1,925 research outputs found

    Indoor Occupancy Detection Based on Environmental Data Using CNN-XGboost Model:Experimental Validation in a Residential Building

    Get PDF
    Indoor occupancy prediction can play a vital role in the energy-efficient operation of building engineering systems and maintaining satisfactory indoor climate conditions at the lowest possible energy use by operating these systems on the basis of occupancy data. Many methods have been proposed to predict occupancy in residential buildings according to different data types, e.g., digital cameras, motion sensors, and indoor climate sensors. Among these proposed methods, those with indoor climate data as input have received significant interest due to their less intrusive and cost-effective approach. This paper proposes a deep learning method called CNN-XGBoost to predict occupancy using indoor climate data and compares the performance of the proposed method with a range of supervised and unsupervised machine learning algorithms plus artificial neural network algorithms. The comparison is performed using mean absolute error, confusion matrix, and F1 score. Indoor climate data used in this work are CO2, relative humidity, and temperature measured by sensors for 13 days in December 2021. We used inexpensive sensors in different rooms of a residential building with a balanced mechanical ventilation system located in northwest Copenhagen, Denmark. The proposed algorithm consists of two parts: a convolutional neural network that learns the features of the input data and a scalable end-to-end tree-boosting classifier. The result indicates that CNN-XGBoost outperforms other algorithms in predicting occupancy levels in all rooms of the test building. In this experiment, we achieved the highest accuracy in occupancy detection using inexpensive indoor climate sensors in a mechanically ventilated residential building with minimum privacy invasion

    Machine learning for smart building applications: Review and taxonomy

    Get PDF
    © 2019 Association for Computing Machinery. The use of machine learning (ML) in smart building applications is reviewed in this article. We split existing solutions into two main classes: occupant-centric versus energy/devices-centric. The first class groups solutions that use ML for aspects related to the occupants, including (1) occupancy estimation and identification, (2) activity recognition, and (3) estimating preferences and behavior. The second class groups solutions that use ML to estimate aspects related either to energy or devices. They are divided into three categories: (1) energy profiling and demand estimation, (2) appliances profiling and fault detection, and (3) inference on sensors. Solutions in each category are presented, discussed, and compared; open perspectives and research trends are discussed as well. Compared to related state-of-the-art survey papers, the contribution herein is to provide a comprehensive and holistic review from the ML perspectives rather than architectural and technical aspects of existing building management systems. This is by considering all types of ML tools, buildings, and several categories of applications, and by structuring the taxonomy accordingly. The article ends with a summary discussion of the presented works, with focus on lessons learned, challenges, open and future directions of research in this field

    APPLICATIONS OF MACHINE LEARNING AND COMPUTER VISION FOR SMART INFRASTRUCTURE MANAGEMENT IN CIVIL ENGINEERING

    Get PDF
    Machine Learning and Computer Vision are the two technologies that have innovative applications in diverse fields, including engineering, medicines, agriculture, astronomy, sports, education etc. The idea of enabling machines to make human like decisions is not a recent one. It dates to the early 1900s when analogies were drawn out between neurons in a human brain and capability of a machine to function like humans. However, major advances in the specifics of this theory were not until 1950s when the first experiments were conducted to determine if machines can support artificial intelligence. As computation powers increased, in the form of parallel computing and GPU computing, the time required for training the algorithms decreased significantly. Machine Learning is now used in almost every day to day activities. This research demonstrates the use of machine learning and computer vision for smart infrastructure management. This research’s contribution includes two case studies – a) Occupancy detection using vibration sensors and machine learning and b) Traffic detection, tracking, classification and counting on Memorial Bridge in Portsmouth, NH using computer vision and machine learning. Each case study, includes controlled experiments with a verification data set. Both the studies yielded results that validated the approach of using machine learning and computer vision. Both case studies present a scenario where in machine learning is applied to a civil engineering challenge to create a more objective basis for decision-making. This work also includes a summary of the current state-of-the -practice of machine learning in Civil Engineering and the suggested steps to advance its application in civil engineering based on this research in order to use the technology more effectively
    • …
    corecore