165 research outputs found

    Segmentation and classification of lung nodules from Thoracic CT scans : methods based on dictionary learning and deep convolutional neural networks.

    Get PDF
    Lung cancer is a leading cause of cancer death in the world. Key to survival of patients is early diagnosis. Studies have demonstrated that screening high risk patients with Low-dose Computed Tomography (CT) is invaluable for reducing morbidity and mortality. Computer Aided Diagnosis (CADx) systems can assist radiologists and care providers in reading and analyzing lung CT images to segment, classify, and keep track of nodules for signs of cancer. In this thesis, we propose a CADx system for this purpose. To predict lung nodule malignancy, we propose a new deep learning framework that combines Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) to learn best in-plane and inter-slice visual features for diagnostic nodule classification. Since a nodule\u27s volumetric growth and shape variation over a period of time may reveal information regarding the malignancy of nodule, separately, a dictionary learning based approach is proposed to segment the nodule\u27s shape at two time points from two scans, one year apart. The output of a CNN classifier trained to learn visual appearance of malignant nodules is then combined with the derived measures of shape change and volumetric growth in assigning a probability of malignancy to the nodule. Due to the limited number of available CT scans of benign and malignant nodules in the image database from the National Lung Screening Trial (NLST), we chose to initially train a deep neural network on the larger LUNA16 Challenge database which was built for the purpose of eliminating false positives from detected nodules in thoracic CT scans. Discriminative features that were learned in this application were transferred to predict malignancy. The algorithm for segmenting nodule shapes in serial CT scans utilizes a sparse combination of training shapes (SCoTS). This algorithm captures a sparse representation of a shape in input data through a linear span of previously delineated shapes in a training repository. The model updates shape prior over level set iterations and captures variabilities in shapes by a sparse combination of the training data. The level set evolution is therefore driven by a data term as well as a term capturing valid prior shapes. During evolution, the shape prior influence is adjusted based on shape reconstruction, with the assigned weight determined from the degree of sparsity of the representation. The discriminative nature of sparse representation, affords us the opportunity to compare nodules\u27 variations in consecutive time points and to predict malignancy. Experimental validations of the proposed segmentation algorithm have been demonstrated on 542 3-D lung nodule data from the LIDC-IDRI database which includes radiologist delineated nodule boundaries. The effectiveness of the proposed deep learning and dictionary learning architectures for malignancy prediction have been demonstrated on CT data from 370 biopsied subjects collected from the NLST database. Each subject in this database had at least two serial CT scans at two separate time points one year apart. The proposed RNN CAD system achieved an ROC Area Under the Curve (AUC) of 0.87, when validated on CT data from nodules at second sequential time point and 0.83 based on dictionary learning method; however, when nodule shape change and appearance were combined, the classifier performance improved to AUC=0.89

    Auto Segmentation of Lung in Non-small Cell Lung Cancer Using Deep Convolution Neural Network

    Get PDF
    Segmentation of Lung is the vital first step in radiologic diagnosis of lung cancer. In this work, we present a deep learning based automated technique that overcomes various shortcomings of traditional lung segmentation and explores the role of adding “explainability” to deep learning models so that the trust can be built on these models. Our approach shows better generalization across different scanner settings, vendors and the slice thickness. In addition, there is no initialization of the seed point making it complete automated without manual intervention. The dice score of 0.98 is achieved for lung segmentation on an independent data set of non-small cell lung cancer

    Computer-aided detection of lung nodules: A review

    Get PDF
    We present an in-depth review and analysis of salient methods for computer-aided detection of lung nodules. We evaluate the current methods for detecting lung nodules using literature searches with selection criteria based on validation dataset types, nodule sizes, numbers of cases, types of nodules, extracted features in traditional feature-based classifiers, sensitivity, and false positives (FP)/scans. Our review shows that current detection systems are often optimized for particular datasets and can detect only one or two types of nodules. We conclude that, in addition to achieving high sensitivity and reduced FP/scans, strategies for detecting lung nodules must detect a variety of nodules with high precision to improve the performances of the radiologists. To the best of our knowledge, ours is the first review of the effectiveness of feature extraction using traditional feature-based classifiers. Moreover, we discuss deep-learning methods in detail and conclude that features must be appropriately selected to improve the overall accuracy of the system. We present an analysis of current schemes and highlight constraints and future research areas

    Modeling small objects under uncertainties : novel algorithms and applications.

    Get PDF
    Active Shape Models (ASM), Active Appearance Models (AAM) and Active Tensor Models (ATM) are common approaches to model elastic (deformable) objects. These models require an ensemble of shapes and textures, annotated by human experts, in order identify the model order and parameters. A candidate object may be represented by a weighted sum of basis generated by an optimization process. These methods have been very effective for modeling deformable objects in biomedical imaging, biometrics, computer vision and graphics. They have been tried mainly on objects with known features that are amenable to manual (expert) annotation. They have not been examined on objects with severe ambiguities to be uniquely characterized by experts. This dissertation presents a unified approach for modeling, detecting, segmenting and categorizing small objects under uncertainty, with focus on lung nodules that may appear in low dose CT (LDCT) scans of the human chest. The AAM, ASM and the ATM approaches are used for the first time on this application. A new formulation to object detection by template matching, as an energy optimization, is introduced. Nine similarity measures of matching have been quantitatively evaluated for detecting nodules less than 1 em in diameter. Statistical methods that combine intensity, shape and spatial interaction are examined for segmentation of small size objects. Extensions of the intensity model using the linear combination of Gaussians (LCG) approach are introduced, in order to estimate the number of modes in the LCG equation. The classical maximum a posteriori (MAP) segmentation approach has been adapted to handle segmentation of small size lung nodules that are randomly located in the lung tissue. A novel empirical approach has been devised to simultaneously detect and segment the lung nodules in LDCT scans. The level sets methods approach was also applied for lung nodule segmentation. A new formulation for the energy function controlling the level set propagation has been introduced taking into account the specific properties of the nodules. Finally, a novel approach for classification of the segmented nodules into categories has been introduced. Geometric object descriptors such as the SIFT, AS 1FT, SURF and LBP have been used for feature extraction and matching of small size lung nodules; the LBP has been found to be the most robust. Categorization implies classification of detected and segmented objects into classes or types. The object descriptors have been deployed in the detection step for false positive reduction, and in the categorization stage to assign a class and type for the nodules. The AAMI ASMI A TM models have been used for the categorization stage. The front-end processes of lung nodule modeling, detection, segmentation and classification/categorization are model-based and data-driven. This dissertation is the first attempt in the literature at creating an entirely model-based approach for lung nodule analysis

    Localisation in 3D Images Using Cross-features Correlation Learning

    Get PDF
    Object detection and segmentation have evolved drastically over the past two decades thanks to the continuous advancement in the field of deep learning. Substantial research efforts have been dedicated towards integrating object detection techniques into a wide range of real-world prob-lems. Most existing methods take advantage of the successful application and representational ability of convolutional neural networks (CNNs). Generally, these methods target mainstream applications that are typically based on 2D imaging scenarios. Additionally, driven by the strong correlation between the quality of the feature embedding and the performance in CNNs, most works focus on design characteristics of CNNs, e.g., depth and width, to enhance their modelling capacity and discriminative ability. Limited research was directed towards exploiting feature-level dependencies, which can be feasibly used to enhance the performance of CNNs. More-over, directly adopting such approaches into more complex imaging domains that target data of higher dimensions (e.g., 3D multi-modal and volumetric images) is not straightforwardly appli-cable due to the different nature and complexity of the problem. In this thesis, we explore the possibility of incorporating feature-level correspondence and correlations into object detection and segmentation contexts that target the localisation of 3D objects from 3D multi-modal and volumetric image data. Accordingly, we first explore the detection problem of 3D solar active regions in multi-spectral solar imagery where different imaging bands correspond to different 2D layers (altitudes) in the 3D solar atmosphere.We propose a joint analysis approach in which information from different imaging bands is first individually analysed using band-specific network branches to extract inter-band features that are then dynamically cross-integrated and jointly analysed to investigate spatial correspon-dence and co-dependencies between the different bands. The aggregated embeddings are further analysed using band-specific detection network branches to predict separate sets of results (one for each band). Throughout our study, we evaluate different types of feature fusion, using convo-lutional embeddings of different semantic levels, as well as the impact of using different numbers of image bands inputs to perform the joint analysis. We test the proposed approach over different multi-modal datasets (multi-modal solar images and brain MRI) and applications. The proposed joint analysis based framework consistently improves the CNN’s performance when detecting target regions in contrast to single band based baseline methods.We then generalise our cross-band joint analysis detection scheme into the 3D segmentation problem using multi-modal images. We adopt the joint analysis principles into a segmentation framework where cross-band information is dynamically analysed and cross-integrated at vari-ous semantic levels. The proposed segmentation network also takes advantage of band-specific skip connections to maximise the inter-band information and assist the network in capturing fine details using embeddings of different spatial scales. Furthermore, a recursive training strat-egy, based on weak labels (e.g., bounding boxes), is proposed to overcome the difficulty of producing dense labels to train the segmentation network. We evaluate the proposed segmen-tation approach using different feature fusion approaches, over different datasets (multi-modal solar images, brain MRI, and cloud satellite imagery), and using different levels of supervisions. Promising results were achieved and demonstrate an improved performance in contrast to single band based analysis and state-of-the-art segmentation methods.Additionally, we investigate the possibility of explicitly modelling objective driven feature-level correlations, in a localised manner, within 3D medical imaging scenarios (3D CT pul-monary imaging) to enhance the effectiveness of the feature extraction process in CNNs and subsequently the detection performance. Particularly, we present a framework to perform the 3D detection of pulmonary nodules as an ensemble of two stages, candidate proposal and a false positive reduction. We propose a 3D channel attention block in which cross-channel informa-tion is incorporated to infer channel-wise feature importance with respect to the target objective. Unlike common attention approaches that rely on heavy dimensionality reduction and computa-tionally expensive multi-layer perceptron networks, the proposed approach utilises fully convo-lutional networks to allow directly exploiting rich 3D descriptors and performing the attention in an efficient manner. We also propose a fully convolutional 3D spatial attention approach that elevates cross-sectional information to infer spatial attention. We demonstrate the effectiveness of the proposed attention approaches against a number of popular channel and spatial attention mechanisms. Furthermore, for the False positive reduction stage, in addition to attention, we adopt a joint analysis based approach that takes into account the variable nodule morphology by aggregating spatial information from different contextual levels. We also propose a Zoom-in convolutional path that incorporates semantic information of different spatial scales to assist the network in capturing fine details. The proposed detection approach demonstrates considerable gains in performance in contrast to state-of-the-art lung nodule detection methods.We further explore the possibility of incorporating long-range dependencies between arbi-trary positions in the input features using Transformer networks to infer self-attention, in the context of 3D pulmonary nodule detection, in contrast to localised (convolutional based) atten-tion . We present a hybrid 3D detection approach that takes advantage of both, the Transformers ability in modelling global context and correlations and the spatial representational characteris-tics of convolutional neural networks, providing complementary information and subsequently improving the discriminative ability of the detection model. We propose two hybrid Transformer CNN variants where we investigate the impact of exploiting a deeper Transformer design –in which more Transformer layers and trainable parameters are incorporated– is used along with high-level convolutional feature inputs of a single spatial resolution, in contrast to a shallower Transformer design –of less Transformer layers and trainable parameters– while exploiting con-volutional embeddings of different semantic levels and relatively higher resolution.Extensive quantitative and qualitative analyses are presented for the proposed methods in this thesis and demonstrate the feasibility of exploiting feature-level relations, either implicitly or explicitly, in different detection and segmentation problems

    Learning Algorithms for Fat Quantification and Tumor Characterization

    Get PDF
    Obesity is one of the most prevalent health conditions. About 30% of the world\u27s and over 70% of the United States\u27 adult populations are either overweight or obese, causing an increased risk for cardiovascular diseases, diabetes, and certain types of cancer. Among all cancers, lung cancer is the leading cause of death, whereas pancreatic cancer has the poorest prognosis among all major cancers. Early diagnosis of these cancers can save lives. This dissertation contributes towards the development of computer-aided diagnosis tools in order to aid clinicians in establishing the quantitative relationship between obesity and cancers. With respect to obesity and metabolism, in the first part of the dissertation, we specifically focus on the segmentation and quantification of white and brown adipose tissue. For cancer diagnosis, we perform analysis on two important cases: lung cancer and Intraductal Papillary Mucinous Neoplasm (IPMN), a precursor to pancreatic cancer. This dissertation proposes an automatic body region detection method trained with only a single example. Then a new fat quantification approach is proposed which is based on geometric and appearance characteristics. For the segmentation of brown fat, a PET-guided CT co-segmentation method is presented. With different variants of Convolutional Neural Networks (CNN), supervised learning strategies are proposed for the automatic diagnosis of lung nodules and IPMN. In order to address the unavailability of a large number of labeled examples required for training, unsupervised learning approaches for cancer diagnosis without explicit labeling are proposed. We evaluate our proposed approaches (both supervised and unsupervised) on two different tumor diagnosis challenges: lung and pancreas with 1018 CT and 171 MRI scans respectively. The proposed segmentation, quantification and diagnosis approaches explore the important adiposity-cancer association and help pave the way towards improved diagnostic decision making in routine clinical practice

    Lung cancer classification using data mining and supervised learning algorithms on multi-dimensional data set

    Get PDF
    These With recent developments in machine learning, data mining and computer vision, there is great potential for improvements in early detection of lung cancer using scans and data available. This paper details the methods and techniques used in our project, where the objective is to develop algorithms to determine whether a patient has or is likely to develop lung cancer using dataset images using data mining and machine learning for the classification and examination. We explore approaches to address the problem. Cancer is the most important cause of death globally. The disease diagnosis is a major process to treat the patients who are affected by cancer disease. The diagnosis process is more difficult comparatively known about the cancer disease detection. Developing a proposed data mining model is useful to diagnose the cancer disease once the cancer detection is accomplished using data mining for the examination and classification of machine learning supervised algorithms
    • …
    corecore