965 research outputs found

    Automatic liver vessel segmentation using 3D region growing and hybrid active contour model

    Get PDF
    This paper proposes a new automatic method for liver vessel segmentation by exploiting intensity and shape constraints of 3D vessels. The core of the proposed method is to apply two different strategies: 3D region growing facilitated by bi-Gaussian filter for thin vessel segmentation, and hybrid active contour model combined with K-means clustering for thick vessel segmentation. They are then integrated to generate final segmentation results. The proposed method is validated on abdominal computed tomography angiography (CTA) images, and obtains an average accuracy, sensitivity, specificity, Dice, Jaccard, and RMSD of 98.2%, 68.3%, 99.2%, 73.0%, 66.1%, and 2.56โ€ฏmm, respectively. Experimental results show that our method is capable of segmenting complex liver vessels with more continuous and complete thin vessel details, and outperforms several existing 3D vessel segmentation algorithms

    Review on the methods of automatic liver segmentation from abdominal images

    Get PDF
    Automatic liver segmentation from abdominal images is challenging on the aspects of segmentation accuracy, automation and robustness. There exist many methods of liver segmentation and ways of categorisingthem. In this paper, we present a new way of summarizing the latest achievements in automatic liver segmentation.We categorise a segmentation method according to the image feature it works on, therefore better summarising the performance of each category and leading to finding an optimal solution for a particular segmentation task. All the methods of liver segmentation are categorized into three main classes including gray level based method, structure based method and texture based method. In each class, the latest advance is reviewed with summary comments on the advantages and drawbacks of each discussed approach. Performance comparisons among the classes are given along with the remarks on the problems existed and possible solutions. In conclusion, we point out that liver segmentation is still an open issue and the tendency is that multiple methods will be employed to-gether to achieve better segmentation performance

    An Automated Liver Vasculature Segmentation from CT Scans for Hepatic Surgical Planning

    Get PDF
    Liver vasculature segmentation is a crucial step for liver surgical planning. Segmentation of liver vasculature is an important part of the 3D visualisation of the liver anatomy. The spatial relationship between vessels and other liver structures, like tumors and liver anatomic segments, helps in reducing the surgical treatment risks. However, liver vessels segmentation is a challenging task, that is due to low contrast with neighboring parenchyma, the complex anatomy, the very thin branches and very small vessels. This paper introduces a fully automated framework consist of four steps to segment the vessels inside the liver organ. Firstly, in the preprocessing step, a combination of two filtering techniques are used to extract and enhance vessels inside the liver region, first the vesselness filter is used to extract the vessels structure, and then the anisotropic coherence enhancing diffusion (CED) filter is used to enhance the intensity within the tubular vessels structure. This step is followed by a smart multiple thresholding to extract the initial vasculature segmentation. The liver vasculature structures, including hepatic veins connected to the inferior vena cava and the portal veins, are extracted. Finally, the inferior vena cava is segmented and excluded from the vessels segmentation, as it is not considered as part of the liver vasculature structure. The liver vessel segmentation method is validated on the publically available 3DIRCAD datasets. Dice coefficient (DSC) is used to evaluate the method, the average DSC score achieved a score 68.5%. The proposed approach succeeded to segment liver vasculature from the liver envelope accurately, which makes it as potential tool for clinical preoperative planning

    Regmentation: A New View of Image Segmentation and Registration

    Get PDF
    Image segmentation and registration have been the two major areas of research in the medical imaging community for decades and still are. In the context of radiation oncology, segmentation and registration methods are widely used for target structure definition such as prostate or head and neck lymph node areas. In the past two years, 45% of all articles published in the most important medical imaging journals and conferences have presented either segmentation or registration methods. In the literature, both categories are treated rather separately even though they have much in common. Registration techniques are used to solve segmentation tasks (e.g. atlas based methods) and vice versa (e.g. segmentation of structures used in a landmark based registration). This article reviews the literature on image segmentation methods by introducing a novel taxonomy based on the amount of shape knowledge being incorporated in the segmentation process. Based on that, we argue that all global shape prior segmentation methods are identical to image registration methods and that such methods thus cannot be characterized as either image segmentation or registration methods. Therefore we propose a new class of methods that are able solve both segmentation and registration tasks. We call it regmentation. Quantified on a survey of the current state of the art medical imaging literature, it turns out that 25% of the methods are pure registration methods, 46% are pure segmentation methods and 29% are regmentation methods. The new view on image segmentation and registration provides a consistent taxonomy in this context and emphasizes the importance of regmentation in current medical image processing research and radiation oncology image-guided applications

    Deep learning for image-based liver analysis โ€” A comprehensive review focusing on malignant lesions

    Get PDF
    Deep learning-based methods, in particular, convolutional neural networks and fully convolutional networks are now widely used in the medical image analysis domain. The scope of this review focuses on the analysis using deep learning of focal liver lesions, with a special interest in hepatocellular carcinoma and metastatic cancer; and structures like the parenchyma or the vascular system. Here, we address several neural network architectures used for analyzing the anatomical structures and lesions in the liver from various imaging modalities such as computed tomography, magnetic resonance imaging and ultrasound. Image analysis tasks like segmentation, object detection and classification for the liver, liver vessels and liver lesions are discussed. Based on the qualitative search, 91 papers were filtered out for the survey, including journal publications and conference proceedings. The papers reviewed in this work are grouped into eight categories based on the methodologies used. By comparing the evaluation metrics, hybrid models performed better for both the liver and the lesion segmentation tasks, ensemble classifiers performed better for the vessel segmentation tasks and combined approach performed better for both the lesion classification and detection tasks. The performance was measured based on the Dice score for the segmentation, and accuracy for the classification and detection tasks, which are the most commonly used metrics.publishedVersio

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    ๋ณต๋ถ€ CT์—์„œ ๊ฐ„๊ณผ ํ˜ˆ๊ด€ ๋ถ„ํ•  ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€,2020. 2. ์‹ ์˜๊ธธ.๋ณต๋ถ€ ์ „์‚ฐํ™” ๋‹จ์ธต ์ดฌ์˜ (CT) ์˜์ƒ์—์„œ ์ •ํ™•ํ•œ ๊ฐ„ ๋ฐ ํ˜ˆ๊ด€ ๋ถ„ํ• ์€ ์ฒด์  ์ธก์ •, ์น˜๋ฃŒ ๊ณ„ํš ์ˆ˜๋ฆฝ ๋ฐ ์ถ”๊ฐ€์ ์ธ ์ฆ๊ฐ• ํ˜„์‹ค ๊ธฐ๋ฐ˜ ์ˆ˜์ˆ  ๊ฐ€์ด๋“œ์™€ ๊ฐ™์€ ์ปดํ“จํ„ฐ ์ง„๋‹จ ๋ณด์กฐ ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•˜๋Š”๋ฐ ํ•„์ˆ˜์ ์ธ ์š”์†Œ์ด๋‹ค. ์ตœ๊ทผ ๋“ค์–ด ์ปจ๋ณผ๋ฃจ์…”๋„ ์ธ๊ณต ์‹ ๊ฒฝ๋ง (CNN) ํ˜•ํƒœ์˜ ๋”ฅ ๋Ÿฌ๋‹์ด ๋งŽ์ด ์ ์šฉ๋˜๋ฉด์„œ ์˜๋ฃŒ ์˜์ƒ ๋ถ„ํ• ์˜ ์„ฑ๋Šฅ์ด ํ–ฅ์ƒ๋˜๊ณ  ์žˆ์ง€๋งŒ, ์‹ค์ œ ์ž„์ƒ์— ์ ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๋†’์€ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ์ œ๊ณตํ•˜๊ธฐ๋Š” ์—ฌ์ „ํžˆ ์–ด๋ ต๋‹ค. ๋˜ํ•œ ๋ฌผ์ฒด์˜ ๊ฒฝ๊ณ„๋Š” ์ „ํ†ต์ ์œผ๋กœ ์˜์ƒ ๋ถ„ํ• ์—์„œ ๋งค์šฐ ์ค‘์š”ํ•œ ์š”์†Œ๋กœ ์ด์šฉ๋˜์—ˆ์ง€๋งŒ, CT ์˜์ƒ์—์„œ ๊ฐ„์˜ ๋ถˆ๋ถ„๋ช…ํ•œ ๊ฒฝ๊ณ„๋ฅผ ์ถ”์ถœํ•˜๊ธฐ๊ฐ€ ์–ด๋ ต๊ธฐ ๋•Œ๋ฌธ์— ํ˜„๋Œ€ CNN์—์„œ๋Š” ์ด๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š๊ณ  ์žˆ๋‹ค. ๊ฐ„ ํ˜ˆ๊ด€ ๋ถ„ํ•  ์ž‘์—…์˜ ๊ฒฝ์šฐ, ๋ณต์žกํ•œ ํ˜ˆ๊ด€ ์˜์ƒ์œผ๋กœ๋ถ€ํ„ฐ ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ๋งŒ๋“ค๊ธฐ ์–ด๋ ต๊ธฐ ๋•Œ๋ฌธ์— ๋”ฅ ๋Ÿฌ๋‹์„ ์ ์šฉํ•˜๊ธฐ๊ฐ€ ์–ด๋ ต๋‹ค. ๋˜ํ•œ ์–‡์€ ํ˜ˆ๊ด€ ๋ถ€๋ถ„์˜ ์˜์ƒ ๋ฐ๊ธฐ ๋Œ€๋น„๊ฐ€ ์•ฝํ•˜์—ฌ ์›๋ณธ ์˜์ƒ์—์„œ ์‹๋ณ„ํ•˜๊ธฐ๊ฐ€ ๋งค์šฐ ์–ด๋ ต๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์œ„ ์–ธ๊ธ‰ํ•œ ๋ฌธ์ œ๋“ค์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์ด ํ–ฅ์ƒ๋œ CNN๊ณผ ์–‡์€ ํ˜ˆ๊ด€์„ ํฌํ•จํ•˜๋Š” ๋ณต์žกํ•œ ๊ฐ„ ํ˜ˆ๊ด€์„ ์ •ํ™•ํ•˜๊ฒŒ ๋ถ„ํ• ํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ๊ฐ„ ๋ถ„ํ•  ์ž‘์—…์—์„œ ์šฐ์ˆ˜ํ•œ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ๊ฐ–๋Š” CNN์„ ๊ตฌ์ถ•ํ•˜๊ธฐ ์œ„ํ•ด, ๋‚ด๋ถ€์ ์œผ๋กœ ๊ฐ„ ๋ชจ์–‘์„ ์ถ”์ •ํ•˜๋Š” ๋ถ€๋ถ„์ด ํฌํ•จ๋œ ์ž๋™ ์ปจํ…์ŠคํŠธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ๋˜ํ•œ, CNN์„ ์‚ฌ์šฉํ•œ ํ•™์Šต์— ๊ฒฝ๊ณ„์„ ์˜ ๊ฐœ๋…์ด ์ƒˆ๋กญ๊ฒŒ ์ œ์•ˆ๋œ๋‹ค. ๋ชจํ˜ธํ•œ ๊ฒฝ๊ณ„๋ถ€๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์–ด ์ „์ฒด ๊ฒฝ๊ณ„ ์˜์—ญ์„ CNN์— ํ›ˆ๋ จํ•˜๋Š” ๊ฒƒ์€ ๋งค์šฐ ์–ด๋ ต๊ธฐ ๋•Œ๋ฌธ์— ๋ฐ˜๋ณต๋˜๋Š” ํ•™์Šต ๊ณผ์ •์—์„œ ์ธ๊ณต ์‹ ๊ฒฝ๋ง์ด ์Šค์Šค๋กœ ์˜ˆ์ธกํ•œ ํ™•๋ฅ ์—์„œ ๋ถ€์ •ํ™•ํ•˜๊ฒŒ ์ถ”์ •๋œ ๋ถ€๋ถ„์  ๊ฒฝ๊ณ„๋งŒ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ธ๊ณต ์‹ ๊ฒฝ๋ง์„ ํ•™์Šตํ•œ๋‹ค. ์‹คํ—˜์  ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ์ œ์•ˆ๋œ CNN์ด ๋‹ค๋ฅธ ์ตœ์‹  ๊ธฐ๋ฒ•๋“ค๋ณด๋‹ค ์ •ํ™•๋„๊ฐ€ ์šฐ์ˆ˜ํ•˜๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์ธ๋‹ค. ๋˜ํ•œ, ์ œ์•ˆ๋œ CNN์˜ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ๊ฐ„ ํ˜ˆ๊ด€ ๋ถ„ํ• ์—์„œ๋Š” ๊ฐ„ ๋‚ด๋ถ€์˜ ๊ด€์‹ฌ ์˜์—ญ์„ ์ง€์ •ํ•˜๊ธฐ ์œ„ํ•ด ์•ž์„œ ํš๋“ํ•œ ๊ฐ„ ์˜์—ญ์„ ํ™œ์šฉํ•œ๋‹ค. ์ •ํ™•ํ•œ ๊ฐ„ ํ˜ˆ๊ด€ ๋ถ„ํ• ์„ ์œ„ํ•ด ํ˜ˆ๊ด€ ํ›„๋ณด ์ ๋“ค์„ ์ถ”์ถœํ•˜์—ฌ ์‚ฌ์šฉํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ํ™•์‹คํ•œ ํ›„๋ณด ์ ๋“ค์„ ์–ป๊ธฐ ์œ„ํ•ด, ์‚ผ์ฐจ์› ์˜์ƒ์˜ ์ฐจ์›์„ ๋จผ์ € ์ตœ๋Œ€ ๊ฐ•๋„ ํˆฌ์˜ ๊ธฐ๋ฒ•์„ ํ†ตํ•ด ์ด์ฐจ์›์œผ๋กœ ๋‚ฎ์ถ˜๋‹ค. ์ด์ฐจ์› ์˜์ƒ์—์„œ๋Š” ๋ณต์žกํ•œ ํ˜ˆ๊ด€์˜ ๊ตฌ์กฐ๊ฐ€ ๋ณด๋‹ค ๋‹จ์ˆœํ™”๋  ์ˆ˜ ์žˆ๋‹ค. ์ด์–ด์„œ, ์ด์ฐจ์› ์˜์ƒ์—์„œ ํ˜ˆ๊ด€ ๋ถ„ํ• ์„ ์ˆ˜ํ–‰ํ•˜๊ณ  ํ˜ˆ๊ด€ ํ”ฝ์…€๋“ค์€ ์›๋ž˜์˜ ์‚ผ์ฐจ์› ๊ณต๊ฐ„์ƒ์œผ๋กœ ์—ญ ํˆฌ์˜๋œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์ „์ฒด ํ˜ˆ๊ด€์˜ ๋ถ„ํ• ์„ ์œ„ํ•ด ์›๋ณธ ์˜์ƒ๊ณผ ํ˜ˆ๊ด€ ํ›„๋ณด ์ ๋“ค์„ ๋ชจ๋‘ ์‚ฌ์šฉํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ ˆ๋ฒจ ์…‹ ๊ธฐ๋ฐ˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋ณต์žกํ•œ ๊ตฌ์กฐ๊ฐ€ ๋‹จ์ˆœํ™”๋˜๊ณ  ์–‡์€ ํ˜ˆ๊ด€์ด ๋” ์ž˜ ๋ณด์ด๋Š” ์ด์ฐจ์› ์˜์ƒ์—์„œ ์–ป์€ ํ›„๋ณด ์ ๋“ค์„ ์‚ฌ์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์–‡์€ ํ˜ˆ๊ด€ ๋ถ„ํ• ์—์„œ ๋†’์€ ์ •ํ™•๋„๋ฅผ ๋ณด์ธ๋‹ค. ์‹คํ—˜์  ๊ฒฐ๊ณผ์— ์˜ํ•˜๋ฉด ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ž˜๋ชป๋œ ์˜์—ญ์˜ ์ถ”์ถœ ์—†์ด ๋‹ค๋ฅธ ๋ ˆ๋ฒจ ์…‹ ๊ธฐ๋ฐ˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค๋ณด๋‹ค ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ธ๋‹ค. ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๊ฐ„๊ณผ ํ˜ˆ๊ด€์„ ๋ถ„ํ• ํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ œ์•ˆ๋œ ์ž๋™ ์ปจํ…์ŠคํŠธ ๊ตฌ์กฐ๋Š” ์‚ฌ๋žŒ์ด ๋””์ž์ธํ•œ ํ•™์Šต ๊ณผ์ •์ด ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ํฌ๊ฒŒ ํ–ฅ์ƒํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์ธ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ œ์•ˆ๋œ ๊ฒฝ๊ณ„์„  ํ•™์Šต ๊ธฐ๋ฒ•์œผ๋กœ CNN์„ ์‚ฌ์šฉํ•œ ์˜์ƒ ๋ถ„ํ• ์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒํ•  ์ˆ˜ ์žˆ์Œ์„ ๋‚ดํฌํ•œ๋‹ค. ๊ฐ„ ํ˜ˆ๊ด€์˜ ๋ถ„ํ• ์€ ์ด์ฐจ์› ์ตœ๋Œ€ ๊ฐ•๋„ ํˆฌ์˜ ๊ธฐ๋ฐ˜ ์ด๋ฏธ์ง€๋กœ๋ถ€ํ„ฐ ํš๋“๋œ ํ˜ˆ๊ด€ ํ›„๋ณด ์ ๋“ค์„ ํ†ตํ•ด ์–‡์€ ํ˜ˆ๊ด€๋“ค์ด ์„ฑ๊ณต์ ์œผ๋กœ ๋ถ„ํ• ๋  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์ธ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๊ฐ„์˜ ํ•ด๋ถ€ํ•™์  ๋ถ„์„๊ณผ ์ž๋™ํ™”๋œ ์ปดํ“จํ„ฐ ์ง„๋‹จ ๋ณด์กฐ ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•˜๋Š” ๋ฐ ๋งค์šฐ ์ค‘์š”ํ•œ ๊ธฐ์ˆ ์ด๋‹ค.Accurate liver and its vessel segmentation on abdominal computed tomography (CT) images is one of the most important prerequisites for computer-aided diagnosis (CAD) systems such as volumetric measurement, treatment planning, and further augmented reality-based surgical guide. In recent years, the application of deep learning in the form of convolutional neural network (CNN) has improved the performance of medical image segmentation, but it is difficult to provide high generalization performance for the actual clinical practice. Furthermore, although the contour features are an important factor in the image segmentation problem, they are hard to be employed on CNN due to many unclear boundaries on the image. In case of a liver vessel segmentation, a deep learning approach is impractical because it is difficult to obtain training data from complex vessel images. Furthermore, thin vessels are hard to be identified in the original image due to weak intensity contrasts and noise. In this dissertation, a CNN with high generalization performance and a contour learning scheme is first proposed for liver segmentation. Secondly, a liver vessel segmentation algorithm is presented that accurately segments even thin vessels. To build a CNN with high generalization performance, the auto-context algorithm is employed. The auto-context algorithm goes through two pipelines: the first predicts the overall area of a liver and the second predicts the final liver using the first prediction as a prior. This process improves generalization performance because the network internally estimates shape-prior. In addition to the auto-context, a contour learning method is proposed that uses only sparse contours rather than the entire contour. Sparse contours are obtained and trained by using only the mispredicted part of the network's final prediction. Experimental studies show that the proposed network is superior in accuracy to other modern networks. Multiple N-fold tests are also performed to verify the generalization performance. An algorithm for accurate liver vessel segmentation is also proposed by introducing vessel candidate points. To obtain confident vessel candidates, the 3D image is first reduced to 2D through maximum intensity projection. Subsequently, vessel segmentation is performed from the 2D images and the segmented pixels are back-projected into the original 3D space. Finally, a new level set function is proposed that utilizes both the original image and vessel candidate points. The proposed algorithm can segment thin vessels with high accuracy by mainly using vessel candidate points. The reliability of the points can be higher through robust segmentation in the projected 2D images where complex structures are simplified and thin vessels are more visible. Experimental results show that the proposed algorithm is superior to other active contour models. The proposed algorithms present a new method of segmenting the liver and its vessels. The auto-context algorithm shows that a human-designed curriculum (i.e., shape-prior learning) can improve generalization performance. The proposed contour learning technique can increase the accuracy of a CNN for image segmentation by focusing on its failures, represented by sparse contours. The vessel segmentation shows that minor vessel branches can be successfully segmented through vessel candidate points obtained by reducing the image dimension. The algorithms presented in this dissertation can be employed for later analysis of liver anatomy that requires accurate segmentation techniques.Chapter 1 Introduction 1 1.1 Background and motivation 1 1.2 Problem statement 3 1.3 Main contributions 6 1.4 Contents and organization 9 Chapter 2 Related Works 10 2.1 Overview 10 2.2 Convolutional neural networks 11 2.2.1 Architectures of convolutional neural networks 11 2.2.2 Convolutional neural networks in medical image segmentation 21 2.3 Liver and vessel segmentation 37 2.3.1 Classical methods for liver segmentation 37 2.3.2 Vascular image segmentation 40 2.3.3 Active contour models 46 2.3.4 Vessel topology-based active contour model 54 2.4 Motivation 60 Chapter 3 Liver Segmentation via Auto-Context Neural Network with Self-Supervised Contour Attention 62 3.1 Overview 62 3.2 Single-pass auto-context neural network 65 3.2.1 Skip-attention module 66 3.2.2 V-transition module 69 3.2.3 Liver-prior inference and auto-context 70 3.2.4 Understanding the network 74 3.3 Self-supervising contour attention 75 3.4 Learning the network 81 3.4.1 Overall loss function 81 3.4.2 Data augmentation 81 3.5 Experimental Results 83 3.5.1 Overview 83 3.5.2 Data configurations and target of comparison 84 3.5.3 Evaluation metric 85 3.5.4 Accuracy evaluation 87 3.5.5 Ablation study 93 3.5.6 Performance of generalization 110 3.5.7 Results from ground-truth variations 114 3.6 Discussion 116 Chapter 4 Liver Vessel Segmentation via Active Contour Model with Dense Vessel Candidates 119 4.1 Overview 119 4.2 Dense vessel candidates 124 4.2.1 Maximum intensity slab images 125 4.2.2 Segmentation of 2D vessel candidates and back-projection 130 4.3 Clustering of dense vessel candidates 135 4.3.1 Virtual gradient-assisted regional ACM 136 4.3.2 Localized regional ACM 142 4.4 Experimental results 145 4.4.1 Overview 145 4.4.2 Data configurations and environment 146 4.4.3 2D segmentation 146 4.4.4 ACM comparisons 149 4.4.5 Evaluation of bifurcation points 154 4.4.6 Computational performance 159 4.4.7 Ablation study 160 4.4.8 Parameter study 162 4.5 Application to portal vein analysis 164 4.6 Discussion 168 Chapter 5 Conclusion and Future Works 170 Bibliography 172 ์ดˆ๋ก 197Docto
    • โ€ฆ
    corecore