10,722 research outputs found

    Recent advances in 3D printing of biomaterials.

    Get PDF
    3D Printing promises to produce complex biomedical devices according to computer design using patient-specific anatomical data. Since its initial use as pre-surgical visualization models and tooling molds, 3D Printing has slowly evolved to create one-of-a-kind devices, implants, scaffolds for tissue engineering, diagnostic platforms, and drug delivery systems. Fueled by the recent explosion in public interest and access to affordable printers, there is renewed interest to combine stem cells with custom 3D scaffolds for personalized regenerative medicine. Before 3D Printing can be used routinely for the regeneration of complex tissues (e.g. bone, cartilage, muscles, vessels, nerves in the craniomaxillofacial complex), and complex organs with intricate 3D microarchitecture (e.g. liver, lymphoid organs), several technological limitations must be addressed. In this review, the major materials and technology advances within the last five years for each of the common 3D Printing technologies (Three Dimensional Printing, Fused Deposition Modeling, Selective Laser Sintering, Stereolithography, and 3D Plotting/Direct-Write/Bioprinting) are described. Examples are highlighted to illustrate progress of each technology in tissue engineering, and key limitations are identified to motivate future research and advance this fascinating field of advanced manufacturing

    Index to 1984 NASA Tech Briefs, volume 9, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1984 Tech B Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Development of a real-time ultrasonic sensing system for automated and robotic welding

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.The implementation of robotic technology into welding processes is made difficult by the inherent process variables of part location, fit up, orientation and repeatability. Considering these aspects, to ensure weld reproducibility consistency and quality, advanced adaptive control techniques are essential. These involve not only the development of adequate sensors for seam tracking and joint recognition but also developments of overall machines with a level of artificial intelligence sufficient for automated welding. The development of such a prototype system which utilizes a manipulator arm, ultrasonic sensors and a transistorised welding power source is outlined. This system incorporates three essential aspects. It locates and tracks the welding seam ensuring correct positioning of the welding head relatively to the joint preparation. Additionally, it monitors the joint profile of the molten weld pool and modifies the relevant heat input parameters ensuring consistent penetration, joint filling and acceptable weld bead shape. Finally, it makes use of both the above information to reconstruct three-dimensional images of the weld pool silhouettes providing in-process inspection capabilities of the welded joints. Welding process control strategies have been incorporated into the system based on quantitative relationships between input parameters and weld bead shape configuration allowing real-time decisions to be made during the process of welding, without the need for operation intervention.British Technology Group (BTG

    NDE: An effective approach to improved reliability and safety. A technology survey

    Get PDF
    Technical abstracts are presented for about 100 significant documents relating to nondestructive testing of aircraft structures or related structural testing and the reliability of the more commonly used evaluation methods. Particular attention is directed toward acoustic emission; liquid penetrant; magnetic particle; ultrasonics; eddy current; and radiography. The introduction of the report includes an overview of the state-of-the-art represented in the documents that have been abstracted

    Nondestructive Testing Methods and New Applications

    Get PDF
    Nondestructive testing enables scientists and engineers to evaluate the integrity of their structures and the properties of their materials or components non-intrusively, and in some instances in real-time fashion. Applying the Nondestructive techniques and modalities offers valuable savings and guarantees the quality of engineered systems and products. This technology can be employed through different modalities that include contact methods such as ultrasonic, eddy current, magnetic particles, and liquid penetrant, in addition to contact-less methods such as in thermography, radiography, and shearography. This book seeks to introduce some of the Nondestructive testing methods from its theoretical fundamentals to its specific applications. Additionally, the text contains several novel implementations of such techniques in different fields, including the assessment of civil structures (concrete) to its application in medicine

    Effective and Efficient Non-Destructive Testing of Large and Complex Shaped Aircraft Structures

    Get PDF
    The main aim of the research described within this thesis is to develop methodologies that enhance the defect detection capabilities of nondestructive testing (NDT) for the aircraft industry. Modem aircraft non-destructive testing requires the detection of small defects in large complex shaped components. Research has therefore focused on the limitations of ultrasonic, radioscopic and shearographic methods and the complimentary aspects associated with each method. The work has identified many parameters that have significant effect on successful defect detection and has developed methods for assessing NDT systems capabilities by noise analysis, excitation performance and error contributions attributed to the positioning of sensors. The work has resulted in 1. The demonstration that positional accuracy when ultrasonic testing has a significant effect on defect detection and a method to measure positional accuracy by evaluating the compensation required in a ten axis scanning system has revealed limitsio the achievable defect detection when using complex geometry scanning systems. 2. A method to reliably detect 15 micron voids in a diffusion bonded joint at ultrasonic frequencies of 20 MHz and above by optimising transducer excitation, focussing and normalisation. 3. A method of determining the minimum detectable ultrasonic attenuation variation by plotting the measuring error when calibrating the alignment of a ten axis scanning system. 4. A new formula for the calculation of the optimum magnification for digital radiography. The formula is applicable for focal spot sizes less than 0.1 mm. 5. A practical method of measuring the detection capabilities of a digital radiographic system by calculating the modulation transfer function and the noise power spectrum from a reference image. 6. The practical application of digital radiography to the inspection of super plastically formed ditThsion bonded titanium (SPFDB) and carbon fibre composite structure has been demonstrated but has also been supported by quantitative measurement of the imaging systems capabilities. 7. A method of integrating all the modules of the shearography system that provides significant improvement in the minimum defect detection capability for which a patent has been granted. 8. The matching of the applied stress to the data capture and processing during a shearographic inspection which again contributes significantly to the defect detection capability. 9. The testing and validation of the Parker and Salter [1999] temporal unwrapping and laser illumination work has led to the realisation that producing a pressure drop that would result in a linear change in surface deformation over time is difficult to achieve. 10. The defect detection capabilities achievable by thermal stressing during a shearographic inspection have been discovered by applying the pressure drop algorithms to a thermally stressed part. 11. The minimum surface displacement measurable by a shearography system and therefore the defect detection capabilities can be determined by analysing the signal to noise ratio of a transition from a black (poor reflecting surface) to white (good reflecting surface). The quantisation range for the signal to noise ratio is then used in the Hung [1982] formula to calculate the minimum displacement. Many of the research aspects contained within this thesis are cuffently being implemented within the production inspection process at BAE Samlesbury
    • …
    corecore