70 research outputs found

    The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis.

    Get PDF
    Recently, deep learning frameworks have rapidly become the main methodology for analyzing medical images. Due to their powerful learning ability and advantages in dealing with complex patterns, deep learning algorithms are ideal for image analysis challenges, particularly in the field of digital pathology. The variety of image analysis tasks in the context of deep learning includes classification (e.g., healthy vs. cancerous tissue), detection (e.g., lymphocytes and mitosis counting), and segmentation (e.g., nuclei and glands segmentation). The majority of recent machine learning methods in digital pathology have a pre- and/or post-processing stage which is integrated with a deep neural network. These stages, based on traditional image processing methods, are employed to make the subsequent classification, detection, or segmentation problem easier to solve. Several studies have shown how the integration of pre- and post-processing methods within a deep learning pipeline can further increase the model's performance when compared to the network by itself. The aim of this review is to provide an overview on the types of methods that are used within deep learning frameworks either to optimally prepare the input (pre-processing) or to improve the results of the network output (post-processing), focusing on digital pathology image analysis. Many of the techniques presented here, especially the post-processing methods, are not limited to digital pathology but can be extended to almost any image analysis field

    The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis

    Get PDF
    Recently, deep learning frameworks have rapidly become the main methodology for analyzing medical images. Due to their powerful learning ability and advantages in dealing with complex patterns, deep learning algorithms are ideal for image analysis challenges, particularly in the field of digital pathology. The variety of image analysis tasks in the context of deep learning includes classification (e.g., healthy vs. cancerous tissue), detection (e.g., lymphocytes and mitosis counting), and segmentation (e.g., nuclei and glands segmentation). The majority of recent machine learning methods in digital pathology have a pre- and/or post-processing stage which is integrated with a deep neural network. These stages, based on traditional image processing methods, are employed to make the subsequent classification, detection, or segmentation problem easier to solve. Several studies have shown how the integration of pre- and post-processing methods within a deep learning pipeline can further increase the model's performance when compared to the network by itself. The aim of this review is to provide an overview on the types of methods that are used within deep learning frameworks either to optimally prepare the input (pre-processing) or to improve the results of the network output (post-processing), focusing on digital pathology image analysis. Many of the techniques presented here, especially the post-processing methods, are not limited to digital pathology but can be extended to almost any image analysis field

    BREAST CANCER GRADING OF H&E STAINED HISTOPATHOLOGY IMAGES

    Get PDF
    Breast cancer is the common existing form of cancers amongst women. The automatic image analysis methods have an enormous potential to decrease the workload in a pathology laboratory. The grading of breast cancer histopathology images is used to find the level of breast cancer. The automatic grading of breast cancer histopathology images is a challenging task. In this paper a system for automatic detection of breast cancer grading of H&E stained histopathological images is presented. An image processing techniques such as preprocessing, segmentation, feature extraction and classification are used in this system. The segmentation of nuclei in H&E stained image is performed using color thresholding and maximum entropy thresholding. The features are computed according to Bloom Richardson grading criteria. The decision tree classifier is used to classify input image into three group i.e., low grade, intermediate grade and high grade

    Added benefits of computer-assisted analysis of Hematoxylin-Eosin stained breast histopathological digital slides

    Get PDF
    This thesis aims at determining if computer-assisted analysis can be used to better understand pathologists’ perception of mitotic figures on Hematoxylin-Eosin (HE) stained breast histopathological digital slides. It also explores the feasibility of reproducible histologic nuclear atypia scoring by incorporating computer-assisted analysis to cytological scores given by a pathologist. In addition, this thesis investigates the possibility of computer-assisted diagnosis for categorizing HE breast images into different subtypes of cancer or benign masses. In the first study, a data set of 453 mitoses and 265 miscounted non-mitoses within breast cancer digital slides were considered. Different features were extracted from the objects in different channels of eight colour spaces. The findings from the first research study suggested that computer-aided image analysis can provide a better understanding of image-related features related to discrepancies among pathologists in recognition of mitoses. Two tasks done routinely by the pathologists are making diagnosis and grading the breast cancer. In the second study, a new tool for reproducible nuclear atypia scoring in breast cancer histological images was proposed. The third study proposed and tested MuDeRN (MUlti-category classification of breast histopathological image using DEep Residual Networks), which is a framework for classifying hematoxylin-eosin stained breast digital slides either as benign or cancer, and then categorizing cancer and benign cases into four different subtypes each. The studies indicated that computer-assisted analysis can aid in both nuclear grading (COMPASS) and breast cancer diagnosis (MuDeRN). The results could be used to improve current status of breast cancer prognosis estimation through reducing the inter-pathologist disagreement in counting mitotic figures and reproducible nuclear grading. It can also improve providing a second opinion to the pathologist for making a diagnosis

    The impact of tumor edema on T2-weighted 3T-MRI invasive breast cancer histological characterization: a pilot radiomics study

    Get PDF
    Background: to evaluate the contribution of edema associated with histological features to the prediction of breast cancer (BC) prognosis using T2-weighted MRI radiomics. Methods: 160 patients who underwent staging 3T-MRI from January 2015 to January 2019, with 164 histologically proven invasive BC lesions, were retrospectively reviewed. Patient data (age, menopausal status, family history, hormone therapy), tumor MRI-features (location, margins, enhancement) and histological features (histological type, grading, ER, PgR, HER2, Ki-67 index) were collected. Of the 160 MRI exams, 120 were considered eligible, corresponding to 127 lesions. T2-MRI were used to identify edema, which was classified in four groups: peritumoral, pre-pectoral, subcutaneous, or diffuse. A semi-automatic segmentation of the edema was performed for each lesion, using 3D Slicer open-source software. Main radiomics features were extracted and selected using a wrapper selection method. A Random Forest type classifier was trained to measure the performance of predicting histological factors using semantic features (patient data and MRI features) alone and semantic features associated with edema radiomics features. Results: edema was absent in 37 lesions and present in 127 (62 peritumoral, 26 pre-pectoral, 16 subcutaneous, 23 diffuse). The AUC-classifier obtained by associating edema radiomics with semantic features was always higher compared to the AUC-classifier obtained from semantic features alone, for all five histological classes prediction (0.645 vs. 0.520 for histological type, 0.789 vs. 0.590 for grading, 0.487 vs. 0.466 for ER, 0.659 vs. 0.546 for PgR, and 0.62 vs. 0.573 for Ki67). Conclusions: radiomic features extracted from tumor edema contribute significantly to predicting tumor histology, increasing the accuracy obtained from the combination of patient clinical characteristics and breast imaging data

    Fast ScanNet : fast and dense analysis of multi-gigapixel whole-slide images for cancer metastasis detection

    Get PDF
    Lymph node metastasis is one of the most important indicators in breast cancer diagnosis, that is traditionally observed under the microscope by pathologists. In recent years, with the dramatic advance of high-throughput scanning and deep learning technology, automatic analysis of histology from whole- slide images has received a wealth of interest in the field of medical image computing, which aims to alleviate pathologists’ workload and simultaneously reduce misdiagnosis rate. However, automatic detection of lymph node metastases from whole-slide images remains a key challenge because such images are typically very large, where they can often be multiple gigabytes in size. Also, the presence of hard mimics may result in a large number of false positives. In this paper, we propose a novel method with anchor layers for model conversion, which not only leverages the efficiency of fully convolutional architectures to meet the speed requirement in clinical practice, but also densely scans the whole- slide image to achieve accurate predictions on both micro- and macro-metastases. Incorporating the strategies of asynchronous sample prefetching and hard negative mining, the network can be effectively trained. The efficacy of our method are corroborated on the benchmark dataset of 2016 Camelyon Grand Challenge. Our method achieved significant improvements in comparison with the state-of-the-art methods on tumour localization accuracy with a much faster speed and even surpassed human performance on both challenge tasks

    Identificación automática de marcadores patológicos en imágenes de histopatología

    Get PDF
    Abstract. The inter and intra subject variability is a common problem in several tasks associated to the examination of histopathological samples. This variability might hinder the evaluation of cancerous diseases. The development of automatic image analysis techniques and computerized aided diagnostic tools in pathology aims to reduce the impact of such variability by offering quantitative measurements and estimations. These measurements allow an accurate evaluation and classification of the diseases in virtual slide images. The main problem addressed in this thesis is evaluating the correlation of the automated identification of pathological markers with cancer malignancy and aggresivenes. Hence, a set of classifier models are trained to detect known pathological patterns. The classifiers are then used to quantify the presence of the pathological markers. Finally, the resulting measurements are correlated with the cancer risk recurrence. Results show that the automated detectors are able to quantify patterns that show differences across several cancer risk groups.La variabilidad inter e intra sujeto es un problema frecuente en muchas tareas asociadas al ex´amen de muestras histopatológicas. Esta variabilidad puede incidir negativamente en la evaluación de patologías relacionadas con el cáncer. El desarrollo de técnicas para el análisis automático de imágenes y de herramientas de soporte al diagnóstico en patología tiene como objetivo reducir el impacto de la variabilidad inter/intra sujeto mediante la obtención de medidas y estimaciones cuantitativas. Estas medidas permiten una evaluación y clasificación más precisa de las enfermedades observables en l´aminas virtuales. El principal problema abordado en esta tesis consiste en evaluar la correlación de la identificación automática de marcadores patológicos con la agresividad del cáncer. As´ı, un conjunto de clasificadores son entrenados para detectar marcadores patológicos conocidos. Los clasificadores son posteriormente usados para cuantificar la presencia de los marcadores patológicos. Finalmente, las mediciones resultantes son correlacionadas con el riesgo de recurrencia del cáncer. Los resultados muestran que los detectores automáticos son capaces de cuantificar los patrones que muestran diferencias entre diferentes grupos de riesgo.Doctorad
    corecore