8,975 research outputs found

    Time-Contrastive Learning Based Deep Bottleneck Features for Text-Dependent Speaker Verification

    Get PDF
    There are a number of studies about extraction of bottleneck (BN) features from deep neural networks (DNNs)trained to discriminate speakers, pass-phrases and triphone states for improving the performance of text-dependent speaker verification (TD-SV). However, a moderate success has been achieved. A recent study [1] presented a time contrastive learning (TCL) concept to explore the non-stationarity of brain signals for classification of brain states. Speech signals have similar non-stationarity property, and TCL further has the advantage of having no need for labeled data. We therefore present a TCL based BN feature extraction method. The method uniformly partitions each speech utterance in a training dataset into a predefined number of multi-frame segments. Each segment in an utterance corresponds to one class, and class labels are shared across utterances. DNNs are then trained to discriminate all speech frames among the classes to exploit the temporal structure of speech. In addition, we propose a segment-based unsupervised clustering algorithm to re-assign class labels to the segments. TD-SV experiments were conducted on the RedDots challenge database. The TCL-DNNs were trained using speech data of fixed pass-phrases that were excluded from the TD-SV evaluation set, so the learned features can be considered phrase-independent. We compare the performance of the proposed TCL bottleneck (BN) feature with those of short-time cepstral features and BN features extracted from DNNs discriminating speakers, pass-phrases, speaker+pass-phrase, as well as monophones whose labels and boundaries are generated by three different automatic speech recognition (ASR) systems. Experimental results show that the proposed TCL-BN outperforms cepstral features and speaker+pass-phrase discriminant BN features, and its performance is on par with those of ASR derived BN features. Moreover,....Comment: Copyright (c) 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Event-related brain potentials in the study of inhibition: cognitive control, source localization and age-related modulations

    Get PDF
    In the previous 15 years, a variety of experimental paradigms and methods have been employed to study inhibition. In the current review, we analyze studies that have used the high temporal resolution of the event-related potential (ERP) technique to identify the temporal course of inhibition to understand the various processes that contribute to inhibition. ERP studies with a focus on normal aging are specifically analyzed because they contribute to a deeper understanding of inhibition. Three time windows are proposed to organize the ERP data collected using inhibition paradigms: the 200 ms period following stimulus onset; the period between 200 and 400 ms after stimulus onset; and the period between 400 and 800 ms after stimulus onset. In the first 200 ms, ERP inhibition research has primarily focused on N1 and P1 as the ERP components associated with inhibition. The inhibitory processing in the second time window has been associated with the N2 and P3 ERP components. Finally, in the third time window, inhibition has primarily been associated with the N400 and N450 ERP components. Source localization studies are analyzed to examine the association between the inhibition processes that are indexed by the ERP components and their functional brain areas. Inhibition can be organized in a complex functional structure that is not constrained to a specific time point but, rather, extends its activity through different time windows. This review characterizes inhibition as a set of processes rather than a unitary process

    A habituation account of change detection in same/different judgments

    Get PDF
    We investigated the basis of change detection in a short-term priming task. In two experiments, participants were asked to indicate whether or not a target word was the same as a previously presented cue. Data from an experiment measuring magnetoencephalography failed to find different patterns for “same” and “different” responses, consistent with the claim that both arise from a common neural source, with response magnitude defining the difference between immediate novelty versus familiarity. In a behavioral experiment, we tested and confirmed the predictions of a habituation account of these judgments by comparing conditions in which the target, the cue, or neither was primed by its presentation in the previous trial. As predicted, cue-primed trials had faster response times, and target-primed trials had slower response times relative to the neither-primed baseline. These results were obtained irrespective of response repetition and stimulus–response contingencies. The behavioral and brain activity data support the view that detection of change drives performance in these tasks and that the underlying mechanism is neuronal habituation

    Functional connectivity of spoken language processing in early-stage Parkinson’s disease : an MEG study

    Get PDF
    Parkinson's disease (PD) is a neurodegenerative disorder, well-known for its motor symptoms; however, it also adversely affects cognitive functions, including language, a highly important human ability. PD pathology is associated, even in the early stage of the disease, with alterations in the functional connectivity within corticosubcortical circuitry of the basal ganglia as well as within cortical networks. Here, we investigated functional cortical connectivity related to spoken language processing in early-stage PD patients. We employed a patientfriendly passive attention-free paradigm to probe neurophysiological correlates of language processing in PD patients without confounds related to active attention and overt motor responses. MEG data were recorded from a group of newly diagnosed PD patients and age-matched healthy controls who were passively presented with spoken word stimuli (action and abstract verbs, as well as grammatically correct and incorrect inflectional forms) while focussing on watching a silent movie. For each of the examined linguistic aspects, a logistic regression classifier was used to classify participants as either PD patients or healthy controls based on functional connectivity within the temporo-fronto-parietal cortical language networks. Classification was successful for action verbs (accuracy = 0.781, p-value = 0.003) and, with lower accuracy, for abstract verbs (accuracy = 0.688, pvalue = 0.041) and incorrectly inflected forms (accuracy = 0.648, p-value = 0.021), but not for correctly inflected forms (accuracy = 0.523, p-value = 0.384). Our findings point to quantifiable differences in functional connectivity within the cortical systems underpinning language processing in newly diagnosed PD patients compared to healthy controls, which arise early, in the absence of clinical evidence of deficits in cognitive or general language functions. The techniques presented here may aid future work on establishing neurolinguistic markers to objectively and noninvasively identify functional changes in the brain's language networks even before clinical symptoms emerge.Peer reviewe

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio

    Spatiotemporal neurodynamics of automatic temporal expectancy in 9-month old infants

    Get PDF
    open2noAnticipating events occurrence (Temporal Expectancy) is a crucial capacity for survival. Yet, there is little evidence about the presence of cortical anticipatory activity from infancy. In this study we recorded the High-density electrophysiological activity in 9 month-old infants and adults undergoing an audio-visual S1-S2 paradigm simulating a lifelike "Peekaboo" game inducing automatic temporal expectancy of smiling faces. The results indicate in the S2-preceding Contingent Negative Variation (CNV) an early electrophysiological signature of expectancy-based anticipatory cortical activity. Moreover, the progressive CNV amplitude increasing across the task suggested that implicit temporal rule learning is at the basis of expectancy building-up over time. Cortical source reconstruction suggested a common CNV generator between adults and infants in the right prefrontal cortex. The decrease in the activity of this area across the task (time-on-task effect) further implied an early, core role of this region in implicit temporal rule learning. By contrast, a time-on-task activity boost was found in the supplementary motor area (SMA) in adults and in the temporoparietal regions in infants. Altogether, our findings suggest that the capacity of the human brain to translate temporal predictions into anticipatory neural activity emerges ontogenetically early, although the underlying spatiotemporal cortical dynamics change across development. © 2016 The Author(s).openMento, Giovanni; Valenza, EloisaMento, Giovanni; Valenza, Elois
    • 

    corecore