have other types of performance problems
and anti-patterns. Hence, the taxonomy on performance problems and corre-
sponding detection heuristics needs to be adopted to corresponding domains.
Furthermore, in other domains, the notion of load differs to the domain of en-
terprise software, impacting the way of conducting performance experiments.
All in all, interesting research questions arise when transferring the APPD
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approach to other domains of software. Furthermore, investigating whether
the concepts of APPD can be used to diagnose problems regarding other
quality of service dimensions (e.g. reliability or security) is an interesting
direction for future work.

Performance Problem Resolution Performance problem resolution is a
complementary discipline to diagnostics of performance problems. Though
sometimes solutions to performance problems are trivial, in most cases,
performance problem resolution is a highly complex task. Often it is not
clear which solution alternatives exist and whether certain alternatives actu-
ally resolve detected problems. Hence, supporting developers in resolving
performance problems is an interesting research field that is closely related
to problem diagnostics. Heger, 2015 introduces Vergil, a systematic ap-
proach for guiding developers in resolving performance problems. Vergil
is a semi-automated approach that evaluates the impact of different solu-
tion alternatives and provides a ranking of solutions. An open question is,
whether sophisticating solutions to performance problems can be found in a
fully automatic way. Automatic, pattern-based application and evaluation of
solutions (e.g. by means of code manipulation) is an interesting direction for
future work.
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A. Appendix

A.1. Algorithms for Detection Heuristics

A.1.1. Performance Problem Heuristic

Algorithm 2 Detection Strategy for a Performance Problem
Input:

D // Dataset of Dataset Type, containing the measurement data
ρ // response time requirements threshold (from Measurement Envi-
ronment (ME) Description model)
π // percentile for ρ (from ME Description model)

5: Output:

L // set of system services violating the requirements
Init:

L ← ∅

Algorithm:

10: O ← query(’SELECT DISTINCT Location FROM D’)
for all ω ∈ O do
V ← query(’SELECT Response Time FROM D WHERE Location=ω’)
υπ ← percentile(V , π)
if υπ > ρ then

15: L ← L ∪ {ω}
end if

end for

return L
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A.1.2. Application Hiccups Heuristic

A.1.2.1. Core Strategy

Algorithm 3 Application Hiccups Core Detection Strategy
Input:

D // Dataset of Dataset Type, containing the measurement data
ρ // response time requirements threshold (from ME Description
model)
π // cumulative probability for ρ (from ME Description model)

5: φ // maximum allowed time proportion of hiccups
Output:

L // set of system services that exhibit a hiccup behaviour
Init:

L ← ∅

10: Algorithm:

O ← query(’SELECT DISTINCT Location FROM D’)
for all ω ∈ O do
P ← query(’SELECT Timestamp, Response Time FROM D WHERE

Location=ω ORDER BY Timestamp’)
H ← findHiccups(P, ρ, π)

15: δ ← experimentDuration(P)
β ← cumulativeHiccupDuration(H )
ifH , ∅ AND β < δφ then
L ← L ∪ {ω}

end if
20: end for

return L
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A.1.2.2. Moving Percentile Strategy

Algorithm 4 findHiccups: Moving Percentile Strategy
Input:

P // response time series
ρ // response time req. threshold (from ME Description)
π // cumulative probability for ρ (from ME Description model)

5: χ // window size for moving window
Output:

H // set of detected hiccups
Init:

H ← ∅

10: θ ← NULL // current hiccup
Algorithm:

M ← calculateMovingPercentileTimeSeries(P, χ, π)
for all µ ∈ M do

if µ[’Response Time’] > ρ AND θ = NULL then // start of new
hiccup

15: θ ← new hiccup
set µ[’Timestamp’] as start of θ

else if (µ[query(’Response Time’)] ≤ ρ OR µ is last element) AND
θ , NULL then // end of hiccup

set µ[’Timestamp’] as end of θ
H ← H ∪ {θ}

20: θ ← NULL
end if

end for

returnH
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A.1.2.3. Buckets Strategy

Algorithm 5 findHiccups: Bucket Strategy
Input:

P // response time series
ρ // response time req. threshold (from ME Description)
π // cumulative probability for ρ (from ME Description model)

5: Output:

H // set of detected hiccups
Init:

H ← ∅

θ ← NULL // current hiccup
10: Algorithm:

τ ← meanInterRequestTime(P)
ξ ← min(50 ∗ τ, 5sec) // bucket width
B ← divideIntoBuckets(P, ξ)
for all bucket β ∈ B do

15: if β violates requirements (ρ, π) AND θ = NULL then // start of
new hiccup

θ ← new hiccup
set start of θ to the left border of β

else if (β meets requirements (ρ, π) OR β is last bucket) AND θ ,
NULL then // end of hiccup

set end of θ to the right border of β
20: H ← H ∪ {θ}

θ ← NULL
end if

end for

25: returnH
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A.1.3. The Ramp Heuristic

A.1.3.1. Linear Regression Strategy

Algorithm 6 The Ramp: Linear Regression Strategy
Input:

D // Dataset of defined Dataset Type, containing the measurement
data
τ // threshold for the linear regression slope

5: Output:

L // set of system services exhibiting a ramp behaviour

Init:

L ← ∅

10:
Algorithm:

O ← query(’SELECT DISTINCT Location FROM D)’)
for all ω ∈ O do
P ← query(’SELECT Timestamp, Response Time FROM D WHERE

Location=ω’)
15: κ ← linearRegressionSlope(P)

if κ > τ then
L ← L ∪ {ω}

end if
end for

20:
return L
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A.1.3.2. Direct Growth Strategy

Algorithm 7 The Ramp: Direct Growth Strategy
Input:

D // Dataset of defined Dataset Type, containing the measurement
data
α // significance level for t-test

5: Output:

L // set of system services exhibiting a ramp behaviour

Init:

L ← ∅

10:
Algorithm:

O ← query(’SELECT DISTINCT Location FROM D’)
for all ω ∈ O do
P ← query(’SELECT Timestamp, Response Time FROM D WHERE

Location=ω’)
15: R1 ← first half of response times from P

R2 ← second half of response times from P
µ1 ← mean(R1) , µ2 ← mean(R2)
B1 ← bootstrap(R1) , B2 ← bootstrap(R2)
p← t-test(B1,B2)

20: if p < α AND µ1 < µ2 then
L ← L ∪ {ω}

end if
end for

25: return L
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A.1.3.3. Time Window Strategy

Algorithm 8 The Ramp: Time Window Strategy
Input:

D // Dataset of Dataset Type, containing the measurement data
α // significance level for t-test
Output: L // set of system services exhibiting a ramp

5: Init: L ← ∅

Algorithm:

O ← query(’SELECT DISTINCT Location FROM D’)
S ← query(’SELECT DISTINCT Step FROM D ORDER BY Step’)
for all ω ∈ O do

10: ν ← 0
for all η ∈ S do
Rη ← query(’SELECT Response Time FROM D WHERE Location=ω

AND Step=η’)
if not first iteration then
µη ← mean(Rη) , µη−1 ← mean(Rη−1)

15: Bη ← bootstrap(Rη) , Bη−1 ← bootstrap(Rη−1)
p← t-test(Bη,Bη−1)
if p < α AND µη−1 < µη then ν ← ν + 1
end if

end if
20: Rη−1 ← Rη

end for
if ν = 3 then L ← L ∪ {ω}
end if

end for
25: return L
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A.1.4. Continuously Violated Requirements Heuristic

A.1.4.1. Core Strategy

Algorithm 9 Continuously Violated Requirements Core Detection Strategy
Input:

D // Dataset of defined Dataset Type, containing the measurement
data
ρ // response time requirements threshold (from ME Description
model)
π // cumulative probability for ρ (from ME Description model)

5:
Output:

L // set of system services that continuously violate requirements

Init:

10: L ← ∅

Algorithm:

O ← query(’SELECT DISTINCT Location FROM D’)
for all ω ∈ O do

15: P ← query(’SELECT Timestamp, Response Time FROM D WHERE

Location=ω ORDER BY Timestamp’)
δ ← evaluateContinuousViolation(P, ρ, π)
if δ then
L ← L ∪ {ω}

end if
20: end for

return L
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A.1.4.2. Moving Percentile Strategy

Algorithm 10 evaluateContinuousViolation: Moving Percentile Strategy
Input:

P // response time series
ρ // response time requirements threshold (from ME Description
model)
π // cumulative probability for ρ (from ME Description model)

5: χ // window size for moving window

Output:

boolean value indicating whether the passed response time series
continuously violates the performance requirements

10:
Algorithm:

M ← calculateMovingPercentileTimeSeries(P, χ, π)
for all µ ∈ M do

if µ[’Response Time’] < ρ then
15: return false

end if
end for

return true
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A.1.4.3. Buckets Strategy

Algorithm 11 evaluateContinuousViolation: Bucket Strategy
Input:

P // response time series
ρ // response time requirements threshold (from ME Description
model)
π // cumulative probability for ρ (from ME Description model)

5: φ // minimum proportion of buckets that violate performance require-
ments

Output:

boolean value indicating whether the passed response time series
continuously violates the performance requirements

10:
Algorithm:

ι← meanInterRequestTime(P)
ξ ← 50 ∗ iota // bucket width
B ← divideIntoBuckets(P, ξ)

15: η ← 0
for all bucket β ∈ B do

if β violates requirements (ρ, π) then
η ← η + 1

end if
20: end for

if η > φ ∗ sizeO f (B) then
return true

else
return false

25: end if
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A.1.5. The Traffic Jam Heuristic

A.1.5.1. Linear Regression Strategy

Algorithm 12 Traffic Jam: Linear Regression Detection Strategy
Input:

D // Dataset of defined Dataset Type, containing the measurement
data
τ // threshold for the linear regression slope

5: Output:

L // set of system services containing a Traffic Jam

Init:

L ← ∅

10:
Algorithm:

O ← query(’SELECT DISTINCT Location FROM D’)
for all ω ∈ O do
Pu ← query(’SELECT #Users, Response Time FROM D WHERE

Location=ω’)
15: κ ← linearRegressionSlope(Pu)

if κ > τ then
L ← L ∪ {ω}

end if
end for

20:
return L
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A.1.5.2. t-Test Strategy

Algorithm 13 Traffic Jam: t-Test Detection Strategy
Input:

D // Dataset of Dataset Type, containing the measurement data
α // significance level for t-test , (ρ, π) // perf. req.
Output:

5: L // set of system services exhibiting a Traffic Jam behaviour
I // load under which performance requirements are violated
Init: L ← ∅ I ← ∅

Algorithm:

O ← query(’SELECT DISTINCT Location FROM D’)
10: U ← query(’SELECT DISTINCT Number of Users FROM D’)

for all ω ∈ O do ϑ ← 0 , ν ← 0 , η ← 1
for all υ ∈ U do
Rη ← query(’SELECT Response Time FROM D WHERE Location=ω

AND #Users=υ’)
if Rη violates requirements (ρ, π) then

15: ϑ ← ϑ + 1 , I ← I ∪ {υ}
end if
if not first iteration then
µη ← mean(Rη), µη−1 ← mean(Rη−1),p← t-test(Bη,Bη−1)
Bη ← bootstrap(Rη) , Bη−1 ← bootstrap(Rη−1)

20: if p < α AND µη−1 < µη then ν ← ν + 1 else ν ← 0 end if
end if
Rη−1 ← Rη , η ← η + 1

end for
if ν = ϑ then L ← L ∪ {ω} end if

25: end for
return L,I
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A.1.6. One Lane Bridge Heuristic

A.1.6.1. CPU Threshold Strategy

Algorithm 14 One Lane Bridge: CPU Threshold Detection Strategy
Input:

DCPU // CPU utilization dataset
θ // CPU utilization threshold
Output:

5: β // boolean value indicating whether the Traffic Jam services are
One Lane Bridges
Init:

β ← true
Algorithm:

C ← query(’SELECT DISTINCT Node FROM DCPU’)
10: U ← query(’SELECT DISTINCT Number of Users FROM DR’)

for all ζ ∈ C do
for all υ ∈ U do
T ← query(’SELECT Utilization FROM DCPU WHERE Node=ζ AND

#Users=υ’)
U ← mean(T )

15: if U > θ then
β ← false

end if
end for

end for
20: return β
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A.1.6.2. Queueing Theory Strategy

Algorithm 15 One Lane Bridge: Queueing Theory Detection Strategy

Input: DR // response time dataset , DCPU // CPU util. dataset
Output: L // set of locations exhibiting a OLB
Init: L ← ∅

Algorithm:

5: O ← query(’SELECT DISTINCT Location FROM DR’)
U ← query(’SELECT DISTINCT Number of Users FROM DR’)
C ← query(’SELECT DISTINCT Node FROM DCPU’)
ν ← query(’COUNT(SELECT DISTINCT Node FROM DCPU)’)
for all ω ∈ O do %s ← 0, β ← false

10: for all υ ∈ U do
R ← query(’SELECT Response Time FROM DR WHERE Location=ω

AND #Users=υ’)
if υ = 1 then %s ← max( mean(R) , 15 )
else
%m ← mean(R)

15: for all ζ ∈ C do
T ← query(’SELECT Utilization FROM DCPU WHERE Node=ζ

AND #Users=υ’)
U ← mean(T ), cE ← erlangC(ν,U)
τω,υ,ζ = 1.1 ∗ %s

nC
1

1−U cE + %s
if %m > τω,υ,ζ then β ← true end if

20: end for
end if

end for
if β = true then L ← L ∪ {ω} end if

end for
25: return L
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A.1.7. Database Congestion Heuristic

A.1.7.1. Fix Threshold Strategy

Algorithm 16 Database Congestion: Fix Threshold Strategy

Input: DCPU // CPU dataset , DDB // DB dataset
I // load under which perf. requirements are violated
α // significance for t-test tCPU // CPU util. threshold
Output: β // boolean indicating a DB congestion

5: Init: β ← false
Algorithm:

C ← query(’SELECT DIST. Node FROM DCPU’)
U ← query(’SELECT DIST. #Users FROM DCPUORDERBY#Users’)
for all ζ ∈ C do

10: υp ← NULL, s ← 0
for all υ ∈ U do
T ← query(’SELECT Utilization FROM DCPU WHERE Node=ζ AND

#Users=υ’)
U ← mean(T )
if U > tCPU then β ← true end if

15: if υp , NULL AND υ ∈ I then
[W,Wp] ← query(’SELECT #Lock Waits FROM DDB WHERE

Node=ζ AND #Users=[υ, υp]’)
[Q,Qp] ← query(’SELECT Waiting Time FROM DDB WHERE

Node=ζ AND #Users=[υ, υp]’)
Q ′ ← pairwiseDifferences(Q) / pairwiseDifferences(W)
Q ′p ← pairwiseDifferences(Qp) / pairwiseDifferences(Wp)

20: B ← bootstrap(Q ′), Bp ← bootstrap(Q ′p), m ← mean(B),
mp ← mean(Bp), p← t-test(B,Bp)

if p < α AND mp < m then s ← s + 1 end if
end if
υp ← υ

end for
25: if s = |I | then β ← true end if

end for
return β
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A.1.7.2. Queueing Theory Strategy

Algorithm 17 Database Congestion: Queueing Theory Strategy

Input: DCPU // CPU dataset , DDB // DB dataset
I // load under which perf. requirements are violated
fR // rel. RT increase factor , α // significance for t-test
Output: β // boolean indicating whether a DB congestion exists

5: Init: β ← false
Algorithm:

C ← query(’SELECT DIST. Node FROM DCPU’)
U ← query(’SELECT DIST. #Users FROM DCPUORDERBY#Users’)
for all ζ ∈ C do

10: nC ← numCores(DCPU, ζ) , υp ← NULL , s ← 0
for all υ ∈ U do
T ← query(’SELECT Utilization FROM DCPU WHERE Node=ζ AND

#Users=υ’)
mU ← mean(T ) , tqt

CPU
← utilizationForRTFactor( fR, nC)

if mU > tqt
CPU

then β ← true end if
15: if υp , NULL AND υ ∈ I then

[W,Wp] ← query(’SELECT #Lock Waits FROM DDB WHERE

Node=ζ AND #Users=[υ, υp]’)
[Q,Qp] ← query(’SELECT Waiting Time FROM DDB WHERE

Node=ζ AND #Users=[υ, υp]’)
Q ′ ← pairwiseDifferences(Q) / pairwiseDifferences(W)
Q ′p ← pairwiseDifferences(Qp) / pairwiseDifferences(Wp)

20: B ← bootstrap(Q ′), Bp ← bootstrap(Q ′p), m ← mean(B),
mp ← mean(Bp), p← t-test(B,Bp)

if p < α AND mp < m then s ← s + 1 end if
end if
υp ← υ

end for
25: if s = |I | then β ← true end if

end for
return β
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A.1.8. The Stifle Heuristic

Algorithm 18 Stifle Detection Strategy
Input:

DR // Response time dataset
DSQL // SQL queries dataset
Output:

5: S // set of system services and corresponding SQL queries constituting
a Stifle anti-pattern
Init:

S ← ∅

Algorithm:

DC ← correlate( DR,DSQL)
10: O ← query(’SELECT DISTINCT Location FROM DC’)

for all ω ∈ O do
Q ← query(’SELECT Query FROM DC WHERE Location=ω’)
Q ′ ← clusterQueries(Q)
for all ζ ∈ Q ′ do

15: if |ζ | > 1 then
S ← (ω, ζ )

end if
end for

end for
20:

return S

409



A. Appendix

A.1.9. Expensive Database Call Heuristic

Algorithm 19 Expensive Database Call Detection Strategy
Input:

DR // RT dataset , DQ // DB dataset , DT // tracing dataset
V = {(ςi, %i, ϕi)}i // set of service name (ςi), single-user response
time (%i), and high load response times (ϕi) tuples for all system services
that have been detected as a Traffic Jam
τ // threshold for the query response time proportion compared to the
corresponding system service time

5: Output:

S // set of system services and corresponding SQL queries constituting
an Expensive Database Call anti-pattern
Init: S ← ∅

Algorithm:

C ← correlateServicesAndQueries(DR,DQ,DT )
10: for all (ς, %, ϕ) ∈ V do

Q ← query(’SELECT DISTINCT Query FROM C WHERE DR.Location=ς’)
for all η ∈ Q do
νs ← query(’SELECT mean(Response Time) FROM C WHERE

DQ.Query=η AND #Users=1’)
νh ← query(’SELECT mean(Response Time) FROM C WHERE

DQ.Query=η AND #Users=maxLoad’)
15: if νhϕ ≥ τ AND νs

% < νh
ϕ then

S ← S ∪ {(ς, η)}
end if

end for
end for

20: return S
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A.1.10. Excessive Messaging Heuristic

A.1.10.1.Network Utilization Threshold Strategy

Algorithm 20 Excessive Messaging: Network Utilization Threshold Strat-
egy

Input:

DNW // Network I/O dataset , DMS // Messaging dataset
I // load under which performance requirements are violated
α // significance level for t-test

5: Output: β // boolean indicating whether Excessive Messaging exists
Init: π ← 1452 // TCP packet size , β ← false
Algorithm:

U ← query(’SELECT DISTINCT #Users FROM DNW ORDER BY #Users’)
N ← query(’SELECT DISTINCT Node, Interface Name FROM DNW ’)

10: µ← mean(query(’SELECT Avg. Message Size FROM DMS’))
for all ν ∈ N do
χ ← query(’SELECT DISTINCT Speed FROM DNW WHERE Node=ν[Node]

AND Interface Name=ν[Interface Name]’)
ρ←

χ
π // TCP packet rate

if µ < π then τ ← 0.9ρ
(
b πµ c + 1

)
µ
2 // max TCP throughput

15: else τ ← 0.9Bw

end if
for all υ ∈ U do T ← query(’SELECT BytesReceived,

BytesTransferred, Timestamp FROM DNW WHERE Node=ν[Node] AND

Interface Name=ν[Interface Name] AND #Users=υ’)
θr ←

max(T [BytesReceived])−min(T [BytesReceived])
max(T [Timestamp])−min(T [Timestamp])

θt ←
max(T [BytesTransferred])−min(T [BytesTransferred])

max(T [Timestamp])−min(T [Timestamp])
20: θ ← max(θr, θt )

if θ > τ then β ← true end if
end for

end for
return β AND queSizeAnalysis(DMS ,I,α) // cf. Algorithm 21
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Algorithm 21 Excessive Messaging: queue size analysis
Input:

DMS // Messaging statistics dataset
I // load intensities under which performance requirements are vio-
lated
α // significance level for t-test

5: Output:

β // boolean value indicating whether Excessive Messaging is present
Init:

β ← false
for all χ ∈ Q do

10: υp ← NULL , σ ← 0
for all υ ∈ U do

if υp , NULL AND υ ∈ I then
S ← query(’SELECT Queue Size FROM DMS WHERE Queue Name=χ

AND #Users=υ’)
Sp ← query(’SELECT Queue Size FROM DMS WHERE Queue

Name=χ AND #Users=υp’)
15: B ← bootstrap(S), Bp ← bootstrap(Sp), m ←mean(B),

mp ← mean(Bp)
p← t-test(B,Bp)
if p < α AND mp < m then
σ ← σ + 1

end if
20: end if

υp ← υ
end for
if σ = |I | then
β ← true

25: end if
end for
return β
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A.1.10.2.Network Utilization Stagnation Strategy

Algorithm 22 Excessive Messaging: Network Utilization Stagnation Strat-
egy

Input:

DNW // Network I/O dataset , DMS // Messaging dataset
I // load under which performance requirements are violated
α // significance for t-test , ε // increase in the utilization

5: Output: β // boolean indicating whether Excessive Messaging exists
Init: π ← 1452 // TCP packet size , β ← false
Algorithm:

U ← query(’SELECT DIST. #Users FROM DNW ORDER BY #Users’)
N ← query(’SELECT DIST. Node, Interface Name FROM DNW ’)

10: µ← mean(query(’SELECT Avg. Message Size FROM DMS’))
for all ν ∈ N do
σ ← 0, θp ← NULL
for all υ ∈ U do
T ← query(’SELECT BytesReceived, BytesTransferred, Timestamp

FROM DNW WHERE Node=ν[Node] AND Interface Name=ν[Interface Name]

AND #Users=υ’)
15: θr ←

max(T [BytesReceived])−min(T [BytesReceived])
max(T [Timestamp])−min(T [Timestamp])

θt ←
max(T [BytesTransferred])−min(T [BytesTransferred])

max(T [Timestamp])−min(T [Timestamp])
θ ← max(θr, θt )
if θp , NULL then

if θ > θp + ε then σ ← σ + 1 end if
20: end if

θp ← θ
end for
Bw ← query(’SELECT DISTINCT Speed FROM DNW WHERE

Node=ν[Node] AND Interface Name=ν[Interface Name]’)
if σ = |I | AND θ > 1

2 Bw then β ← true end if
25: end for

return β AND queSizeAnalysis(DMS ,I,α) // cf. Algorithm 21
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A.1.10.3.Message Throughput Strategy

Algorithm 23 Excessive Messaging: Message Throughput Detection Strat.
Input:

DNW // Network I/O dataset
DMS // Messaging statistics dataset
I // load intensities under which performance requirements are vio-
lated

5: α // significance level for t-test
Output:

β // boolean indicating whether Excessive Messaging exists
Init: β ← false, µp ← NULL
Algorithm:

10: U ← query(’SELECT DISTINCT #Users FROM DMS ORDER BY #Users’)
for all υ ∈ U do
M ← query(’SELECT Message Count, Timestamp FROM DMS’)
µmin ← min(M[Message Count]), µmax ←

max(M[Message Count])
σ ← 0

15: M ← query(’SELECT Message Count, Timestamp FROM DMS’)
τmin ← min(M[Timestamp]), τmax ← max(M[Timestamp])
µ←

µmax−µmin

τmax−τmin

if µp , NULL then
if µ > µp + ε then

20: σ ← σ + 1
end if

end if
µp ← µ

end for
25: if σ = |I | then

β ← true
end if
return β AND queSizeAnalysis(DMS ,I,α) // cf. Algorithm 21
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A.1.11. The Blob Heuristic

A.1.11.1.Mean Analysis Strategy

Algorithm 24 The Blob: Mean Analysis Strategy
Input:

DM // Messaging dataset
Output:

B // set of components that are detected as Blob components
5: Init:

B ← ∅

Algorithm:

C ← query(’SELECT DISTINCT Component ID FROM DM’)
M = {νζ }ζ ∈C ← correlateMessageTimes(DM ) // assigns message
transmission times to the involved components

10: µ← mean(M)
σ ← standardDeviation(M)
τ ← µ + 3σ
for all ζ ∈ C do
ν ←M(ζ )

15: if ν > τ then
B ← B ∪ {ζ }

end if
end for

20: return B
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A.1.11.2.Component Exclusion Analysis Strategy

Algorithm 25 The Blob: Component Exclusion Analysis Strategy
Input:

DM // Messaging dataset
Output:

B // set of components that are detected as Blob components
5: Init: B ← ∅, P ← ∅

Algorithm:

C ← query(’SELECT DISTINCT Component ID FROM DM’)
M =← correlateMessageTimes(DM ) // assigns message transmis-
sion times to the involved components
ω ←

∑
ν∈M (ν)

10: for all ζ ∈ C do
Mζ ←

⋃
c∈C\{ζ } (M (c))

ωζ ←
∑
ν∈Mζ

(ν)
πζ ← 1 − ωζ

ω // messaging contribution of component ζ
P ← P ∪ (ζ, π)

15: end for
for all (ζ, π) ∈ P do
Pζ ← P \ {(ζ, π)}
µζ ← mean(Pζ )
σζ ← standardDeviation(Pζ )

20: τζ ← µζ + 3σζ
if π > τζ then
B ← B ∪ {ζ }

end if
end for

25: return B
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A.1. Algorithms for Detection Heuristics

A.1.12. Empty Semi Trucks Heuristic

Algorithm 26 Empty Semi Trucks Detection Strategy
Input:

DT // tracing dataset
DMS // message size dataset
Output:

5: E // set of traces pointing to repeated message transmission, indicating
saving potential in data transmission overhead
Init:

E ← ∅

Algorithm:

T ← extractTraceInstances(DT )
10: T ← addMessagingInformation(T ,DMS) // annotates each message

dispatch operation call with the size of the transmitted message
T ← identifyAndAggregateLoops(T )
C ← clusterTraces(T )
for all ζ ∈ C do

if ζ contain message dispatch method in a loop then
15: ν ← numMessagesSent(ζ)

σ ← avgMessageSize(ζ)
β ← avgMessagePayloadSize(ζ)
π ← (ν − 1)(σ − β) // saving potential
E ← E ∪ {(ζ, π)}

20: end if
end for

sort E descending by saving potential π
return E
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A. Appendix

A.2. Additional Information on Validation

A.2.1. Case Study: TPC-W
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Table A.1.: TPC-W case study Part I: details on measurement environment

418



A.2. Additional Information on Validation

C
PU

M
em

or
y

(R
A

M
)

O
pe

ra
tin

g
Sy

st
em

R
el

ev
an

t
A

pp
lic

at
io

ns
N

et
w

or
k

In
te

rf
ac

e

M
ea

su
re

m
en

t
N

od
e

In
te

lR ©
C

or
eT

M

i7
26

40
M

,2
.8

G
hz

4
vi

rt
ua

lc
or

es
8G

B
W

in
do

w
s

7
64

bi
t

Ja
va

7.
0.

45
R

B
E

fo
rT

PC
-W

D
yn

am
ic

Sp
ot

te
r

E
th

er
ne

t
10

0M
bi

t

A
pp

lic
at

io
n

N
od

es
1-

3

In
te

lR ©
C

or
eT

M

2
D

uo
E

84
00

,3
.0

G
hz

2
vi

rt
ua

lc
or

es
4G

B
U

bu
nt

u
12

.0
4.

3
Ja

va
7.

0.
45

A
pa

ch
e

To
m

ca
t7

.0
.3

0
A

IM

E
th

er
ne

t
10

0M
bi

t

D
at

ab
as

e
N

od
es

1-
3

In
te

lR ©
X

eo
nT

M

L
56

30
,2

.1
3G

hz
16

vi
rt

ua
lc

or
es

16
G

B
L

in
ux

E
nt

er
pr

is
e

Se
rv

er
11

SP
2

64
bi

t

Ja
va

7.
0.

45
M

yS
Q

L
5.

6.
23

,I
nn

oD
B

A
IM

E
th

er
ne

t
10

0M
bi

t

L
oa

d
D

ri
ve

r
N

od
e

In
te

lR ©
C

or
eT

M

i7
26

00
,3

.4
G

hz
8

vi
rt

ua
lc

or
es

16
G

B
W

in
do

w
s

7
64

bi
t

Ja
va

7.
0.

45
H

P
L

oa
dR

un
ne

rT
M

11
.5

2
E

th
er

ne
t

10
0M

bi
t

M
es

sa
gi

ng
N

od
e

In
te

lR ©
X

eo
nT

M

L
56

30
,2

.1
3G

hz
16

vi
rt

ua
lc

or
es

16
G

B
L

in
ux

E
nt

er
pr

is
e

Se
rv

er
11

SP
2

64
bi

t

Ja
va

7.
0.

45
A

pa
ch

e
A

ct
iv

eM
Q

5.
9

A
IM

E
th

er
ne

t
10

0M
bi

t

C
on

tr
ol

le
r

N
od

e

In
te

lR ©
C

or
eT

M

i7
26

00
,3

.4
G

hz
8

vi
rt

ua
lc

or
es

16
G

B
U

bu
nt

u
12

.0
4.

3
Ja

va
7.

0.
45

A
pa

ch
e

To
m

ca
t7

.0
.3

0
A

IM

E
th

er
ne

t
10

0M
bi

t

Table A.2.: TPC-W case study Part II: details on measurement environment
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A. Appendix

A.2.2. Case Study: NopCommerce
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Table A.3.: nopCommerce case study: details on measurement environment
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