46 research outputs found

    Automatic March Tests Generations for Static Linked Faults in SRAMs

    Get PDF
    Static linked faults are considered an interesting class of memory faults. Their capability of influencing the behavior of other faults causes the hiding of the fault effect and makes test algorithm design a very complex task. A large number of March tests with different fault coverage have been published and some methodologies have been presented to automatically generate March tests. In this paper we present an approach to automatically generate March tests for static linked faults. The proposed approach generates better test algorithms then previous, by reducing the test lengt

    Automatic March Tests Generations for Static Linked Faults in SRAMs

    Get PDF
    Static linked faults are considered an interesting class of memory faults. Their capability of influencing the behavior of other faults causes the hiding of the fault effect and makes test algorithm design a very complex task. A large number of March tests with different fault coverage have been published and some methodologies have been presented to automatically generate March tests. In this paper we present an approach to automatically generate March tests for static linked faults. The proposed approach generates better test algorithms then previous, by reducing the test lengt

    Automatic March tests generation for multi-port SRAMs

    Get PDF
    Testing of Multi-Port (MP) SRAMs requires special tests since the multiple and simultaneous access can sensitize faults that are different from the conventional single-port memory faults. In spite of their growing use, few works have been published on testing MP memories. In addition, most of the published work concentrated only on two ports memories (i.e., 2P memories). This paper presents a methodology to automatically generate march tests for MP memories. It is based on generations of single port memory march test firstly, then extending it to test a generic MP SRAMs. A set of experimental results shows the effectiveness of the proposed solutio

    Automatic March tests generation for static and dynamic faults in SRAMs

    Get PDF
    New memory production modern technologies introduce new classes of faults usually referred to as dynamic memory faults. Although some hand-made March tests to deal with these new faults have been published, the problem of automatically generate March tests for dynamic faults has still to be addressed, in this paper we propose a new approach to automatically generate March tests with minimal length for both static and dynamic faults. The proposed approach resorts to a formal model to represent faulty behaviors in a memory and to simplify the generation of the corresponding tests

    Memory Fault Simulator for Static-Linked Faults

    Get PDF
    Static linked faults are considered an interesting class of memory faults. Their capability of influencing the behavior of other faults causes the hiding of the fault effect and makes test algorithm design and validation a very complex task. This paper presents a memory fault simulator architecture targeting the full set of linked fault

    Automating defects simulation and fault modeling for SRAMs

    Get PDF
    The continues improvement in manufacturing process density for very deep sub micron technologies constantly leads to new classes of defects in memory devices. Exploring the effect of fabrication defects in future technologies, and identifying new classes of realistic functional fault models with their corresponding test sequences, is a time consuming task up to now mainly performed by hand. This paper proposes a new approach to automate this procedure. The proposed method exploits the capabilities of evolutionary algorithms to automatically identify faulty behaviors into defective memories and to define the corresponding fault models and relevant test sequences. Target defects are modeled at the electrical level in order to optimize the results to the specific technology and memory architecture

    March Test Generation Revealed

    Get PDF
    Memory testing commonly faces two issues: the characterization of detailed and realistic fault models and the definition of time-efficient test algorithms. Among the different types of algorithms proposed for testing static random access memories, march tests have proven to be faster, simpler, and regularly structured. The majority of the published march tests have been manually generated. Unfortunately, the continuous evolution of the memory technology introduces new classes of faults such as dynamic and linked faults and makes the task of handwriting test algorithms harder and not always leading to optimal results. Although some researchers published handmade march tests able to deal with new fault models, the problem of a comprehensive methodology to automatically generate march tests addressing both classic and new fault models is still an open issue. This paper proposes a new polynomial algorithm to automatically generate march tests. The formal model adopted to represent memory faults allows the definition of a general methodology to deal with static, dynamic, and linked faults. Experimental results show that the new automatically generated march tests reduce the test complexity and, therefore, the test time, compared to the well-known state of the art in memory testin

    Test and Diagnosis of Integrated Circuits

    Get PDF
    The ever-increasing growth of the semiconductor market results in an increasing complexity of digital circuits. Smaller, faster, cheaper and low-power consumption are the main challenges in semiconductor industry. The reduction of transistor size and the latest packaging technology (i.e., System-On-a-Chip, System-In-Package, Trough Silicon Via 3D Integrated Circuits) allows the semiconductor industry to satisfy the latest challenges. Although producing such advanced circuits can benefit users, the manufacturing process is becoming finer and denser, making chips more prone to defects.The work presented in the HDR manuscript addresses the challenges of test and diagnosis of integrated circuits. It covers:- Power aware test;- Test of Low Power Devices;- Fault Diagnosis of digital circuits

    Conception et test des circuits et systèmes numériques à haute fiabilité et sécurité

    Get PDF
    Research activities I carried on after my nomination as Chargé de Recherche deal with the definition of methodologies and tools for the design, the test and the reliability of secure digital circuits and trustworthy manufacturing. More recently, we have started a new research activity on the test of 3D stacked Integrated CIrcuits, based on the use of Through Silicon Vias. Moreover, thanks to the relationships I have maintained after my post-doc in Italy, I have kept on cooperating with Politecnico di Torino on the topics related to test and reliability of memories and microprocessors.Secure and Trusted DevicesSecurity is a critical part of information and communication technologies and it is the necessary basis for obtaining confidentiality, authentication, and integrity of data. The importance of security is confirmed by the extremely high growth of the smart-card market in the last 20 years. It is reported in "Le monde Informatique" in the article "Computer Crime and Security Survey" in 2007 that financial losses due to attacks on "secure objects" in the digital world are greater than $11 Billions. Since the race among developers of these secure devices and attackers accelerates, also due to the heterogeneity of new systems and their number, the improvement of the resistance of such components becomes today’s major challenge.Concerning all the possible security threats, the vulnerability of electronic devices that implement cryptography functions (including smart cards, electronic passports) has become the Achille’s heel in the last decade. Indeed, even though recent crypto-algorithms have been proven resistant to cryptanalysis, certain fraudulent manipulations on the hardware implementing such algorithms can allow extracting confidential information. So-called Side-Channel Attacks have been the first type of attacks that target the physical device. They are based on information gathered from the physical implementation of a cryptosystem. For instance, by correlating the power consumed and the data manipulated by the device, it is possible to discover the secret encryption key. Nevertheless, this point is widely addressed and integrated circuit (IC) manufacturers have already developed different kinds of countermeasures.More recently, new threats have menaced secure devices and the security of the manufacturing process. A first issue is the trustworthiness of the manufacturing process. From one side, secure devices must assure a very high production quality in order not to leak confidential information due to a malfunctioning of the device. Therefore, possible defects due to manufacturing imperfections must be detected. This requires high-quality test procedures that rely on the use of test features that increases the controllability and the observability of inner points of the circuit. Unfortunately, this is harmful from a security point of view, and therefore the access to these test features must be protected from unauthorized users. Another harm is related to the possibility for an untrusted manufacturer to do malicious alterations to the design (for instance to bypass or to disable the security fence of the system). Nowadays, many steps of the production cycle of a circuit are outsourced. For economic reasons, the manufacturing process is often carried out by foundries located in foreign countries. The threat brought by so-called Hardware Trojan Horses, which was long considered theoretical, begins to materialize.A second issue is the hazard of faults that can appear during the circuit’s lifetime and that may affect the circuit behavior by way of soft errors or deliberate manipulations, called Fault Attacks. They can be based on the intentional modification of the circuit’s environment (e.g., applying extreme temperature, exposing the IC to radiation, X-rays, ultra-violet or visible light, or tampering with clock frequency) in such a way that the function implemented by the device generates an erroneous result. The attacker can discover secret information by comparing the erroneous result with the correct one. In-the-field detection of any failing behavior is therefore of prime interest for taking further action, such as discontinuing operation or triggering an alarm. In addition, today’s smart cards use 90nm technology and according to the various suppliers of chip, 65nm technology will be effective on the horizon 2013-2014. Since the energy required to force a transistor to switch is reduced for these new technologies, next-generation secure systems will become even more sensitive to various classes of fault attacks.Based on these considerations, within the group I work with, we have proposed new methods, architectures and tools to solve the following problems:• Test of secure devices: unfortunately, classical techniques for digital circuit testing cannot be easily used in this context. Indeed, classical testing solutions are based on the use of Design-For-Testability techniques that add hardware components to the circuit, aiming to provide full controllability and observability of internal states. Because crypto‐ processors and others cores in a secure system must pass through high‐quality test procedures to ensure that data are correctly processed, testing of crypto chips faces a dilemma. In fact design‐for‐testability schemes want to provide high controllability and observability of the device while security wants minimal controllability and observability in order to hide the secret. We have therefore proposed, form one side, the use of enhanced scan-based test techniques that exploit compaction schemes to reduce the observability of internal information while preserving the high level of testability. From the other side, we have proposed the use of Built-In Self-Test for such devices in order to avoid scan chain based test.• Reliability of secure devices: we proposed an on-line self-test architecture for hardware implementation of the Advanced Encryption Standard (AES). The solution exploits the inherent spatial replications of a parallel architecture for implementing functional redundancy at low cost.• Fault Attacks: one of the most powerful types of attack for secure devices is based on the intentional injection of faults (for instance by using a laser beam) into the system while an encryption occurs. By comparing the outputs of the circuits with and without the injection of the fault, it is possible to identify the secret key. To face this problem we have analyzed how to use error detection and correction codes as counter measure against this type of attack, and we have proposed a new code-based architecture. Moreover, we have proposed a bulk built-in current-sensor that allows detecting the presence of undesired current in the substrate of the CMOS device.• Fault simulation: to evaluate the effectiveness of countermeasures against fault attacks, we developed an open source fault simulator able to perform fault simulation for the most classical fault models as well as user-defined electrical level fault models, to accurately model the effect of laser injections on CMOS circuits.• Side-Channel attacks: they exploit physical data-related information leaking from the device (e.g. current consumption or electro-magnetic emission). One of the most intensively studied attacks is the Differential Power Analysis (DPA) that relies on the observation of the chip power fluctuations during data processing. I studied this type of attack in order to evaluate the influence of the countermeasures against fault attack on the power consumption of the device. Indeed, the introduction of countermeasures for one type of attack could lead to the insertion of some circuitry whose power consumption is related to the secret key, thus allowing another type of attack more easily. We have developed a flexible integrated simulation-based environment that allows validating a digital circuit when the device is attacked by means of this attack. All architectures we designed have been validated through this tool. Moreover, we developed a methodology that allows to drastically reduce the time required to validate countermeasures against this type of attack.TSV- based 3D Stacked Integrated Circuits TestThe stacking process of integrated circuits using TSVs (Through Silicon Via) is a promising technology that keeps the development of the integration more than Moore’s law, where TSVs enable to tightly integrate various dies in a 3D fashion. Nevertheless, 3D integrated circuits present many test challenges including the test at different levels of the 3D fabrication process: pre-, mid-, and post- bond tests. Pre-bond test targets the individual dies at wafer level, by testing not only classical logic (digital logic, IOs, RAM, etc) but also unbounded TSVs. Mid-bond test targets the test of partially assembled 3D stacks, whereas finally post-bond test targets the final circuit.The activities carried out within this topic cover 2 main issues:• Pre-bond test of TSVs: the electrical model of a TSV buried within the substrate of a CMOS circuit is a capacitance connected to ground (when the substrate is connected to ground). The main assumption is that a defect may affect the value of that capacitance. By measuring the variation of the capacitance’s value it is possible to check whether the TSV is correctly fabricated or not. We have proposed a method to measure the value of the capacitance based on the charge/ discharge delay of the RC network containing the TSV.• Test infrastructures for 3D stacked Integrated Circuits: testing a die before stacking to another die introduces the problem of a dynamic test infrastructure, where test data must be routed to a specific die based on the reached fabrication step. New solutions are proposed in literature that allow reconfiguring the test paths within the circuit, based on on-the-fly requirements. We have started working on an extension of the IEEE P1687 test standard that makes use of an automatic die-detection based on pull-up resistors.Memory and Microprocessor Test and ReliabilityThanks to device shrinking and miniaturization of fabrication technology, performances of microprocessors and of memories have grown of more than 5 magnitude order in the last 30 years. With this technology trend, it is necessary to face new problems and challenges, such as reliability, transient errors, variability and aging.In the last five years I’ve worked in cooperation with the Testgroup of Politecnico di Torino (Italy) to propose a new method to on-line validate the correctness of the program execution of a microprocessor. The main idea is to monitor a small set of control signals of the processors in order to identify incorrect activation sequences. This approach can detect both permanent and transient errors of the internal logic of the processor.Concerning the test of memories, we have proposed a new approach to automatically generate test programs starting from a functional description of the possible faults in the memory.Moreover, we proposed a new methodology, based on microprocessor error probability profiling, that aims at estimating fault injection results without the need of a typical fault injection setup. The proposed methodology is based on two main ideas: a one-time fault-injection analysis of the microprocessor architecture to characterize the probability of successful execution of each of its instructions in presence of a soft-error, and a static and very fast analysis of the control and data flow of the target software application to compute its probability of success

    Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

    Get PDF
    Η παρούσα διδακτορική διατριβή εισάγει μία χαμηλού κόστους μεθοδολογία για την ανίχνευση ελαττωμάτων σε μικρές ενσωματωμένες κρυφές μνήμες που βασίζεται σε σύγχρονες Αρχιτεκτονικές Συνόλου Εντολών και εφαρμόζεται με λογισμικό αυτοδοκιμής. Η προτεινόμενη μεθοδολογία εφαρμόζει αλγορίθμους March μέσω λογισμικού για την ανίχνευση τόσο ελαττωμάτων αποθήκευσης όταν εφαρμόζεται σε κρυφές μνήμες που περιέχουν μόνο στατικές μνήμες τυχαίας προσπέλασης όπως για παράδειγμα κρυφές μνήμες επιπέδου 1, όσο και ελαττωμάτων σύγκρισης όταν εφαρμόζεται σε κρυφές μνήμες που περιέχουν εκτός από SRAM μνήμες και μνήμες διευθυνσιοδοτούμενες μέσω περιεχομένου, όπως για παράδειγμα πλήρως συσχετιστικές κρυφές μνήμες αναζήτησης μετάφρασης. Η προτεινόμενη μεθοδολογία εφαρμόζεται και στις τρεις οργανώσεις συσχετιστικότητας κρυφής μνήμης και είναι ανεξάρτητη της πολιτικής εγγραφής στο επόμενο επίπεδο της ιεραρχίας. Η μεθοδολογία αξιοποιεί υπάρχοντες ισχυρούς μηχανισμούς των μοντέρνων ISAs χρησιμοποιώντας ειδικές εντολές, που ονομάζονται στην παρούσα διατριβή Εντολές Άμεσης Προσπέλασης Κρυφής Μνήμης (Direct Cache Access Instructions - DCAs). Επιπλέον, η προτεινόμενη μεθοδολογία εκμεταλλεύεται τους έμφυτους μηχανισμούς καταγραφής απόδοσης και τους μηχανισμούς χειρισμού παγίδων που είναι διαθέσιμοι στους σύγχρονους επεξεργαστές. Επιπρόσθετα, η προτεινόμενη μεθοδολογία εφαρμόζει την λειτουργία σύγκρισης των αλγορίθμων March όταν αυτή απαιτείται (για μνήμες CAM) και επαληθεύει το αποτέλεσμα του ελέγχου μέσω σύντομης απόκρισης, ώστε να είναι συμβατή με τις απαιτήσεις του ελέγχου εντός λειτουργίας. Τέλος, στη διατριβή προτείνεται μία βελτιστοποίηση της μεθοδολογίας για πολυνηματικές, πολυπύρηνες αρχιτεκτονικές.The present PhD thesis introduces a low cost fault detection methodology for small embedded cache memories that is based on modern Instruction Set Architectures and is applied with Software-Based Self-Test (SBST) routines. The proposed methodology applies March tests through software to detect both storage faults when applied to caches that comprise Static Random Access Memories (SRAM) only, e.g. L1 caches, and comparison faults when applied to caches that apart from SRAM memories comprise Content Addressable Memories (CAM) too, e.g. Translation Lookaside Buffers (TLBs). The proposed methodology can be applied to all three cache associativity organizations: direct mapped, set-associative and full-associative and it does not depend on the cache write policy. The methodology leverages existing powerful mechanisms of modern ISAs by utilizing instructions that we call in this PhD thesis Direct Cache Access (DCA) instructions. Moreover, our methodology exploits the native performance monitoring hardware and the trap handling mechanisms which are available in modern microprocessors. Moreover, the proposed Methodology applies March compare operations when needed (for CAM arrays) and verifies the test result with a compact response to comply with periodic on-line testing needs. Finally, a multithreaded optimization of the proposed methodology that targets multithreaded, multicore architectures is also presented in this thesi
    corecore