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Abstract

Accurate liver and its vessel segmentation on abdominal computed tomography

(CT) images is one of the most important prerequisites for computer-aided di-

agnosis (CAD) systems such as volumetric measurement, treatment planning,

and further augmented reality-based surgical guide. In recent years, the appli-

cation of deep learning in the form of convolutional neural network (CNN) has

improved the performance of medical image segmentation, but it is difficult to

provide high generalization performance for the actual clinical practice. Fur-

thermore, although the contour features are an important factor in the image

segmentation problem, they are hard to be employed on CNN due to many

unclear boundaries on the image. In case of a liver vessel segmentation, a deep

learning approach is impractical because it is difficult to obtain training data

from complex vessel images. Furthermore, thin vessels are hard to be identified

in the original image due to weak intensity contrasts and noise. In this dis-

sertation, a CNN with high generalization performance and a contour learning

scheme is first proposed for liver segmentation. Secondly, a liver vessel segmen-

tation algorithm is presented that accurately segments even thin vessels.

To build a CNN with high generalization performance, the auto-context al-

gorithm is employed. The auto-context algorithm goes through two pipelines:

the first predicts the overall area of a liver and the second predicts the final liver

using the first prediction as a prior. This process improves generalization perfor-

mance because the network internally estimates shape-prior. In addition to the

auto-context, a contour learning method is proposed that uses only sparse con-

tours rather than the entire contour. Sparse contours are obtained and trained

by using only the mispredicted part of the network’s final prediction. Experi-
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mental studies show that the proposed network is superior in accuracy to other

modern networks. Multiple N-fold tests are also performed to verify the gener-

alization performance.

An algorithm for accurate liver vessel segmentation is also proposed by in-

troducing vessel candidate points. To obtain confident vessel candidates, the

3D image is first reduced to 2D through maximum intensity projection. Sub-

sequently, vessel segmentation is performed from the 2D images and the seg-

mented pixels are back-projected into the original 3D space. Finally, a new

level set function is proposed that utilizes both the original image and vessel

candidate points. The proposed algorithm can segment thin vessels with high

accuracy by mainly using vessel candidate points. The reliability of the points

can be higher through robust segmentation in the projected 2D images where

complex structures are simplified and thin vessels are more visible. Experimen-

tal results show that the proposed algorithm is superior to other active contour

models.

The proposed algorithms present a new method of segmenting the liver and

its vessels. The auto-context algorithm shows that a human-designed curricu-

lum (i.e., shape-prior learning) can improve generalization performance. The

proposed contour learning technique can increase the accuracy of a CNN for

image segmentation by focusing on its failures, represented by sparse contours.

The vessel segmentation shows that minor vessel branches can be successfully

segmented through vessel candidate points obtained by reducing the image di-

mension. The algorithms presented in this dissertation can be employed for

later analysis of liver anatomy that requires accurate segmentation techniques.

Keywords: Active contour model, auto-context neural network, contour atten-

tion, liver segmentation, vessel candidates, vessel segmentation.

Student Number: 2014-21778
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l ) for self-supervision

(i.e., multiplication of (b) and (d)). . . . . . . . . . . . . 78

Figure 3.11 Example results of the contour network for the two dif-

ferent contour losses. The first row shows the contour

responses based on the full ground-truth contour loss.

The second row shows the contour responses based on

self-supervising fashion. The self-supervision mechanism

derives more sparse responses than the full-supervision. . 80

Figure 3.12 Demonstration of windowing operation (intensity re-scaling).

All training images are pre-processed by a given window-

ing operation (b). . . . . . . . . . . . . . . . . . . . . . . 82

Figure 3.13 An illustration of true positives, false positives, and false

negatives. . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 3.14 Example visualizations of the test results for state-of-

the-art networks. The surface color is visualized based

on the distance to the ground-truth surface. Visualized

surfaces are smoothed by the curvature flow smoothing

method [148] at the original image resolution. . . . . . . 89

Figure 3.15 Example axial slices of the test results for state-of-the-

art networks. . . . . . . . . . . . . . . . . . . . . . . . . . 90

Figure 3.16 Box plots of the evaluation metrics for state-of-the-arts. 91

xiii



Figure 3.17 Box plots of the evaluation metrics for state-of-the-arts

(CCA post-processing). . . . . . . . . . . . . . . . . . . . 92

Figure 3.18 AutoNet baseline (without contour transition sub-network). 93

Figure 3.19 Ablation of AutoNet. (a) AutoNet without auto-context

algorithm. (b) AutoNet without residual connection. . . 95

Figure 3.20 Example visualizations of the test results for AutoNet

and the corresponding ablations. The surface color is vi-

sualized based on the distance to the ground-truth sur-

face. Visualized surfaces are smoothed by the curvature

flow smoothing method [148] at the original image reso-

lution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Figure 3.21 Example axial slices of the test results for AutoNet and

the corresponding ablations. . . . . . . . . . . . . . . . . 97

Figure 3.22 Box plots of the evaluation metrics for auto-context ab-

lations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Figure 3.23 Box plots of the evaluation metrics for auto-context ab-

lations (CCA post-processing). . . . . . . . . . . . . . . . 99

Figure 3.24 Example visualizations of the test results for contour

variants. The surface color is visualized based on the

distance to the ground-truth surface. Visualized surfaces

are smoothed by the curvature flow smoothing method

[148] at the original image resolution. . . . . . . . . . . . 102

Figure 3.25 Example axial slices of the test results for contour variants.103

Figure 3.26 Box plots of the evaluation metrics for contour variants. 104

Figure 3.27 Box plots of the evaluation metrics for contour variants

(CCA post-processing). . . . . . . . . . . . . . . . . . . . 105

Figure 3.28 Liver prior estimations by the AutoNet and AutoNet-R. 106

xiv



Figure 3.29 Liver prior estimations by the AutoNet and AutoNet-R. 107

Figure 3.30 Contour feature visualizations after full training: (a) with

full-contour supervision and (b) with self-supervision.

The self-supervised contour feature map in (b) is sparser

than that of the full-supervision and is later used as

strong contour attention. The ground-truth surface is

used for visualizing the distribution of the contour fea-

ture. The softmax value is normalized into the range [0..1].109

Figure 3.31 AutoNet result and contour extensions. . . . . . . . . . . 110

Figure 3.32 Example visualizations of the test results. The surface

color is visualized based on the distance to the ground-

truth surface. Visualized surfaces are smoothed by the

curvature flow smoothing method [148] at the original

image resolution. . . . . . . . . . . . . . . . . . . . . . . 111

Figure 3.33 N-fold cross-validation study of AutoCENet and state-

of-the-art networks. The errors are calculated based on

80 test images using dice loss. . . . . . . . . . . . . . . . 112

Figure 3.34 N-fold cross-validation study of AutoNet and the abla-

tions. The errors are calculated based on 80 test images

using dice loss. . . . . . . . . . . . . . . . . . . . . . . . . 112

Figure 3.35 N-fold cross-validation study of AutoCENet and the con-

tour variants. The errors are calculated based on 80 test

images using dice loss. . . . . . . . . . . . . . . . . . . . 113

Figure 3.36 The effect of penalizing confident output loss for Au-

toNet and AutoCENet. . . . . . . . . . . . . . . . . . . . 114

Figure 3.37 The effect of penalizing confident output loss for Au-

toNet and AutoCENet. . . . . . . . . . . . . . . . . . . . 115

xv



Figure 3.38 Variations on ground-truth segmentation labels. (a) Aorta

region and (b) portal vein entry region. . . . . . . . . . . 116

Figure 3.39 An example result of AutoCENet. Boundaries within the

aorta and hepatic vein regions were smoothed. . . . . . . 117

Figure 4.1 Overall workflow of the proposed method. The blue area

illustrates the iterative method of maximum intensity

slab image generation, segmentation, and back-projection.

The proposed active contour model based on the level

set is performed after IV C generation (red). . . . . . . . 120

Figure 4.2 Maximum intensity projection image for y-axis direc-

tion. The input of the segmented liver is used to project

intensities of voxels that are inside the liver region. . . . 121

Figure 4.3 Segmentation of vessel on 2D maximum intensity projec-

tion (MIP) image and back-projection. The MIP image

represents a single maximum intensity-valued position

for each pixel. It is difficult to reconstruct 3D positions

of vessels in terms of structural analysis. The extremely

complex vascular structure is highly overlapped in a sin-

gle MIP image. . . . . . . . . . . . . . . . . . . . . . . . 122

Figure 4.4 An example backtracking of maximum intensity projec-

tion (MIP) and maximum intensity slab (MIS) images. . 122

Figure 4.5 An example maximum intensity projection (MIP) image

with respect to z-axis and a manual threshold result. It

is difficult to segment accurate vessels from MIP image.

Many noise and false positives are made by thresholding. 123

xvi



Figure 4.6 Axial image comparison between (a) single-thickness plane

image, (b) slab-thickness plane image with an averaging

scheme, and (c) slab-thickness plane image with maxi-

mum intensity scheme (IMIS). Maximum intensity-based

projection (c) represents better (i.e., clear and salient)

vessel structures without noise compared to that of av-

eraging (b). . . . . . . . . . . . . . . . . . . . . . . . . . 125

Figure 4.7 Maximum intensity slab images based on multiple axis-

aligned reconstructions. (a-b) Axial, (c-d) coronal, (e-f)

sagittal views, respectively. . . . . . . . . . . . . . . . . . 126

Figure 4.8 A simple planar reconstructed image (the first row) and

maximum intensity projected image within the slab (the

second row). (a) A 1-voxel thickness reconstructed an ax-

ial image. (b) The intensity profile of a given rectangle

in an image (a). (c) A 7-voxel thickness reconstructed an

axial image at the same position as (a). (d) The intensity

profile of a given rectangle in an image (c). The intensity

profile shows that multiple image projection (i.e., maxi-

mum projection) results in noise reduction regarding the

background and foreground vessels. . . . . . . . . . . . . 127

xvii



Figure 4.9 The comparison of 2D segmentation results based on a

simple plane image (i.e., 1-voxel thickness; first column)

and maximum intensity slab (MIS) image, IMIS (sec-

ond column) with respect to y-axis direction: (a) Simple

plane image without thickness; (b) MIS image from Io

with 7 slab thickness. Each following row applies BM3D

denoising [151], vesselness filter [102], and thresholding

to the previous row image, respectively. . . . . . . . . . . 129

Figure 4.10 The second order derivative of the Gaussian kernel (s =

1) [102]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Figure 4.11 Maximum intensity slab (MIS) image (red lines) gener-

ation and back-projection. Images illustrated by black

squares are 3D volumes and red lines are 2D images.

Images are described in 2D for simplicity. The left im-

age illustrates the MIS image (IMIS) generation. MIS

is reconstructed within a slabbed region with respect

to a projection vector. The right image illustrates the

back-projection mechanism. The vessel region is back-

projected to the original 3D positions (green dots) to

generate vessel candidates. A single voxel-sized shift in-

terval is used and the three axis-aligned projection vec-

tors are employed in the experiments. . . . . . . . . . . . 133

Figure 4.12 Level set function. A zero level set is defined by ϕ(t, x, y) =

0. The function is typically formed by a signed distance

function as illustrated in the figure. . . . . . . . . . . . . 136

xviii



Figure 4.13 (a) Dense vessel candidate image generated by segmen-

tation and back-projection of maximum intensity slab

images (IV C). (b) Gaussian smoothed IV C image (IGV C)

with standard deviation, σ = 1. . . . . . . . . . . . . . . 138

Figure 4.14 Narrow banded region of a level set function. The width

of a band is defined by the ρ parameter. The image is

visualized in 2D for simplicity. . . . . . . . . . . . . . . . 140

Figure 4.15 Conceptual active contour propagation results by (a) CV

model with the higher smooth term (µ). (b) CV model

with the higher regional term (λ1, λ2), and (c) the pro-

posed model with virtual gradient assisted CV model

(VGR) using both image and vessel candidates where

red region represents dense vessel candidates. . . . . . . 142

Figure 4.16 An illustration of localized regional energy term. Fad-

ing color illustrates the weak representation of intensity

contrast in peripheral vessels. The localized region, i.e.,

Br, improves regional intensity statistics that can be un-

stable with global statistics. The zero level set in the fig-

ure is a schematic result of using simple narrow banded,

global statistics. . . . . . . . . . . . . . . . . . . . . . . . 144

xix



Figure 4.17 Results of multi-scale vessel enhancement filtering [102]

responses on various scale parameters applied to MIS

image without BM3D denoising [151]. (a) The original

maximum intensity slab (MIS) image with z-axis direc-

tion with 7 slab thickness. (b)-(d) shows vesselness filter

results from (a). Each corresponds to multi-scale param-

eters, σ (standard deviation of the Gaussian kernel). (b):

1 ≤ σ ≤ 3, (c): 4 ≤ σ ≤ 6, and (d): 1 ≤ σ ≤ 6, respectively.147

Figure 4.18 Results of multi-scale vessel enhancement filtering [102]

responses on various scale parameters applied to MIS

image with BM3D denoising [151]. (a) The BM3D de-

noised maximum intensity slab (MIS) image with z-axis

direction with 7 slab thickness. (b)-(d) shows vesselness

filter results from (a). Each corresponds to multi-scale

parameters, σ (standard deviation of the Gaussian ker-

nel). (b): 1 ≤ σ ≤ 3, (c): 4 ≤ σ ≤ 6, and (d): 1 ≤ σ ≤ 6,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 148

Figure 4.19 Liver vessel segmentation results with several active con-

tour models (ACMs). The first column shows 3D object

visualization of extracted vessel regions and the second

column shows the example axial slices of 2D segmen-

tation results. Each row represents different ACMs: (a)

GAC [130], (b) CV [131], and (c) VAC [135], respectively.150

xx



Figure 4.20 Liver vessel segmentation results with the proposed ac-

tive contour models. The first column shows 3D object

visualization of extracted vessel regions and the second

column shows the example axial slices of 2D segmenta-

tion results. (a) VGR and (b) VGRL. . . . . . . . . . . . 151

Figure 4.21 Comparison of thin vessel segmentation results with sev-

eral active contour models. (a) Manual ground-truth in

local region, (b) GAC [130], (c) CV [131], (d) VAC [135],

(e) VGR, and (f) VGRL, respectively. . . . . . . . . . . . 152

Figure 4.22 Liver vessel segmentation results by the proposed VGR

and VGRL models. The first and second columns repre-

sent VGR and VGRL, respectively. . . . . . . . . . . . . 153

Figure 4.23 An example result of the proposed VGRL active contour

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Figure 4.24 Liver vessel tree skeletonization and classification of skele-

ton voxels. The black centered line of the left image rep-

resents vessel tree skeleton. The right image describes

branch, line, and end voxel classification using connec-

tivity criterion. Line voxel region is represented by a

curve for simplicity. . . . . . . . . . . . . . . . . . . . . . 155

Figure 4.25 Number of branching nodes of the vessel trees with re-

spect to each active contour model method and manually

annotated points. . . . . . . . . . . . . . . . . . . . . . . 157

Figure 4.26 Assessment of (a) False positive error (Efp) and (b) false

negative error (Efn) for each active contour model method.158

xxi



Figure 4.27 Number of branching nodes of the vessel trees with re-

spect to each active contour model method and manually

annotated points (without slab). . . . . . . . . . . . . . . 160

Figure 4.28 Assessment of (a) False positive error (Efp) and (b)

false negative error (Efn) for each active contour model

method (without slab). . . . . . . . . . . . . . . . . . . . 161

Figure 4.29 False positive error (Efp) assessment for VGR and VGRL

models with and without maximum intensity slab images.162

Figure 4.30 Study of parameters (a) µ and (b) λ3, λ4. (c) and (d) is

log-scaled plotting for (a) and (b), respectively. Errors

are averaged for 5 CT images. . . . . . . . . . . . . . . . 163

Figure 4.31 Classification of hepatic and portal veins (i.e., separation).164

Figure 4.32 Skeleton voxels. The skeleton voxels are classified using

neighborhood connectivity criteria: 1-connected voxels

as end, 2-connected voxels as line, and 3 or more con-

nected voxels as branch. The branching points are local-

ized as a center of connected branch voxel clusters (bold

‘B’ in the figure). The propagation is performed on a

branch voxel basis. . . . . . . . . . . . . . . . . . . . . . 165

Figure 4.33 Classification of hepatic and portal veins. The red re-

gion, lines, and points indicate the pre-classified hepatic

region. The local branches can be automatically clas-

sified without conflict. Similarly, the blues indicate the

portal region. The two skeletons are propagated to clas-

sify the remaining branches. . . . . . . . . . . . . . . . . 166

Figure 4.34 Hepatic and portal vein reconstruction from two sepa-

rate, classified skeletons. . . . . . . . . . . . . . . . . . . 167

xxii



List of Tables

Table 2.1 Employed methods in CNN-based Medical Image Seg-

mentation Networks. . . . . . . . . . . . . . . . . . . . . . 36

Table 3.1 Training data configurations. . . . . . . . . . . . . . . . . 84

Table 3.2 Hyperparameters and metrics used in training. . . . . . . 87

Table 3.3 Number of the training datasets. . . . . . . . . . . . . . . 87

Table 3.4 Accuracy evaluation of the proposed network and other

state-of-the-arts. . . . . . . . . . . . . . . . . . . . . . . . 88

Table 3.5 Accuracy evaluation of the proposed network and other

state-of-the-arts (CCA post-processing). . . . . . . . . . . 88

Table 3.6 Accuracy evaluation of the proposed network and auto-

context ablations. . . . . . . . . . . . . . . . . . . . . . . . 94

Table 3.7 Accuracy evaluation of the proposed network and auto-

context ablations (CCA post-processing). . . . . . . . . . 94

Table 3.8 Accuracy evaluation of the proposed network and the con-

tour variants. . . . . . . . . . . . . . . . . . . . . . . . . . 101

Table 3.9 Accuracy evaluation of the proposed network and the con-

tour variants (CCA post-processing). . . . . . . . . . . . . 101

xxiii



Table 4.1 Number of branching nodes of the vessel tree (five training

images). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Table 4.2 Accuracy assessment results of vessel segmentation (five

training images). . . . . . . . . . . . . . . . . . . . . . . . 156

xxiv



Chapter 1

Introduction

1.1 Background and motivation

Medical image analysis is consistently gaining its demand because the num-

ber of medical images has been growing since the X-ray imaging technology

had been developed. A computed tomography (CT) reconstruction from X-ray

images opened a new era of accurate computer-aided diagnosis (CAD) based

on 3-dimensional (3D) images. Medical image segmentation is one of the most

important and essential prerequisites for clinical applications (i.e., radiological

diagnosis system) of the automated CAD such as disease diagnosis, treatment

planning, volume measurement, and further virtual/augmented surgeries [1, 2]

(Fig. 1.1). Among the organs, the liver is a highly demanded organ where its

disease is one of the top increasing causes of death worldwide. For accurate

surgical planning such as liver transplantation and resection, volumetric infor-

mation and vascular structure analysis of a liver is critically required. However,

due to its time-consuming labor of manual 3D image annotation, computer-
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Figure 1.1: Importance of liver segmentation. Liver segmentation is a critical

prerequisite for many further applications such as vessel/tumor segmentation,

liver sectioning, treatment planning, and surgical simulations. The sources of

figures are noted in footnotes1.

aided surgical planning is highly limited.

In recent years, empowered by cutting edge hardware infrastructures, large-

scaled medical image data is available to employ an artificial intelligence towards

CAD system. However, most of the artificial intelligence is constructed in a

supervised manner which implies the importance of manual ground-truth image

annotations. As aforementioned, manual annotation of 3D medical images is a

tedious task. The degree of difficulty increases even more for very complex

objects, such as liver vessels. Therefore, it is necessary to develop artificial

intelligence that shows high generalization performance through a small number

of annotated data or to introduce an accurate segmentation method by human-

designed algorithms.

1https://en.wikipedia.org/wiki/Liver
1https://www.nibib.nih.gov/news-events/newsroom
1https://9to5mac.com/2013/08/21/liver-surgery-now-theres-an-ipad-app-for-that
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Figure 1.2: Dynamic intensity variations in liver regions. Abdominal CT images

contain an intrinsic class imbalance in the intensity distribution due to multi-

phases or rare cases of anomalies such as tumors.

1.2 Problem statement

Manual or semi-automatic segmentation of a liver and vessels is a very imprac-

tical task owing to its large shape variability, unclear boundaries, and complex

structure. Unlike other organs, ambiguous boundaries with the heart, stomach,

pancreas, and fat make liver segmentation difficult. Furthermore, manual seg-

mentation is error-prone which implies there is a severe inter- and intra-observer

variability of the results.

Although the CNN-based methods are showing groundbreaking results com-

pared to the classics, the performance of generalization should be addressed for

the actual employment of CNNs for medical image segmentation task. As shown
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Figure 1.3: Multiple phases of abdominal CT imaging.

in Fig. 1.4, a neural network has a strong capability (i.e., complexity) to classify

arbitrary signals mainly owing to deep and complex stacks of trainable param-

eters. Ironically, the main difficulty of deep neural networks to be employed in

the clinics arises from its strong capability. As a huge number of parameters are

trainable, deep neural networks opt to fit the training dataset. In other words,

networks are easily over-fitted to the training dataset. It is very hard to make a

network to be trained for general cases unless a large number of training images

are provided. Many studies have been conducted to obtain a high generalization

performance such as weight decay, drop out [3], transfer learning [4], data aug-

mentation [5], domain adaptation [6,7], and regularization of loss functions [8].

However, those systematic techniques have limitations to be adapted in various

fields that have data deficiency and intrinsic class imbalance (e.g., rare cases

of anomalies and phases in medical images (Figs. 1.2 and 1.3)). Consequently,

a domain-specific generalization technique is highly required especially in the

field of medical image analysis.

In the image segmentation problem, it is worth knowing that an object

boundary delineation is the most effective and accurate way for object segmen-

tation. There has been a huge body of literature to resolve accurate contour

delineation for object segmentation [9]. An implantation of contour features to

a neural network has been previously studied in [10]. However, the difficulty of
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Figure 1.4: Capability of deep neural networks (upper left) and the correspond-

ing generalization error (upper right). Train and validation errors while training

the neural networks are schematically plotted. The lower left classifier shows

the best performance of generalization.

contour delineation of a liver, unlike other organs, is that boundary features of

the ground-truth liver are typically irregular (Fig. 1.5). It is very difficult to ex-

plicitly model the features of whole boundaries as opposed to the reference [10].

That is, a complete delineation of a contour is hard to be trained even for the

neural network.

Segmentation of liver vessels is even more difficult than that of a liver from

the perspective of its complex structure and limited annotations. Blood ves-

sels typically have tree-structure with continuous tubular sections. Tubular and

branching tree structures of vessels are an anatomical nature of the human
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Figure 1.5: Ambiguous boundaries on a liver. It is very hard to identify its

boundaries based on a local intensity analysis.

Figure 1.6: Diverse shapes of liver.

vascular system. However, algorithms assuming structural properties of vessel

might break down in some patients. For example, vascular structures are not

fully contrast-enhanced in the same phase in every patient, and vessel structures

may be broken by vascular disease or cancerous regions. These individually dis-

tinctive situations make it difficult to segment vessels automatically. Moreover,

thin vessels are hard to be identified in the original 3D image which makes it

difficult to accurately segment all vessels.

1.3 Main contributions

In this dissertation, a neural network-based architecture is first proposed that

performs an accurate segmentation of a liver on abdominal CT images. A

human-designed curriculum is employed while training the network. The net-

work initially estimates an overall shape of a liver, and subsequently delineates
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fine details. The proposed two-stage prediction showed high generalization per-

formance without any extra techniques. Besides, a contour scheme is success-

fully embedded in the network to improve accuracy. Secondly, a fully automated

algorithm for liver vessel segmentation is proposed. The prior of a liver (i.e.,

liver segmentation), which is obtained by the proposed neural network, is em-

ployed to the vessel segmentation algorithm. Minor vessels, that are hard to be

identified in the original CT volume, are successfully segmented by introduc-

ing a novel 3D map of vessel candidates. A brief overview of algorithms and

achievements are described in the following paragraphs.

The overall shape estimation and localization is the most challenging and

important task for the generalized performance of liver segmentation because

the variability of shape is extremely severe (Fig. 1.6). The proposed liver seg-

mentation method employs an auto-context algorithm [11] into the neural net-

work. The auto-context algorithm [11] is formulated by a single neural network

by using a liver prior branch. The liver prior branch is deeply supervised to

generate the probability of a liver foreground. Effective high-level residual con-

nections were applied for the liver-prior estimation. The prior is then fused

with deep contexts for the final auto-context layers. In addition to the auto-

context structure, another branch was added which is also deeply supervised by

contours of a liver. Instead of training the explicit ground-truth contour, more

significant sparse contours are trained which act as an implicit attention that

can improve the final delineation of the target liver object. The sparse contours

are obtained and trained based on self-supervising fashion by using only the

mispredicted part of the network’s final prediction. The objective of learning

partially significant contours is that, unlike other segmentation problems (e.g.,

glands), the contour of a liver is difficult to be obtained accurately, even with

deep CNNs, because of its ambiguous boundaries (Fig. 1.5). The main under-
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lying principle of the proposed architecture is that accurate segmentation of a

liver can be achieved by a robust shape-prior and an accurate delineation of a

contour region. The aforementioned challenges were accomplished by the two

architectures: the high-level residual shape-prior estimation in an auto-context

framework and the self-supervised contour attention. The robust shape-prior

enhanced the performance of generalization, and the contour attention mecha-

nism improved the final accuracy. Experimental results, comparing with many

state-of-the-art neural networks, show the supremacy of the proposed method.

Several ablation studies have been conducted to verify each designed concept

(i.e., auto-context and contour). Additionally, the performance of generalization

is assessed in-depth based on multiple N-fold validations.

For the task of vascular structure analysis, a fully automated liver ves-

sel segmentation algorithm is proposed including portal and hepatic veins on

contrast-enhanced CT images. First, vessel candidate points are extracted from

a 3-dimensional (3D) CT image. To generate accurate points, the 3D segmenta-

tion problem is reduced to a 2D problem by generating multiple maximum in-

tensity images based on slabbed regions (i.e., depth-constrained regions). After

performing vessel segmentation on maximum intensity images, the foreground

pixels are back-projected to the original 3D space. A large set of maximum

intensity images produces a very dense and accurate vessel candidate map.

Finally, a newly designed active contour model is proposed for an accurate seg-

mentation of vessels. The model encompasses the original image, vessel proba-

bility map from dense vessel candidates, and a good prior of an initial contour.

In total, 55 abdominal CT images are used for a parameter study and a quan-

titative evaluation. The performance of the proposed method is evaluated by

comparing it with other state-of-the-art active contour models for vascular im-

ages applied directly to the original image. The result showed that the proposed
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method successfully segmented vascular structures 25%-122% more accurately

than other methods without any extra false positive segmentation. The pro-

posed model can generate a smooth and accurate boundary of a vessel object

and easily extract thin and weak peripheral branch vessels. The detailed result

can aid further anatomical studies such as structural analysis of hepatic vein.

1.4 Contents and organization

The remainder of this dissertation is organized as follows. First, related works

are explored in chapter 2. In chapter 2, an introduction of CNN, several modern

architectures of CNNs, and state-of-the-art models for medical image segmenta-

tion are illustrated. Subsequently, the literature on liver and vessel segmentation

is presented. An active contour model-based segmentation technique is thor-

oughly reviewed, and finally, an active contour model that employs a topology

of a vascular structure is introduced. The proposed methods for the liver and

its vessel segmentation are described in chapters 3 and 4, respectively. Each

chapter comprises an overview, detailed methodology, corresponding experi-

mental results, and discussion. The conclusion and future works are presented

in chapter 5.
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Chapter 2

Related Works

2.1 Overview

In this chapter, a literature review regarding liver and vessel segmentation is

illustrated. The chapter is composed of the two main subjects: 1) convolutional

neural networks for medical image segmentation and 2) literature of liver and

vessel segmentation. First, convolutional neural networks are introduced and

networks that are related to medical image segmentation are highlighted. The

presented networks are used in the later experimental assessments. The follow-

ing sections demonstrate a literature review of algorithms for liver and vessel

segmentation. Especially, an active contour model, which is closely related to

the proposed method in this dissertation, is thoroughly reviewed. Finally, com-

mon limitations of the current algorithms and the corresponding motivations

are illustrated in the final motivation section.
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2.2 Convolutional neural networks

In this section, an introduction to the convolutional neural network (CNN),

several CNN architectures, and CNNs for medical image segmentation are fea-

tured. A brief architecture of CNNs and building blocks are firstly reviewed

and several state-of-the-art CNNs are highlighted that performs medical image

segmentation tasks.

2.2.1 Architectures of convolutional neural networks

Brief introduction to neural networks

An artificial neural network is designed in the spirit of mimicking the human

brain’s neuron activation. A multi-layer perceptron [12, 13] has been a basic

architecture in a feed-forward fashion [12]. The input signal is fed to the net-

work and propagated forward by weight parameters to output a new signal.

Intermediate signals are fully connected (FC) which can be represented by a

matrix multiplication formed with trainable parameters (Fig. 2.1):

hml = Wm×n
l hnl−1 + bl, (2.1)

where h, W , and b represents a feature of hidden layer (i.e., intermediate sig-

nal), weight matrix, and bias vector, respectively. The variables m, n, and Wl

denote dimension of lth, l − 1th hidden layer, and the inter FC weights (i.e.,

matrix), respectively. To employ non-linear transformation which can distin-

guish data that is not linearly separable, non-linear activation functions are

applied to every output of FC layers. The layers are stacked deeply and trained

so that the architecture is called “deep learning” or “deep neural network” in

our modern academic societies. A neural network is trained by designing a dif-

ferentiable loss function at the final output layer. The calculated loss is then
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Figure 2.1: An example fully connected layer formed by matrix multiplication.

A weight matrix (Wl) and biases (bl) are trainable parameters.

back-propagated [14] to intermediate neurons via partial derivatives:

∂L

∂W
, (2.2)

where L indicates the objective (i.e., loss) function and W denotes a set of all

trainable parameters.

The main significance of neural network architecture is that features, which

were traditionally human-designed, are extracted automatically when a certain

task and the corresponding data are given. That is, a neural network is a data-

driven algorithm that learns from data referring to tasks. In earlier days, the

computational power could not afford the large neural architectures to be em-

ployed in real-time applications. Furthermore, the amount of available data has

been limited in various fields. In recent years, deep learning has been gaining

its capability and popularity owing to the increase of training data and the

improvement of hardware infrastructures.

The impact of deep neural networks has been groundbreaking in many ap-

plications. The main factor of success is a tremendous gain of the complexity of

feature extraction and description that are automatically trained from a large

amount of data. Deeply stacked layers act as a feature transformation which

transforms the feature space to be well-disentangled (i.e. representative) that
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Figure 2.2: Difference between classical methods and deep learning. Classical

methods attempt to extract discriminable features in a human-designed manner

and optimize classifiers for given tasks. On the other hand, a deep learning-based

approach aims to learn optimal feature extractors that can be discriminable so

that the final classification can be easier.

the classes are to be effectively classified for the final decisions (Fig. 2.2). The

application of deep neural networks indicates the construction of a classifier with

intractable complexity. It is indeed obtained from a huge number of parameters

formed by many neural layers [15,16]. However, deep learning is nowadays facing

a great challenge in improving generalization [17]. A foundation of deep learning

is a data-driven method that lies under almost every modern architectures. The

problem arises from the training data in perspective of its amount and distribu-

tion. The algorithm is prone to be over-fitted to the training data primarily due

to the large complexity of networks. Until recently, many applications suffer to

employ deep learning because of data deficiency and imbalance. Oppose to a

huge trend of neural architecture search which attempts to automate the entire

training procedure from the neural architecture designing step, it is still critical

to build a human-designed algorithm with domain-specific knowledge for the
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Figure 2.3: The convolution operation. The weights of a convolutional kernel

are weighted summed in a sliding window fashion for the input image (or in-

termediate features in the neural networks). Weights of a convolutional kernel

are trainable parameters in convolutional neural networks.

better generalization performance to empower deep neural networks.

Convolution operator

The basic building operations of a convolutional neural network are convo-

lution (Fig. 2.3) and non-linear activation functions. The feature map after

convolution, including the input image, typically passes through a non-linear

activation function to obtain non-linear combination of signals. A non-linear

layer (i.e., feature transformation) typically comprises a composite operations

such as convolution, batch normalization [18], and non-linear unit (e.g., rectified

linear unit [19] non-linearity):

fl = Fl(fl−1) = σ(b((fl−1 ∗ θl), γl)), (2.3)

where θl is a trainable weights of a convolutional kernel in the ith layer, fi is

the ith layer features, b(f, γ) is a batch normalization [18] which transforms
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Figure 2.4: A building block of ResNet. The input signal is added to the output

(i.e., skip connected).

the mean and variance of each channel to 0 and γ (trainable scale parameter),

and σ indicates a non-linear function. Non-linear layers in this dissertation are

composed of the three operations as defined in (2.3) unless some operations are

specially omitted. Note that the literature in this section is not restricted to

the CNN architecture.

Residual connections

A neural network with residual connections (ResNet) has been proposed for

image classification [20]. A building block of ResNet is an identity shortcut

connections which add an input signal directly to the output of non-linearities

(Fig. 2.4):

fl = Fl(fl−1,Wl) + fl−1, (2.4)

where Wl is a set of weights correspondingly associated with the lth layer.

That is, the skip connections between layers add the outputs from previous

layers to the outputs of stacked layers. Therefore, derivative of a certain layer

fl(1 ≤ l ≤ L) can be represented according to the chain rule of back-propagation
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Figure 2.5: Densely connected convolutional network [21].

[14]:

∂L

∂fl
=
∂L

∂fL

∂fL
∂fl

=
∂L

∂fL
(1 +

∂

∂fl

L∑
i=l

Fi(fi,Wi)), (2.5)

where L denotes the loss function of deep residual networks.

The architecture of skip connections via residual shortcut made it possible

to train much deeper networks [20]. The gradients of a loss function flow through

skip connections so that the gradient vanishing problem has been eased.

Densely connected convolutional network

Densely connected convolutional network (DenseNet) [21] connects each layer

to every other layer in a feed-forward fashion (Fig. 2.5). The main advantage

of the presented architecture is that the gradient directly flows to deep layers,

accelerating the learning procedure. Feature reusing scheme also strongly con-

tributes to a substantial reduction in the number of parameters. This structure

can be viewed as an implicit deep supervision network similar to the explicit

version [22]. The lth layer obtains the concatenation of all outputs of the pre-
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ceding layers [21]:

fl = Fl([f0, f1, ..., fl−1]), (2.6)

where fl denotes the output of the lth layer and [f0, f1, ..., fl−1] refers to a con-

catenation of feature-maps produced in the previous layers. A feature-reusing

scheme of DenseNet, which causes a reduction of parameters, is an effective

feature for the 3D volumetric neural network because volumetric data easily

lack GPU memories due to deep stacks of layers in DNNs.

Depth-wise separable convolutions

Depth-wise separable convolutions [23] showed ground-breaking results with a

separation of features in a depth-wise (i.e., channel-wise) manner. Separable

convolution is performed in depth-wise channel separation and further concate-

nation:

F̈ (x) = σ(b([f0..k−1 ∗ θ0, ..., fc−k..c−1 ∗ θc−1], γ)), (2.7)

where c indicates the number of channels of feature f and k denotes the number

of channels of each separated group. An application of separable convolutions

showed better accuracy with a simple structure compared to Inception V3 [24]

module which is formed by a complex composite of bottleneck layers. Further-

more, the effective use of parameters improved generalization performance.

Deeply supervised networks

A deep supervision metric [22] was proposed by introducing classifiers at hid-

den (i.e., intermediate) layers. The key underlying concept of deep supervision

metric is that a discriminative classifier that is trained on highly discrimina-

tive features are more likely to derive better performance than a discriminative

classifier trained on less discriminative features [22]. The method also alleviates
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Figure 2.6: An example of depth-wise separable convolutions. k indicates the

size of a kernel. The channels are separated and pass through a convolution for

the final output features which are obtained by simple concatenation.

the gradient vanishing problem. A deeply supervised network showed a new

possibility of auxiliary classifiers that can be adapted to multi-task neural net-

works [10, 25]. Originally, a deeply supervising method was proposed to add a

loss to the intermediate layers to enhance the discriminability of the low-level

features. The method was also proved to achieve improved performance of gen-

eralization. The spirit of deep supervision was successfully applied to a liver

segmentation [26] which are reviewed in section 2.2.2.

Attention mechanism

The attention mechanism is literally “paying more attention” to certain in-

termediate features (or gradients) to improve the performance of neural net-

works [27]. The primary idea of attention mechanism is applied by generating

an attention vector that assigns relative weights on a sequence of features. In

the application of natural language processing, the attention mechanism showed

groundbreaking results in the field such as machine translation [27–31] and clas-
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sification [32–34]. The superior feature of attention modules is its capability of

modeling long-range dependencies [30].

There are many studies that relate the attention mechanism with computer

vision tasks such as image classification [33–36], segmentation [37–41], detec-

tion [42], action recognition [43–45], image captioning [46, 47], visual question

answering [48, 49], and pose estimation [50]. The primary goals of employing

attention mechanisms to the field of computer vision are to increase the neural

network’s discriminability and to effectively incorporate local and global fea-

tures. The attention mechanism typically enhances neural networks to focus on

the most relevant (i.e., important) features without additional deep supervi-

sion metric which has been a prominent method to make intermediate features

representative [22]. The aspect of highlighting salient features and avoiding the

use of multiple redundant features, attention mechanisms greatly contribute to

the compactness and discriminability of neural networks. The compactness of

the network is typically achieved by the self-attention [34, 45] method which

does not use the external information. For example, a non-local self-attention

was used to capture long-range dependencies [45] and a class-specific pooling

was performed via self-attention [33, 34]. That is, an attention is applied to

weight self-features (i.e., internal features for each layer or module) which are

to be critical to a given task. There are several works that employs channel-

wise attention [51], spatial-wise attention [52], or both [41] into the neural net-

works. Channel-wise attention [51] gives class-wise (i.e., feature-wise) attention

to weigh relative importance among features. Spatial-attention, on the other

hand, applies attention in a spatial manner to make layers to focus on certain

spatial regions [41].

A multi-scale analysis of images has been a great success in computer vi-

sion tasks [40, 41]. Low-level features focus on local appearance while higher-
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level features encode global representations. The attention mechanism can be

greatly incorporated with neural networks to delineate the optimal combination

between local and global features. The self-supervision metric has been success-

fully employed to model the integration of local and global relationships [40,41].

In recent years, the attention mechanism has been adapted to medical image

segmentation tasks [52–55]. In [53], multi-resolution features were successfully

combined by integrating local deep attention features and a global context. More

recently, attention gated networks [52] has been proposed to leverage low- and

high-level features via attention gates. Grid-based attention was employed to

allow attention gates to be more specific to local regions [52]. A guided attention

[55] attempted to incorporate multi-scaled features using intermediate layers of

ResNet [20]. The authors have employed both position and channel attention

modules and incorporated guided loss by encoder and decoder networks [55].

Penalizing confident output distributions

A method of regularizing the neural networks by penalizing the confident output

distribution has been proposed in [8]. Different from manually manipulating the

training distributions [56], the authors have analyzed the output of the network

[8]. The low entropy of the output distribution was defined as a confident output

and the over-confident symptom as an over-fitting [24]. The proposed confident

penalty constitutes a regularization term that prevents peak distribution which

leads to a better generalization [8].

A conditional distribution of a neural network’s output (after softmax) can

be defined as pW (y|x), where x is an input, y is a class vector, and W is a set

of parameters. The entropy of this conditional distribution is given by

H(pW (y|x)) = −
∑
i

pW (yi|x)log(pW (yi|x)). (2.8)
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A simple penalization of the confident output can be achieved by adding the

negative entropy to the negative log-likelihood during training:

L(W ) = −
∑

log(pW (y|x))−βH(pW (y|x))︸ ︷︷ ︸
negative entropy

, (2.9)

where β is a control parameter for the strength of the penalty. Another penal-

ization for the supervised learning, which desires to be converged fast, can be

designed as [8]:

L(W ) = −
∑

log(pW (y|x)) − βmax(0, ρ−H(pW (y|x)))︸ ︷︷ ︸
hinge loss

, (2.10)

which penalizes the output distribution when they are below a certain entropy

threshold, ρ.

The penalizing the confident output distribution [8] and the attention mech-

anism [33, 34, 51, 57] are similar in the perspective of internally weighting the

neural network to boost the accuracy. An attention method is applied to inter-

mediate layers that weigh the feature maps by either channel- or spatial-wise

manner [51,57]. On the other hand, penalizing the output method attempts to

modify the final loss function to regularize the network.

2.2.2 Convolutional neural networks in medical image segmen-

tation

3D U-Net

3D U-Net [58] extended the U-Net [59] architecture by replacing all the 2D

operations with their 3D counterparts. Volumetric 3D convolutions improved

the network by extracting 3D contextual information. A review of the U-Net

architecture is presented in the following paragraph.

In recent years, the U-Net [59] has been the most popular neural network

which was adapted and improved by a huge body of literature. U-Net is one
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Figure 2.7: U-Net architecture [59]. Each blue box corresponds to a multi-

channel feature map. The number of channels is denoted on top of the boxes.

The dimensions are provided at the lower-left edge of the boxes. White boxes

represent copied feature maps that are concatenated.

of the main architecture of modern neural networks that are related to imag-

ing applications. The main underlying principle of U-Net is a combination of

low- and high-level features in a fully convolutional fashion. As the title gives

a rough intuition of the architecture, ‘U’ represents the shape of the proposed

network (Fig. 2.7). The network includes a contracting (left side) and an ex-

panding (right side) paths of deep intermediate features. The contracting path

is composed of 32 convolution layers followed by 22 max pooling. The number

of feature maps (i.e., the number of channels) is doubled after contraction. A 22

up-convolution layer is used in the expanding paths. For the up-convolutional
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features in the expanding paths, the number of features was halved and features

from the contracting paths at the same level are concatenated for further prop-

agation. The skip connections (i.e., concatenations) of the two features are the

key component of the U-Net. The combined features can be jointly convolved

to extract multi-scaled features that have low- and high-level representations.

Training of the network was performed by a pixel-wise softmax over the

final feature map combined with the cross-entropy loss function [59]:

Lunet = −
∑
x∈Ω

w(x)log
(
py(x)(x)

)
, (2.11)

where Ω denotes the image dimensions and py(x)(x) is the softmax defined as

pk(x) =
exp(ak(x))∑
j exp(aj(x))

, (2.12)

where ak(x) denotes the kth channel at the final activation layer and j denotes a

channel index. pk(x) is the approximated maximum function that is pk(x) = 1

for the k that has the maximum activation ak(x) and pk(x) = 0, otherwise. y

is the ground-truth label of each pixel and w(x) is a pre-computed weighting

map for each ground-truth segmentation to compensate the different frequency

of pixels from a certain class in the training data [59]. Note that a softmax

with weighted cross-entorpy loss was used in 3D U-Net [58] different from the

original U-Net objective function (2.11) [59]:

L3dunet = −
∑
c

yclogỹc + λ||W ||22, (2.13)

where ỹ denotes the predicted probability of class c after softmax operation and

y ∈ {0, 1} is the corresponding ground-truth (i.e., yc,i = 1 if voxel i belongs to

the class c, otherwise 0).
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Figure 2.8: V-Net architecture [60].

V-Net

V-Net [60] is a volumetric FCN for medical image segmentation. U-Net archi-

tecture [59] was extended to volumetric convolution (i.e., 3D convolution) and

U-Net-like downward and upward transitions (i.e., convolutional reduction and

de-convolutional expanding of feature dimensions; for more details, refer to the

original work [60]) were adopted together with many skip connections via an

element-wise summation scheme (Fig. 2.8). The main significant difference from

the standard U-Net [59] is the employment of multiple residuals [60]. The dice

loss was first presented in the application of image segmentation to overcome
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the class imbalance problem [60]:

D =
2
∑N

i pigi∑N
i pi

2 +
∑N

i gi
2
, (2.14)

where pi and gi are the binary voxels in each predicted binary and the ground-

truth volume. The dice formulation can be differentiated yielding the gradient

∂D

∂pj
= 2 ×

[
gj(

∑N
i pi

2 +
∑N

i gi
2) − 2pj(

∑N
i pigi)

(
∑N

i pi
2 +

∑N
i gi

2)
2

]
(2.15)

computed with respect to the jth voxel of the prediction [60]. The final loss

function of V-Net training is as follows:

Lvnet = D(ỹ0.5,y) + α||W ||22, (2.16)

where ỹ0.5 is the binary output prediction thresholded by 0.5 after softmax, y

indicates the ground-truth label image, W denotes the set of parameters of the

network, and α is a weighting coefficient.

The main significance of V-Net architecture is the introduction of the dice

loss (2.14) and a fully convolutional volumetric neural network for medical

image segmentation. The dice loss intrinsically overcomes the class imbalance

problem by avoiding strong bias towards background learning. The dice loss

does not require weighting parameters for the loss function to assign proper

weights to samples of different classes to establish the right balance between

foreground and background voxels [60]. The latter fully convolutional volumet-

ric architecture showed a promising direction to employ end-to-end learning

framework. In [60], all the training volumes have resized to a 128 × 128 × 64

grid of voxels and trained in an end-to-end manner.

Deeply supervised network

Deeply supervised network (DSN) [26] has been proposed to supervise a network

in a deep-level. The network was designed in the spirit of deep supervision
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Figure 2.9: Deeply supervised network for liver segmentation [26]. The architec-

ture of the proposed 3D DSN deeply supervises intermediate feature volumes

and predicts the score at the last layer.

[22] which enhances the discriminability of the low-level features so that the

final classifier can easily be a better discriminative classifier which results in

the improvement of the final accuracy. Accordingly, a loss function penetrates

through multiple layers in a DNN (Fig. 2.9). Another aspect of DSN is that

training difficulty owing to exploding and vanishing gradient problems can be

alleviated by direct and deep gradient flows. In [26], a 3D deep supervision

mechanism has been adapted to volumetric medical image segmentation. The

authors exploited two explicit deep supervisions to hidden layers and those

auxiliary losses were integrated to the final loss with the last output layer
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to back-propagate the gradients [26]. Each intermediate layer has a different

resolution (via max-pooling [61]) to improve the multi-scaled features that can

be representatively integrated. The overall loss function of DSN is as follows:

Ldsn =
∑
i

−logp(yi|xi;W ) +
∑
d∈D

ηdLd(x,y;Wd, ŵd) + λ(||W ||2 +
∑
d∈D

||ŵd||2),

(2.17)

where xi is the ith input image, yi is the ith ground-truth label, W is a set of

all parameters, and Ld represents the auxiliary losses (i.e., deep supervisions)

defined as

Ld(x,y;Wd, ŵd) =
∑
i

−logp(yi|xi;Wd, ŵd), (2.18)

where Wd denotes the set of parameters before the dth auxiliary classification

and D is the set of indices of all the hidden layers which are equipped with

the deep supervision [26]. ŵd represents the weights which bridge the dth aux-

iliary layer feature volumes to dense predictions (i.e., de-convolution layers in

the original paper [26]). The parameters ηd and λ are the balancing weights

of the overall objective function. The negative log-likelihoods were applied to

calculated the probability p(y|x) in [26].

The authors of DSN [26] additionally applied a classical post-refinement

step via employing a conditional random field (CRF) for contour refinement. To

overcome misclassified regions especially in ambiguous boundaries, the posterior

of a liver (i.e., the output of the network) was jointly combined with the original

image to model an energy function [26]:

E(y) =
∑
i

−logp̂(yi|xi)︸ ︷︷ ︸
unary potential

+
∑
i,j

f(yi,yj)ϕ(xi,xj)︸ ︷︷ ︸
pairwise potential

, (2.19)

where the first term is the unary potential indicating the distribution over label

assignment yi at a voxel xi. To aggregate multi-scale information, the p̂(yi|xi) is
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initialized as a linear combination of the last output layer and the intermediate

predictions (i.e., deeply supervised layers) obtained from the network:

p̂(yi|xi) =
(

1 −
∑
d∈D

τd

)
p(yi|xi;W ) +

∑
d∈D

τdp(yi|xi;Wd, w̃d). (2.20)

The second term in (2.19) is the pairwise potential, where f(yi, yj) = 1 if yi ̸=

yj , and 0 otherwise [26]. The ϕ(xi, xj) incorporates the local appearance and

smoothness by employing the gray-scale value Ii and Ij and bilateral position

si and sj of the voxel xi and xj as follows:

ϕ(xi,xj) = µ1exp
(
− ||si − sj ||2

2θα
2 − ||Ii − Ij ||2

2θβ
2

)
+µ2exp

(
− ||si − sj ||2

2θγ
2

)
. (2.21)

The constant weights τd in the unary potential (2.20) and parameters µi, θα,

θβ, and θγ in the pairwise potential (2.21) were optimized using a grid search

on the training set [26].

Voxel-wise residual network

Voxel-wise residual network (VoxResNet) was proposed to resolve brain seg-

mentation task [62]. The base module of the network is voxel-wise residual unit

(Fig. 2.10). The module comprises a series of convolution, batch normaliza-

tion [18], and a rectified linear unit (ReLU) non-linearity [19]. The input was

skip connected in a residual manner (2.4).

VoxRes modules are deeply stacked with several convolutional layers and

deep, multi-scaled supervisions (Fig. 2.10). The full architecture of VoxResNet is

similar to that of DSN [26] from the perspective of deep supervisions. Oppose to

the DSN [26] method, which deeply supervised intermediate layers individually,

the main difference of the base VoxResNet architecture is that the intermediate

layers and the final prediction are summed over to apply overall loss function:

Lvoxresnet = −
∑
c

yclogỹc −
∑
a

∑
c

wayclogỹc
a + λ||W ||22, (2.22)
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Figure 2.10: Voxel-wise residual network [62]. Voxel-wise residual modules are

deeply stacked in the network.

where ỹ denotes the predicted probability of class c after softmax classification

layer and yc ∈ {0, 1} is the corresponding ground-truth (i.e., yc,i = 1 if voxel

i belongs to the class c, otherwise 0). The wa, where a indicates the index of

auxiliary classifiers, is the weights of auxiliary classifiers [62].

The authors extended their work by employing an auto-context framework

using VoxResNet as a baseline [62]. An auto-context version of the VoxResNet

was proposed by combining the low-level image appearance features, implicit

shape information, and high-level context together for further improving the

segmentation performance [62]. The two identical VoxResNet networks were

used for the posterior and the final inference of an auto-context version (Fig.

2.11). The authors first trained a VoxResNet classifier on the original training

sub-volumes with image appearance information (i.e., the original volumes) [62].

Then, the output of the first VoxResNet is used as a context information at a

higher level, discriminative probability maps. The original volumes (i.e., ap-

pearance information), together with a context information were concatenated

as another input to train a new classifier (i.e., the second VoxResNet) [62].
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Figure 2.11: Architecture of voxel-wise residual network (VoxResNet). The

two identical VoxResNet is applied to acquire prior (i.e., posterior of the first

VoxResNet) and the final output. Two identical networks are required to be

trained for two-step inference.

Dense V-Networks

A simultaneous multi-organ segmentation on abdominal CT images has been

proposed [63]. A densely connected convolutional layers [21] were employed as

a unit block for the network (Fig. 2.12). A dense block units are structured as a

V-Net-like structure [60] (DenseVNet) to extract low- and high-level features,

and further fused (i.e., summed) for the final output [63]. Spatial-wise dropouts

were employed to the proposed dense blocks [63].

The authors introduced a new dice objective function that mitigates the

extreme class imbalance [63]:

D′(ỹl,yl) =
( min(ỹl, 0.9) · yl
||yl||2 + ||min(ỹl, 0.9)||2

)
, (2.23)

where ỹl is the softmax output of the network which is a probabilistic segmen-

tation and yl is the binary ground-truth label for organ l for each subject. The

dice scores for each organ l were averaged across subjects in each minibatch [63].

Dice score hinge losses heavily penalizing dice scores below 0.001 and 0.10 were

introduced after warm-up periods of 25 and 100 iterations, respectively. Thus
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Figure 2.12: Architecture of dense V-Networks (DenseVNet) [63]. Densely con-

nected blocks are schematically visualized. 123 sized trainable grid is employed

to train a shape prior. The shape prior is added to the final prediction.

the loss function at ith iteration was defined as follows:

Ldensevnet(ỹ, i) = −1

8

∑
l

d(D′(ỹl,yl), i) +
∑
w∈W

w2

40
, (2.24)

where d is defined as

d(D′, i) = D′ + 100h(D′, i, 0.01, 25) + 10h(D′, i, 0.1, 100), and (2.25)

h(D′, i, v, t) = sigmoid(6(i− t)/t)max(0, v −D′)/v
4
, (2.26)

where v is the hinge loss threshold, and t is the delay in iterations [63].

A singularity of DenseVNet is that the trainable grid was introduced to

learn the shape prior. The authors argued that medical images are frequently

acquired in standard anatomically aligned views with relatively consistent or-

gan positions and orientations [63]. In assuming the spatial data coherency, the

network used an explicit spatial prior which are trainable grid-parameters rep-

resenting a prior shape probability. The resolution of the spatial prior was 123

which was up-sampled by the factor of 6 resulted in the final output resolution

723. The prior was added to the final output prediction layer.
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Attention gated U-Net

An attention mechanism has been incorporated into the medical image segmen-

tation networks in [52,64]. The authors proposed an attention gated mechanism

which can be easily integrated into standard CNN architectures. The proposed

attention gating method was employed to a standard U-Net (AGU-Net) [59].

An adaptive feature pooling that allows attention to be performed on specific

local regions was successfully applied via an image-grid based gating mecha-

nism. Rather than using a global vector for all image pixels, the grid signal

which is conditioned to image spatial information was employed. The primary

achievements by designing an attention gating mechanism in [52] were to replace

external organ localization models and eliminate the need for labeled box anno-

tations, and remove back-propagation-based saliency map generation. The au-

thors argue that the segmentation tasks were successfully performed without a

conventional cascading localization framework or two-stage recurrences [65–68].

An attention gate (AG) module was developed to disambiguate task-irrelevant

feature contexts in the intermediate layers. AGs were applied to every skip con-

nection right before the concatenation on a standard U-Net which were to jointly

attend the features at multi-scales. In other words, every skip connected feature

passes through an AG module which applies attention using the input features

and the higher-level features from contracted paths (Fig. 2.13). The features on

the higher level, which have the coarse spatial dimensions, were used as gates

that were intended to make AG modules (Fig. 2.14) better to jointly attend

the local- and global-scaled features to rule out irrelevant background regions.

Let fi
s be the feature map at scale s (s ∈ {1..3}) which is an index value of lth

layer (l ∈ {1..L}). Each fi
s indicates the output features for skip connections

from the contracting paths that pass through an attention gate. The higher
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Figure 2.13: Attention gated U-Net architecture [52]. An input image is pro-

gressively filtered and down-sampled by the factor of 2 at each scale (s) in the

encoding part of the network (i.e., contracting paths). Attention gates (AGs)

weigh the features that are propagated through the skip connections right before

the concatenation.

scale indicates the more contracted features that are in the coarser spatial di-

mensions. fi
s represents a pixel-wise feature vector, and the length is defined by

the number of channels at a given scaled layer (i.e., fi
s ∈ Rcs). For each fi

s, AG

computes a coefficient map αsi , where αsi ∈ [0, 1]. The coefficient map attends

salient image regions and prunes false responses to the background. The output

of AG module is defined as f̂i
s

= {αsi fi
s}ni=1, where n denotes the size of each

feature [52]. That is, the coefficients αsi act as spatial attention for each feature

vector. The authors used additive attention [28, 69] rather than multiplicative

attention [29]. The aforementioned attention coefficients can be formulated as

follows [52]:

αsi = σ2

(
ψT

(
σ1(W

T
f fi

s + WT
g g

s+1 + bfg)
)

+ bψ

)
, (2.27)

where σ1 is an element-wise ReLU (i.e., σ1(xi,c) = max(0, xi,c)) and σ2 is a
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Figure 2.14: Attention gate module proposed in [52]. Input features (f s) are

scaled with attention coefficients (α). Spatial regions are weighed by analyzing

both the input features (f s) and the gating signal (gs+1) which is collected

from a coarser scale. Grid resampling of attention coefficients is performed by

trilinear interpolation.

sigmoid operation: σ2(x) = 1
1+exp(−x) (i.e., normalization function). The three

linear transformations and two bias terms Wf ∈ Rcs×cag , Wg ∈ Rcg×cag , ψ ∈

Rcag×1, bψ ∈ R, and bfg ∈ Rcag were applied to the gating function (2.27).

gs+1 indicates the gating signal which is the final feature layer at scale s + 1.

That is, the gating signal gs+1 can be defined by the higher level feature map in

U-Net, which is propagated from the lower dimensions, f s+1. cag and cg denotes

the number of channels of the AG module and of the gating signal. The linear

transformations were computed using channel-wise 1× 1× 1 convolutions. The

parameters of AG modules are trained with the standard back-propagation

updates [52]:

∂ f̂i
l

∂Φl−1
=
∂
(
αliFl−1(fi

l−1; Φl−1)
)

∂Φl−1
= αli

∂
(
Fl−1(fi

l−1; Φl−1)
)

∂(Φl−1)
+

∂(αli)

∂(Φl−1)
fi
l, (2.28)

where Φl denotes the set of parameters stacked to the lth layer. The first gradient

term is scaled with αli which is an attention coefficient map.

The proposed grid attention mechanism by AG module is applied to all

the skip connections that incorporate multi-scaled features. Thus, the applied
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attention mechanisms (i.e., AG modules) ensure multi-scaled attention which

implies an ability to influence the responses to a large-to-small range of image

foreground context. The overall objective function is computed by the dice

loss [60]:

Lagunet = D(ỹ0.5,y) + α||W ||22, (2.29)

where ỹ0.5 is the binary output prediction thresholded by 0.5 after softmax, y

indicates the ground-truth label image, W denotes the set of parameters of the

network, and α is a weighting coefficient. Note that the objective function is

the same as that of the V-Net [60].

The proposed attention doesn’t require additional localization model in

multi-staged neural networks [65, 66]. The attention gates progressively sup-

press feature responses in irrelevant background regions without the require-

ment to crop object-specific interest regions. The multi-scaled AG modules

allow the model parameters in shallower layers to be updated mostly based on

spatial regions that are relevant to a given task [52]. Multi-scaled feature maps

were merged through skip connections to combine coarse- and fine-level dense

predictions (Fig. 2.13). The progressive architecture of combining multi-scaled

features was incorporated into the standard U-Net architecture to highlight

salient features that are passed through the skip connections.

Auto-context neural networks

The auto-context algorithm fuses implicit shape information and low-level ap-

pearance feature to perform image segmentation [11]. Posterior distribution of

the given segmentation problem is learned with the marginal distribution (i.e.,

classified probability map), which is further combined to learn the final classi-

fiers. The posterior marginal is trained through image patches by calculating
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Table 2.1

Employed methods in CNN-based Medical Image Segmentation Networks.

Methods 3D

U-Net [58]

V-Net [60] DSN [26] VoxRes-

Net [62]

DenseV-

Net [63]

AGU-

Net [52]

Residual connection X O X O X X

Dense connection X X X X O X

Deep supervision X X O O X O

Auto-context X X X O X X

Attention X X X X X O

Shape-prior X X X X O X

Post processing X X O X X X

the following distribution [11]:

p(yi|x) =

∫
p(yi,y−i|x)dy−i, (2.30)

where x, y present a given image and ground-truth label vector, respectively,

and y−i is a marginal set, {y − yi}. Patch representation is omitted for sim-

plicity. Traditional feature extractors (e.g., Haar [70], HOG [71]) and classifiers

(e.g., probabilistic boosting tree [72]) were used for patch-wise prediction to

calculate (2.30). The algorithm iteratively solves the posterior probability with

the previous marginal distribution:

p(t)(yi|x, p̃(t−1)) −→ p(yi|x), (2.31)

where p̃(t−1) is a posterior marginal for each pixel i learned by (2.30). It is

proved by the authors that the algorithm asymptotically converges to p(yi|x)

with a discrete, iterative process. In contrast to the original work [11], the term

“context” is used in this dissertation as a feature used in the second classifier

(i.e., not shape information).
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The literature of an auto-context algorithm applied to the plain neural net-

works is relatively low [62, 73]. The typical method is to apply a two-step in-

ference of neural networks with identical structure [62, 73]. The first output

posterior is used as a prior for the next iteration with the second neural net-

work [62]. The iterative application of the auto-context algorithm is tedious

because the neural network has to be trained by the two separate procedures.

Different from the previous methods [62, 73], this work proposes a single-step

training of auto-context neural network with a deeply supervising scheme [22].

2.3 Liver and vessel segmentation

In this section, a literature review of algorithms for liver and vessel segmenta-

tion is presented. First, classical methods for liver and vessel segmentation are

described. The literature includes maximum intensity-based approaches [74–76]

that are similar to the proposed vessel segmentation algorithm. Then, an active

contour model is thoroughly reviewed which is the backbone of the proposed

algorithm in this dissertation. Finally, a vessel topology-based active contour

model is illustrated.

2.3.1 Classical methods for liver segmentation

The two main categories of classical image segmentation can be viewed as

intensity-based and shape-based approaches. Intensity-based approaches try to

delineate the object’s internal distributions or contours. A graph-based opti-

mization metric also can be regarded as an intensity-based approach. On the

other hand, shape-based approaches are based on the registration method. That

is, prior shapes (i.e., model database) are matched to the input to delineate the

accurate contour of an input object. Note that many shape-based methods uti-

37



Figure 2.15: Dynamic intensity distribution and unclear boundaries of a liver.

It is difficult to delineate accurate boundaries via intensity-based contour prop-

agation.

lize intensity-based methods inside their algorithms. The major limitation of

classical methods is that algorithms are parameter-dependent which implies

over-fitting. Detailed strengths and weaknesses of the classics are described in

the following subsections.

Local intensity-based approaches

A huge body of literature for liver segmentation has been proposed in decades

[77–82]. In the beginning, local intensity-based region and contour analyses

were dominant approaches [77,78]. Further, a high-level representations such as

graphs [81–83] and geometric contours [79, 80, 84] have been proposed. Several
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Figure 2.16: Active/statistical shape model approach. Prior shape models are

fitted to the desired shape regarding the input images [89].

methods have been combined with the existing models to segment the liver more

accurately [85]. In recent years, a few studies have been proposed to fuse the

modern neural networks and the classics (e.g., level-set, super-pixel-based graph

optimization, or region growing) [86,87]. However, even though it is empowered

by neural networks, local intensity-based analysis has a basic limitation on liver

segmentation due to the unclear boundaries and dynamic intensity distribution

(Fig. 2.15).

Global shape-based approaches

The most successful approaches among classics were model-based (i.e., shape-

based) registration methods [88]. Unlike local intensity analysis (e.g., region

growing or active contour models), model-based methods employ prior shapes
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that can represent a liver by combining or deforming them (Fig. 2.16) [89].

Such shape-prior-based methods were more successful than the intensity-based

approaches owing to shape constraints that complement the local ambiguities.

However, the limitation arises from the deficiency of the training database. It

has an intractable complexity to train all the inter-patient shape variations

in real-world. Furthermore, even with a sufficient shape database, the model-

based approach still has to overcome the accurate registration task for the final

delineation of a liver. Local intensity analysis is an inevitable choice again for

accurate registration. Thus, the results are highly dependent on a balanced

energy functional between the local intensity-based energy and the model (i.e.,

shape) constraint, indicating that it is easily over-fitted to the training database.

It is practically hard to set optimal balance to provide maximum performance

of generalization.

2.3.2 Vascular image segmentation

In the case of vessel segmentation task, deep learning is very hard to be em-

ployed due to the lack of annotated data. Unlike other organs, vessel struc-

tures are far more tedious to manually annotate from 3-dimensional images. In

decades, many classical approaches have been proposed for the task of vessel

structure segmentation. The most simple and intuitive approach to perform ves-

sel segmentation are thresholding [74,90,91], morphological operations [92–95],

and region-growing method [96–101]. The main drawbacks of thresholding-

based methods are that the optimum threshold value is very hard to determine

and geometric information is not considered. Morphological operators that are

similar to a matched filter approach, apply structural elements for extracting

vessel topology. It is useful with a properly designed structural element. How-

ever, it is hard to fit a proper structural element to complex vascular structures
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with multi-scale analysis. The classical methods are computationally efficient

compared to other advanced techniques, but hard to set optimal parameters.

Furthermore, the algorithms typically require manual input points which make

the method not fully automated. Many researchers used local geometric fea-

tures of a blood vessel (e.g., tubular) to enhance vessel regions to ease segmen-

tation problems [102–107]. Local phase-based filter [105] is also an important

structural measurement capturing local features. Another common approach

to enhance vessel region is using a set of spatial kernels specially designed to

match vessel topology [107,108]. Designing multiple filters to detect the vessels

with different orientation and scale is a crucial part. With vessel enhancement

filtering, the vessel area becomes highly contrast-enhanced as opposed to the

background region. The main limitations of vessel enhancement filters are that

they are hard to set scales and easily affected by noise or complex structures

like in the liver vascular system.

Region-growing approach

In the region-growing method (Fig. 2.17), single or multiple seed points are

selected as a starting point and iteratively expands region with certain crite-

ria. Growing criteria have many variants such as intensity similarity, spatial

proximity, and specific geometric information. The region-growing method is

a computationally efficient algorithm compared to other techniques but eas-

ily suffers from noisy output or over-segmentation. More advanced region-

growing methods limit growing with lower risks of leakage [98], dual object

region-growing [101], and wave propagation [96, 99]. The main disadvantage of

a region-growing technique is that inputs of the algorithm are typically manually

processed. It is also hard to handle growing criteria with complex topological

changes. There are several works to overcome such limitations by combining
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Figure 2.17: Schematic illustration of region growing method for image seg-

mentation. A seed point (red dot) is selected as a starting point and the region

iteratively grows based on certain criteria.

region-growing, morphological operation, and thresholding techniques [101].

A region-growing method is designed under the principle of connectivity. A

criteria of connectivity is defined by the similarity of the intensity distribution.

The main limitation arises from the fact that vessel contrast-enhancement is not

guaranteed in an abdominal CT even for the portal phase image. Furthermore,

manual seed points are not easy to be obtained automatically which makes the

algorithm not fully automated.

Tubular structure enhancement

The enhancement of vascular structure has been the most popular approach

for the task of segmentation or visualization [102, 105, 109, 110]. Among these,

characterizing the local image geometry by second-order derivative information
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(i.e., principal curvatures of image intensities) is simple and computationally

efficient. Multi-scale Hessian-based filters for vessel enhancement [102, 109] is

the most common way to capture vessel geometric information by second-order

derivatives. These filters use eigenvalues of a Hessian matrix to measure blob,

contrast, and tubular structures. Local phase-based filters [105] are also an

important structural measurement capturing local features.

As aforementioned, vessel enhancement filter is widely used for the applica-

tions of segmentation or visualization of vessels [102, 105, 106]. This approach

conceives vessel enhancement as a filtering process that searches for geometrical

structures that can be regarded as tubular structures [102]. Eigenvalue analysis

with second-order information (i.e., Hessian matrix) for each voxel (or pixel in

2D) is used to extract structural information such as tubular. In 2D, blobness

measure accounting for the eccentricity of the second-order ellipse is defined as

RB = λ1/λ2 where λ1 and λ2 are eigenvalues of the Hessian (|λ1| ≤ |λ2|). For

contrast measure compared to the background, the Frobenius matrix norm is

used [102]:

S = ||H||F =

√∑
j≤D

λj
2, (2.32)

where D is a dimension of the image. The vesselness function is defined using

RB and S measures [102]:

V (I) =


0, if λ2 > 0,

exp(−RB
2

2β2 )(1 − exp(− S2

2c2
)), otherwise,

(2.33)

where I : (x, y) −→ R is 2D image. Equation (2.33) is for enhancing bright

curvilinear structures like vessel. For vesselness computation of multiple scales,

multiple Gaussian filters at multiple scales are applied:

V (I) = max
smin≤S≤Smax

{V (s, I)} = max
smin≤S≤Smax

{V (G(s) ∗ I)} (2.34)
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where smin and smax are the minimum and maximum scales at which relevant

structures are expected to be found [102]. The degree of the scale (i.e., expected

approximation of vessel width) is controlled by s, which is a standard deviation

of D-dimensional Gaussian kernel applied to the image:

G(x, s) =
1

√
2πs2

D
exp(

||x||2

2s2
), (2.35)

where x ∈ RD. The main limitations of vessel enhancement filters are that it

is very difficult to set scales and filters are easily affected by noise or complex

structures like in the liver vascular system.

Tree-based approaches

Along with tubular structure enhancement techniques, tree-like structure with

a hierarchical property also inspired many researchers. This approach includes

tracking [111–117], ridge traversal, and skeletonization [118,119]. Tracking meth-

ods are often fused with tubular structure measurements [112], matched fil-

ters [113], and morphological reconstruction [114]. Ridge-based methods make

images as 1D elevation maps where intensity ridges approximate the skeleton

of the tubular objects [118,119]. Since ridge-based approaches detect the skele-

ton in tubular objects, they can be thought of as a specialized skeleton-based

approach [120].

Maximum intensity-based approaches

Several maximum intensity projection (MIP) based segmentation techniques

have been proposed [74–76]. The depth-buffer segmentation algorithm using

MIP images was presented by [76] using Z-buffer. The authors first project 3D

volume to a 2D image by MIP then they generated Z-buffer (i.e., depth buffer

for each pixels corresponding to 3D position). The minimum local roughness at
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each point in the Z-buffer is measured by connecting neighboring points. The

final step is 3D vessel construction via connecting voxels with a region-growing

scheme with thresholding. Similarly, the Z-buffer segmentation (ZBS) algorithm

was proposed in [75]. In this approach, MIP image segmentation is performed to

generate a list of 3D seed points for further region-growing based segmentation.

The authors perform Z-buffer segmentation via smooth structure detection by

four principal directions of linear fits followed by thresholding. In [74], threshold-

based segmentation with ZBS is proposed. The authors perform segmentation of

iterative MIP images for a single direction to achieve progressive segmentation.

The algorithm excludes voxels that have once projected to the MIP image in

previous iterations. Recorded 3D voxel positions that correspond to MIP pixels

are used to track the original voxel position of the segmented vessel. After

consistency checks on the Z-buffer, a set of seed points are extracted which are

used to obtain the final segmentation via volume growing.

Although making use of MIP images is an effective way to perform segmen-

tation due to the reduction of noise variation, there are two critical drawbacks

in previous methods using depth buffers [75, 76]. Firstly, the depth buffer (i.e.,

Z-buffer) image introduces new noise by a large variety of background depths.

Secondly, the vessel region enlarges in the Z-buffer image due to the proximity

of maximum intensity positions in vessel boundaries due to partial volume ar-

tifacts [121]. Noise in the Z-buffer and dilated region makes the segmentation

problem very challenging. The region-growing method for the final 3D segmen-

tation is also vulnerable because of the high noise variance in the original image.

Unlike using Z-buffers, MIP images are directly used for the segmentation of

vessels in [74]. The authors used a finite mixture model and the expectation-

maximization algorithm to automatically obtain a global optimum threshold

via maximum likelihood estimation. They iteratively project MIP images, seg-
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ment vessel in MIP via global thresholding, and record corresponding vessel

voxels in 3D while ignoring previously contributed voxels. This approach has

an interesting feature that the 3D vessel segmentation result is solely depen-

dent on 2D MIP image segmentation. That is, the accuracy of the MIP image

segmentation plays a key role in the accurate result. However, successive itera-

tion leads to insufficient representation of vessels in the MIP image due to the

significant decrease in the number of high-intensity pixels (i.e., the number of

vascular pixels) [74]. This makes the 2D segmentation problem very difficult

regarding the estimation of threshold value. Furthermore, it requires an addi-

tional stopping criterion. The major drawbacks of this approach are that global

thresholding leads to noisy result even with MIP image, vessel geometric infor-

mation is ignored, no fine-tuning with the original 3D image are provided, and

the proposed stopping criterion is solely dependent to the intensity distribution.

2.3.3 Active contour models

Active contour model (ACM) approach was first introduced in [122], and ex-

tensive research has led to the successful development of advanced variations

[123–128]. The basic idea of the active contour model is to propagate a curve

towards the boundaries of objects.

F (C) =

∫ 1

0
Einternal(C(q)) + Eimage(C(q)) + Econstraint(C(q))dq, (2.36)

where C is an explicitly parameterized curve:

C(q) : [0, 1] −→ R2. (2.37)

Curve iteratively evolves with energy typically designed by a combination of

internal forces and external forces as in (2.36). Internal force is from a curve
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Figure 2.18: Schematic illustration of an active contour model segmentation. A

curve (C) is propagated toward the boundaries of a target object. The main

challenge of employing an active contour model is modeling an optimal energy

functional for contour propagation.

itself that determines the geometry (e.g., smoothness of a curve) and the ex-

ternal force is from the image context. The energy of an image context (i.e.,

the external force of active contour) varies from applications to applications.

The main process of the active contour approach is to minimize the energy

that has a smaller value when the curve is close to target object boundaries

(Fig. 2.18). Iterative propagation of a curve encloses target object boundaries

by mathematical convergence. Derivation of a partial differential equation of

an energy functional is different with respect to curve representations. Explicit

representation of a curve (i.e., parametric active contours [122]) is computa-

tionally efficient but hard to handle topological changes during propagation

and to parameterize surface in the 3D domain. Thus, an implicit representa-

tion of a curve with a level set method [129] is the most popular approach. In

the level set method, the contour is implicitly represented by zero level of a
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higher dimensional (i.e., level set) function. Unlike parametric representation

of a curve, implicit representation is more flexible to topological changes of an

evolving curve because it is easy to represent multiple curves and unnecessary

to explicitly parameterize a curve. A simple sign operator of level set function

can determine the area of an object.

As mentioned above, the basic energy model of an active contour is com-

posed of internal and external forces that are energy from curve geometry and

image context respectively. Geodesic ACM [130] uses edge information to stop

curve evolution and Chan and Vese [131] introduced new ACM without edges

that uses regional information rather than edges. More improvements of level

set evolution itself were made without re-initialization of level set [124] and

distance regularized level set evolution [125]. Moreover, the local binary fitting

(LBF) energy model [127] was presented to overcome an intensity heterogene-

ity of an object. In [132], the authors improved the LBF model by adopting

a scale-space theory and penalizing energy functional for efficiency. To han-

dle heterogeneous intensity distribution more robustly, analyzing local region

via intensity domain transformation and multiple Gaussian distributions was

presented [133]. For application to vascular segmentation, ACM made great

progress with active researches [134–138].

The basic two classical models that play a key role in many variants of active

contour energy models will be firstly reviewed. Then, several vessel-optimized

ACMs will be reviewed in the following subsection.

Edge-based active contour model

An active contour model (ACM) is a method to propagate curves to detect

boundaries of an object [122]. Either explicit or implicit representation of a

curve is available. Solving ACM with implicit representation is based on the
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level set method [129, 139]. In the level set method, zero level set defines an

object contour and we propagate a contour curve by iteratively solving Partial

Differential Equation (PDE) of designed energy functional.

Geodesic ACM uses an edge-detector function depending on the gradient of

an image [130]. This classical approach represented by an explicitly parameter-

ized curve (2.37), is formulated by

FG(C) = α

∫ 1

0
|C ′(q)|2dq − λ

∫ 1

0
|∇I(C(q))|dq, (2.38)

where α, λ are real positive constants and I : [0, w] × [0, h] −→ R is an input

image. When minimizing the functional (2.38), the first term will keep the

smoothness of a curve and the second term will make a curve converges at

strong edges of an object. A general edge-detector function can be modeled by

a positive and strictly decreasing function, g which is dependent on the gradient

of the image. Using edge-detector function g, (2.38) can be formulated as

FG(C) = α

∫ 1

0
|C ′(q)|2dq − λ

∫ 1

0
g
(
|∇I(C(q))|

)2
dq, (2.39)

where g is a positive and decreasing function:

lim
x→∞

g(x) = 0. (2.40)

For instance,

g(|(x)|) =
1

1 + |∇Gσ(x) ∗ I(x)|p
, p ≥ 1 (2.41)

where Gσ ∗ I is a smoother version of image I and is the convolution output of

the image with the Gaussian with σ standard deviation [131]. The function g

is positive at homogeneous regions and zero at edges.

An explicitly parameterized curve representation (2.39) can be replaced

by an implicit representation of a curve via introducing zero level set, C =
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{(x, y)|ϕ(x, y) = 0} where ϕ is a level set function. Zero level set propagation

of a curve C is given by solving the differential equation [139]:

∂ϕ

∂t
= |∇ϕ|F, (2.42)

where F is a speed function in normal direction of a curve. When mean cur-

vature motion of a curve is used, F is defined by F = div( ∇ϕ
|∇ϕ|). Level set

formulation of the Geodesic ACM [130,139] using mean curvature motion is

∂ϕ

∂t
= |∇ϕ|(div(g(|∇I|) ∇ϕ

|∇ϕ|
) + ν · g(|∇I|)), (2.43)

where ν is a constant and g is an edge-detector function same as in (2.39). Level

set method iteratively solve (2.43) for time t where curve is defined by zero level

set at time t : ϕ(t, x, y) = 0.

Geodesic ACM is highly dependent on the characteristics of object edges.

If the image gradient is not reliable (e.g., noisy image, very smooth edges, and

discontinuous boundaries), contour propagation may not act well. However, if

the gradient magnitude of a boundary object is well-bounded and consistent,

contour propagation using the Geodesic model is relatively fast and accurate.

Region-based active contour model

In Chan-Vese (CV) model, which is named after the authors of [131], curve

propagation is based on the Mumford-Shah segmentation techniques [131,140].

In the fact that the CV model uses a regional term in their model, the CV

model is often referred to as “region-based ACM”. CV model does not use

edge-function for the stopping criteria of a curve propagation [131]. In this way,

an active contour model which can detect contours with or without gradients

can be obtained [131]. The authors also proposed a level set formulation that
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achieves an automatic detection of interior contours. Furthermore, an initial

curve of the proposed method can be anywhere in the image [131].

Defining input image I and evolving curve C same as in (2.38), CV energy

functional is defined by

FCV (c1, c2, C) =µ · Length(C) + ν · Area(inside(C))

+ λ1 ·
∫
inside(C)

|I(x, y) − c1|2dxdy

+ λ2 ·
∫
outside(C)

|I(x, y) − c2|2dxdy,

(2.44)

where µ ≥ 0, ν ≥ 0, λ1, λ2 > 0 are fixed parameters, c1 and c2 are average

values of I inside and outside C, respectively [131]. The objective becomes a

minimization problem,

inf
c1,c2,C

FCV (c1, c2, C). (2.45)

Introducing Heaviside function,

H(z) =


0, if z ≥ 0

1, otherwise (if z < 0),

(2.46)

level set formulation of the CV model can be defined by [131]:

FCV (c1, c2, ϕ) =µ

∫
I
δ(ϕ(x, y))|∇ϕ(x, y)|dxdy

+ ν

∫
I
H(ϕ(x, y))dxdy

+ λ1

∫
I
|I(x, y) − c1|2H(ϕ(x, y))dxdy

+ λ2

∫
I
|I(x, y) − c2|2(1 −H(ϕ(x, y)))dxdy,

(2.47)

where

c1(ϕ) =

∫
I I(x, y)H(ϕ(x, y))dxdy∫

I H(ϕ(x, y))dxdy
, (2.48)
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c2(ϕ) =

∫
I I(x, y)

(
1 −H(ϕ(x, y))

)
dxdy∫

I

(
1 −H(ϕ(x, y))

)
dxdy

(2.49)

are the curves’s internal and external averages of I, respectively [131].

Minimizing the first and the second terms mean minimizing the length and

area of a curve, respectively. The third and the fourth term derives a curve C

to get similar intensity distributions respectively at inside and outside of C as

a function FCV minimizes. Constants are typically set as v = 0, λ1 = 1, and

λ2 = 1. The associate partial differential equation of a curve evolution in the

level set formulation can be obtained by applying these constants:

∂ϕ

∂t
= δ(ϕ)

[
µ · div(

∇ϕ
|∇ϕ|

) − λ1 · (I − c1)
2 + λ2 · (I − c2)2

]
, (2.50)

where δ is the Dirac function defined as a derivative of the Heaviside function

[131]:

δ(z) =
d

dz
H(z). (2.51)

One of the great advantages of using the CV model [131] is that the model

can be successful in objects that have weak representations of edges (i.e., low

gradient). As shown in Fig. 2.19, the model successfully propagates contour

with regional terms without employing image gradients.

The main limitation of the CV model is that only smoothing energy and

region-based energy are employed. That is, edges in the image context can be

easily ignored by the intensity distribution of a region. If the intensity distribu-

tion of an internal object is homogeneous, the curve will successfully propagate

regardless of edges. However, in large variance, propagation is fully dependent

on background intensity distribution (i.e., outside the curve).
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Figure 2.19: Detection of a simulated minefield with active contour without

gradient [131]. The regional intensity distribution is applied for contour propa-

gation. The model does not require the gradient of an image so that it can be

applied for discontinuous images (e.g., binary).
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2.3.4 Vessel topology-based active contour model

To solve the ACM in vascular segmentation problem, structural information of

vessels is widely used (e.g., tubular) [134–137,141,142]: Eigen-snakes [137] that

are designed for vascular segmentation with energy using directional informa-

tion of vessel, center-line curve fitting method that evolves a 1D curve on a

3D domain [134], infinite perimeter model [138], vascular ACM which is using

vessel enhancement filter measure and vector fields of local vessel directions

for weak vessel segmentation [135], and ACM with local morphology fitting

method [136]. The main drawback of an active contour approach is that initial

conditions (i.e., initial contour) are hard to be set automatically. Different ini-

tial contour results in a different output that indicates many local minimum

convergences. Furthermore, the noise of an image can easily affect curve evolu-

tion with image context although the energy model is aided by vessel structural

analysis. Minor vessel region is also hard to find due to noise or low contrast.

Vascular active contour model

Vascular active contour model (VAC) was proposed in [135] which used a vessel-

ness filtering method within an active contour energy functional. The authors

established a single active contour model that resolves the three main tasks:

1) segmenting thick vessel region, 2) thinner and weaker vessel regions, and

3) smoothing the contour. A Gaussian mixture model is designed to robustly

manage the regional term of ACM which drives a contour to include thick ves-

sels. For the weak and peripheral branches, a vesselness filtering function (i.e.,

eigen analysis of the Hessian matrix) is employed in a multi-scaled manner.

The vascular vector field, which is generated based on the vesselness measures,

drives an external force to supplement the active contour to penetrate into the
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thinner and weak vessels [135]. A dual curvature strategy is added to smoothen

the surface of the vessel without changing its shape [135].

A Gaussian mixture model (GMM) is employed in the region competition-

based energy term [135]. Supposing there are K objects and that the sta-

tistical distribution parameters of these objects are represented by αi with

i = 1, ...,K [135]. The segmentation can be defined by assigning each pixel

to a corresponding object. The typical energy function is then defined as fol-

lows [131,135,143]:

E[Γi, αi] =
∑

i=1,...,K

{
− µI

∫
Ωi

logP (I(x)|αi)dx+ µc

∫
Γi

ds
}

(2.52)

where {Ω1, ...,ΩK} are all the regions in the image, Ω = ∪Ki=1Ωi, Ωi ∪ Ωj = ϕ

if i ̸= j, where αi represents the statistical distribution of the region i in a

broad sense, where Γi is the union of the closest boundaries: Γi = ∂Ωi and

x = [x1, x2, ...]
T and where µI and µc are constants preserving the balance

between the region and the boundary energy [135].

Supposing that the target object consists of several objects, Ωo = ∪mi=1Ωi,

then the background can be represented by Ωb = ∪Ki=m+1Ωi. The segmentation

problem can be finally defined by minimizing energy functions: (I(x)|Ωo) =

maxi=1,...,m P (I(x)|αi) and P (I(x)|Ωb) = maxi=m+1,...,K P (I(x)|αi) [135]. By

integrating two objectives, the energy function can be written as follows:

E[Γo, αi] =µ

∫
Γo

ds− µI

{∫
Ωo

log max
i=1,...m

P (I(x)|αi)dx

+

∫
Ω−Ωo

log max
i=m+1,...,K

P (I(x)|αi)dx
}
.

(2.53)

The level set formulation of (2.53) can be represented by employing the Euler-

Lagrange differential equation [144]:

∂ϕ

∂t
= δ(ϕ)

{
µcdiv(

∇ϕ
|∇ϕ|

) + µI [log max
i=1,...,m

P (I|αi) − log max
i=m+1,...,K

P (I|αi)]
}

(2.54)
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where δ(ϕ) is a Dirac function [135]. Assuming that the gray values of the objects

in the image satisfy a Gaussian distribution, the histogram can be rather well

described by a mixture of Gaussian curves
∑K

i=1 βiG(µi, σi) with βi, µi, and σi

are the prior probability, mean, and standard deviation of the object class, Ωi,

respectively [135]. The statistical distribution for an object, αi = βi, (µi, σi),

can be estimated for all the classes based on the expectation maximization

(EM) algorithm:

∂ϕ

∂t
= δ(ϕ)

{
µcdiv(

∇ϕ
|∇ϕ|

) + µIvI(I)
}
, (2.55)

where

vI(I) = − min
i=1,...,m

(
(I − µi)

2

2σi2
+logσi

)
+ min
i=m+1,...,K

(
(I − µi)

2

2σi2
+logαi

)
. (2.56)

The class parameters are estimated by the EM algorithm before the contour

propagation.

The authors also proposed replacing δ(ϕ) by |∇ϕ| that enables the zero

level set to move in a broader band and hence drives faster convergence [135].

To stabilize and boost the convergence of contour on sharp edges, a speed-

controlling term is proposed [135]: 1/(1 + α|∇I · ∇ϕ|). The speed-controlling

term will have a very low value when the magnitudes of the vectors ∇I and ∇ϕ

are high and have similar directions [135]. The term penalizes the progression

of an active contour on strong edges that achieves more robust convergence.

The level set formulation of the proposed energies can be written as follows:

∂ϕ

∂t
=

|∇(ϕ)|
1 + α|∇G(I) · ∇ϕ|

{
µcdiv(

∇ϕ
|∇ϕ|

) + µIvI(I)

}
. (2.57)

The vascular vector field is also introduced by the authors [135]. As men-

tioned above, the vascular vector field is based on the multi-scale vesselness

filtering to drive a contour propagation into weak and thin vessels. The mag-

nitude of the vector field V⃗ (x) is a function of the vesselness measure, R(x),
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where both R(x) and V⃗ (x) are derived from the eigen analysis of the Hessian

matrix HI of the 3D image [135].

A tubular structure can be identified by a principal component vector

via eigenvalue analysis of HI (i.e., λ1, λ2, and λ3 are eigenvalues of HI with

|λ1| ≤ |λ2| ≤ |λ3| and v1, v2, and v3 are the corresponding eigenvectors, respec-

tively). The direction along the vessel can be represented by v1 which indicates

a minimal variation in intensity, while v2, v3 will form a plne perpendicular to

v1 [135]. The vector field, V⃗ (x), are calculated over all voxels x in the image:

V⃗ (x) =


v⃗1, if R(x) > τ ,

0, otherwise,

(2.58)

where R(x) is the vesselness measure and τ is a threshold value for the vascular

structures [135]. The authors used Rashindra’s vesselness measure [105]:

R(x)=


0, if λ2 > 0 or λ3 > 0,(

1 − e−A
2/(2α2)

)
· e−β2/(2β2) ·

(
1 − e−S

2/(2γ2)
)
· e

− 2c2

|λ2|λ23 , otherwise

(2.59)

where A = |λ2|/|λ3|, B = |λ1|/
√
|λ2λ3|, and S =

√
λ21 + λ22 + λ23. The term A

identifies whether the structure is planar or tubular, B accounts for the blob

structure, and S represents an overall difference between vessel and background

[135].

Scale is a very sensitive parameter for vessel structure analysis via vessel-

ness measures [102]. The thickness of a vessel (i.e., diameter) affects the final

response of vesselness filters. The authors in [135] simply applied multi-scaled

analysis for the vascular vector field similar to [102]. The one with the highest

value is chosen and the vector at the corresponding scale is taken as the final

vector in the proposed vascular vector field [135]:

V⃗ (x) = {V⃗σ(x)|ασRσ(x)} (2.60)
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where

R(x) = max
σmin≤σ≤σmax

{ασRσ(x)}, (2.61)

and ασ is the scale’s weight that is related to σ [135]. The directions of a vector

field are further adjusted to be aligned for the surface normal direction of active

contour [135]:

v⃗(x) =


V⃗ (x), if ⃗V (x) · ∇ϕ(x) ≥ 0,

−V⃗ (x), otherwise.

(2.62)

The modification of directions is to make an active contour expand towards the

small vessels.

Finally, the magnitude of the vector field is employed based on the vesselness

measure (2.61). The main purpose of introducing magnitudes is to drive an

active contour to get a high speed inside the thinner vessels and to get a lower

speed on the edge of the vessels [135]. By introducing an additional magnitude

function as

fϵ(R(x)) =
1

2
(1 +

2

π
arctan(

R(x) − ϵ

ϵ
)), (2.63)

where ϵ is a threshold of the vesselness measure, the final evolution equation of

the vascular vector field-driven active contour can be defined as follows [135]:

∂ϕ(x)

∂t
= fϵ(R(x))|V⃗ (x) · ∇ϕ(x)|. (2.64)

If R(x) is larger than ϵ, fϵ(R(x)) reaches its highest value quickly; inversely, it

reaches zero quickly [135].

To make a smooth surface while preserving the shapes, an additional cur-

vature term is presented. A typical smoothness constraint based on mean cur-

vature is div(∇ϕ/|∇ϕ|) = −2H, where H represents a mean curvature (i.e.,

H = (k1 + k2)/2, where k1, k2 are maximal, minimal principal curvatures,

respectively). The H mainly depends on k1 for thin vessels which forces the
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surface to shrink [135]. The decision whether to use mean or minimal principal

curvature can be introduced as a new smoothing constraint [31]:

fc(R(x)) =


−k2, R(x) > c,

−H, otherwise

(2.65)

with c being a threshold of vesselness measure. In this way, the magnitude of

vesselness filter responses is employed to give a criterion for whether curvature

to use. When strong vesselness response is monitored (i.e., weak and thin ves-

sel region), minimal curvature is adopted to preserve the shrink of an active

contour.

By compiling all the aforementioned three methods, the final evolution equa-

tion is defined as follows [135]:

∂ϕ

∂t
=

|∇ϕ|
1 + α|∇G(I) · ∇ϕ|

(µIvI(I) + µcfc(R)) + µV⃗ fϵ(R)|V⃗ · ∇ϕ| (2.66)

where µI , µV⃗ , and µc are constants to make a balance between the three terms.

VAC algorithm [135] presented a new active contour model which embedded

vesselness function [102] to enhance the capability of segmenting weak and

thin vessel area. The GMM method improves the energy term of foreground

intensity distributions that can affect the thick vessel regions. A new curvature

adaptation depending on vesselness measure showed an adaptive method to

preserve thin vessels while maintaining smoothness. However, it is very hard to

set many parameters to be optimal to make the VAC model successfully segment

the vessel area. It is tedious to set optimal parameters, such as thresholds, for

all the input images. Moreover, the GMM model relies on the training, which

indicates dynamic intensity distributions of input images (e.g., multi-phases, low

contrast-enhanced images) are not likely to be successful by the VAC model.
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2.4 Motivation

Convolutional neural networks (CNNs) are the most successful architecture to

perform medical image segmentation in recent years. However, the algorithm

requires a large dataset of manually annotated images to train neural networks

in a supervised manner. Manual annotation of 3D medical images is a time-

consuming and difficult task. The degree of difficulty increases with complex

objects with weak representations such as liver and vessels. Thus, to employ

CNNs to the actual clinical systems, the performance of generalization must be

improved with minimum training datasets.

The generalization problem has been a well-known task for the actual de-

ployment of neural networks in many fields. Various studies have been con-

ducted to obtain a high generalization performance such as weight decay, drop

out [3], transfer learning [4], data augmentation [5], domain adaptation [6, 7],

and regularization of loss functions [8]. However, none of those techniques

present a domain-specific knowledge, i.e., curriculum learning, to improve the

generalization performance. Furthermore, few works present a study of gener-

alization on image segmentation tasks. To overcome the difficulty of improving

generalization, a domain-specific technique is highly required. Therefore, an ar-

chitectural way to improve the generalization is suggested in this dissertation

for liver segmentation task (chapter 3).

As mentioned above, manual annotation of complex liver vessels is hard to

be obtained. Thus, a human-designed algorithm is required to perform accurate

liver vessel segmentation. In contrast-enhanced abdominal CT images, vessels

are enhanced by a contrast media mostly in the portal phase (among the four

phases). However, the degree of enhancement differs from patient to patient,

and noise on CT images hinders the accurate segmentation of vessels. Based
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on the facts, previous approaches assuming regional connectivity or structures

(e.g., trees) are difficult to be applied in every cases. Furthermore, thin vessels

are hard to be identified in the original image due to its low contrasts.

Although a vessel enhancement filtering is the most promising method for

vessel segmentation task, it is difficult to set global scale parameters of a filter

for both thick and thin vessels. A complex 3D vessel structure also degrades

accurate filtering responses. In that sense, although an active contour model

performs well on vessel segmentation, designing an energy functional based on

vessel enhancement filter of global scales is prone to be unsuccessful. Thus, to

segment all the minor vessels successfully, it is important to represent minor

details while preserving the thick vessels. A novel dense vessel candidate points

are introduced for the desired task in this dissertation (chapter 4).
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Chapter 3

Liver Segmentation via
Auto-Context Neural Network
with Self-Supervised Contour
Attention

3.1 Overview

Segmentation of a liver is an essential prerequisite for various clinical appli-

cations such as volumetric measurement of liver and its structural analysis.

Furthermore, accurate liver segmentation allows later algorithms such as vessel

segmentation to be easier and more automated. This is because the foreground

area of liver acts as a solid prior to remove unnecessary background areas.

From various perspectives, such as engineering and clinical needs, automated

segmentation of a liver is the most important and essential part of computer-

aided diagnosis systems.

In this chapter, a neural network architecture that exploits an auto-context

algorithm [11] and the sparse contour attention metric is presented. An auto-
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Figure 3.1: The main objective for deep learning-based liver segmentation. As

the total amount of training data decreases, the overall error increase in nature

(red and green lines). It is difficult to suggest a certain criterion on the number

of training data regarding desired test accuracy. It is important to provide a

good performance of generalization whether sufficient or insufficient training

data is provided. The proposed algorithm presents a method to reduce test

errors even when the small number of training data is provided.

context algorithm is implemented by a deeply supervising fashion to embed liver

posterior analysis to the network which acts as a prior in the following layers.

In such a way, an auto-context algorithm is designed in a single-passing neu-

ral network. In extension to the baseline auto-context neural network, contour

attention mechanism is applied to improve the fine delineation of the target

liver.

The major objective of the proposed architecture is to improve the perfor-

mance of generalization and accuracy (Fig. 3.1). Analyzing and improving gen-

eralization performance is very important because one of the fatal drawbacks

of deep learning is the inability to provide solid guidelines for generalization
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performance. Especially in medical image segmentation tasks, it is difficult to

obtain large scale annotated images, so it is necessary to improve generalization

performance. Thus, in this dissertation, a neural network that shows a great

performance of generalization is proposed. The proposed method shows that

overall accurate shape inference is the most important factor for improving

generalization performance. Without inferences of overall shape, the network

degrades performance by making many false predictions. Robust shape infer-

ence is obtained by introducing a shape-prior, not through previously trained

shapes, but through the network’s trainable parameters. The shape inference

process is implemented by the auto-context algorithm on a single network. For

more robust shape inference, an additional high-level residual connection is

proposed which allows accurate inference without the construction of complex

networks that require many parameters. Rich studies will be presented regard-

ing the performance of generalization by comparing the proposed method with

several state-of-the-art networks and self-ablations.

Another main contribution of the proposed method is the improvement of

accuracy through the contour scheme. It is very difficult to plant the concept of

contour in fully convolutional neural networks because of the many ambiguous

boundaries (i.e., unclear, homogeneous regions) in a liver contour on abdominal

CT images. Ambiguous boundaries are difficult to be trained even for neural

networks that have intractable complexity. Forcing the network to accurately

represent the entire contour of a liver leads to degradation of overall accuracy

including the increase of false positive predictions. This shows that a simple su-

pervising metric, such as supervision of ground-truth contour, is not feasible. In

the proposed network, a self-supervised learning method is proposed instead of

using the entire contour. The proposed self-supervised learning method induces

the network to learn by itself, focusing on the contour of the wrongly predicted

64



Figure 3.2: The overall architecture of the proposed neural network. The net-

work comprises three sub-routes: 1) deep context and auto-context, 2) liver-

prior, and 3) contour. The liver-prior branch is deeply supervised to predict the

coarse posterior of a liver. The predicted posterior is used as a prior for the

following auto-context prediction. The contour branch is also deeply supervised

by a self-supervising scheme based on the prediction of the network itself.

region. The overall architecture is described in the following subsections.

3.2 Single-pass auto-context neural network

The architecture of the proposed network is composed of several sub-networks:

deep context, liver-prior, auto-context, and contour. As shown in Fig. 3.2, the

liver-prior branch is deeply supervised by the ground-truth liver and combined

to the features of deep context. The liver-prior sub-network implies a shape-

prior which formulates an auto-context algorithm of the network. A posterior of

liver-prior sub-network acts as a prior to the following sub-networks. In addition

to the auto-context baseline, the network is extended by a contour branch which

is self-supervised based on the ground-truth contour and the final prediction

of the network. The final prediction, for each training iteration, is utilized to

penalize the ground-truth contour which makes sparse contour supervision. It
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is based on the confident penalization that builds a self-supervising mechanism

for which a contour sub-network to be trained to attend the failures regarding

contour regions.

In the following subsections, two non-linear convolutional modules, which

are the building blocks of the networks, are firstly presented. Then, the architec-

ture of an auto-context neural network and self-supervising contour attention

mechanism will be illustrated.

3.2.1 Skip-attention module

The Skip-attention block (Fig. 3.3) is first used to extract common features

(i.e., shared features in the following layers). The features are thereafter fed to

the sub-networks: liver-prior, context, and contour (Fig. 3.6). Skip-attention

block is composed of non-linear transformation series: depth-wise separable

convolutions [23], batch normalization [18], and ReLU non-linear activation

function [19] (Fig. 3.3). These transformations are skip connected for feature

reuse. Depth-wise separable convolutions [23] is introduced in the Skip-attention

rather than bottleneck layers [24] or compression layers [21] for more efficient

use of parameters. A channel-wise attention mechanism is applied to the fi-

nal output to employ channel-wise attention similar to [51]. Unlike [51], for

simplicity, trainable channel-wise attention vector is directly applied which is

multiplied for each channel. The formulation of the Skip-attention block is as

follows:

S(x) =
[
F0(x), σrelu(b((F0(x) ∗ ¨θ481 ), γ1))

]
⊗c σsoftmax(c96), (3.1)

where F0 indicates the first non-linear series defined as

F0(x) = σrelu(b((x ∗ θ480 ), γ0)), (3.2)
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Figure 3.3: Skip-attention layer (common feature extraction module). The layer

is composed of non-linear transformation series: depth-wise separable convolu-

tions, batch normalization, and ReLU non-linear activation function. The first

convolution is applied without separable convolutions due to a single-channeled

input. The intermediate features are skip-connected by concatenation. A train-

able channel-wise attention vector is employed for the final output of the layer.

The number of output feature is 96.

where x is an input image and θnl denotes weights of lth convolutional kernel

where n indicates the number of output channels. b, γi, σrelu, and σsoftmax rep-

resent batch normalization, scale parameter, rectified linear unit, and softmax

operator, respectively by the same notation as specified in (2.3). θ̈ denotes a

separable convolution (Fig. 3.4) in (3.1). [xi,xj] in (3.1) indicates a channel-wise

concatenation of the features. The final output feature map of the Skip-attention

block is channel-wise multiplied (⊗c) by the attention vector of dimension 96

(i.e., ck ∈ Rk). That is, a relative importance among channels are weighed by

the channel-wise attention vector which is trainable (c96).

The proposed Skip-attention module is designed to extract common features

that are used in all the following sub-layers. A single skip connection by con-

catenation is employed for shallow but effective feature reuse. A channel-wise

attention vector is a vector that is composed of trainable scalar parameters

that are trained for channel-wise weighting. As defined in (3.1), the vector goes
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Figure 3.4: Depth-wise separable convolutions. The input channels are separated

by groups and are convolved separately. The final output is a concatenation of

all groups. The number of groups is 4 in the proposed network.

through the softmax operator for a channel-wise multiplication. In this way, a

channel-wise attention mechanism can be applied in a more structured way. It is

indeed different from individual trainable bias parameters in the convolutional

operator.

Separable convolutions (Fig. 3.4), applied to the second convolutional oper-

ator in the Skip-attention module (Fig. 3.3), reduce the number of parameters

within a single convolutional layer. As shown in Fig. 3.4, separable convolutions

perform channel-wise separated convolutions and concatenate each of the out-

puts. The outcome of the separation is a reduction of parameters. For example,

if the number of input channels was given by 128, a normal convolution requires

442,368 parameters for a given convolutional layer (i.e., 33 × c2, where c is the

number of channels). On the other hand, separable convolutions, with the num-

ber of groups of 4, requires 110,592 parameters that are a quarter of the normal

version (i.e., 33 × c
n
2 × n = 33 × c2 × 1

n). Note that a reduction of the number

of parameters can be seen as an improvement in the performance of generaliza-

tion based on a reduction in complexity (i.e., intrinsic dimension) of a network.
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Figure 3.5: V-transition layer. A structured non-linearity module (i.e., SC-

BN-ReLU) is composed of a series of separable convolutions, batch normal-

ization, and rectified linear unit. A multi-scaled feature analysis applied by

down-transition via 23 convolution with stride 2 and up-transition via 23 trans-

posed convolution with stride 2. A skip-connection and channel-wise attention

vector are employed in the lower resolution similar to the Skip-attention block.

The final output of the layer is generated by a 13 convolution operator applied

to the concatenated features.

However, it is not always the case because it is hard to model the complexity of

neural networks, and it is not linearly related. The performance of generaliza-

tion and complexity of network are more dependent on task-dependent models

(i.e., structures) of neural networks.

3.2.2 V-transition module

The V-transition is a small U-Net-like module designed for multi-scale anal-

ysis (Fig. 3.5). The V-transition is a building block of the network which is

stacked in either a parallel or sequential manner (Fig. 3.6). A structured non-

linearity module is composed of a series of separable convolutions, batch nor-

malization, and rectified linear unit (Fig. 3.5). A multi-scaled feature fusion is

employed by using down-transitioned resolution (Fig. 3.5). The down-transition

operator halves the resolution of the input via 23 convolution with stride 2. A
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relative receptive field doubles in the lower resolution which derives macro-

scopic feature extractions. Layers in the lower resolution are designed simi-

lar to the Skip-attention module that is composed of a skip connection and

channel-wise attention. Conversely, an up-transition restores the dimensions

via a de-convolution (i.e., transposed convolution). By contracting and expand-

ing paths, the V-transition layer can extract more multi-scaled features (i.e.,

higher receptive field). The final output of the V-transition layer is generated by

a 13 convolution operator applied to the concatenated features of multi-scaled

routes. The number of output channels is specified in Fig. 3.6.

3.2.3 Liver-prior inference and auto-context

As introduced in the previous sections, the proposed network architecture is

composed of three main branches: residual shape-prior, context, and contour,

i.e., the blue, gray, and orange dotted boxes in Fig. 3.6, respectively. The shape-

prior network is deeply supervised to inference the ground-truth liver. The

trained posterior (i.e., the output of the shape-prior network) is used as a prior

for the remaining network. Deep features that are trained by the context net-

work are concatenated to the prior for the final auto-context fusion. Besides,

the contour attention branch is also deeply self-supervised with a ground-truth

contour regarding the output of the network. The contour features are trained

by a penalized classification scheme and further enhanced the network to bet-

ter delineate liver boundaries. The two different non-linear modules are used in

the proposed network (i.e., the Skip-attention block (Fig. 3.3) and V-transition

layer (Fig. 3.5)).

The base architecture of the proposed network is an auto-context algorithm.

Instead of stacking very deep neural layers, the proposed network uses multi-

ple shallow stacks of layers (Fig. 3.6). The liver-prior and context layers are
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Figure 3.6: The architecture of the proposed 3D volumetric fully convolutional

network. Stacked V-transitions form a base architecture with multiple skip con-

nections. The red (i.e., circled arrows) and blue arrows (i.e., squared arrows)

indicate up- and down-transition layers, respectively. The red and blue dotted

boxes represent the contour and prior transitions, respectively. The two transi-

tions are deeply supervised by the contour and ground-truth images. The final

output prediction is achieved by combining all the features. All the images are

displayed as 2D for simplicity.

composed of V-transition layers that are a small U-Net-like [59] module that

includes down and up transitions together with skip connection (Fig. 3.5). The

detailed architecture of the V-transition is visualized in Fig. 3.5. The overall

architecture also uses down-sampled resolution in liver-prior sub-network. It

is designed to extract more macroscopic features for overall shape estimation.

Including down-transitions in the V-transition layer, the original input image

is down-sampled by the factor of 4 in total. The estimated liver-prior is further

up-sampled for further concatenation.

The two identical shape transitions are used in the liver-prior part to sub-

tract each output prediction at a higher level (blue dotted box in Fig. 3.6).
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(a) V 0
prior(S(x))− V 1

prior(S(x)). (b) Without residual.

(c) V 0
prior(S(x)). (d) V 1

prior(S(x)).

Figure 3.7: Example liver prior estimations by the residual inference. (a) The

final inference using dual inferences (i.e., residual) (c) and (d). (b) Inference

without residual. The output of (b) is obtained by sequentially stacking the two

prior estimations (i.e., V-transitions) by preserving the number of intermediate

features.

The output is deeply supervised with the ground-truth label image. The dual-

passing architecture effectively learns mutually complementary features for the

accurate inference of the liver posterior (an example visualization is presented
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in Fig. 3.7). The objective function for deep supervision is as follows:

Lprior = D
(
(V 0
prior(S(x)) − V 1

prior(S(x))),ydl

)
, (3.3)

where D indicates the soft dice loss [60], V i
prior denotes ith V-transition in

liver-prior sub-network, and ydl represents the ground-truth liver label image

at down-scaled resolution. Finally, the output feature map is concatenated to

the context features (i.e., output of the context transition; Vcontext(S(x))) and

passes through an auto-context transition (Vauto) for final refinement. The ob-

jective function of the final output layer can be defined as follows:

Lfinal = D

(
Vauto

([
Vcontext(S(x)),

(
V 0
prior(S(x)) − V 1

prior(S(x))
)
, Vcontour(S(x))

])
,yl

)
, (3.4)

where Vcontour indicates the contour V-transition described in the following

subsection and yl denotes the ground-truth liver label image. The proposed

network architecture with multiple branches aids the context features to learn

effective complements that can aid the final auto-context transition.

The proposed single-passing auto-context neural network exploiting high-

level residual connection suggests that deepening or widening the neural net-

work is not the only answer for complex tasks. Stacking layers sequentially

makes it difficult to use parameters effectively, and especially discriminatively,

and further degrades the performance of generalization of the network. After

extracting common and reusable features by Skip-attention (Fig. 3.3) for mul-

tiple network branches, each branch learns complementary or different features

for the high-level tasks. The further experimental section will study the ab-

lation of high-level residual connection that describes the effectiveness of the

architecture compared to a sequential architecture.
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Figure 3.8: Schematic workflow of the auto-context framework of the proposed

network. The posterior of liver is embedded in the network and acts as a prior

in the following layers.

3.2.4 Understanding the network

Let vectors x = {xi ∈ R, i ∈ R3} and y = {yi ∈ {0, 1}, i ∈ R3} represent the

input image and ground-truth label, respectively. The objective of the given

segmentation problem is to determine the optimal solution for modeling a con-

ditional probability distribution, p(y|x), by maximizing a posterior (MAP):

θ∗ = arg max
θ

p(y|x; θ) = arg max
θ

p(x|y; θ)p(y). (3.5)

where θ is a parameter set for classifiers. However, it is very difficult to model

the likelihood (i.e., p(x|y; θ)) and prior (i.e., p(y)), and solving the decomposed

posterior with a generative approach easily yields inaccurate results mainly

owing to the difficulty of likelihood and prior estimation. The proposed network

iteratively solves the posterior directly with the auto-context method [11]. In

auto-context, the previous classification map is used as a shape feature (i.e.,

term “context” in the original paper) for additional classification. Setting t as

a discrete time value, auto-context is formulated as

p(t)
(
y|x, p(t−1)(y|x; θ(t−1)); θt

)
−→ p(y|x; θ∗). (3.6)
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Unlike in the previous approaches [11, 73], shape feature extraction procedure

is embedded within a single-passing neural network (Fig. 3.8). The output of

the proposed network for time t can be formulated as

p(t)
(
y|x, p̃(t)(y|x; θt); θt

)
, (3.7)

where p̃ is a probability map of shape-residual sub-network (i.e., the blue dotted

box in Fig. 3.6). Applying deep supervision (i.e., auxiliary classifiers), a single-

passing neural network could be obtained by embedding a previous posterior.

Thus, the architecture avoided using separated classifiers and storing previous

classification maps.

3.3 Self-supervising contour attention

Edge is unquestionably the most important feature for the accurate object

segmentation. From the perspective of contour delineation, the task of object

segmentation in images can be achieved by localizing all the boundaries of an

object. However, the full contour is hard to be identified in various cases, espe-

cially in the case of a liver on abdominal CT images. Figure 3.9. shows a gradient

map of a sample axial slice. Edge responses are unclear on local boundaries and

many false edges (i.e., responses on non-boundary regions) hinder the design

of a robust algorithm. Especially in the portal phase, contrast-enhanced vessels

show relatively high gradients that make an accurate boundary classification

difficult (Fig. 3.9). Even with the strong capability of the deep neural network,

it is difficult to classify the entire contour which has ambiguous regions. That

is, a multi-task framework by simply adding ground-truth contour loss to the

base network (i.e., segmentation) can make a severe contradiction on intermedi-

ate layers of a neural network. Thus, the proposed network avoids training the

full contour features that are unnecessary. The proposed method guides (i.e.,
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self-supervises) the neural network to learn sparse but essential contours that

can be a great complementary feature that acts as implicit attention for the

deep contexts.

From the base architecture of the aforementioned auto-context framework,

the network is extended by training contour features. The contour weighting

map that has larger values for the misclassified contour is first calculated:

Γ̂c = Γc ⊗ ỹ−1
l , (3.8)

where Γc, ⊗, and ỹ−1
l indicate the ground-truth contour image, element-wise

multiplication operator, and the final inverse liver prediction, respectively. The

ground-truth contour image contains a value of 1 for the contour and 0 else-

where. For the inverse prediction, ỹ−1
l,i = 1 − ỹl,i is applied for every ith voxel

where ỹl is the final output prediction of a foreground liver after softmax op-

eration.

To employ penalization to the contour loss, the categorical cross-entropy

classification loss is relaxed by a pixel-wise weighting scheme which is formed

by the contour weighting map (3.8). The proposed method suggests a contour

loss function as:

Lcontour = ψ(ỹc,Γc, Γ̂c) = −
∑

i∈Ω
(
w0(1 − Γc(i))log(1 − ỹc(i)) + w1Γc(i)Γ̂c(i)log(ỹc(i))

)
,

(3.9)

where ỹc is the output prediction of the contour after softmax operation, wc

denotes class-specific weights for class c, and Ω indicates the dimensions of the

image (i.e., Ω ∈ R3). Consequently, the contour loss includes contour attention

based on the final output (3.8) which is used to penalize the confident output of

the network at each iteration. The difference between the proposed loss function

and the focal loss [145] is that the proposed self-supervision is intended to
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(a)

(b)

(c)

Figure 3.9: Example axial slices, corresponding edge responses (i.e., gradient

magnitudes), and ground-truth contours. The first column shows example im-

ages, the second column illustrates gradient responses of each image, and the

third column represents ground-truth contours.
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(a) (b)

(c) (d)

(e)

Figure 3.10: Example of ground-truth contour and penalization map. The

ground-truth contour is penalized by the prediction of the network. (a) An

example axial slice of the original image. (b) A full ground-truth contour image

(i.e., Γc). (c) The final prediction of the network (i.e., ỹl). (d) The inverted liver

prediction of (c) (i.e., ỹ−1
l ). (e) A penalized contour image (i.e., Γ̂c = Γc⊗ ỹ−1

l )

for self-supervision (i.e., multiplication of (b) and (d)).
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penalize (i.e., lower down) confident output regarding the final liver prediction

rather than confidence of contour itself.

Figure 3.10 illustrates the generation process of the penalization map. A

prediction of a liver (i.e., final output prediction of the network for each itera-

tion; Fig. 3.10c) is inverted (Fig. 3.10d) and multiplied by the ground-truth

contour image (Fig. 3.10b). Figure 3.10e shows the penalization map (i.e.,

Γ̂c = Γc ⊗ ỹ−1
l ). The major significance of employing a penalization is that

a confident region at boundaries is not enforced to be trained. A strong con-

tour loss is mainly applied to the missing parts that can make the network to

regularize feature extractor to give more attention to failed regions. The objec-

tive of giving contour loss is to guide the weights in intermediate feature layers

rather than predict missing counterparts for further integration. Figure 3.11

illustrates example contour responses with and without penalization. By using

self-supervising fashion, contour sub-network outputs very sparse predictions

where the network needs to attend for further accuracy improvements (the sec-

ond row in Fig. 3.11). Note that if the final prediction of the network reaches

close to the ground-truth annotation, contour features become more sparse, and

ideally, no responses are expected within contour sub-network.

The network may be seen as a multi-task learning framework. However, the

network was not enforced to explicitly inference multiple tasks. The proposed

network internally guides the weights to represent the object contour features

without supervising the entire contour image. The network was self-supervised

with penalization for each iteration. The main underlying principle of the pro-

posed network is to concentrate the contour delineation on the missing contour

part of an object (i.e., fine details of an object that are easily misclassified using

the end-to-end learning). There are two main reasons for using the proposed

method: 1) even with a powerful deep neural network, unclear boundaries are
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Figure 3.11: Example results of the contour network for the two different con-

tour losses. The first row shows the contour responses based on the full ground-

truth contour loss. The second row shows the contour responses based on self-

supervising fashion. The self-supervision mechanism derives more sparse re-

sponses than the full-supervision.

challenging to be discriminated against as a contour and 2) contour regions in

unclear boundaries can be compromised by global shapes. That is, the network

avoids to learn complex boundary features that can be easily obtained by macro-

scopic shape features. The proposed network can be intuitively interpreted as

a robust contour attention guided shape estimation.
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3.4 Learning the network

3.4.1 Overall loss function

The task of a given learning system is to maximize the posterior, p(y|x). To

effectively model the probability distribution, the proposed network model is

trained to map the segmentation function ϕ(x) : x −→ {0, 1} by minimizing

the following loss function:

Lautocenet = Lfinal + αLprior + βLcontour + γ∥W∥22, (3.10)

where Lfinal, Lprior, and Lcontour indicate objective functions defined at the

final layer (3.4), shape-prior layer (3.3), and contour layer (3.9), respectively.

W is a whole set of network parameters. α, β, and γ in (3.10) are weighting

parameters. The output of the network is obtained by applying softmax to the

final output feature maps.

‘Xavier’ initialization [146] is used for initializing all the weights of the

proposed network. While training the network, the loss parameters are fixed to

α = β = 1 and γ = 0.001 in (3.10). Adam optimizer [147] with batch size 4 and

learning rate 0.001 were applied. The learning rate was decayed by multiplying

0.5 for every 10 epoch. The network was trained for 100 epochs using an Intel i9-

7900X desktop system with 3.30 GHz processors, 128 GB of memory, and Nvidia

Titan RTX (24 GB) GPU machine. The PyTorch framework was employed for

the implementation of the network. It took 2h to complete all the training

procedures.

3.4.2 Data augmentation

For the training dataset, all abdominal CT images were resampled into 128 ×

128×64. The images were pre-processed using fixed windowing values: level=10
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(a) The original image displayed by quantiz-

ing a full range of intensity.

(b) Re-scaled image by quantizing fixed

windowing values (i.e., level=10 and

width=700).

Figure 3.12: Demonstration of windowing operation (intensity re-scaling). All

training images are pre-processed by a given windowing operation (b).
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and width=700 (i.e., clipped the intensity values under −340 and over 360)

(Fig. 3.12). After re-scaling, the input images were normalized into the range

[0..1] for each voxel. On-the-fly random affine deformation and additive noise

were subsequently applied to the training images for each iteration with 80%

probability.

An affine deformation is defined by randomly shearing an input image in

the range of [-10..10] degrees for every three axes. In the case of noise addition,

unit normal distribution of Gaussian noise (i.e., zero mean and σ = 1 stan-

dard deviation) is added. The affine and noise augmentations were individually

applied with an 80% probability for each batch training.

3.5 Experimental results

3.5.1 Overview

The aim and scope of this experimental section are to provide strengths and

weaknesses among the state-of-the-art CNN-based algorithms and the proposed

method. The designed architectures of neural networks and the corresponding

measures of several criteria (e.g., accuracy and generalization) are presented.

Classical methods are not a scope of this study because it is a study of neu-

ral networks and it is also well-known that CNN-based methods are driving

groundbreaking results in recent years.

A configuration of prepared data and metric of accuracy evaluation are first

presented in the following sections followed by the overall comparison among the

state-of-the-arts. Subsequently, a rich ablation study of the proposed method

and rich visual analyses of intermediate features are investigated. Multiple N-

fold cross-validations are thoroughly studied to provide an in-depth analysis

of generalization performance over state-of-the-art networks and the proposed
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Table 3.1

Training data configurations.

Data Liver Tumor Phases Subjects

Gibson et al. [63] (DenseVNet1) O X Multi 90

MICCAI-SLiver07 [82] O O Portal 20

3Dircadb2 O O Portal 20

CHAOS challenge3 O X Portal 20

Ours O O/X Portal 30

ablations. Finally, failure cases are demonstrated in the proposed method.

3.5.2 Data configurations and target of comparison.

In total, 180 subjects were acquired: 90 subjects from a publicly available

dataset1 presented in [63], 20 subjects from MICCAI-Sliver07 dataset [82],

20 subjects from 3Dircadb2, 20 subjects from CHAOS challenge3, and addi-

tional 30 annotated subjects with the help of clinical experts in the field. In

the dataset, the slice thickness ranged from 0.5− 5.0mm and pixel sizes ranged

from 0.6−1.0mm. The dataset include multiple phases with and without tumors

(Table 3.1).

In the experiments, the performance of accuracy and generalization of the

proposed network is evaluated by comparing them with those of the other state-

of-the-art FCN-based models. The state-of-the-art networks, 3D U-Net [58],

V-Net [60], deeply supervised network (DSN) [26], voxel-wise residual network

(VoxResNet) [62], Dense V-Network (DenseVNet) [63], attention gated U-Net

1https://doi.org/10.5281/zenodo.1169361
2https://www.ircad.fr/research/3dircadb
3https://doi.org/10.5281/zenodo.3367758
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Figure 3.13: An illustration of true positives, false positives, and false negatives.

(AGU-Net) [52], and the proposed network, AutoCENet are used for the per-

formance evaluation.

3.5.3 Evaluation metric

The results of segmentation were evaluated using the dice similarity coefficient

(DSC), precision, sensitivity, Hausdorff distance (HD), and average symmetric

surface distance (ASSD). The DSC is defined as follows:

DSC(X,Y ) =
2|X ∩ Y |
|X| + |Y |

, (3.11)

where | · | is the cardinality of a set. Precision and sensitivity are defined by

Precision =
TP

TP + FP
(3.12)

Sensitivity =
TP

TP + FN
, (3.13)

where TP, FN, and FP are the numbers of true positive, false negative, and

false positive voxels, respectively (Fig. 3.13). The remaining surface distance

metrics are evaluated on a surface basis. Let SX be a set of surface voxels of a

85



set X, the shortest distance of an arbitrary voxel p is defined as [82]:

d(p,SX) = min
sX∈SX

||p− sX ||2. (3.14)

HD is thus given by [82]:

HD(X,Y ) = max{ max
sX∈SX

d(sX ,SY ) + max
sY ∈SY

d(sY ,SX)}. (3.15)

Defining the distance function as

D(SX ,SY ) =
∑

sX∈SX

d(sX ,SY ), (3.16)

the ASSD can be defined as [82]:

ASSD(X,Y ) =
1

|SX | + |SY |
(D(SX ,SY ) +D(SY ,SX)). (3.17)

In (3.15), 95% of voxels were additionally calculated in (3.14) to exclude

5% outlying voxels. 95% HD can be a better generalized evaluation of distance

because there exists ground-truth variations on portal vein region.

For the fair comparison among the networks, the same data augmentations

were applied for every network such as resampling of the resolution, rescaling

of intensities, and affine deformations (refer to section 3.4.2). The CRF post-

processing presented in [26] was also excluded for the same respect. The auto-

context algorithm of VoxResNet [62] is adopted to compare the algorithms.

All hyperparameters were set as specified in Table 3.2. The performance

of training for each network had no penalty by unifying the hyperparameters.

That is, there was no significant difference by setting the hyperparameters (e.g.,

batch size, optimization metric, and learning rate) as specified in the original

papers (while a few improvements have been monitored by using configurations

presented in Table. 3.2). The dataset was composed of three separate sets of

training, validation, and testing (Table 3.3). The dataset was firstly randomly

shuffled, and 100 images were used for two-fold cross-validation and 80 images

were used for all the accuracy evaluation (i.e., testing).
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Table 3.2
Hyperparameters and metrics used in training.

Parameters Value or Metric

Optimizer Adam [147]

Learning rate 0.001

Learning rate decay per epoch (decay/epoch) 0.5 / 10

Weight decay (L2 regularization) 0.001

Table 3.3
Number of the training datasets.

Total Training Validation Testing

180 50 50 80

3.5.4 Accuracy evaluation

The results in Table 3.4 show that the proposed AutoCENet outperformed

other state-of-the-arts. The AutoCENet showed the highest values in DSC, pre-

cision, and sensitivity and showed the lowest values in HD, 95% HD, and ASSD

that indicate the proposed network presented the best results. Moreover, the

proposed network showed better accuracy while using much fewer parameters

than the other state-of-the-art methods. The lowest precision and sensitivity

were presented by DenseVNet [63] indicating that the results contained severe

false positives and false negatives. The DenseVNet failed to segment the liver

accurately due to the two significant reasons: the resolution of the network is

too low and shape prior has a weak representative power. The excessively coarse

dimensions of the network suffer from the accurate segmentation in the original

image resolution. Furthermore, 123 resolution of shape-prior is too small and

training images must be accurately, and manually cropped for the robustness of

the shape-prior. There is no specific metric presented in the original work [63]
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Table 3.4
Accuracy evaluation of the proposed network and other state-of-the-arts.

Methods DSC Precision Sensitivity HD [mm] 95% HD
[mm]

ASSD
[mm]

3D U-Net 0.95 ± 0.01 0.94 ± 0.02 0.96 ± 0.02 45.20±31.93 7.77 ± 12.71 1.33 ± 0.91

V-Net 0.95 ± 0.02 0.94 ± 0.02 0.95 ± 0.03 26.52±19.05 5.38 ± 3.94 1.20 ± 0.65

DSN 0.92 ± 0.02 0.88 ± 0.04 0.97 ± 0.01 28.63±23.85 7.40 ± 9.33 1.77 ± 1.05

VoxResNet 0.95 ± 0.01 0.95 ± 0.02 0.95 ± 0.02 18.67±11.15 4.99 ± 5.89 1.11 ± 0.49

DenseVNet 0.83 ± 0.05 0.75 ± 0.09 0.94 ± 0.03 37.19±14.52 16.54 ± 8.47 3.98 ± 1.69

AGU-Net 0.95 ± 0.01 0.94 ± 0.03 0.96 ± 0.01 31.57±22.22 8.56 ± 13.52 1.34 ± 1.07

AutoCENet 0.96±±± 0.01 0.95±±± 0.02 0.97±±± 0.01 14.96±±±4.25 2.92±±± 1.12 0.82±±± 0.32

Table 3.5
Accuracy evaluation of the proposed network and other state-of-the-arts

(CCA post-processing).

Methods DSC Precision Sensitivity HD [mm] 95% HD
[mm]

ASSD
[mm]

3D U-Net 0.95 ± 0.01 0.95 ± 0.02 0.96 ± 0.02 16.86 ± 4.78 4.23 ± 1.53 1.00 ± 0.38

V-Net 0.95 ± 0.02 0.94 ± 0.02 0.95 ± 0.02 20.51 ± 9.31 5.07 ± 3.23 1.18 ± 0.60

DSN 0.92 ± 0.02 0.88 ± 0.03 0.97 ± 0.01 16.49 ± 4.50 5.31 ± 2.13 1.56 ± 0.66

VoxResNet 0.95 ± 0.01 0.95 ± 0.02 0.95 ± 0.02 16.86 ± 8.12 4.07 ± 1.51 1.08 ± 0.41

DenseVNet 0.83 ± 0.05 0.75 ± 0.08 0.94 ± 0.03 32.21±12.76 16.03 ± 8.04 3.90 ± 1.63

AGU-Net 0.95 ± 0.01 0.95 ± 0.02 0.96 ± 0.01 18.77 ± 8.14 4.72 ± 2.85 1.04 ± 0.43

AutoCENet 0.95±±± 0.01 0.95±±± 0.02 0.97±±± 0.01 14.95±±±4.24 2.91±±± 1.09 0.82±±± 0.32

to crop testing images automatically. Example visualizations of the results are

visualized in Figs. 3.14 and 3.15. All visualized surfaces are smoothed by the

curvature flow smoothing method [148] at the original image resolution.

To eliminate false responses of the networks, connected component analysis

(CCA) [149] is performed as a post-processing procedure. The performance of

the networks with CCA is demonstrated in Table 3.5. Significant improvements

were found in other state-of-the-art networks regarding the distance metrics.

The HD and 95% HD values were lowered in a huge margin except for the

proposed AutoCENet which indicates that the AutoCENet showed little false

responses. Figure 3.16 and 3.17 demonstrate box plots of Tables 3.4 and 3.5.

The presented box plots show a significant reduction of distances by applying
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(a) Ground-truth (b) 3D U-Net [58]

(c) V-Net [60] (d) DSN [26]

(e) VoxResNet [62] (f) DenseVNet [63]

(g) AGU-Net [52] (h) AutoCENet

Figure 3.14: Example visualizations of the test results for state-of-the-art net-
works. The surface color is visualized based on the distance to the ground-
truth surface. Visualized surfaces are smoothed by the curvature flow smoothing
method [148] at the original image resolution.

CCA to the final output results.

The DSN [26] in Table 3.4 showed high ASSD because the inference of the

network are made from low resolution. The up-sampling from 40 × 40 × 18 has

limitations to accurately delineate objects in the original resolution. Further-

more, even with low-dimensional representation, DSN showed false positives

indicating that several deep supervisions did not successfully achieve the dis-

crimination of the high-level features. In fact, multiple deep supervision enforces

the lower-level intermediate features to be discriminative that resulted in degra-
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(a) Ground-truth (b) 3D U-Net [58] (c) V-Net [60]

(d) DSN [26] (e) VoxResNet [62] (f) DenseVNet [63]

(g) AGU-Net [52] (h) AutoCENet

Figure 3.15: Example axial slices of the test results for state-of-the-art networks.
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(a) DSC.

(b) HD in mm.

(c) 95% HD in mm.

(d) ASSD in mm.

(e) Sensitivity.

(f) Precision.

Figure 3.16: Box plots of the evaluation metrics for state-of-the-arts.
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(a) DSC.

(b) HD in mm.

(c) 95% HD in mm.

(d) ASSD in mm.

(e) Sensitivity.

(f) Precision.

Figure 3.17: Box plots of the evaluation metrics for state-of-the-arts (CCA post-
processing).
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Figure 3.18: AutoNet baseline (without contour transition sub-network).

dation of overall performance. The AGU-Net also presented false positives as

opposed to the architectural design principle proposed in the reference [52].

The spatial attention gated units in AGU-Net [52] failed to suppress irrelevant

background regions as suggested. On the other hand, VoxResNet [62] showed

the second minimum distance gaps between using and not using the CCA post-

processing (Tables 3.4 and 3.5). The small distance gap indicates the auto-

context algorithm, employed to the VoxResNet, successfully suppressed false

positive responses.

3.5.5 Ablation study

In this section, the ablations of the proposed AutoCENet are studied to verify

the architectural components of the network. To justify the designed methods

thoroughly, the study contains two major categories: auto-context architecture

and contour loss. The first subsection covers a few ablations regarding the

proposed auto-context framework without contour loss. The second subsection

demonstrates several auxiliary contour-related losses to elucidate the supremacy

of the proposed self-supervised contour loss.

Auto-context framework

The auto-context framework is validated which does not exploit self-supervising

contours (i.e., without contour loss, Lcontour in (3.10); Fig. 3.18). From the
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Table 3.6
Accuracy evaluation of the proposed network and auto-context ablations.

Methods DSC Precision Sensitivity HD [mm] 95% HD
[mm]

ASSD
[mm]

AutoCENet 0.96±±± 0.01 0.95±±± 0.02 0.97±±± 0.01 14.96±±±4.25 2.92±±± 1.12 0.82±±± 0.32

AutoNet 0.95 ± 0.01 0.95 ± 0.02 0.96 ± 0.02 20.18 ± 8.79 4.48 ± 2.47 1.04 ± 0.42

AutoNet-att 0.95 ± 0.01 0.95 ± 0.02 0.96 ± 0.02 25.73±17.06 5.83 ± 5.93 1.10 ± 0.53

AutoNet-A 0.95 ± 0.01 0.94 ± 0.02 0.95 ± 0.03 33.25±22.80 7.61 ± 8.75 1.34 ± 0.71

AutoNet-R 0.95 ± 0.01 0.94 ± 0.02 0.95 ± 0.02 37.99±25.09 5.46 ± 3.61 1.23 ± 0.57

AutoNet-AR 0.94 ± 0.01 0.94 ± 0.02 0.95 ± 0.03 38.88±28.81 6.24 ± 4.67 1.32 ± 0.61

AutoNet+P 0.95 ± 0.01 0.95 ± 0.02 0.96 ± 0.02 20.70±12.59 4.09 ± 2.66 0.99 ± 0.52

Table 3.7
Accuracy evaluation of the proposed network and auto-context ablations

(CCA post-processing).

Methods DSC Precision Sensitivity HD [mm] 95% HD
[mm]

ASSD
[mm]

AutoCENet 0.96±±± 0.01 0.95±±± 0.02 0.97±±± 0.01 14.96±±±4.25 2.92±±± 1.12 0.82±±± 0.32

AutoNet 0.95 ± 0.01 0.95 ± 0.02 0.96 ± 0.02 19.76 ± 8.70 4.51 ± 2.49 1.04 ± 0.42

AutoNet-att 0.95 ± 0.01 0.95 ± 0.02 0.96 ± 0.02 20.44±10.26 4.91 ± 3.66 1.04 ± 0.45

AutoNet-A 0.95 ± 0.01 0.94 ± 0.02 0.95 ± 0.03 22.40±14.11 6.44 ± 6.33 1.23 ± 0.64

AutoNet-R 0.95 ± 0.01 0.94 ± 0.02 0.95 ± 0.02 21.89 ± 9.94 5.27 ± 3.44 1.16 ± 0.50

AutoNet-AR 0.94 ± 0.01 0.94 ± 0.02 0.95 ± 0.03 22.41±11.80 6.14 ± 4.61 1.25 ± 0.56

AutoNet+P 0.96 ± 0.01 0.95 ± 0.02 0.96 ± 0.02 17.51 ± 7.19 3.96 ± 2.44 0.95 ± 0.43

base auto-context framework the three additional ablations are studied: the

one without auto-context part (i.e., AutoNet-A; Fig. 3.19a), without high-level

residual inference (i.e., AutoNet-R; Fig. 3.19b), and without them both (i.e.,

AutoNet-AR). For AutoNet-A, the deep supervision for the liver-prior network

(i.e., Lprior in (3.10) is removed. In the case of AutoNet-R, the high-level resid-

ual connection is modified to a sequential connection of V-transitions with the

intermediate number of features by 48. AutoNet-AR employed both modifica-

tions of corresponding AutoNet-A and AutoNet-R. Additionally, the removal

of base channel-wise attention (i.e., AutoNet-att) and addition of confident pe-

nalization of the output (i.e., AutoNet+P) was evaluated.

The results (Table 3.6) show that the accuracy of all the ablations was lower
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(a) AutoNet-A

(b) AutoNet-R

Figure 3.19: Ablation of AutoNet. (a) AutoNet without auto-context algorithm.
(b) AutoNet without residual connection.

than the original AutoCENet. Comparing with AutoNet, the ablations showed

lower performances except for AutoNet+P. The penalization of confident out-

put (2.9) from AutoNet baseline showed comparable results. The other ablations

showed a significant increase regarding distance metrics by not employing the

auto-context algorithm or residual shape-prior. The results indicate that the

auto-context framework and residual shape-prior estimation jointly play an im-

portant role in the final accuracy. The results of the liver-prior network with and

without the residual showed that the high-level residual connection boosts the

performance of a liver prior. Example visualizations of the results for AutoNet

ablations are visualized in Figs. 3.20 and 3.21.
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(a) Ground-truth (b) AutoCENet

(c) AutoNet (d) AutoNet-att

(e) AutoNet-A (f) AutoNet-R

(g) AutoNet-AR (h) AutoNet+P

Figure 3.20: Example visualizations of the test results for AutoNet and the
corresponding ablations. The surface color is visualized based on the distance
to the ground-truth surface. Visualized surfaces are smoothed by the curvature
flow smoothing method [148] at the original image resolution.

Table 3.7 presents the results by applying CCA post-processing from the

Table 3.6. The major indication from the two tables is that the ablation of

auto-context algorithm and residual estimation results in severe false responses

on the final output predictions. Figures 3.22 and 3.23 demonstrate box plots

of Tables 3.6 and 3.7. The AutoNet showed little improvement of distances

by applying CCA indicating that a complete, proposed auto-context algorithm

showed no significant false responses.
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(a) Ground-truth (b) AutoCENet (c) AutoNet

(d) AutoNet-att (e) AutoNet-A (f) AutoNet-R

(g) AutoNet-AR (h) AutoNet+P

Figure 3.21: Example axial slices of the test results for AutoNet and the corre-
sponding ablations.

97



(a) DSC.

(b) HD in mm.

(c) 95% HD in mm.

(d) ASSD in mm.

(e) Sensitivity.

(f) Precision.

Figure 3.22: Box plots of the evaluation metrics for auto-context ablations.
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(a) DSC.

(b) HD in mm.

(c) 95% HD in mm.

(d) ASSD in mm.

(e) Sensitivity.

(f) Precision.

Figure 3.23: Box plots of the evaluation metrics for auto-context ablations (CCA
post-processing).
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Contour losses

For the ablation study of a contour loss, networks were designed by using the

full-supervision for the contour loss (AutoCENet+FC), full-supervision with

penalizing confident outputs of contour features (AutoCENet+FC+P), and a

special penalization of auxiliary contour loss (AutoCENet+SP). The contour

loss functions for each ablation is presented as follows. Full contour supervision

as

ψ+FC(ỹc,Γc) = χ(ỹc,Γc) (3.18)

and full-supervision with penalizing confident outputs as

ψ+FC+P (ỹc,Γc) = χ(ỹc,Γc) − βH(p(ỹc|x; θ)) (3.19)

where ỹc is the output prediction of contour and χ indicates the cross-entropy

loss. A special penalization is defined by

ψ+SP (ỹc,yl, ŷl) = ψ(ỹc,yl, ŷl) (3.20)

where ψ is same as defined in (3.9) and ̂̃yl is defined as

ŷl = yl ⊗ ỹ−1
l , (3.21)

similar to (3.8). A special penalization defined in (3.20) trains the contour

branch to delineate the misclassified regions on the final output prediction

rather than the contour. The special penalization (SP) is designed to eluci-

date the difficulty of training complementary features and verify the proposed

contour loss. The entropy function H in (3.19) is defined by

H(p(y|x; θ)) = −
∑
i

pθ(yi|x)log(pθ(yi|x)), (3.22)
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Table 3.8
Accuracy evaluation of the proposed network and the contour variants.

Methods DSC Precision Sensitivity HD [mm] 95% HD
[mm]

ASSD
[mm]

AutoCENet 0.96±±± 0.01 0.95±±± 0.02 0.97±±± 0.01 14.96±±±4.25 2.92±±± 1.12 0.82±±± 0.32

+P 0.96 ± 0.01 0.95 ± 0.02 0.96 ± 0.01 20.75±11.05 3.70 ± 1.73 0.93 ± 0.40

+FC 0.95 ± 0.01 0.94 ± 0.02 0.95 ± 0.02 27.56±20.34 5.66 ± 5.22 1.20 ± 0.56

+FC+P 0.95 ± 0.01 0.94 ± 0.03 0.96 ± 0.02 32.93±24.35 5.57 ± 4.11 1.20 ± 0.56

+SP 0.95 ± 0.01 0.95 ± 0.02 0.96 ± 0.02 29.30±21.48 4.20 ± 2.03 1.03 ± 0.45

Table 3.9
Accuracy evaluation of the proposed network and the contour variants

(CCA post-processing).

Methods DSC Precision Sensitivity HD [mm] 95% HD
[mm]

ASSD
[mm]

AutoCENet 0.96±±± 0.01 0.95±±± 0.02 0.97±±± 0.01 14.96±±±4.25 2.92±±± 1.12 0.82±±± 0.32

+P 0.96 ± 0.01 0.95 ± 0.02 0.96 ± 0.01 17.16 ± 5.55 3.51 ± 1.39 0.90 ± 0.34

+FC 0.95 ± 0.01 0.95 ± 0.02 0.95 ± 0.02 21.12±11.42 5.63 ± 5.21 1.16 ± 0.54

+FC+P 0.95 ± 0.01 0.94 ± 0.02 0.96 ± 0.02 21.23±11.48 5.41 ± 3.98 1.13 ± 0.51

+SP 0.95 ± 0.01 0.95 ± 0.02 0.96 ± 0.02 18.53 ± 6.91 4.19 ± 1.99 0.90 ± 0.34

similar to [8]. β is a control parameter which defined the strength of the confi-

dence penalty [8]. The remaining loss terms are the same as presented in (3.10).

Additionally, a global penalization of the final output of AutoCENet (Au-

toCENet+P) is presented. A global penalization is defined by

Lautocenet+P (ỹl, ỹc,Γc, Γ̂c) = Lcontour − βH(p(ỹl|x; θ)) (3.23)

where ỹl is the final output prediction of liver and Lcontour is the same function

as (3.9). The entropy function H is same as (3.22). Table 3.8 shows the accuracy

assessment results of the contour variants.

All the contour variants showed lower accuracy compared to the original

network. The performance of the AutoCENet+FC was even poorer than that of

the AutoNet (Table 3.6) for the distance measures, indicating that enforcing the

network to learn the full ground-truth contour image degrades the performance.

Both penalization schemes on contour and global showed no improvements.

101



(a) Ground-truth (b) AutoCENet

(c) AutoCENet+P (d) AutoCENet+FC

(e) AutoCENet+FC+P (f) AutoCENet+SP

Figure 3.24: Example visualizations of the test results for contour variants. The
surface color is visualized based on the distance to the ground-truth surface.
Visualized surfaces are smoothed by the curvature flow smoothing method [148]
at the original image resolution.

The special penalized training of misclassified regions for contour loss showed

better performance than full-contour-based networks but was worse than that

of AutoCENet. Example visualizations of the results for AutoNet ablations are

visualized in Figs. 3.24 and 3.25.

Table 3.9 presents the results by applying CCA post-processing from the Ta-

ble 3.8. Figures 3.26 and 3.27 demonstrate box plots of Tables 3.8 and 3.9. The

ablations including full-contour supervisions and special penalization resulted

in degradation of performance. The ablations also increased false responses on

the final outputs.
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(a) Ground-truth (b) AutoCENet (c) AutoCENet+P

(d) AutoCENet+FC (e) AutoCENet+FC+P (f) AutoCENet+SP

Figure 3.25: Example axial slices of the test results for contour variants.

Shape-prior feature layer

Figures 3.28 and 3.29 show the liver shape-priors that are estimated with and

without the residual connection. The predicted probabilities clearly show that

the effectiveness of the high-level residual connection in shape prior estima-

tion. The posterior of liver from AutoNet-R (Fig. 3.28f) shows significant false

positive responses compared to the residual version (Fig. 3.28e). The two high-

level predictions, i.e., Figs. 3.28c and 3.28d, were used as mutual complements

to derive accurate liver prediction (3.28e). The results indicate that high-level

residual inference shows an effective way to estimate accurate prior of liver

region.
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(a) DSC.

(b) HD in mm.

(c) 95% HD in mm.

(d) ASSD in mm.

(e) Sensitivity.

(f) Precision.

Figure 3.26: Box plots of the evaluation metrics for contour variants.
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(a) DSC.

(b) HD in mm.

(c) 95% HD in mm.

(d) ASSD in mm.

(e) Sensitivity.

(f) Precision.

Figure 3.27: Box plots of the evaluation metrics for contour variants (CCA
post-processing).
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(a) Input image. (b) Ground-truth activation.

(c) ỹ0
dl in AutoNet. (d) ỹ1

dl in AutoNet.

(e) ỹ0
dl − ỹ1

dl in AutoNet. (f) ỹdl in AutoNet-R.

Figure 3.28: Liver prior estimations by the AutoNet and AutoNet-R.
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(a) Input image. (b) Ground-truth activation.

(c) ỹ0
dl in AutoNet. (d) ỹ1

dl in AutoNet.

(e) ỹ0
dl − ỹ1

dl in AutoNet. (f) ỹdl in AutoNet-R.

Figure 3.29: Liver prior estimations by the AutoNet and AutoNet-R.
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Contour feature layer

In this section, the contour features that were used to perform contour attention

are studied. The fully-supervised (3.18) and self-supervised (3.9) contour feature

maps are visualized in Fig. 3.30.

The contour feature map of a fully supervised network (i.e., using ground-

truth contour supervision without self-supervision (3.18)) was activated within

overall contour regions (Fig. 3.30a). The figure demonstrates that even with

the fully supervised training, the network failed to extract full-contour features

accurately (i.e., a part of the low softmax responses on the ground-truth contour

region). On the other hand, with a self-supervised network, the contour feature

map was activated in the local, sparse contour regions (Fig. 3.30b). The sparse

contour feature map acted as attention that the network can concentrate more

on the accurate delineation of boundary regions. By using the self-supervised

contours, the network resulted in the improvement of the final segmentation.

The analysis of the contour learning mechanism is presented in Fig. 3.31.

The figure illustrates the final output prediction of AutoNet and the follow-

ing two networks: AutoCENet and AutoCENet+FC. The two networks were

trained by using contour self-supervision and full-contour supervision from the

fully trained AutoNet model visualized in Fig. 3.31 at first column. The colors

mapped for each surface of the prediction in Fig. 3.31 represent the Euclidean

surface distance to the ground-truth surface (in case of result) and a softmax

value normalized into the range [0..1] (in case of contour). Each contour re-

sponse is visualized based on the ground-truth surface.

As shown in Fig. 3.31, self-supervised contour responses did not correspond

to the initial, weak contours from AutoNet (i.e., the initial sparse contour su-

pervision starts from the weak parts of AutoNet results). A strong indication of
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(a) Fully-supervised contour feature maps (Au-
toCENet+FC)

(b) Self-supervised contour feature maps (Au-
toCENet)

Figure 3.30: Contour feature visualizations after full training: (a) with full-
contour supervision and (b) with self-supervision. The self-supervised contour
feature map in (b) is sparser than that of the full-supervision and is later used
as strong contour attention. The ground-truth surface is used for visualizing
the distribution of the contour feature. The softmax value is normalized into
the range [0..1].
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Figure 3.31: AutoNet result and contour extensions.

Fig. 3.31 is that the self-supervised contour feature guides the network to bet-

ter delineate object contours rather than learning the misclassified counterparts.

That is, the response of the contour feature successively changes regarding the

current output prediction which acts as implicit attention for the network. Note

that the contour features are not complementary that are merged for the final

output. Additional visualization of the results is presented in Fig. 3.32.

3.5.6 Performance of generalization

Prior researches have thoroughly investigated neural networks in an architec-

tural view and verified their performances within individual metrics. However,

little academic research has been conducted to show the performance of general-

ization. To evaluate the performance of generalization, N-fold cross-validations

are demonstrated for the presented networks. Figures 3.33, 3.34, and 3.35 il-

lustrate dice loss of test images (i.e., 80 images) by training the network by
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(a) Ground-truth (b) AutoCENet

(c) AutoNet (d) AutoCENet+FC

(e) 3D U-Net [58] (f) V-Net [60]

(g) DSN [26] (h) VoxResNet [62]

(i) DenseVNet [63] (j) AGU-Net [52]

Figure 3.32: Example visualizations of the test results. The surface color is
visualized based on the distance to the ground-truth surface. Visualized surfaces
are smoothed by the curvature flow smoothing method [148] at the original
image resolution.

using 10%, 30%, 50%, 70%, and 90% of training images out of 100 images. This

experimental setting approximately proxies the real-life deep learning problem

and shows an extremely generalized regularization analysis.

The overall test errors increased in a lower percentage of training images.
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Figure 3.33: N-fold cross-validation study of AutoCENet and state-of-the-art
networks. The errors are calculated based on 80 test images using dice loss.

Figure 3.34: N-fold cross-validation study of AutoNet and the ablations. The
errors are calculated based on 80 test images using dice loss.
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Figure 3.35: N-fold cross-validation study of AutoCENet and the contour vari-
ants. The errors are calculated based on 80 test images using dice loss.

The proposed AutoCENet showed the best performance of generalization. Au-

toCENet relatively did not over-fitted (i.e., lowest test error) to the training

images compared to the other networks. The VoxResNet [62] was the second-

best out of other state-of-the-art networks. The fair performance of VoxResNet

is obtained by an auto-context algorithm [62]. Severe errors of DenseVNet [63]

were caused by weak representative shape-prior as in the aforementioned eval-

uations.

The ablation networks of AutoCENet showed comparable performances to

the other state-of-the-art networks (Figs. 3.33, 3.34, and 3.35). Among Au-

toNet variations, AutoNet-A, AutoNet-AR, and AutoNet-R showed worse per-

formance. Especially, AutoNet-R was the worst indicating that residual shape-

prior estimation plays an important role in an auto-context algorithm (Fig.

3.34). In cases of contour variants, full-supervision of contour (AutoCENet+FC)

showed the worst performance (Fig. 3.35). The penalization of confident output
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Figure 3.36: The effect of penalizing confident output loss for AutoNet and
AutoCENet.

distribution improved the performances of AutoNet (i.e., AutoNet+P). How-

ever, the same penalization applied to AutoCENet showed little difference in-

dicating that the output prediction of AutoCENet is relatively discriminative.

AutoCENet+P has a negative effect, but less significant, which decreased the

accuracy from the base AutoCENet.

Comparative analysis for the impact of penalizing confident output distri-

bution is presented in Figs. 3.36 and 3.37.

3.5.7 Results from ground-truth variations

In this section, several failure cases are presented. Most of the failures are caused

by the variation of ground-truth annotations. There are two notable regions:

aorta and portal vein entry. As shown in Fig. 3.38, there exists severe intra-
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Figure 3.37: The effect of penalizing confident output loss for AutoNet and
AutoCENet.

observer variability on manual annotations. Some observers include aorta as a

liver foreground, on the contrary, others exclude (3.38a). In the same sense, the

region of the portal vein is included or excluded depending on the observer (Fig.

3.38b). These regions are regarded as a noise label while training. It is very hard

to rely on the neural networks to automatically identify accurate annotations.

Figure 3.39 shows an example visualization of the AutoCENet result. The

boundary region within the aorta and the hepatic vein is ambiguous (i.e.,

smoothed). The accuracy evaluation and visualizations in the previous sections

were affected by this effect.
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(a) Two different ground-truth annotations for
aorta region.

(b) Two different ground-truth annotations for
portal vein region.

Figure 3.38: Variations on ground-truth segmentation labels. (a) Aorta region
and (b) portal vein entry region.

3.6 Discussion

In recent years, the employment of shape priors or neural networks has been

the most promising method for the accurate segmentation of a liver. The pro-

posed network avoided using the shape priors because the performance can be

seriously dependent on the variability of the shape priors. If the training set is

insufficient, the algorithm breaks down owing to the learned prior. The proposed

auto-context neural network internally used a high-level residual estimation of

shape-prior to robustly acquire the posterior probability. The embedded liver

probability map acts as a post-inference prior, which can be further used for the

final accurate segmentation. As a result, a single-passing auto-context neural

network was established without separate classification series as in [11, 62, 73].

The main underlying principle of the base auto-context architecture is that the
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Figure 3.39: An example result of AutoCENet. Boundaries within the aorta and
hepatic vein regions were smoothed.

performance of generalization can be achieved by a robust estimation of the

overall shape of a liver. In that perspective, high-level residual shape estima-

tion in a lower resolution successfully attained the desired task without extra

parameters of complex neural structures.

The attention mechanism has been growing its applicability to be a domi-

nant method for modern neural networks. However, the self-attention mecha-

nism still has a limitation on the fact that it is a data-driven algorithm, para-

doxically. The method cannot outperform without explicit general guidance on

certain applications especially that suffers from data deficiency. In the appli-

cation of liver segmentation, it is very hard to make a neural network to pay

attention to certain features that are useful for improving the final output.

In other words, complementary feature learning (i.e., special penalization pre-

sented in the experiments) has failed, and there is no existing method to make

the network to attend the failures. In this dissertation, a self-supervised contour

delineation is applied to the intermediate feature that is intended to implicitly
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guide the network to give more attention to weak boundary regions that the

network has failed to accurately delineate. The self-supervising mechanism suc-

cessfully embedded in the network and improved the final accuracy. The overall

architecture of the proposed neural network, which exploited an auto-context

and the contour self-supervision, suggests that performance of generalization

and accuracy can be obtained by a human-designed curriculum which means a

domain-specific knowledge is still required in the modern application of neural

networks.
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Chapter 4

Liver Vessel Segmentation via
Active Contour Model with Dense
Vessel Candidates

4.1 Overview

Accurate vascular structure analysis of a liver is an essential procedure of clinical

diagnosis. For example, anatomical liver partitioning can be obtained by accu-

rate analysis of portal vein structure. Thus, accurate segmentation of vessels

can bring an accurate structural analysis of the liver, and eventually, improve

clinical studies regarding diagnosis and surgical planning (e.g., liver resections).

However, it is very difficult to depict a complex 3D model like liver vessels even

for the highly educated experts in the clinics. In this chapter, a method of au-

tomatic segmentation of liver vessels is presented. The method employs a liver

prior (i.e., segmentation results) that was obtained by a liver segmentation

proposed in the previous chapter.

To tackle the challenge of vessel segmentation, a fully automated and new
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Figure 4.1: Overall workflow of the proposed method. The blue area illustrates
the iterative method of maximum intensity slab image generation, segmenta-
tion, and back-projection. The proposed active contour model based on the
level set is performed after IV C generation (red).

liver vessel segmentation is proposed which includes portal and hepatic veins

(i.e., all contrast-enhanced vessels). A novel dense vessel candidate points are

introduced to enhance the robustness and a new level set functional is pro-

posed (Fig. 4.1). First, similar to sliding-thin-slab image analysis [150], the 3D

segmentation problem is reduced to a 2D problem by generating maximum in-

tensity images within the slabbed region rather than the full projection of the

original volume (Fig. 4.2). The reason for not using a full projection of maxi-

mum intensity image is that it is very difficult to segment detailed vessels, and

it is hard to back-track the original position in the 3D domain due to extreme

overlaps (Figs. 4.3, 4.4, and 4.5). A new 2D vessel segmentation algorithm is

then performed and the result pixels are back-projected to the original 3D space
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Figure 4.2: Maximum intensity projection image for y-axis direction. The input
of the segmented liver is used to project intensities of voxels that are inside the
liver region.

to generate vessel candidate points. The map of very dense vessel candidates is

generated by multiple maximum intensity images. From point cloud generated

by dense vessel candidates, the accurate segmentation of a vessel region in 3D

is performed by a newly designed active contour model. This is a very hard

problem because of the three challenging requirements: 1) making an accurate

and smooth boundary of an object, ignoring holes in vessel candidate point

cloud if exist, and fine-tuning vessel region with the original 3D image. The

vessel candidate cloud is dense enough to define a region but there is a lot of

empty spaces and noisy points in the boundary area. Many probability density

estimation methods are mostly parameter-dependent and difficult to find ac-

curate object boundaries even with non-parametric estimations. To resolve the

aforementioned issues, a new active contour model is proposed for the accurate

segmentation of vessel structures.

As illustrated in Figs. 4.2 and 4.5, maximum intensity projection without

introducing slab is infeasible for vascular structure analysis. Although a domain
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Figure 4.3: Segmentation of vessel on 2D maximum intensity projection (MIP)
image and back-projection. The MIP image represents a single maximum
intensity-valued position for each pixel. It is difficult to reconstruct 3D posi-
tions of vessels in terms of structural analysis. The extremely complex vascular
structure is highly overlapped in a single MIP image.

Figure 4.4: An example backtracking of maximum intensity projection (MIP)
and maximum intensity slab (MIS) images.

reduction from 3D to 2D can ease the task of segmentation, extreme overlaps of

vessels make the image noisy that structural analysis becomes challenging. Sev-

eral methods have been proposed to tackle the task of 3D vessel segmentation

by employing maximum intensity projections [74–76]. A common approach is

to perform segmentation on a 2D projection image to obtain seed points for fur-

ther 3D segmentation such as region-growing or thresholding [75,76]. However,

performing segmentation on maximum intensity projection images is challeng-

ing (Fig. 4.5). A simple threshold-based segmentation, directly applied to the

image, result in noisy foregrounds that are unreliable (Fig. 4.5). Furthermore,
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(a) (b)

Figure 4.5: An example maximum intensity projection (MIP) image with re-
spect to z-axis and a manual threshold result. It is difficult to segment accurate
vessels from MIP image. Many noise and false positives are made by threshold-
ing.

depth values in depth-buffer, presented in [76], can be inconsistent regarding

single vascular structure due to highly overlapping vessels. The region-growing

method for the final 3D segmentation is also vulnerable because of the high

noise variance in the original image. In this dissertation, a robust 2D segmen-

tation method is proposed which employs the strength of a maximum intensity

projection and avoids the weakness of a full 3D projection.

The proposed method has two major advantages. The one is a problem do-

main reduction from 3D to 2D by a maximum intensity projection scheme. This

domain reduction makes segmentation tasks simple and robust because of the

degraded dimensionality and the lowered noise variation. To reduce the com-

plexity of structural analysis regarding vascular structure in projected images,

a slab-based projection is proposed. By employing slab-based maximum inten-

sity projection, clear vascular structures such as lines and blobs can be more

salient. The eased 2D image segmentation process contributes to the generation

procedure of accurate dense vessel candidate points, especially in a weak vessel
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Algorithm 1: Selecting Three Optimal Clusters.

Input: Io (input CT image), L (segmented liver labeled region).
Output: Segmented vessel labeled region.
1. Dense vessel candidate generation:

a) Generate maximum intensity slab image (IMIS) within L
(i.e., domain reduction, 3D −→ 2D).

b) Apply BM3D denoising to IMIS .
c) Apply vessel enhancement filtering to IMIS .
d) Apply threshold to IMIS to acquire vessel region foreground.
e) Back-project foreground pixels of IMIS to IV C vessel

(i.e., domain restoration, 2D −→ 3D).
f) Iterate over a)-e) for the three axis-aligned sliding slabs.

2. Clustering of dense vessel candidates:
a) Smooth binary image: IV C −→ IGV C .
b) Perform active contour model segmentation with Io and IGV C .

region. The second is the application of dense vessel candidate points to the

new level set-based active contour model. Dense vessel candidate points act like

high probability seed points that guide an active contour model to extract a

more accurate vessel region in the original 3D image. With the help of dense

vessel candidate points, the method can easily extract thin and weak peripheral

branch vessel structures whose boundaries are hard to identify in the original

CT images. Moreover, the difficulty of an initial contour setting in a level set

method is resolved by estimating the initial contour based on the generated ves-

sel candidate image. That is, the generated vessel candidate map (i.e., binary)

is dilated which serves as an initial estimation of the vessel contour. An overall

procedure of the presented algorithm is presented in Algorithm 1.

4.2 Dense vessel candidates

In this section, a generation process of 3D binary map formed by dense vessel

candidates is proposed. A maximum intensity projection is performed based
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(a) (b) (c)

Figure 4.6: Axial image comparison between (a) single-thickness plane image,
(b) slab-thickness plane image with an averaging scheme, and (c) slab-thickness
plane image with maximum intensity scheme (IMIS). Maximum intensity-based
projection (c) represents better (i.e., clear and salient) vessel structures without
noise compared to that of averaging (b).

on slabs that are a plane-based volume which is constrained by a given thick-

ness. A sequential procedure of projection, segmentation, and back-projection

is performed for each sliding slabs. For a robust segmentation on 2D projection

images, additional denoising and vessel enhancement filtering are applied before

segmentation.

4.2.1 Maximum intensity slab images

To generate vessel candidates, maximum intensity-based planar reconstruction

is performed based on the slab region rather than full projection (Fig. 4.2).

Defining the original image as Io : (x, y, z) −→ R and the maximum inten-

sity slab (MIS) image as IMIS : (x, y) −→ R, the reconstruction process can

be represented by Io −→ IMIS which is a domain reduction from 3D to 2D.

The maximum intensity slab image is produced by storing only the maximum

intensity value from the 3D data encountered by a plane’s normal directional

ray casting through an object. By the dimensions of an input image w (width),

h (height), and d (depth), a vector in an image coordinate can be defined as
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Maximum intensity slab images based on multiple axis-aligned re-
constructions. (a-b) Axial, (c-d) coronal, (e-f) sagittal views, respectively.

vi = (x, y, z), where 0 ≤ x ≤ w, 0 ≤ y ≤ h, and 0 ≤ z ≤ d. Introducing a

normal vector, n⃗, of a plane, MIS image can be represented as

IMIS(P(vñ
p)) = max

−σ/2≤p≤σ/2
Io(v

ñ
p + p · n⃗), (4.1)

where P is a domain projection from 3D to 2D (i.e., coordinate transformation),

vpñ is a projected plane coordinates on 3D based on normal vector n⃗, and p is
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(a) (b)

(c) (d)

Figure 4.8: A simple planar reconstructed image (the first row) and maximum
intensity projected image within the slab (the second row). (a) A 1-voxel thick-
ness reconstructed an axial image. (b) The intensity profile of a given rectangle
in an image (a). (c) A 7-voxel thickness reconstructed an axial image at the
same position as (a). (d) The intensity profile of a given rectangle in an image
(c). The intensity profile shows that multiple image projection (i.e., maximum
projection) results in noise reduction regarding the background and foreground
vessels.

an offset value from the projection plane. The slab is defined by a thickness pa-

rameter, σ. Depth information is also stored for further back-projection. The se-

lection of the maximum intensity value decreases the variance of the background

values that appear in the maximum intensity projection image [76]. Boundaries

of vessels including minor ones are thus far more salient than those in the origi-

nal image (Fig. 4.6). Furthermore, more information on vessel structure can be

contained than a single-depth planar reconstructed 2D image. Slabbed planar
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reconstruction by averaging scheme also cannot fully represent fine details of

minor vessels (Fig. 4.6b). One of the main ideas of the proposed method is

to make 2D segmentation more robust by using maximum intensity slab im-

age (Fig. 4.6c) rather than using a simple 2D plane image (Fig. 4.6a) to get

more accurate and dense vessel candidates. The major advantages of maximum

intensity slab image are that it is a naturally denoised image with maximum

intensity projection scheme and the vessel line structure is more delineated for

further responses of vessel enhancement filter. The background noises are sup-

pressed so that the difficulty of the 2D vessel segmentation problem can be

relaxed (Fig. 4.8). As shown in the first column of Fig. 4.9, with a single-depth

planar reconstructed image, vessel candidates cannot be extracted accurately

even with extra denoising and vessel enhancement techniques.

In the proposed method, voxels only in the liver region are calculated using

liver segment input (Fig. 4.9). In this way, the maximum intensity slab image

is not affected by the intensity distribution of the outer liver region. For fine

details, we reconstruct maximum intensity planar images for multiple directions

of the plane normal (4.1). For each axis-aligned direction (e.g., n⃗ = (1, 0, 0) for

x-axis direction), slabbed plane is shifted for a single voxel distance (Fig. 4.11).

The maximum intensity slab image is defined by a plane centered at slab region

(schematic illustration; the formal representation is defined in (4.1)). A shift of

a maximum intensity slab image is very important because by performing max-

imum intensity slab shifting, very dense vessel candidates can be later obtained

that can help to segment the vessel region in a 3D image using an active contour

model.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.9: The comparison of 2D segmentation results based on a simple plane
image (i.e., 1-voxel thickness; first column) and maximum intensity slab (MIS)
image, IMIS (second column) with respect to y-axis direction: (a) Simple plane
image without thickness; (b) MIS image from Io with 7 slab thickness. Each
following row applies BM3D denoising [151], vesselness filter [102], and thresh-
olding to the previous row image, respectively.
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4.2.2 Segmentation of 2D vessel candidates and back-projection

Once MIS images are generated, block matching 3D (BM3D) denoising tech-

nique [151] and multi-scale vessel enhancement filtering [102] are sequentially

performed to IMIS images (Fig. 4.9).

Block matching 3D (BM3D)

A huge body of literature has been studied for image denoising from sim-

ple smooth filtering to more complex approaches: non-linear filterings [152,

153], partial differential equations [154,155], non-local statistics [156–159], and

transform-domain filtering [151, 160, 161]. Some approaches assumes that a

true signal (denoised) and noise can be separated via variational modeling

[154, 155]. Non-local means method [156] suggests an averaging scheme with

non-local patches. The transform-domain denoising technique [151, 161] at-

tempts to model true signal in a frequency domain that can be recovered to the

original images.

Among the literature of image denoising, block matching 3D (BM3D) [151]

is employed in the proposed workflow. The method employs non-local image

patches as proposed in [159]. The basic idea of a non-local means method is

to build a point-wise estimate of the image where each pixel is obtained as a

weighted average of pixels centered at regions that are similar to the region

centered at the estimated pixel [151]. The authors in [151] proposed transform-

domain sparse filtering with an adaptation of the non-local method. The en-

hancement of sparsity is achieved by grouping similar 2D fragments of the

image into 3D data arrays, and subsequently, perform collaborative filtering to

3D stacked data [151]. The collaborative filtering reveals even the finest details

shared by grouped fragments and at the same time, it preserves the essential

unique features of each fragment [151].
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Multi-scale vessel enhancement filtering

A multi-scaled vessel enhancement filtering has been proposed in [102]. Second-

order analysis of local feature of an image, Taylor expansion in the neighborhood

of a point x can be defined as

L(x+ δx, s) ≈ L(x, s) + δxT∇s + δxTHsδx, (4.2)

where ∇s and Hs are the gradient vector and Hessian matrix of the image

computed in x at scale s [102]. By employing a linear scale space theory [162,

163], scaled differential operator of L can be defined as a convolution with

derivatives of Gaussians [102]:

∂

∂x
L(x, s) = L(x) ∗ ∂

∂x
G(x, s) (4.3)

where the scale s is defined as a standard deviation of the Gaussian function

Gs. The Hessian matrix is similarly defined as:

Hs =
∂2

∂x2
I(x, s) = I(x) ∗ ∂2

∂x2
G(x, s), (4.4)

where I is a given image (Fig. 4.10).

The eigenvalue analysis of the Hessian matrix is to extract the principal

directions where the local second-order structure of the image can be decom-

posed [102]. Defining eigenvalues of the Hessian as |λ1| ≤ |λ2| ≤ |λ3|, several

structural analysis can be performed by using the values. For example, an ideal

tubular structure in a 3D image can be:

|λ1| ≈ 0, (4.5)

|λ1| ≪ |λ2|, (4.6)

and

λ2 ≈ λ3. (4.7)
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Figure 4.10: The second order derivative of the Gaussian kernel (s = 1) [102].

The intuition comes from the fact that a pixel belonging to a vessel region will

be signaled by λ1 (i.e., minimum principal direction) being small, and λ2 and

λ3 of a large magnitude ane equal sign [102].

In the proposed vessel enhancement in a 2D domain, the blobness mea-

sure and contrast measure compared to the background are used. The blobness

measure accounting for the eccentricity of the second-order ellipse is defined as

RB =
λ1
λ2
, (4.8)

where |λ1| ≤ |λ2|. For contrast measure compared to the background, Frobenius

matrix norm is used since it has a simple expression in terms of the eigenvalues

when the matrix is real and symmetric [102]:

S = ||H||F =

√∑
i≤2

λi
2. (4.9)

The contrast measures S filter out low values in the background where no

structure is presented and the eigenvalues are small [102]. In regions with high

contrast, the norm becomes larger since either eigenvalue will be large [102].
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Figure 4.11: Maximum intensity slab (MIS) image (red lines) generation and
back-projection. Images illustrated by black squares are 3D volumes and red
lines are 2D images. Images are described in 2D for simplicity. The left im-
age illustrates the MIS image (IMIS) generation. MIS is reconstructed within a
slabbed region with respect to a projection vector. The right image illustrates
the back-projection mechanism. The vessel region is back-projected to the origi-
nal 3D positions (green dots) to generate vessel candidates. A single voxel-sized
shift interval is used and the three axis-aligned projection vectors are employed
in the experiments.

The final multi-scale vessel enhancement filtering function can be defined as

V (I) =


0, if λ2 > 0,

exp(−RB
2

2β2 )(1 − exp(− S2

2c2
)), otherwise,

(4.10)

where β and c are thresholds that control the sensitivity of the line filter to the

measures RB and S.

2D MIS segmentation

After MIS projection, BM3D denoising, and vessel enhancement filtering, vessel

candidate points are finally segmented in 2D MIS images and back-projected to

the original 3D domain. Writing denoised images via BM3D as I∗MIS , vesselness

filtering operation can be written as:

V (I∗MIS) = max
1≤s≤3

V (s, I∗MIS) = max
1≤s≤3

V (G(s) ∗ I∗MIS) (4.11)
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where G(s) is a Gaussian kernel. A multi-scale analysis is performed via con-

volving different scales of Gaussian kernels and computing vesselness filter re-

sponse by (4.11). Finally, segmentation of vessel region is performed by fix-

valued thresholding (Fig. 4.9) with value 0.4, which indicates selecting a pixel

with vesselness filter response greater or equal to 0.4 (Fig. 4.9). Once vessel

region in multiple IMISs are obtained, foreground pixels are back-projected to

3D space defined as

IV C(x, y, z) =


0, if background

1, otherwise (vessel candidate voxel).

(4.12)

IV C is a 3D binary image that contains value 1 (foreground) if the correspond-

ing voxel at that position in Io was once or more defined as vessel region in

IMIS images and 0 (background) otherwise. Each foreground voxel forms vessel

candidate with high probability (Fig. 4.13a). For the employment of IV C on

a level set functional, the binary map can be Gaussian smoothed to introduce

continuous function for further gradient calculation (i.e., IGV C).

The lower threshold value or automatic value (e.g., Otsu’s method [164]) can

be applied to extract a more accurate vessel area from a single IMIS , however,

this can lead to over-segmentation that generate noise in the vessel candidate

set. Rough segmentation of multiple directional sliding of IMIS can obtain accu-

rate and dense vessel candidates without precise segmentation of each maximum

intensity slab image. This is because vesselness filter response in IMIS varies

from directions. In other words, even if some vessel region points in a single

IMIS were lost, those points can be obtained in different directional images. By

integrating all 2D segmentation results into 3D vessel candidates, noiseless and

dense vessel candidates can be constructed.
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4.3 Clustering of dense vessel candidates

In this section, a level set formulation of a new active contour model is presented.

First, a level set formulation of the active contour model is briefly reviewed.

Subsequently, the proposed energy functionals will be presented in the following

subsections.

Level set formulation of active contour

An active contour model [122] based on explicitly parameterized curves can be

defined in an image domain (i.e., grid) via level set [139]. Implicit representation

of a curve is obtained by a zero level set function:

ϕ(C(t), t) = 0, (4.13)

where C(t) represents a curve on level set function on time series given at

time t. A level set function typically forms a signed distance form which makes

contour propagation stable (Fig. 4.12). A level set speed function (i.e., contour

propagation functional) can be obtained by a partial derivative regarding time

t:

ϕt + ∇ϕ(C(t), t) · C ′(t) = 0. (4.14)

By introducing speed energy based on a normal direction, n = ∇ϕ
|∇ϕ| , a level set

formulation of an active contour can be represented as

ϕt = |∇ϕ|F, (4.15)

where F is a speed function in a normal direction of the curve. The level set

energy functional does not require the function ϕ to be a distance function,

however, a typical case of implicit representation of a level set function is the

signed distance function due to stability which has the property of |∇ϕ| = 1
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Figure 4.12: Level set function. A zero level set is defined by ϕ(t, x, y) = 0. The
function is typically formed by a signed distance function as illustrated in the
figure.

that indicates the major challenging part is to design an F function for the

task-dependent tasks.

4.3.1 Virtual gradient-assisted regional ACM

Regional energy term

Unlike gradient, regional information like in the Chen-Vese model [131] can be

still applied to the original image, Io. This is because the intensity distribution

differs between background soft tissue and minor vessel region. However, solely

using Io can lead to inaccurate results because it is hard to globally optimize

the estimation of the intensity distribution. Introducing complementary region

terms by using both Io and IGV C images, a robust regional energy term can be

obtained that derives a curve to converge accurately. The surface evolution in

3D space is referred to as “contour” or “curve” in the context of the dissertation

for simplicity. Combining all the above features, a new virtual gradient assisted

regional active contour model can be modeled.

Regional energy terms for a level set functional are presented regarding the
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intensity distributions. Similar to the CV model [131], the original intensity

distribution of a given input image is first employed:∫
ϕ
|IG(x) − c1|2H(ϕ(x))dx (4.16)

and ∫
ϕ
|IG(x) − c2|2(1 −H(ϕ(x)))dx (4.17)

where IG is a Gaussian smoothed image from the original image. c1 and c2 are

the curves’s internal and external averages of IG as similarly defined in (2.48)

and (2.49). To compensate for the possibility of false dense vessel candidates,

it is important to design an energy function based on the original image.

In addition to the original image, a smoothed vessel candidate map is also

employed for a regional energy terms:∫
ϕ
|IGV C − g1|2H(ϕ(x))dx (4.18)

and ∫
ϕ
|IGV C − g2|2(1 −H(ϕ(x)))dx (4.19)

where g1, g2 are regional intensity averages similarly defined as c1, c2, and IGV C

is Gaussian smoothed image from IV C . The formal expression will be presented

in the following sub-sections.

The major intention of introducing the two regional terms is that the two

different intensity domain (i.e., the original image and smoothed vessel candi-

date map) can be mutually complementary. That is, a weak representation of

peripheral vessels on the original image can be complemented by the vessel can-

didate map. Reversely, the sparse representation of thick vessels on the vessel

candidate map can be complemented by the original image.
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(a) (b)

Figure 4.13: (a) Dense vessel candidate image generated by segmentation
and back-projection of maximum intensity slab images (IV C). (b) Gaussian
smoothed IV C image (IGV C) with standard deviation, σ = 1.

Virtual gradient energy term

Gradient stopping criteria is an important term for an object delineation via

active contour models. However, it is difficult to model the gradient criterion

based on the original image due to a weak representation of edges on peripheral

vessels. In that perspective, a new virtual gradient is proposed to model the

edge criterion for an active contour. To make a continuous function of IV C , the

Gaussian smoothing is firstly applied to the binary map, IV C :

∇∗IV C = ∇IGV C = ∇(Gσ ∗ IV C), IGV C : (x, y, z) −→ R (4.20)

where Gσ is a Gaussian kernel with standard deviation σ. The IGV C image

can be interpreted as vessel probability map (Fig. 4.13b). Gradient term cal-

culated by IGV C plays a significant role in curve stopping criteria. IGV C can

give a strong penalty to a curve when the curve tries to evolve through IGV C

boundaries.
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Virtual gradient-assisted regional ACM

As presented above, a virtual gradient-assisted regional active contour model

can be established by employing Io, IGV C , and ∇∗IV C :

F V GR(c1, c2, ϕ) =

{
µ

∫
|ϕ|≤ρ

δ(ϕ(x))|∇ϕ(x)|dx

+ λ1

∫
|ϕ|≤ρ

|IG(x) − c1|2H(ϕ(x))dx

+ λ2

∫
|ϕ|≤ρ

|IG(x) − c2|2(1 −H(ϕ(x)))dx

+ λ3

∫
ϕ
|IGV C(x) − g1|2H(ϕ(x))dx

+ λ4

∫
ϕ
|IGV C(x) − g2|2(1 −H(ϕ(x)))dx

}
× ν · R(|∇∗IV C |),

(4.21)

where µ ≥ 0, λ1, λ2, λ3, λ4 > 0, ν > 0 are fixed parameters, x ∈ R3 is a spatial

vector, IG is Gaussian smoothed image from Io, and

c1(ϕ) =

∫
|ϕ|≤ρ IG(x)H(ϕ(x))dx∫

|ϕ|≤ρH(ϕ(x))dx
, (4.22)

c2(ϕ) =

∫
|ϕ|≤ρ IG(x)(1 −H(ϕ(x)))dx∫

|ϕ|≤ρ(1 −H(ϕ(x)))dx
(4.23)

are internal and external averages of IG for narrow banded region defined by

level set function ϕ and parameter ρ (Fig. 4.14). Φ forms approximate signed

distance function while propagating so that ρ means the distance to current

zero level set curve for each iteration. g1 and g2 are similarly defined with IGV C

image:

g1(ϕ) =

∫
ϕ IGV C(x)H(ϕ(x))dx∫

ϕH(ϕ(x))dx
, (4.24)
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Figure 4.14: Narrow banded region of a level set function. The width of a band
is defined by the ρ parameter. The image is visualized in 2D for simplicity.

g2(ϕ) =

∫
ϕ IGV C(x)(1 −H(ϕ(x)))dx∫

ϕ(1 −H(ϕ(x)))dx
. (4.25)

The last term in (4.21) penalizes contour propagation at vessel boundaries by

vessel probability map, IGV C . R is a regularization function defined as

R(x) = e−10x. (4.26)

A partial differential equation for this level set formulation can be defined sim-

ilarly to [131]:

∂ϕ

∂t
=δ(ϕ)

[
µ · div(

∇ϕ
|∇ϕ|

) − λ1 · (IG − c1)
2 + λ2 · (IG − c2)2

− λ3 · (IGV C − g1)
2 + λ4 · (IGV C − g2)

2
]
× ν · R(|∇∗IV C |).

(4.27)

The divergence of normalized gradient (i.e., div( ∇ϕ
|∇ϕ|)) is defined as a “curva-

ture” which can be calculated by a level set function with respect to the mean

curvature [165]:

kM = div(
∇ϕ
|∇ϕ|

) =

(ϕyy + ϕzz)ϕx
2 + (ϕxx + ϕzz)ϕy

2 + (ϕxx+ ϕyy)ϕz
2

− 2ϕxϕyϕxy − 2ϕxϕzϕxz − 2ϕyϕzϕyz

(ϕx
2 + ϕy

2 + ϕz
2)

3/2
.

(4.28)
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And the Gaussian curvature also can be defined as [165]:

kG =

ϕx
2(ϕyyϕzz − ϕyz

2) + ϕy
2(ϕxxϕzz − ϕxz

2) + ϕz
2(ϕxxϕyy − ϕxy

2)

+
[
ϕxϕy(ϕxzϕyz − ϕxyϕzz) + ϕyϕz(ϕxyϕxz − ϕyzϕxx)

+ ϕxϕz(ϕxyϕyz − ϕxzϕyy)
]

(ϕx
2 + ϕy

2 + ϕz
2)

2 .

(4.29)

A narrow band regions were used for calculating c1 and c2 for three reasons:

remove dependency with background distribution, get foreground distribution

that is similar to minor vessel region, and get computational efficiency. The

second reason is that minor vessel boundaries are easily ignored (i.e., curve

evolves through the boundary) due to weak intensity contrast compared to the

higher intensity distribution of internal major vessel areas. By calculating the

narrow banded region of ϕ, minor vessels are more likely to be preserved by

forming similar intensity distribution as the foreground.

To preserve fine details of vascular structure with many weak vessels, high

smoothing with constant µ is not feasible (Fig. 4.15a). A smooth property while

preserving fine details of a curve can be obtained based on the last term of (4.21)

whereas relatively low smoothing constants are used (Fig. 4.15c). For initializing

zero level set at time t = 0 (i.e., ϕ(0, x, y, z) = 0), a dilated region of dense vessel

candidate point cloud was used. Boundaries of the dilated region form the zero

level set curve and ϕ is initialized by a signed distance map. The level set

function was re-initialized for every 10 iterations. Due to the excellence of the

initial contour, fast convergence of the level set function could be obtained. As

mentioned above, narrow band optimization [129] is adopted to the proposed

method (4.21).

The vesselness measures are not directly employed to the level set energy

functional as presented in [135]. The main reason is that there is no global
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(a) (b) (c)

Figure 4.15: Conceptual active contour propagation results by (a) CV model
with the higher smooth term (µ). (b) CV model with the higher regional term
(λ1, λ2), and (c) the proposed model with virtual gradient assisted CV model
(VGR) using both image and vessel candidates where red region represents
dense vessel candidates.

optimum value of the scale parameter. That is, evolving contour at thick vessel

region and thin vessel region must use different scale parameters in (2.34).

Determining each scale parameter for each location is a very hard problem

and using a maximum response with a unified large scale makes minor vessels

hard to be detected. A vesselness measure metric is designed to aid contour

propagation via a vessel probability map (Fig. 4.13b). Together with a robust

analysis of regional intensity distribution, both tick and thin vessels can be

successfully segmented.

4.3.2 Localized regional ACM

The previous section presented a level set formulation of the proposed method

by modeling regions based on the global statistics (i.e., with the Chan-Vese

model [131]). However, for heterogeneous objects, the global intensity distribu-

tion is not ideal even with narrow band optimizations. Inspired by Lankton and

Tannenbaum [123], a localized analysis of regional terms is presented.
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Localized regional energy term

Regional intensity statistics are a robust criterion for objects with homogeneous

intensity distribution. However, it is infeasible for peripheral branches that are

weakly represented in terms of low-intensity contrast and the presence of noise.

A local region-based intensity statistics must be delivered for a fair discrimi-

native competition of statistical intensity terms of energy functional. Thus, to

compensate low-intensity contrast for weak vessel area, a local, regional analysis

is employed for improving the global regional energy functional.

By introducing a characteristic function in terms of a radius parameter r,

localized binary mask function can be defined [123]:

Br(x, y) =


1, ||x− y|| < r,

0, otherwise,

(4.30)

where x, y ∈ R3 are 3D spatial coordinates in Ω. The function will be 1 when the

point y is within a ball of radius r centered at x, and 0 otherwise [123]. Figure

4.16 illustrates the activated Br function in zero level sets (i.e., ϕ(t, x) = 0). By

employing a local region analysis, a contour can be propagated to the area of

peripheral vessel branches that has low-intensity contrast. A new local-based

regional term can be defined as∫
ϕx

δ(ϕ(x))

∫
ϕy

Br(x, y) · |IG(y) − l1(ϕ(x))|2H(ϕ(y))dydx (4.31)

and ∫
ϕx

δ(ϕ(x))

∫
ϕy

Br(x, y) · |IG(y) − l2(ϕ(x))|2(1 −H(ϕ(y)))dydx, (4.32)

where x, y ∈ R3. l1 and l2 are defined by internal and external regional statistics

within local region constraint (i.e., Br). The formal expression will be presented

in the following sub-section.
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Figure 4.16: An illustration of localized regional energy term. Fading color illus-
trates the weak representation of intensity contrast in peripheral vessels. The
localized region, i.e., Br, improves regional intensity statistics that can be un-
stable with global statistics. The zero level set in the figure is a schematic result
of using simple narrow banded, global statistics.

Localized virtual gradient-assisted regional ACM

As presented in the previous sub-sections, a localized regional term can be

integrated into the final active contour functional. The virtual gradient-assisted

regional model can be extended based on localized region analysis (VGRL):

F V GRL(l1, l2, ϕ) =

{
µ

∫
|ϕx|≤ρ

δ(ϕ(x))|∇ϕ(x)|dx

+ λ1

∫
|ϕx|≤ρ

δ(ϕ(x))

∫
|ϕy |≤ρ

Br(x, y) · |IG(y) − l1(ϕ(x))|2H(ϕ(y))dydx

+ λ2

∫
|ϕx|≤ρ

δ(ϕ(x))

∫
|ϕy |≤ρ

Br(x, y) · |IG(y) − l2(ϕ(x))|2(1 −H(ϕ(y)))dydx

+ λ3

∫
ϕ
|IGV C(x) − g1(ϕ(x))|2H(ϕ(x))dx

+ λ4

∫
ϕ
|IGV C(x) − g2(ϕ(x))|2(1 −H(ϕ(x)))dx

}
× ν · R(|∇∗IV C(x)|),

(4.33)

where x, y ∈ R3. The difference from (4.21) are l1 and l2 that are defined by

l1(ϕ(x)) =

∫
|ϕy |≤ρ IG(y)H(ϕ(y))Br(x, y)dy∫

|ϕy |≤ρH(ϕ(y))Br(x, y)dy
, (4.34)
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l2(ϕ(x)) =

∫
|ϕy |≤ρ IG(y)(1 −H(ϕ(y)))Br(x, y)dy∫

|ϕy |≤ρ(1 −H(ϕ(y)))Br(x, y)dy
, (4.35)

where x and y are spatial vectors same as in (4.33) and function Br is defined

by radius parameter r (4.30).

Intensity averages in the interior and exterior of the curve are localized by

proximity function Br and width of narrow band ρ. Partial differential equation

of (4.33) can be easily formulated by setting l1 and l2 as constants:

∂ϕ

∂t
(x) =δ(ϕ(x))

[
µ · div(

∇ϕ(x)

|∇ϕ(x)|
)

− λ1

∫
|ϕy |≤ρ

Br(x, y)δ(ϕ(y))
(

(IG(y) − l1(ϕ(x)))2
)
dy

+ λ2

∫
|ϕy |≤ρ

Br(x, y)δ(ϕ(y))
(

(IG(y) − l2(ϕ(x)))2
)
dy

− λ3

(
IGV C(x) − g1(ϕ(x))

)2

+ λ4

(
IGV C(x) − g2(ϕ(x))

)2
]
× ν · R(|∇∗IV C(x)|).

(4.36)

In VGRL model (4.33), localized distance was used for region term calculation.

Calculating regional intensity distribution with proximity constraints makes a

better approximation of foreground weak vessel intensity distribution.

4.4 Experimental results

4.4.1 Overview

In the experiments, 2D segmentation methods are firstly presented in detail.

Subsequently, a comparison among the proposed method and the other active

contour models are demonstrated under the same condition of an initial contour.

Geodesic active contour (GAC) [130], Chane-Vese model (CV) [131], vascular

active contour (VAC) [135], and the proposed models are used for compari-

son. Volumetric validation with manual segmentation results is not presented
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because annotated data is highly expert-dependent (i.e., inter-observer variabil-

ity) and hard to acquire golden standard segmentation results. Instead, proper

validation is performed for the proposed method by using vessel tree branching

points together with 3D visualization of the segmented object and 2D visual-

ization of example axial slices. Clinical experts manually identified numerous

bifurcation points for quantitative analysis of the proposed method.

4.4.2 Data configurations and environment

The dataset includes 55 abdominal CT images and the corresponding annotated

points (i.e., bifurcation points) by clinical experts. For the training data, 5

images were used to optimize the parameters of the proposed method. The other

50 images were used for quantitative evaluations of liver vessel segmentation.

In the dataset, a slice thickness ranged from 0.6mm to 2.0mm and pixel sizes

ranged from 0.7mm to 1.0mm. Portal phase CT images were used due to the

high contrast of the vessel region. All experiments were tested on an Intel i7-

6700K desktop system with a 4.0GHz processor, 16GB of memory, and Nvidia

Titan X (Pascal) GPU machine.

4.4.3 2D segmentation

To get robust segmentation result in 2D maximum intensity slab images, the

analysis of a multi-scale vessel enhancement filter [102] responses with and

without BM3D [151] denoising was performed. Figures 4.17 and 4.18 shows

the difference of vesselness filter responses between the original image (i.e.,

maximum intensity slab image) and BM3D-denoised image. All experiments

have same vesselness function with fixed parameter β = 0.5 and c = 0.5 in

(4.10). Experiments show that low sigma value with 1 ≤ σ ≤ 3 is the best scale

for fine vessel enhancement (Figs. 4.17b and 4.18b). Including higher sigma
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(a) (b)

(c) (d)

Figure 4.17: Results of multi-scale vessel enhancement filtering [102] responses
on various scale parameters applied to MIS image without BM3D denoising
[151]. (a) The original maximum intensity slab (MIS) image with z-axis direc-
tion with 7 slab thickness. (b)-(d) shows vesselness filter results from (a). Each
corresponds to multi-scale parameters, σ (standard deviation of the Gaussian
kernel). (b): 1 ≤ σ ≤ 3, (c): 4 ≤ σ ≤ 6, and (d): 1 ≤ σ ≤ 6, respectively.

regard clustered minor vessel region as a one thick vessel (Figs. 4.17d and

4.18d). The range of low sigma values was adopted for vessel enhancement

because the main purpose of generating maximum intensity slab images and

performing vesselness filtering is to get precise vessel candidates at minor vessel

regions. For the use of low scale sigma value, the BM3D [151] must be applied

before vesselness filtering because Gaussian kernel with low sigma values does

not suppress noise effectively compared to the higher ones (Figs. 4.17 and 4.18).
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(a) (b)

(c) (d)

Figure 4.18: Results of multi-scale vessel enhancement filtering [102] responses
on various scale parameters applied to MIS image with BM3D denoising [151].
(a) The BM3D denoised maximum intensity slab (MIS) image with z-axis direc-
tion with 7 slab thickness. (b)-(d) shows vesselness filter results from (a). Each
corresponds to multi-scale parameters, σ (standard deviation of the Gaussian
kernel). (b): 1 ≤ σ ≤ 3, (c): 4 ≤ σ ≤ 6, and (d): 1 ≤ σ ≤ 6, respectively.

Fixed 7-voxel thickness is used for all maximum intensity slab image generation

and a single-voxel sized shift is performed for each direction (Fig. 4.11). For

the final segmentation, 0.4 value of threshold was fixed. The threshold value

was set by relatively high and fixed value because the lower value can lead to

over-segmentation that might be noise in the vessel candidate set. In the fact

that maximum intensity slab image generation is performed by single-voxel

sized shift with three axis-aligned directions, the unsegmented region is a single

148



image can be compromised by other maximum intensity slab images. It was

experimentally observed that the unsegmented peripheral branch vessel region,

represented by line structure in a certain maximum intensity slab image, is

successfully segmented by blob structure in other directional images.

In the experiments, maximum intensity slab images were generated by three

axis-aligned directions because of the computational efficiency. One might con-

sider adding additional oblique directional projections to get more robust and

dense vessel candidate generation. However, the computational cost of the max-

imum intensity slab image segmentation is relatively high compared with the

other procedures and three axis-aligned directions were suffice based on obser-

vations.

4.4.4 ACM comparisons

Figures 4.19 and 4.20 shows vessel segmentation results using different active

contour models. The same initial contour was used based on the proposed

method via dense vessel candidates. With the help of automatic good initial

condition, all experimented active contour models showed good results. How-

ever, other models have several limitations compared to the proposed methods.

For GAC, result is noisy and boundaries are irregular Figs. 4.19a and 4.21b.

This is because GAC only uses the edge information from the original noisy

image that makes it hard to detect minor vessel edges only by gradient. The

parameter ν = 1.0 was used for the equation (2.43). In the segmentation results

of CV method, too many fine vessels are lost even with the good initial condi-

tion Figs. 4.19b and 4.21c. This result shows that the vessel region consisting of

both high and low contrast vessels is very hard to estimate the global intensity

distribution of the internal area. The parameter values µ = 0.5, λ1 = 0.001, and

λ2 = 0.001 were used in the equation (2.50). VAC model segmented more accu-
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(a)

(b)

(c)

Figure 4.19: Liver vessel segmentation results with several active contour mod-
els (ACMs). The first column shows 3D object visualization of extracted vessel
regions and the second column shows the example axial slices of 2D segmenta-
tion results. Each row represents different ACMs: (a) GAC [130], (b) CV [131],
and (c) VAC [135], respectively.
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(a)

(b)

Figure 4.20: Liver vessel segmentation results with the proposed active contour
models. The first column shows 3D object visualization of extracted vessel re-
gions and the second column shows the example axial slices of 2D segmentation
results. (a) VGR and (b) VGRL.

rate vessel region than CV model (Figs. 4.19c and 4.21d) due to vascular vector

field energy. The parameter values were set as the same values in the original

paper [135]. Figures 4.20a and 4.21e show the proposed VGR model results

that use image distribution from both original image and the generated ves-

sel probability map together with virtual gradients. As clearly demonstrated,

VGR model successfully segment vessel region with smooth boundaries and

fine details. The parameter values µ = 0.5, λ1 = 0.001, λ2 = 0.001, λ3 = 10, and

λ4 = 10 were used in the equation (4.27). λ3 and λ4 are relatively large because
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(a) (b)

(c) (d)

(e) (f)

Figure 4.21: Comparison of thin vessel segmentation results with several active
contour models. (a) Manual ground-truth in local region, (b) GAC [130], (c)
CV [131], (d) VAC [135], (e) VGR, and (f) VGRL, respectively.
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(a) (b)

(c) (d)

Figure 4.22: Liver vessel segmentation results by the proposed VGR and VGRL
models. The first and second columns represent VGR and VGRL, respectively.

of the range of an image. For the detection of more fine details of weak vessels,

VGRL model is experimented as presented in (4.33).

The localized region calculation leads to accurate estimation of regional

intensity distributions for each position. Thus, minor vessels are far more pre-

served than VGR model by estimating intensity distribution in local rather than

global region (Figs. 4.20b and 4.21f). Moreover, the boundaries of vessel are

more accurately delineated due to the same effect of estimating a local intensity
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Figure 4.23: An example result of the proposed VGRL active contour model.

distribution. The parameter µ = 0.5, λ1 = 0.001, λ2 = 0.001, λ3 = 10, λ4 = 10,

and r = 10 were used in the equation (4.36). All active contour model experi-

ments made convergence within 100 iterations.

4.4.5 Evaluation of bifurcation points

For quantitative evaluation of the proposed method, the number of bifurcation

points (i.e., branching points of vessel tree structures) was compared. Clin-

ical experts were asked to identify true vessel branching points manually in

each of the fifty datasets. In this way, the manual points which serve as the

ground-truth for the accuracy assessment could be obtained. Bifurcation points

of the active contour models’ results were automatically generated by localizing

branching regions of segmented vessel tree skeletons (Fig. 4.24). The skeleton is

first extracted from segmented vessel tree via distance ordered thinning-based

methods [166–168]. The center-lined skeleton voxels were each classified using

neighborhood connectivity criteria: 1-connected voxels as end, 2-connected vox-

els as line, and 3 or more connected voxels as branch. Finally, the branching

points are localized as a center of connected branch voxel clusters. The accuracy
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Figure 4.24: Liver vessel tree skeletonization and classification of skeleton vox-
els. The black centered line of the left image represents vessel tree skeleton. The
right image describes branch, line, and end voxel classification using connectiv-
ity criterion. Line voxel region is represented by a curve for simplicity.

is evaluated in terms of two different factors, as follows:

Efp =
num{Ba} − num{Ba ∩Bm}

num{Bm}
, (4.37)

Efn =
num{Bm} − num{Ba ∩Bm}

num{Bm}
, (4.38)

where Ba is automatically detected branching point and Bm is a manually

identified branching point by a clinical expert. For constructing the set, {Ba ∩

Bm}, the one closest corresponding Ba for each Bm was mapped if and only if

the Euclidean distance between them is less than 1mm to their voxel positions.

Then, if the condition is met, the voxel was added to the set. The false positive

error, Efp, is the ratio of the set of Ba but not in the set of Bm to the set of

Bm. The false negative error, Efn, is the ratio of the set of Bm but not in the

set of Ba to the set of Bm.

Tables 4.1 and 4.2 represent the number of branching nodes (i.e., bifurcation

points) of vessel tree, false positive, and false negative scores on five training
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Table 4.1
Number of branching nodes of the vessel tree (five training images).

Dataset GAC [130] CV [131] VAC [135] VGR VGRL Manual

1 923 81 216 274 515 536

2 901 80 215 250 487 529

3 876 76 201 258 502 541

4 943 80 207 269 509 533

5 884 77 205 261 496 521

Table 4.2
Accuracy assessment results of vessel segmentation (five training images).

Dataset Error GAC [130] CV [131] VAC [135] VGR VGRL

1
Efp 0.761 0.002 0.002 0.002 0.015

Efn 0.039 0.851 0.599 0.490 0.054

2
Efp 0.775 0.000 0.008 0.013 0.004

Efn 0.072 0.849 0.601 0.541 0.083

3
Efp 0.661 0.004 0.008 0.013 0.004

Efn 0.043 0.863 0.636 0.536 0.076

4
Efp 0.814 0.000 0.015 0.004 0.019

Efn 0.045 0.850 0.627 0.499 0.064

5
Efp 0.735 0.002 0.004 0.004 0.002

Efn 0.038 0.854 0.610 0.503 0.050

average
Efp 0.749 0.001 0.007 0.007 0.009

Efn 0.047 0.853 0.615 0.514 0.065

images. Table 4.1 shows the number of bifurcation points on ground-truth an-

notations. Table 4.2 summarizes the errors of the five dataset. The average

number of elements in a set {Ba ∩ Bm} were 507, 78, 205, 259, and 487 for

GAC, CV, VAC, VGR, and VGRL, respectively. The proposed VGR model

segmented 181 and 54 more true branching nodes than that of CV and VAC

models on average. VGRL model segmented even more correct nodes than the
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Figure 4.25: Number of branching nodes of the vessel trees with respect to each
active contour model method and manually annotated points.

VGR model that is 228 on average.

Figure 4.25 shows the number of detected branching points by active contour

models and the manually annotated points. The observation is that the VGR

and VGRL methods were more successful in minor vessel segmentation tasks

than CV and VAC models. Numerous branching nodes of the GAC method is

mainly due to the noise of the segmented vessel region.

Figure 4.26 summarizes the errors on the fifty datasets. The average number

of elements in a set {Ba ∩ Bm} were 437, 72, 194, 242, and 427 for GAC, CV,

VAC, VGR, and VGRL, respectively. The VGR model segmented 170 and 48

more true branching nodes than that of CV and VAC models on average. VGRL

model segmented even more correct nodes than the VGR model that is 185 on

average.

In all datasets, Efp was relatively high in GAC method, indicating that

GAC detected many false bifurcation points (Fig. 4.26a). Even with low value

of Efn (Fig. 4.26b), GAC method was not successful due to many false positive

detections. In the case of CV, the average value of Efp was the lowest, which

was 0.004 but Efn marked the highest, indicating that the CV method failed to

segment thin vessel region. The proposed VGR and VGRL models apparently
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(a)

(b)

Figure 4.26: Assessment of (a) False positive error (Efp) and (b) false negative
error (Efn) for each active contour model method.
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showed the best results among other methods. VGR model resulted in lower

Efn and Efp compared to the VAC model that is better detection of minor

vessels without extra false positive error. VGRL model detected even more

minor vessels than VGR that is close to the manual detection along with a

slight increase of Efp.

The choice of methods between (4.21) and (4.33) depend on time complexity

and accuracy. If time performance is not critical and more accurate fine details

of minor vessels are required, (4.33) will be a better method. Equation (4.21)

is relatively more efficient than (4.33) and still preserves minor vessels well

compared to other models.

4.4.6 Computational performance

For the evaluation of the computational performance of the proposed method,

the two major steps were measured: generation of dense vessel candidates and

clustering of dense vessel candidates using an active contour model. The pro-

cessing time for dense vessel candidate generation, averaged over multiple tests

for all the dataset, was 90s tested under full GPU implementations. It took 31s,

24s, 119s, 40s, and 167s on average for the active contour model segmentation

via GAC, CV, VAC, VGR, and VGRL, respectively. For the whole processing

(i.e., combined VC generation and active contour propagation), it took 121s,

114s, 209s, 130s, and 257s on average for each patient’s CT volume via GAC,

CV, VAC, VGR, and VGRL, respectively. All active contour model segmenta-

tion procedures were implemented on a CPU basis. The typical data size for

a computational performance evaluation was 512 × 512 × 240 with an in-plane

pixel spacing of 0.6mm and a slice thickness of 0.7mm. The proposed VGR

method was faster and accurate than the VAC method. VGRL model was the

most successful method in minor vessel segmentation problem. However, the
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Figure 4.27: Number of branching nodes of the vessel trees with respect to each
active contour model method and manually annotated points (without slab).

computational efficiency of the method was the worst because of the local re-

gion analysis for all contour positions to propagate.

4.4.7 Ablation study

The effect of maximum intensity slab images has additionally experimented.

As illustrated in Fig. 4.9, 2D segmentation without maximum intensity slab

images (i.e., using a 1-voxel thickness plane) leads to an inaccurate and in-

sufficient vessel candidate generation. Without the help of robust and dense

vessel candidates, the proposed method is not able to segment a vessel region

accurately because the proposed active contour models (i.e., VGR and VGRL

models) are mainly dependent to IGV C image which is generated from vessel

candidates ((4.21) and (4.33)). Figures 4.27 and 4.28 show results of active con-

tour models using vessel candidates that is generated without slab. The number

of branching nodes of a vessel tree was globally increased in Fig. 4.27 compared

to that of with slab images (Fig. 4.25). The results of the CV and VAC model

had relatively no significant difference because the initial contour did not affect

their final results compared to other methods. However, the number of branch-

ing nodes of vessel tree with GAC, VGR, and VGRL models (Fig. 4.27) was
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(a)

(b)

Figure 4.28: Assessment of (a) False positive error (Efp) and (b) false negative
error (Efn) for each active contour model method (without slab).
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Figure 4.29: False positive error (Efp) assessment for VGR and VGRL models
with and without maximum intensity slab images.

increased with the simultaneous increase of Efp (Fig. 4.28a). Figures 4.27 and

4.28a clearly indicate that a lot of false detection are presented with inaccurate

vessel candidates which are generated by 2D image segmentation without thick-

ness. False negative error (Efn) in Fig. 4.28b shows no significant difference.

Even if Efn is decreased slightly, it is not considered as a performance gain be-

cause of the simultaneous increase of Efp. For better and clear visualizations,

Fig. 4.29 shows the difference with or without slab image with respect to false

positive errors.

4.4.8 Parameter study

The performance of the active contour model algorithm is sensitive to param-

eters. For the optimal set of parameters, 5 CT images were used to train the

parameters. The smoothness of a zero level set is controlled by the µ parameter.

In Fig. 4.30, it is evident that a higher value of µ loses minor vessel branches
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(a) (b)

(c) (d)

Figure 4.30: Study of parameters (a) µ and (b) λ3, λ4. (c) and (d) is log-scaled
plotting for (a) and (b), respectively. Errors are averaged for 5 CT images.

(i.e., high false negative error) and lower value of µ makes noisy boundaries

(i.e., high false positive error). In (4.21) and (4.33), the degree of influence

of image intensity distribution and vessel candidate distribution is controlled

by λ1, λ2, and λ3, λ4, respectively. That is, setting relatively higher values of

λ1, λ2 makes the level set function evolve more dependent on image intensity

distribution rather than vessel candidate distribution. On the contrary, ves-

sel candidate distribution dominantly affects the evolution of level set function

with relatively higher values of λ3, λ4. The two distribution must mutually co-

exist and balanced. As clearly indicated in Fig. 4.30, lower values of λ3 and λ4

increase false negative errors. the main reason for false negative errors is that

minor vessel region is hard to be determined in the original image intensities. In
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Figure 4.31: Classification of hepatic and portal veins (i.e., separation).

case of higher values of λ3 and λ4, the false positive errors increased indicating

that it failed to segment smooth vessel structure.

There are two undiscussed parameters regarding slab image generation: slab

thickness and shift interval. Increasing slab thickness and shift interval values

significantly decrease the density of the vessel candidate set. The reason for

the effect of the slab thickness parameter is that when generating maximum

intensity slab images, different vessel regions overlap and vessels that have rel-

atively lower intensities than others are more easy to be ignored. The use of

a large thickness makes more overlapping vessel regions in the image and that

means more information loss (i.e., loss of vessel candidates). On the contrary,

too small thickness value lowers the benefit of a maximum intensity image that

is a reduction of noise variance. The 7-voxel thickness was determined by nu-

merous experiments because it maximizes both the image quality and density

of the vessel candidate set. For other applications, the two parameters might

be set higher for the automatic extraction of coarse seed points.

4.5 Application to portal vein analysis

The proposed vessel segmentation technique has two major advantages: extracts

all existing vessel segments that are contrast-enhanced regardless of connectiv-
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Figure 4.32: Skeleton voxels. The skeleton voxels are classified using neighbor-
hood connectivity criteria: 1-connected voxels as end, 2-connected voxels as
line, and 3 or more connected voxels as branch. The branching points are local-
ized as a center of connected branch voxel clusters (bold ‘B’ in the figure). The
propagation is performed on a branch voxel basis.

ity and segments weak peripheral branches. In this section, a method of sepa-

rating hepatic and portal veins is introduced for further portal vein structural

analysis (Fig. 4.31). The structure of the portal vein is an important clinical

measure that anatomically divides (i.e., partitions) liver sections that provides

accurate surgical planning such as liver resections.

Once well contrast-enhanced vessels are segmented, the region is typically

connected (i.e., fully connected as a one object). To separate portal vein re-

gions from the hepatic vein, a skeleton-based confident flow method is pre-

sented. First, the object is processed under morphological erosion operation

which shrinks an object. By erosion, the object is separated into multiple seg-

ments. The two largest segments can be easily obtained by connected com-
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Figure 4.33: Classification of hepatic and portal veins. The red region, lines,
and points indicate the pre-classified hepatic region. The local branches can be
automatically classified without conflict. Similarly, the blues indicate the portal
region. The two skeletons are propagated to classify the remaining branches.

ponent analysis [149], therefore, rough rooted regions of hepatic and portal

veins can be obtained. From the pre-classified hepatic and portal vein regions,

a skeleton can be propagated based on tree structures (Figs. 4.32 and 4.33).

The skeletonization is performed based on distance-ordered, topology pre-

serving thinning-based method [169–172]. After skeletonization, each skeleton

voxel is classified as branch, line, and end based on connectivity criteria as

presented in section 4.4.5 (Fig. 4.32). From the fact that region classification

can be done by classifying all the skeleton voxels, skeleton tree propagation

is performed. As schematically illustrated in Fig. 4.33, branch and end voxels

are iteratively classified. Starting from sub-roots that are to be propagated, all

possible targets that are unclassified is pushed into the priority queue. The pri-

ority queue contains possible propagation candidates based on the directional

consistency criterion (i.e., the similarity of the target direction with respect to

the previous direction). A priority condition via directional consistency can be
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(a)

(b)

Figure 4.34: Hepatic and portal vein reconstruction from two separate, classified
skeletons.

formulated as

Priority value = Bc,i = (||vc,i − vc−1||) · (||vc+1,j − vc,i||), (4.39)
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where v indicates position of branch or end voxel with child index, c. i, j indicate

indices for current (i.e., contained in the priority queue) and child, respectively.

The priority is assigned by an anatomical knowledge that vessels are formed by

smooth variations in angle. The propagation procedure is iteratively performed

by pushing the unassigned candidates and poping the assigned. Figure 4.33

illustrates the proposed propagation algorithm. Finally, each vessel region is

classified based on each related skeleton which is classified as either hepatic or

portal vein (Fig. 4.34).

4.6 Discussion

The maximum intensity-based imaging is a very important technique compared

to the single-thickness multi-planar reformation image from the perspective

of clinical diagnosis and visualization [150, 173–176]. The maximum intensity

technique can provide images of diagnostic quality as long as the contrast of

the vessel of interest is sufficiently higher compared with that of surrounding

structures. The proposed method showed that the projection can be particularly

useful for depicting small vessels.

Segmentation of maximum intensity projection images can benefit the chal-

lenging task of fine vessel segmentation. However, a particular pixel in an image

may arise from any voxel along the projection ray. If two or more vessels over-

lap in a certain direction, the vessel with a higher intensity is projected. The

overlapping property makes it hard to reconstruct 3D structures via projection

images especially with the complex liver vascular system. Inspired by sliding-

thin-slab image analysis [150], strong vessel candidates in the 3D domain were

successfully reconstructed based on maximum intensity slab images rather than

1-voxel thickness image or full-projected images. The proposed method per-

formed the segmentation of multiple 2D slab images without any geometric
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assumptions (e.g., connectivity) and then back-projected points to the original

3D space to generate 3D vessel candidates. It was able to generate very dense

vessel candidates that can aid the active contour model to extract accurate

vessel region in the original image.

The proposed method finally extracted the smooth and fine structure of the

complex 3D liver vascular system via a newly designed level set method. The

model was designed by combining both region and local gradient energies with

the help of vessel probability map which is generated by dense vessel candi-

dates. The fine segments, (i.e., thin and weak peripheral branch vessels) whose

boundaries are hard to be identified in the original CT image, were successfully

segmented by strong and dense vessel candidates on minor regions. The exper-

iments showed that the proposed model is superior to other models regarding

the segmentation of small peripheral branch vessels without any manual inter-

actions. Furthermore, the method presented a robust initialization metric that

boosts the accuracy of active contour model approaches.

In pathological liver case (e.g., liver with the tumor), overall liver and tu-

mor segmentation must be preceded to the proposed vessel segmentation. Tu-

mor boundaries or tumor tissues might affect the vessel candidate generation

step regarding vesselness filtering responses. False detection of vessel candidates

may result in poor segmentation results. Therefore, for the effective use of the

proposed algorithm, the maximum intensity slab image must be generated by

excluding tumor regions.
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Chapter 5

Conclusion and Future Works

The accurate segmentation of a liver and its vessels is still a challenging task.

While deep learning continues to grow in influence until recently, the lack of

annotated medical image data makes it difficult to successfully deploy CNNs

in the clinics. Therefore, improving generalization performance is one of the

most important element technologies for utilizing CNN. In this dissertation,

a CNN for liver segmentation is proposed to minimize generalization errors

based on the human-designed curriculum (i.e., auto-context). The proposed

method minimized the error between train and test images more than other

modern neural networks. In addition, the contour scheme has been successfully

employed to the network by introducing a self-supervising approach. Instead

of using the entire ground-truth contour, sparse contours have been trained so

that the network can focus on its failures. Based on the experimental results, it

was examined that the proposed method played a significant role in improving

accuracy without introducing extra false positives.

CNN-based methods are difficult to be applied to vessel segmentation task
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because the annotation of a complex vascular structure is hard to be obtained.

Therefore, an image-based segmentation algorithm is presented in the disserta-

tion. To overcome the difficulty in thin vessel segmentation, a robust algorithm

is proposed based on vessel candidate points obtained by using multiple max-

imum intensity projection images. Thin vessel branches (i.e., weak, peripheral

vessels) were successfully segmented through vessel candidate points. In ad-

dition, an example application is presented to show that the portal vein can

be easily separated from the hepatic vein when the contrast of vessels is well

enhanced in portal phase CT images.

Further research is required to build a more intelligent and accurate computer-

aided diagnosis system: 1) liver tumor segmentation, 2) liver partitioning using

hepatic vein structure, and 3) image registration between multiple phases. The

proposed liver and its vessel segmentation methods provide a basis for these al-

gorithms. For example, the automated liver segmentation algorithm proposed in

this dissertation can be used as a good prior knowledge in liver tumor segmenta-

tion task as similarly shown in vessel segmentation. Furthermore, the segmented

hepatic vein can be anatomically categorized by branch, which allows the liver

to be clearly partitioned. The partitioning of the liver region and the tumor

segmentation together can make it possible to establish accurate surgical plan-

ning for liver resection. Finally, the proposed vessel segmentation algorithm

presents the possibility of solving the registration problem between different

phases. Since the proposed algorithm does not use the structural assumptions

of the vessel (e.g., trees), it is possible to segment the contrast-enhanced vessel

region in various phases. This suggests that the multi-phase registration prob-

lem, which is difficult to find matching points inside the liver parenchyma, can

be solved by merging vessel structures. The automated phase-to-phase registra-

tion can be used for clearer clinical diagnosis in the future.
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초록

복부 전산화 단층 촬영 (CT) 영상에서 정확한 간 및 혈관 분할은 체적 측정, 치료

계획 수립 및 추가적인 증강 현실 기반 수술 가이드와 같은 컴퓨터 진단 보조 시스

템을 구축하는데 필수적인 요소이다. 최근 들어 컨볼루셔널 인공 신경망 (CNN)

형태의 딥 러닝이 많이 적용되면서 의료 영상 분할의 성능이 향상되고 있지만,

실제 임상에 적용할 수 있는 높은 일반화 성능을 제공하기는 여전히 어렵다. 또한

물체의 경계는 전통적으로 영상 분할에서 매우 중요한 요소로 이용되었지만, CT

영상에서 간의 불분명한 경계를 추출하기가 어렵기 때문에 현대 CNN에서는 이를

사용하지 않고 있다. 간 혈관 분할 작업의 경우, 복잡한 혈관 영상으로부터 학습

데이터를 만들기 어렵기 때문에 딥 러닝을 적용하기가 어렵다. 또한 얇은 혈관

부분의 영상 밝기 대비가 약하여 원본 영상에서 식별하기가 매우 어렵다. 본 논

문에서는 위 언급한 문제들을 해결하기 위해 일반화 성능이 향상된 CNN과 얇은

혈관을 포함하는 복잡한 간 혈관을 정확하게 분할하는 알고리즘을 제안한다.

간분할작업에서우수한일반화성능을갖는 CNN을구축하기위해,내부적으

로 간 모양을 추정하는 부분이 포함된 자동 컨텍스트 알고리즘을 제안한다. 또한,

CNN을 사용한 학습에 경계선의 개념이 새롭게 제안된다. 모호한 경계부가 포함

되어 있어 전체 경계 영역을 CNN에 훈련하는 것은 매우 어렵기 때문에 반복되는

학습 과정에서 인공 신경망이 스스로 예측한 확률에서 부정확하게 추정된 부분적

경계만을 사용하여 인공 신경망을 학습한다. 실험적 결과를 통해 제안된 CNN이

다른 최신 기법들보다 정확도가 우수하다는 것을 보인다. 또한, 제안된 CNN의

일반화 성능을 검증하기 위해 다양한 실험을 수행한다.

간 혈관 분할에서는 간 내부의 관심 영역을 지정하기 위해 앞서 획득한 간 영

역을 활용한다. 정확한 간 혈관 분할을 위해 혈관 후보 점들을 추출하여 사용하는

알고리즘을 제안한다. 확실한 후보 점들을 얻기 위해, 삼차원 영상의 차원을 먼저
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최대 강도 투영 기법을 통해 이차원으로 낮춘다. 이차원 영상에서는 복잡한 혈관

의 구조가 보다 단순화될 수 있다. 이어서, 이차원 영상에서 혈관 분할을 수행하고

혈관 픽셀들은 원래의 삼차원 공간상으로 역 투영된다. 마지막으로, 전체 혈관의

분할을 위해 원본 영상과 혈관 후보 점들을 모두 사용하는 새로운 레벨 셋 기반

알고리즘을 제안한다. 제안된 알고리즘은 복잡한 구조가 단순화되고 얇은 혈관이

더 잘 보이는 이차원 영상에서 얻은 후보 점들을 사용하기 때문에 얇은 혈관 분

할에서 높은 정확도를 보인다. 실험적 결과에 의하면 제안된 알고리즘은 잘못된

영역의 추출 없이 다른 레벨 셋 기반 알고리즘들보다 우수한 성능을 보인다.

제안된 알고리즘은 간과 혈관을 분할하는 새로운 방법을 제시한다. 제안된 자

동 컨텍스트 구조는 사람이 디자인한 학습 과정이 일반화 성능을 크게 향상할 수

있다는 것을 보인다. 그리고 제안된 경계선 학습 기법으로 CNN을 사용한 영상

분할의 성능을 향상할 수 있음을 내포한다. 간 혈관의 분할은 이차원 최대 강도

투영 기반 이미지로부터 획득된 혈관 후보 점들을 통해 얇은 혈관들이 성공적으로

분할될 수 있음을 보인다. 본 논문에서 제안된 알고리즘은 간의 해부학적 분석과

자동화된 컴퓨터 진단 보조 시스템을 구축하는 데 매우 중요한 기술이다.

주요어: 간 분할, 자동 컨텍스트 인공 신경망, 윤곽선 집중 학습 기법, 혈관 후보

점, 혈관 분할, 레벨 셋 모델

학번: 2014-21778
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