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Abstract

Recent improvements in biomedical image analysis using deep learning based

neural networks could be exploited to enhance the performance of Computer

Aided Diagnosis (CAD) systems. Considering the importance of breast cancer

worldwide and the promising results reported by deep learning based meth-

ods in breast imaging, an overview of the recent state-of-the-art deep learn-

ing based CAD systems developed for mammography and breast histopathol-

ogy images is presented. In this study, the relationship between mammogra-

phy and histopathology phenotypes is described, which takes biological aspects

into account. We propose a computer based breast cancer modelling approach:

the Mammography-Histology-Phenotype-Linking-Model, which develops a map-

ping of features/phenotypes between mammographic abnormalities and their

histopathological representation. Challenges are discussed along with the po-

tential contribution of such a system to clinical decision making and treatment

management.
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1. Introduction

1.1. Breast cancer

Breast cancer is the most frequently diagnosed cancer (National-Health-

Service (2016); American-Cancer-Society (2016)) and accounts for 25.2% of the

total cancer related deaths among women followed by colorectal (9.2%), lung5

(8.7%), cervix (7.9%), and stomach cancers (4.8%) according to the Interna-

tional Agency for Research on Cancer, WHO 1 (Stewart & Kleihues (2014)). The

assessment process for breast screening follows a triple assessment model: ap-

propriate imaging (i.e. mammography as a primary imaging modality for lesion

visualisation and finding early changes in breast tissue) plus clinical assessment10

and, where indicated, needle biopsy (i.e. H&E 2 stained histology) (Breast-

Cancer-Biopsy (2016)). Typical examples of mammographic and H&E histo-

logical images of breast tissue, as the two commonly used imaging modalities,

are shown in Figure 1 and are the focus of this paper.

Among the women who undergo mammographic screening, about 10% are15

recalled for additional evaluation. Among these, 8 to 10% will have suspicious

abnormal findings which warrant undergoing breast biopsy (Neal et al. (2010)).

In the United States, approximately 15-30% referred for biopsy are found to

have malignant abnormalities and in European trials, this ranges from 30% to

75% (Kopans (1992)). Although effective, this process is a trade-off between20

sensitivity (84%) and specificity (91%) which leads to a number of unneces-

sary biopsies (Elmore et al. (2009)). The impact of unnecessary biopsy and the

downstream diagnostic burden includes increased anxiety, morbidity and stress

for the women concerned and increased health care costs. Nevertheless, biopsy

is currently considered the only way to confirm the presence of cancer (Elmore25

et al. (2009)). Therefore, there is a clear need to develop a specific discrimination

1World Health Organisation
2Hematoxylin and Eosin

2



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(a) (b)

Figure 1: Two breast imaging modalities: (a) mammography images from the INBreast

dataset (Moreira et al. (2012)), Craniocaudal (CC) and Mediolateral Oblique (MLO) views

(left - right sides) shown in the first and the second row respectively; (b) breast histology

images from the MITOS-ATYPIA-14 (2016) dataset, showing from top to bottom: 10 HPF,

20 HPF and 40 HPF (HPF stands for High Power Field which indicates magnified areas).

model or criteria, like the “Stavros Criteria” in ultrasound, which determines

whether ultrasound could help accurately distinguish benign solid breast nod-

ules from indeterminate or malignant nodules and whether this distinction could

be specific enough to reduce the need for biopsy (Stavros et al. (1995)). In mam-30

mography, an equivalent model or criteria could indicate benign abnormalities

and reduce the need for further biopsies.

1.2. Conventional CAD systems

In order to assist radiologists’ interpretation, Computer Aided Diagnosis

(CAD) systems and quantitative image analysis (QIA) techniques have been35

developed as an alternative to double reading, improving clinicians’ accuracy

and patient outcome. These systems are aimed at improved identification of

subtle suspicious masses, calcifications, micro-calcifications and other abnor-

malities in mammograms (Oliver et al. (2010); He et al. (2015)). Meanwhile,

3
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Figure 2: Image analysis procedures for mammography and histopathology image data.

histological CAD systems, provide another perspective on developing breast40

cancer models such as the identification of tumour regions, mitotic activity,

nuclear atypia score, the epithelium-stroma and the tubule formation score

along with identifying subtypes of breast cancer like IDC 3 or ILC 4 (Veta

et al. (2014); Gurcan et al. (2009)). An overview of machine learning based

image analysis aspects used in histopathology and mammography CAD sys-45

tems is provided in Figure 2. Using conventional machine learning methods,

various hand-designed descriptors (i.e. morphological, topological and textural

features) based on prior knowledge and expert guidance have been developed

for these CAD systems. Previous publications have described and compared

such approaches for automatic detection and segmentation of abnormalities in50

mammographic images (Oliver et al. (2010, 2006); Giger et al. (2013); Boyer

et al. (2009)). When dealing with breast histology; inherent complexities are

3Invasive Ductal Carcinoma
4Invasive Lobular Carcinoma

4
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modelled via different algorithms to achieve specific tasks (Kowal et al. (2013);

Irshad et al. (2014); Dundar et al. (2011); Kothari et al. (2013); Veillard et al.

(2013)). These models and approaches have been evaluated on different breast55

databases including digital/digitised mammography and histology images.

The most significant weakness of conventional machine learning methods

is the hand-engineered feature extraction step, which employs a combination of

heuristic and mathematical descriptors. Subsequently, the extracted features are

introduced into different classifiers to be categorised into the desired classes as60

expressed in Figure 2. This feature extraction step makes the learning algorithm

more cumbersome since it mostly depends on the features extracted from the

data and requires effort and sufficient interpreting knowledge due to the various

geometrical and morphological structures. Reproducing results is not always

easily achieved and the generic discrimination ability of the features used needs65

investigation.

1.3. Towards, deep learning based CAD systems

The benefits of conventional mammographic and histologic CAD systems

in clinical practice have not been fully determined. There has been significant

discussion on whether CAD is an effective tool at the current level of perfor-70

mance (Fenton et al. (2011); Giger (2014)). Still, more creative and predictive

models need to be designed to improve the performance metrics, including ac-

curacy, sensitivity, specificity, precision and recall rate to improve upon the

current state-of-the art. A crucial step towards a new generation of machine

learning approaches is enabling computers to learn the features as data repre-75

sentatives. These are expressed as low-level features such as margin and edge;

middle-level features such as edge junctions and high level object parts (Zeiler

et al. (2011)). Deep learning approaches - termed one of the significant break-

through technologies of recent years by the MIT Technology Review (MIT-

Technology-Review (2017))- has made headlines in producing semantic infor-80

mation due to its nature of adaptive learning from input data. Various deep

learning structures have been developed for both supervised approaches (algo-

5
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rithms that infer a function from input data with labelled responses) and unsu-

pervised approaches (algorithms that draw inferences from input data without

labelled responses). SAE 5 (Ng (2011)), DBN 6 and RBM 7 (Salakhutdinov85

& Hinton (2009)) are among popular architectures developed for unsupervised

approaches. CNN 8 (LeCun et al. (2010, 1998)) and RNN 9 (Medsker & Jain

(1999)) have become the technique of choice for supervised approaches. In re-

cent years, a noticeable shift from conventional machine learning methods to

deep learning based methods is seen in a wide variety of real world, especially90

medical, applications and several review papers have been published (Schmid-

huber (2015); LeCun et al. (2015); Litjens et al. (2017)). Several open crowd-

sourced algorithmic analysis competitions have been announced to motivate the

development of better techniques for cancer prognosis, detection, risk strati-

fication, disease outcome prediction and survival. Recently held breast can-95

cer mammography related competitions have been the Digital-Mammography-

DREAM-Challenge (2017)) and UK-Breast-Cancer (2016). Some recent breast

histopathology competitions include: ICPR2012 (2017)10, AMIDA13 (2017)11,

MITOS-ATYPIA-14 (2016), CAMELYON16 (2016); CAMELYON17 (2017)12

and TUPAC16 (2016)13. These competitions have influenced the evaluation100

of different methods to become more transparent and easier to compare. In

most of these challenges, deep learning based approaches have shown the most

promising performance.

In AI 14 technology, deep learning methods have multiple levels of represen-

tation learning which use raw data and discover the essential representations105

5Sparse AutoEncoders
6Deep Belief Networks
7Restricted Boltzmann Machines
8Convolutional Neural Networks
9Recurrent Neural Networks

10International Conference on Pattern Recognition
11Assessment of Mitosis Detection Algorithms
12Cancer Metastasis Detection in Lymph Node
13Tumor Proliferation Assessment Challenge
14Artificial Intelligence

6
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for detection or classification (LeCun et al. (2015)). These inherent represen-

tations and patterns are obtained through a hierarchical framework which is

able to put features extracted from a low level (starting with raw data) and

high level abstracts together using a non-linear approach. Such networks are

able to improve themselves according to the input content variation and opti-110

mise the relationship between inputs and outputs via an iterative training pro-

cess (Bengio (2009)). At the same time as the deep learning concepts were de-

veloped, a step-change in processing power through high performance GPUs 15

and open source frameworks/libraries developed on CUDA 16 (CUDA (2017)) or

OpenCL 17 (OpenCL (2017)) platforms have made significant progress for the115

implementation of deep learning based methods. These open source frameworks

and libraries provide the chance for optimised implementation of convolutions

and other related functions. In addition, they facilitate the ability to perform

a high number of computations at a relatively low costs through their massive

parallel architectures.120

1.4. Structure of the paper

This paper presents an overview of different deep learning based approaches

used for mammography and breast histology and proposes a bridge between

these two fields employing deep learning concepts. We have focused on mam-

mography, since this is the most common modality used in breast screening,125

and H&E stained histology, since it is considered as the gold standard for final

decision making.

The main aims of this paper are:

1. In Section 2, deep learning based models are introduced and their funda-

mental structures summarised.130

2. Recent deep learning based approaches for mammographic and histopatho-

logic image analysis are reviewed (covered in Sections 3 and 4, respec-

15Graphics Processing Units
16Compute Unified Device Architecture
17Open Computing Language
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tively). Details of the models (e.g. datasets, architecture, etc.) are pro-

vided in separate tables.

3. Exploring the link between mammography and histology phenotypes from135

a biological point of view is reviewed in Section 5.

4. The future of deep learning in constructing a model linking mammographic

and histologic features and phenotypes called “Mammography-Histology-

Phenotype-Linking-Model” (MLM<−>H) is covered in Section 6.

5. Potential challenges to be considered in the development of MLM<−>H140

are also discussed in Section 6.

1.4.1. Paper selection process

When selecting the papers, popular review papers (Veta et al. (2014); Gur-

can et al. (2009); Oliver et al. (2010); Rangayyan et al. (2007); Doi (2007);

He et al. (2015); Litjens et al. (2017)) were considered. Other papers citing145

them and publishing work on mammography or breast histology were also re-

viewed. Papers published by participants in breast cancer challenges were se-

lected too. Google Scholar was searched using keywords: “breast cancer, mam-

mography, histopathology, CAD systems, deep learning, Convolutional Neural

Network (CNN), linking map, phenotype” and those related to breast cancer150

and deep learning were included in this review.

2. Deep Neural Networks

2.1. General architecture of deep neural networks

Various deep architectures have been derived from traditional feed-forward

ANN 18. An ANN consists of a cascade of trainable multi-stage layers inspired155

by the organisation of the animal visual cortex (LeCun et al. (2010)). There are

sets of arrays called feature maps as the input and output of each layer. Each

feature map in a specific layer represents particular features extracted at the

locations of the associated input.

18Artificial Neural Network

8



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Commonly used layers in deep learning based networks are:160

Input layer. This loads input to feed the convolutional layers. Some transforma-

tions such as mean-subtraction, feature-scaling and effective data augmentation

can be incorporated (Hamidinekoo et al. (2017)).

Convolutional layer. This tends to includes three stages of operational units (Le-

Cun et al. (2010)):165

• Convolutional filters: these compute the convolution result of the input

feature map with trainable 2D discrete convolution filters and bias param-

eters. Each filter bank detects a particular feature at each location on the

input map (LeCun et al. (2010); Schmidhuber (2015)).

• Pooling: this performs down-sampling for the spatial dimension of the170

input. This results in a reduced-resolution output feature map which is

robust to small variations in the location of features in the previous layer.

Additionally, it merges semantically similar features into one. There are

a number of variations for pooling (i.e. maximum, average) (Krizhevsky

& Hinton (2009)).175

• Activation or non-linearity function: this is a non-linear element-wise

operator that simulates excitability of neurons. Among various activa-

tion functions in deep learning, the Rectified Linear Unit (ReLU) has

been shown to be efficient for image processing applications (Glorot et al.

(2011); Dahl et al. (2013)).180

Normalisation layer. This can be implemented at each spatial location across

all feature maps of the same layer in order to acquire an improved description

of the input. This way, non-uniformity of the scene illumination can be reduced

which leads to better convergence by decorrelating the input dimensions (Dahl

et al. (2013)).185

9
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Dropout regularisation layer. This can reduce over-fitting of the network and

result in learning more robust features. The key idea is to randomly drop

units along with the respective connections from the neural network during the

training process to avoid too much co-adaptation of the units (Srivastava et al.

(2014)).190

Inner-product layers or fully connected layers. These treat their input as a sim-

ple vector and produce an output in the form of a single vector. In classification

tasks, the last layers are sometimes fully-connected layers that are followed by

logarithmic loss to be minimised. The exact merit of fully connected layers is

still an open research question, but its effect in improving the performance has195

been reported (Krizhevsky et al. (2012)).

Constructing the architecture using these elements, a signal is propagated

through active neurons from layer to layer. This signal is a linear combination

of the input, learned weights and biases treated under a non-linearity function

as:

signal = Fnonlinear(weightsT ∗ input + bias) (1)

Accordingly, in the forward direction the loss function (specifically defined for

a task) is calculated. Optimisation of the calculated error is obtained using

a form of stochastic gradient descent (LeCun et al. (1998)). Hence, coeffi-

cients of all filters in distinct layers are calculated and updated simultaneously200

during the learning process with the back-propagation method (LeCun et al.

(2012)). Training is an iterative process involving multiple passes of the in-

put data through the network until the model converges (LeCun et al. (2015);

Schmidhuber (2015)).

Two of the most important types are Convolutional Neural Networks and205

AutoEncoders, which are described in Sections 2.2 and 2.3.

2.2. Convolutional Neural Networks (CNNs)

CNNs are the most successful type of deep learning model, especially for

supervised learning applied to image based classification work. Litjens et al.

10
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(2017) have published a comprehensive review on different image processing210

applications accomplished by CNNs. Like regular ANNs, CNNs are made up of

several layers stacked on top of each other. However, unlike a regular Neural

Network, the layers of a CNN have width, height and depth so that they are

controllable by their depth and breath variations which enables them to share

weights (Simonyan & Zisserman (2014)). A CNN can be trained by feeding it a215

suitable input. It is then able to compute parameters layer by layer and produce

a final output. The objective of training is to minimise the difference between

the predicted output and the actual output of the network. This error then

flows backwards through the net by a back-propagation procedure and updates

the parameter values. A typical CNN architecture is shown in Figure 3.

Figure 3: A typical Convolutional Neural Network architecture.

220

2.3. AutoEncoder

An AutoEncoder (AE) is a form of ANN, developed for unsupervised learning

models (Bengio (2009)). An AE is able to learn generative representations from

image data, typically with the purpose of reconstructing the input on the output

layer by reducing the dimensionality space through the hidden layers. AEs

have been widely used for segmentation and detection tasks in breast image

analysis while CNNs are mostly used for the task of predicting a target value

(i.e. classification). Architecturally, AEs are feed-forward, non-recurrent neural

networks that consist of two parts: the encoder and the decoder. A schematic

11
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architecture of an AE is shown in Figure 4. The objective of training is to

minimise the reconstruction error which in the simplest form can be expressed

as:

Loss(I,O) = ||I−O||2 = ||I−FDe(W
T
De ∗(FEn(WT

En ∗I+BEn))+BDe)‖|2 (2)

I: Input image

O: Output image

FEn: Encoder element wise activation function

FDe: Decoder element wise activation function225

WEn: Weight in Encoder

WDe: Weight in Decoder

BEn: Bias in Encoder

BDe: Bias in Decoder

Figure 4: Schematic architecture of an AutoEncoder (AE).

230

2.4. Developed models

CNNs and AEs have several general advantages compared to conventional

feed-forward neural networks such as: no dependency on designing hand-crafted

features; reduced pre-processing analysis on input data; calculation of fewer con-

nections and parameters; ability to pool similar features at the same location235

12
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and nearby locations due to the use of shared weights; and translation invari-

ance (Donahue et al. (2014)). Moreover, the saturation issue and vanishing

or exploding gradient of a layer, which are serious concerns for neural net-

works (Schmidhuber (2015)), can be addressed with careful choice of activation

functions, careful weight initialisation and small learning rates during optimi-240

sation. Detailed description of these technical aspects are covered by Nair &

Hinton (2010). For more detailed information about the mathematical concept

of deep learning based architectures, the reader is suggested to consult LeCun

et al. (2010).

The success or failure of a model depends on the aforementioned modifiable245

compartments of the learning system. Sections 3 and 4 will focus on the CNNs

and AEs applied in mammography and histology image processing applications

and how the proposed models have improved the state-of-the-art results for CAD

systems in these two fields. There are several “standard” deep learning networks

throughout this paper which are used in the developed models described in the250

later sections:

CifarNet (Krizhevsky & Hinton (2009)) has three convolution layers, three

pooling layers, and one fully-connected layer. This CNN architecture has about

0.15 million free parameters.

AlexNet (Krizhevsky et al. (2012)) has five convolution layers, three pooling255

layers, and two fully-connected layers with approximately 61 million free pa-

rameters. It has halved the error rate in object recognition competitions and

facilitated the rapid adoption of deep learning.

GoogLeNet proposed by Szegedy et al. (2015), is significantly more complex

in structure and depth and introduced an “Inception” module that consisted of260

six convolution layers and one pooling layer which is responsible for concatena-

tion of filters with different sizes and dimensions into a single new filter. Overall,

GoogLeNet has two convolution layers, two pooling layers, and nine Inception

layers leading to nearly 5 million free parameters.

VGGNet (Simonyan & Zisserman (2014)) showed the effect of the network265

depth on performance. It described 2 best versions: containing 16 and 19

13
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convolution/fully-connected layers performing on 3× 3 filter sizes with approx-

imately 138 million free parameters in VGGNet 16.

2.5. Common challenges and proposed strategies in deep learning

In recent years, deep learning based methods have been considered the pre-270

ferred approach for many medical imaging applications. However, in order to

integrate them into application pipelines, some considerations should be taken

into account. Comparison of various algorithmic methods is difficult since each

research team has reported their results using their own dataset and evaluation

metrics (Gurcan et al. (2009)). To address the issue of such variation, some275

data has been made publicly available. For example, in the Whole Slide Imag-

ing Repository website19, histopathology images and information for different

organs is accessible. Of critical concern for supervised learning is the amount

of annotated data available. To address this, some image data has been made

publicly available in terms of competitions but still labelling them specifically280

is time-consuming, tedious and sometimes costly. The annotations should be

done in a structured format to be usable by the larger community. A list of

recent large datasets in mammography and breast histopathology are provided

in Tables 1 and 2.

There are currently three major approaches for successfully employing su-285

pervised deep networks, which also address the issue of data availability, (i.e.

for image classification via CNNs): i) training a network from scratch, ii) using

off-the-shelf pre-trained network features and iii) using unsupervised networks

and pre-training with supervised fine-tuning (Shin et al. (2016); Goodfellow

et al. (2016)). Based on the reported results (Tajbakhsh et al. (2016)), CNNs290

are difficult to train from scratch for most medical images due to the small data

sample sizes, variance in abnormality appearances and lack of rare or special

cases. Transfer learning and fine-tuning in medical image analysis are two ef-

fective methods in which a network (i.e. a CNN model) is pre-trained on a

19https://digitalpathologyassociation.org/whole-slide-imaging-repository

14
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natural image dataset or a different medical domain and then fine-tuned on the295

desired medical images. Thanks to some open source frameworks, like Caffe (Jia

et al. (2014)), these pre-trained networks can simply be downloaded and directly

applied to any medical image analysis.

Another solution to collecting a larger number of annotated image data is

crowdsourcing (Albarqouni et al. (2016)). This technique allows for combining300

radiologists’ or histopathologists’ knowledge with non-experts to enable learning

inputs from crowds as part of the network learning process. While the unlabelled

data can never replace labelled data, using unlabelled data is also a supplement

to the annotated data. Artificial data augmentation is another solution widely

used for increasing the number of training cases (Hamidinekoo et al. (2017)).305

These issues are further addressed in the models covered in Sections 3 and 4.

3. Deep Learning in Mammographic Image Processing

3.1. Problem statement

Mammograms reflect density variations in breast tissue composition due to

different X-ray attenuation in breast tissue. Epithelium and stroma attenuate310

x-rays more than fat and thus appear radiopaque on mammograms while fat

appears radiolucent (Tabár & Dean (2005)). Several studies have confirmed the

relationship between breast cancer risk and mammographic parenchymal (tex-

ture) patterns assessed by percent mammographic density (Gastounioti et al.

(2016)) (besides age, gender, gene mutations and family history factors). Breast315

cancer can appear in mammograms as: masses, architectural distortion and

microcalcifications; and separate or combinational CAD systems have been de-

veloped for these types of abnormalities. The size, distribution, form, shape

and density of these abnormalities are considered as clues in diagnosing their

potentially cancerous nature (Tabár & Dean (2005)). Example abnormalities320

accompanied by their annotations by expert radiologists are shown in Figure 5.
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(a) (b) (c)

Figure 5: (a): mammograms with the annotated mass abnormalities selected from BCDR-F03

database (masses or lumps are the most common symptom of breast cancer); (b): mammo-

grams with the annotated calcification selected from BCDR-F02 database (small deposits of

calcium in the breast tissue, called breast calcifications, are common and often associated

with benign cases); (c): mammograms with the annotated microcalcifications selected from

BCDR-F02 database (shown as much smaller white dots on a mammogram, called clusters of

micro-calcifications and are not quite as common and can be a cause of concern). The green

boundary represents benign biopsy proven lesions and the red boundary represents malignant

biopsy proven lesions.

Radiologists also use a set of intuitive tissue patterns to characterise the

appearance of each mammogram manually and estimate breast cancer risk using

specific metrics. The reader is referred to (Wolfe (1976); Tabár & Dean (2005);

Boyd et al. (2010); D’Orsi (2013); Muhimmah et al. (2006)) for more detailed325

information about various breast density classification systems. Among these

systems, BIRADS 20 has become popular to standardise the mammography

report which covers abnormalities and density and more details on the latter

are described in Table 3. Each case is assessed to be: normal (Assessment

20Breast Imaging Reporting and Data System
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Table 3: Main breast density categories.

Density percent BIRADS density class Tissue appearance

[0%-25%] I Predominantly fatty

[25%-50%] II Scattered fibro-glandular densities

[50%-75%] III Heterogeneously dense

[more than 75%] IV Dense

Category (A.C.) = 1), benign or probably benign (A.C. = 2 or 3), suspicious330

abnormality (A.C. = 4) or malignant (A.C. = 5). The building of systems which

can effectively provide automatic detection, segmentation and classification of

such lesions based on deep learning methods has become one of the challenging

areas in mammographic CAD systems.

3.2. Mass Analysis335

The first implementation of deep learning networks in mammographic mass

detection/classification was done by Sahiner et al. (1996). The CNN’s input

images were obtained from manually extracted RoIs 21 by radiologists. With

these RoIs, the training data was prepared using two techniques: (i) employing

averaging and sub-sampling, (ii) employing texture feature extraction applied340

to small subregions inside the RoI. They studied the effects of CNN architecture

and texture feature parameters on classification of different mammograms and

indicated that the input images are more critical than the CNN architecture.

However, this was before the use of GPUs and improvement of ANNs and so

implementing such CNN was described as computationally intensive and tedious345

with poor adaptability and limited results. However, later on, inspired by the

layer aspect of deep networks along with parallelisable algorithms and properties

of GPUs, exploring CNN applications in mammography became more realistic.

Petersen et al. (2012) presented a generic multi-scale DAE 22 using a sparsifying

21Regions of Interest
22Denoising AutoEncoder
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activation function for breast density segmentation. They evaluated their results350

by comparing it to manual BIRADS and Cumulus-like density scoring (Byng

et al. (1994)). They showed that multiple scales are effective for learning rich

feature representations in the segmentation task. Following Petersen’s work,

Kallenberg et al. (2016) proposed a CSAE 23 network with sparsity regulari-

sation (both lifetime and population). This architecture expanded the idea of355

Ranzato et al. (2006) to pixel-wise labelling of large scale images which was able

to preserve the spatial layout of the image while avoiding feature overcomplete-

ness. They implied that sparse overcomplete representations are cost-efficient

and robust to noise. In a different approach, Jamieson et al. (2012) explored the

use of ADNs 24 proposed by Zeiler et al. (2011). ADNs are unsupervised and hi-360

erarchical models that use convolution sparse coding and max pooling for image

decomposition. They combined the SPM 25 kernel (Lazebnik et al. (2006)) on

the inferred feature maps and a linear SVM 26 classifier. They visualised image

relationships according to the learned feature information utilising the Elastic

Embedding dimension reduction technique. Various depth CNN networks were365

also tested by Arevalo et al. (2015, 2016). They compared their best obtained

results with two baseline descriptors: HOG 27 and HGD 28 and an approach us-

ing 17 hand-crafted features. Finally, they reported performance improvement

with the combination of both learned and hand-crafted representations. Fon-

seca et al. (2015) evaluated the performance of the developed HT-L3 CNN, an370

architecture search procedure technique (Pinto et al. (2009)), on mammograms.

The network search space with the proposed options had 729 candidates and it

took about 72 hours to screen them in order to find the top 3 performing archi-

tectures. By obtaining the best architecture, they performed automatic feature

extraction and trained an SVM classifier. Dhungel et al. (2015) presented a375

23Convolutional Sparse AutoEncoder
24Adaptive Deconvolutional Network
25Spatial Pyramid Matching
26Support Vector Machine
27Histogram of Oriented Gradients
28Histogram of Gradient Divergence
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multi-scale 4-DBN that was combined with a GMM 29 classifier for mass can-

didate generation. These candidates were fed to a CNN to extract textural and

morphological features for the linear SVM classifier (this combination is known

as R-CNN). A cascade of two RF 30 classifiers was then applied to the feature set

for the inference processes. Performing post processing, regions based on a high380

overlap ratio were merged as the overall results. Subsequently, Carneiro et al.

(2015) fine tuned a CNN pre-trained with ImageNet (Krizhevsky et al. (2012))

using unregistered mammograms and segmented microcalcification and masses.

They estimated the patient’s risk of developing breast cancer based on BIRADS

classification. They concluded that the pre-trained multi-view model is superior385

to the randomly initialised model in terms of classification since over-fitting of

the training data is likely to be caused by a random initialised model. In the

recent paper, inspired by their previous work, Dhungel et al. (2016) concluded

that the CNN model with pre-training and RF on features from the CNN with

pre-training are better than the RF on hand-crafted features and CNN without390

pre-training.

As a solution to acquiring sufficient data to train a CNN, Sun et al. (2016) hy-

pothesised combining a small amount of labelled data with abundant resources

of unlabelled data. The scheme consisted of three modules: i) data weighing

(using exponential, Gaussian and Laplacian functions), ii) feature selection (us-395

ing PCA 31, LDA 32 and MDS 33) and iii) using their proposed co-training

graph based data labelling. With computed weights, the unlabelled data was

gradually labelled with a graph based semi-supervised learning method. They

implied that their scheme was less sensitive to initial labelled data compared to

schemes using the labelled data only, since the additional information for the400

training was provided by the unlabelled data. Similarly, Kooi et al. (2016) and

29Gaussian Mixture Model
30Random Forest
31Principal Component Analysis
32Linear Discriminant Analysis
33Multidimensional Scaling
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Huynh et al. (2016) took advantage of transfer learning to extract tumour in-

formation from medical images via CNNs that were originally pre-trained with

non-medical data. Their two-stage classification procedure included detecting

candidates for further scrutiny by applying RF and generating likelihood images.405

These images were then used as seed points for both the reference system and

the CNN. They showed that the addition of location, context information and

several manually designed features to the network improved the performance.

In a similar way, Jiao et al. (2016) proposed a scheme in which a CNN was

trained on LSVRC 34 (Deng et al. (2009)) images and fine-tuned on a subset of410

breast mass images. Then, features of masses were extracted from different hi-

erarchical levels of this model, with the help of which two linear SVM classifiers

were trained for the decision procedure. Eventually, in the decision mechanism,

the outcomes from different classifiers were fused to complete the classification.

Unlike other studies, Samala et al. (2016a) pre-trained CNN on mammogra-415

phy samples to identify specific patterns and transferred this to detect masses

in tomosynthesis (an advanced 3D version of mammography). They reported

statistically significant performance improvement of deep learning based CADs

compared to the feature-based ones.

Classification can be used directly for detection and segmentation. Dubrov-420

ina et al. (2016) performed tissue classification with application to the segmen-

tation of pectoral muscle, fibroglandular tissue, nipple and the general breast

tissue, which includes fatty tissue and skin. They changed classical fully con-

nected layers in a regular CNN into convolutional layers. In conclusion, they

reported significantly faster computation, while preserving the classification ac-425

curacy. Fotin et al. (2016) detected soft tissue densities from digital breast

tomosynthesis. They compared conventional and deep learning approaches, re-

porting better CNN performance. Similarly, Kooi et al. (2017) compared a

mammography CAD system relying on manually designed features and CNN

designed features. They concluded that: i) the CNN based CAD systems out-430

34Large Scale Visual Recognition Competition
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performed the traditional CAD system; ii) there was no significant difference

between the model and the radiologists (AUC: 0.85 vs. 0.91); iii) adding man-

ually designed features to the CNN could give very small improvements. In

other work, Lévy & Jain (2016) classified pre-segmented masses using different

networks from shallow to deep CNNs along with a transfer learning method.435

They investigated the effect of data augmentation and data context in their

work, concluding that double the bounding box of the abnormality is effective

in binary classification of masses.

3.3. Microcalcification Analysis

Alongside the CAD models covered already, additional research with regard440

to microcalcifications, as another major abnormality in mammograms, has been

produced. CAD systems are better at detecting and classifying microcalcifica-

tion than other mammographic abnormalities (Cheng et al. (2003)) as the

density of calcium makes detection possible using thresholding. This is not use-

ful for most masses and asymmetries where the density is similar to glandular445

breast tissue.

The first application of CNN to the detection of microcalcification clusters

was performed by Chan et al. (1995). Clusters of micro-calcifications were

detected in three main steps: finding SNR-enhanced image by applying en-

hancement and suppression filters, histogram determination, obtaining signal450

characteristics and excluding potential signals by thresholding. Subsequently,

they trained and investigated the effectiveness of a CNN in detecting and dis-

criminating false signals from true microcalcifications. However, the number

of cases they used was limited but they were able to significantly reduce the

number of false positive detections. Recently, Wang et al. (2016b), employed455

a stacked denoising AE to retrospectively analyse microcalcifications with or

without masses on mammograms. Microcalcification and mass data were ex-

tracted by image segmentation using 41 statistical and textural measurements

following the classification. In their work, features were fed into the comparative

classifiers rather than the raw images. Its performance and accuracy in clas-460
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sifying and discriminating breast lesions were compared with SVM, K-nearest

neighbour and linear decomposition analysis methods. They reported that the

learning power can be enhanced by a combinatorial approach and deep learning

based methods are superior to standard methods for the discrimination of micro-

calcifications. Samala et al. (2016b) used a grid search method to select an opti-465

mal CNN architecture for differentiating microcalcification candidates detected

during the pre-screening stage. Various filters, filter kernel sizes and gradient

computation parameters in the convolution layers were tested to gain the pa-

rameter space of 216 combinations. They reported significant improvement on

their designed CNN architectures for detection of microcalcifications. Classifica-470

tion of clustered breast microcalcifications into benign and malignant categories

was performed by Bekker et al. (2016) which was based on two mammography

view-level decisions, allocating separate neural networks for each view. These

two view-level soft decisions were then non-linearly combined into a global de-

cision by a single-neuron layer.475

3.4. Summary

In summary, introducing deep learning strategies into mammographic anal-

ysis has expanded ideas to modify the training process for a wide range of

mammographic applications. Detailed information about the implementation

of deep learning based methods, covered in this section, is provided in Table 4.480

Most of these models have tested different network depths and input sizes to

address various issues and the majority of models reported improvements over

existing state-of-the-art results. An overview of general issues related to deep

learning methods in biomedical image analysis is provided by Greenspan et al.

(2016); Litjens et al. (2017). For specific case of mammographic analysis, good485

results are directly related to the correctness of the training data, but the an-

notations provided by the radiologists are prone to subjectivity. Annotation

agreement/disagreement has not yet been included in the currently available

datasets which would be helpful for managing errors. In addition, the devel-

oped methods are not able to identify the most suitable training exemplars that490
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contain rich information for a specific task. The developed methods are sensi-

tive to the size of the abnormalities. Nevertheless, to account for morphological

variations, abnormalities are first resized to a predefined size to become suit-

able for the network. Based on the literature review, a combination of deep

learning based features and hand-crafted features perform best, but more intel-495

ligent combinations are required to be able to respond to the breadth of various

mammographic applications.
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4. Deep Learning in Breast Histology Image Processing

4.1. Problem statement

In breast histological imaging, when the biopsied sample is prepared (Veta500

et al. (2014)), different tissue components are visualised by being stained. The

standard staining protocol for breast tissue is H&E which selectively stains nu-

cleic structures blue and cytoplasm pink. After cover-slipping of glass slides,

the samples can be digitised with a WSI 35 scanners at a specific magnification.

Because of its large size, it is common practice to identify areas of interest in a505

patch-wise manner to be analysed in CAD systems to decrease computational

cost. Figure 6 shows a mammary gland histology slide selected from the Uni-

versity of British Colombia histology repository36. This is shown by RoIs at

x10, x20 and x40 magnification.

Figure 6: (a): Mammary gland slide scanned with the pixel resolution of 49, 440×77, 227; (b):

Extracted boxes represent different HPFs from the WSI (x10, x20 and x40 magnification).

35Whole Slide Imaging
36publicly provided in http://histo.anat.ubc.ca
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For analysis of breast histopathological images, the Nottingham Grading510

System (NGS) (Bloom & Richardson (1957)) is recommended by the World

Health Organisation. This system is used to predict patient prognosis and

provides treatment recommendations. It is derived from the assessment of three

morphological features: tubule formation, nuclear pleomorphism and mitotic

count (Elston & Ellis (1991)). A numerical scoring system (1-3) is used for515

the combination of the three grades of tumour differentiation. These features,

with the respective annotations 37, are shown in Figure 7. General quantitative

(a) (b) (c) (d)

Figure 7: Top row: different patches extracted from different WSI scans; bottom row: anno-

tations for a specific purpose. It should be noted that inter/intra observer variation in manual

annotations can be high. (a) Nuclei detection/segmentation in order to perform pleomorphism

grading; (b) Tubule detection/segmentation to assess the degree of structural differentiation

in the tissue; (c): Epithelial and Stromal region detection/segmentation that have differ-

ent significance for prognosis; (d) Mitotic figure detection for grading tumour proliferation i.e.

number of mitoses and mitotic activity in tumours correlates with grade and poorer diagnosis.

analysis of breast tissue components on WSI scans includes: nuclei, tubules,

epithelium and stroma and mitotic detection. The introduction of deep learning

concepts in image processing has provided big datasets along with annotations520

for specific tasks and some of them are publicly available. Some of these are

listed in Table 2. In this review, methods proposed by various deep learning

based algorithms for analysing histological components to grade breast cancer

37publicly provided at http://www.andrewjanowczyk.com
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on histology data are covered.

4.2. Nuclei analysis525

Breast epithelial nuclei usually look different in shape, size, texture and mi-

totic count according to nuclei life cycle and malignancy level of the disease.

Nucleic pleomorphism has important diagnostic value for predicting the exis-

tence of disease and its severity. Inspired by Cireşan et al. (2013), Xu et al.

(2014) developed an unsupervised two-layer SSAE 38 framework for nuclei clas-530

sification. An SAE was trained to capture primary feature activations on raw

input patches. Then, these primary features were fed to another SAE to learn

secondary features for each of the primary features. Subsequently, being anal-

ysed by a classifier, the secondary features were mapped to the respective labels.

They compared “SSAE + softmax”, “PCA + softmax” and “a single layer SAE535

+ softmax” frameworks for the task of patch-wise classification. Their results

showed the “SSAE + softmax” out-performed the other methods on their own

dataset. They extended this framework to automatically detect multiple nuclei

by computing locally maximal confidence scores across the entire image (Xu

et al. (2016b)). They further compared their model with several nuclei de-540

tection methods and concluded that this framework can provide accurate seed

points for developing cell-by-cell graph features. Characterising cellular topol-

ogy features on tumour histology was reported to be a promising advantage of

this framework. Janowczyk & Madabhushi (2016) performed a comprehensive

study of deep learning approaches for 5 different breast tissue tasks in histology545

image processing. They provided additional online material and implementa-

tions39 and tried to decrease computational cost caused by interrogating all

the image pixels (Janowczyk et al. (2016)). To this end, a resolution adaptive

deep hierarchical learning scheme was suggested in which higher levels of mag-

nification were used when needed. As a result, they were able to reduce the550

38Stacked Sparse AutoEncoder
39http://www.andrewjanowczyk.com
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computation time by about 85% on ER+ 40 breast cancer images. Xing et al.

(2016) performed nucleus segmentation while preserving the shape by gener-

ating probability maps using CNN models and applying selection-based sparse

shape and local repulsive deformable models. They showed that this approach is

applicable to different H&E stained histopathology images, evaluating on three555

histopathology image datasets from different tissues (including breast tissue)

and stain preparations. Veta et al. (2016b) computed statistics of individual

nuclei and surrounding regions by training a deep-CNN 41 model on tumour re-

gion images with known nuclei locations. They were able to do so directly from

the image data without the need for nuclei segmentation. Xie et al. (2015) pro-560

posed a modified CNN model for cell detection by using a structured regression

layer instead of a classifier. This way, they aimed to encode topological infor-

mation which was ignored in the conventional CNN because of the coherency in

labelled regions. Handling inhomogeneous background noise and size and shape

variations were the significant strength of their method.565

4.3. Tubules analysis

Identifying tubule nuclei from WSIs in order to calculate the ratio of tubule

nuclei to the overall number of nuclei (tubule formation indicator) was studied

by Romo-Bucheli et al. (2016). They used a customised CNN to quantify tubule

score in ER+ breast cancer WSIs. Patches of nuclei candidates, that were570

extracted by the customised CNN, were manually labelled as containing a tubule

or not. Subsequently, a deep learning based network was trained to detect

and classify tubule nuclei. They concluded that the tubule formation indicator

correlated with the likelihood of cancer recurrence.

40Estrogen-Receptor-Positive
41DCNN
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4.4. Epithelial and Stromal region analysis575

For this task, Xu et al. (2016a) presented a patch based DCNN 42 ap-

proach for distinguishing epithelial and stromal components in H&E stained

tissue images. The images were over-segmented into small regions using two

different superpixel algorithms (the Ncut 43 algorithm and the SLIC 44 algo-

rithm). Evaluating the comparative strategies, the combination of DCNN with580

the Ncut-based algorithm and a SVM classifier led to the best results. Bejnordi

et al. (2017) trained two deep CNNs inspired by VGGNet. The only modifi-

cation was that they replaced the two fully connected layers with convolutions

to allow arbitrary input sizes to be fed to the network. In their work, the first

CNN model was trained to classify the WSI into epithelium, stroma, and fat.585

The second CNN model was trained on the resulting stromal areas to classify

the stromal regions as normal or cancerous.

4.5. Mitotic activity analysis

To quantify the locality and proliferative activity of breast tumours, mitotic

count is estimated as the number of mitoses in an area of 2mm2 (usually using590

microscope magnification of ×40) and reported as the MAI 45 (Van Diest et al.

(2004)). This gives an evaluation of the aggressiveness of the tumour. Mito-

sis detection is challenging due to the small size with a large variety of shape

configurations of mitoses. In H&E stained breast cancer sections, mitoses are

hyperchromatic objects lacking a clear nuclear membrane with their own spe-595

cific shape properties. Inspired by the outstanding results for using patch-driven

CNN in image classification and segmentation (Cireşan et al. (2012a,b)), Cireşan

et al. (2013) used the deep max-pooling CNN architecture operated directly on

raw RGB pixels. They tried to reduce the deep neural network’s variance and

bias by averaging the outputs of multiple classifiers with different architectures600

42Deep CNN
43Normalised Cut
44Simple Linear Iterative Clustering
45Mitotic Activity Index
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along with using rotational invariance. Their method won the ICPR12 com-

petition with the highest F-score and precision. With the same approach plus

employing a Multi-column CNN, the same team won the AMIDA13 competi-

tion in which three CNNs were trained on nearly 20 million samples (Veta et al.

(2015)). The output probabilities of the CNNs were averaged and used as the605

final result. Wang et al. (2014a,b) fused a lightweight CNN with hand-crafted

features (morphological, statistical and textural sets) for each candidate region

defined by thresholding. Extracting these features independently, a cascade of

two random forest classifiers was combined and trained. They showed that the

integrated approach resulted in superior detection accuracy compared to indi-610

vidual deep learning or hand-crafted feature based approaches. In the same

way, Malon & Cosatto (2013) combined manually segmentation-based nuclear

features (colour, texture, and shape) with the features extracted by a LeNet-5

architecture (LeCun et al. (2010)). Reported advantages were: handling the

appearance varieties in mitotic figures, decreasing sensitivity to the manually615

crafted features and thresholds. Chen et al. (2016a) suggested a deep cascade

neural network with two phases. In the first phase, a 3-layer CNN was utilised

to retrieve probable mitosis candidates and in the second phase, three CaffeNet-

based CNNs (Jia et al. (2014)) were used to detect mitotic cells in all positive

samples determined by the first CNN. In other work, Chen et al. (2016b) imple-620

mented a deep regression network along with transferred knowledge for this task

and showed the efficiency of their proposed approach in dealing with automatic

mitosis detection.

To overcome the bottleneck of access to a large number of annotated train-

ing samples for mitosis detection with deep CNNs which is more critical com-625

pared to the other tasks, Albarqouni et al. (2016) presented a new concept for

learning from crowds and generating ground-truth labelling from non-expert

crowd sourced annotations. In their proposed data aggregation framework, they

trained a multi-scale CNN model using gold-standard annotations. Then, in the

second step, using the incoming unlabelled image, aggregation schemes were630

integrated into CNN layers via an additional crowdsourcing layer (AggNet).
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AggNet could produce a response map, refine the CNN model by filtering out

weak responses and simultaneously generate a ground-truth by majority crowd

sourced votes. They analysed the behaviour of CNN with and without aggrega-

tion and confirmed that aggregation and deep learning from crowd annotations635

was robust to noisy labels (multiple different labels for the same sample). They

claimed that not only could deep CNNs be trained with data collected from

crowdsourcing, but also it positively influenced the CNN performance. Such

results could be valuable in giving insight into the functionality of deep CNN

learning from crowd sourced annotations. Veta et al. (2016a) presented an640

analysis of the object-level inter-observer agreement on mitosis counting. They

compared the performance of their deep learning based mitosis detection which

was trained on the AMIDA13 database with the performance of expert observers

on an external dataset. They described disagreement among pathologists which

in some cases was significant. They concluded that automatic mitosis detection645

performed in an unbiased way and provided substantial agreement with human

experts.

4.6. Other tasks in breast digital histopathology image processing

Detection of invasive ductal carcinoma 46 in WSI for the estimation of tu-

mour grading and the prediction of patient outcome was done by Cruz-Roa650

et al. (2014). Using a three-layer CNN, they evaluated their network over a

WSI dataset from 162 patients diagnosed with IDC. Comparing their results

with the outcome from hand-crafted image features (colour, texture and edges,

nuclear textural and architecture) with a random forest classifier, they reported

their best quantitative results for automatic detection of IDC regions in WSI.655

Wang et al. (2016a) investigated the applicability of various CNNs (AlexNet,

GoogLeNet, VGG16 and FaceNet) in breast cancer metastases detection in re-

sected sentinel lymph nodes (first lymph node to which cancer cells are most

likely to spread to). They won the Camelyon16 competition for WSIs clas-

46IDC
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sification and tumour localisation. In their results, the two deeper networks660

(GoogLeNet and VGG16) achieved the best patch-based classification perfor-

mance with x40 magnification. Their results also demonstrated that the com-

bination of deep learning methods with pathologist’s interpretation could re-

duce the error rate by 85% which is a significant improvement in diagnostic

accuracy. Similarly, Litjens et al. (2016) identified slides that did not contain665

micro/macro-metastases. Accordingly, a CNN was trained to obtain per-pixel

cancer likelihood maps and segmentations in whole-slide images rather than a

patch-by-patch classification. Janowczyk et al. (2017) attempted to evaluate

Stain Normalisation via Sparse AutoEncoders under different circumstances: i)

in different concentrations of H&E in the same tissue section; ii) with the same670

slides being scanned multiple times on different platforms. In addition, they

compared their proposed approach with other colour normalisation methods

and reported outperforming the alternative approaches. Their approach stan-

dardised colour distributions of a test image to a single template image and

increased robustness to different sources of variance like specimen thickness,675

stain concentration and scanner.

4.7. Summary

Deep learning algorithms try to emulate the way histopathologists examine

whole tissue slides. Several studies have compared the performance of deep

learning methods to the performance and interobserver agreement of expert680

pathologists (Giusti et al. (2014)). Histopathologists analyse the image at low

magnifications and then perform more sophisticated analysis on some specific

areas requiring more detailed information under higher magnification. Selecting

appropriate magnifications in deep learning methods remains a challenge. The

identification of the best training set containing richly informative exemplars is685

another concern. However, the lack of readily available annotated data for digi-

tal histopathology analysis is not as critical as for mammography since one WSI

typically contains trillions of pixels from which hundreds of targeted examples

can be extracted. Moreover, some competition challenges (see Subsection 1.3)
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have provided access to publicly available data which are systematically anno-690

tated. From the literature, it can be concluded that, deep learning approaches

have proven capability in discriminating between the targeted classes by com-

bining both feature discovery and implementation. The strategy of combining

both deep learning based and hand-crafted features has enabled the possibility

of achieving state-of-the-art performance when using AI for the interpretation695

of x-ray and histology images of breast cancer. Although these deep learning

based approaches have demonstrated promising results, there is still progress

to be made to reach clinically acceptable results. Detailed information about

the implementation of deep learning based methods, covered in this section, is

provided in Table 5.700
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5. Biological Mammography Histology Association

From a biological point of view, it has been long recognised that in the

breast the underlying differences in cellular architecture and nuclear morpho-

logical alterations lead to tissue changes and the formation of masses, microcal-

cifications or other abnormalities (Boyd et al. (1992)). Tumour morphology in705

histology images can reflect some of all possible molecular pathways occurring

in tumour cells. In other words, these biological pathways and cellular alter-

ations contribute to the structural and functional attributes in radiographic im-

ages (Madabhushi & Lee (2016)), which is represented by both mammography

and histology.710

There are a number of publications which have provided evidence for the as-

sociation between radiological and histological risk factors (Ghosh et al. (2012);

Pang et al. (2015); Holland & Hendriks (1994); Britt et al. (2014); Lamb et al.

(2000); Beck et al. (2011); Sun et al. (2014); Dos Santos et al. (2016)). Britt

et al. (2014) defined the association between histopathological characteristics715

and mammographic density based on the changes in epithelial cells, stromal

cells, the extracellular matrix, immune infiltrating and the roles of each cell

type in breast cancer initiation and progression. In a case study, Holland &

Hendriks (1994) investigated the link between mammographic and histologic

appearances in different types of DCIS 47. They found that linear, branching,720

granular and coarse microcalcifications corresponding to the amorphous type

calcifications in histology were associated with high grade DCIS. While mul-

tiple clusters of fine granular microcalcifications corresponding to the clusters

of laminated, crystalline calcifications in histology were associated with well-

differentiated DCIS. Lamb et al. (2000) reported that larger tumour sizes on725

mammography resulted in higher grades in histology. However, spiculated mar-

gins on a mammogram, associated with acoustic shadowing on ultrasound, were

documented as low-grade tumours while most high-grade tumours had a poorly

47Ductal Carcinoma In-Situ
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defined margin. Malignant-type microcalcifications were mostly seen in mam-

mograms associated with high-grade tumours. Ghosh et al. (2012) also reported730

that dense areas of the breast in mammograms are different from non-dense ar-

eas from a histological point of view so that investigation of both epithelial and

stromal components were important in understanding the association between

mammographic density and breast cancer risk. Identification of histologic image

features that can be predictive of breast cancer survival were studied by Beck735

et al. (2011). Sun et al. (2014) investigated the relationship between breast tis-

sue composition and age, body mass index, and tumour grade. They concluded

that morphological features of breast tissue could influence breast cancer etiol-

ogy. Dos Santos et al. (2016) investigated biological aspects of immunohisto-

chemical and histological composition of dense and non-dense breast tissue in 18740

women. Based on their reported findings, the number of TDLU 48 was higher in

dense tissue. They concluded that both stroma fibrosis and epithelial prolifera-

tion were responsible for higher mammographic density, so that no proliferative

lesions with atypia were found in non-dense tissue, while epithelial atypia was

observed in some dense areas. In addition, proliferative lesions without atypia745

and non-proliferative lesions were found in both tissues, but more frequently

in dense tissue. Extensive or moderate fibrosis in dense tissue was the other

differentiation with non-dense tissue histological characterisation.

Tot & Tabár (2011) investigated correlation of the radiologic and histopatho-

logic findings. They assessed the clinical relevance of several parameters, that750

are often verified by pathologists and documented in large-format histologi-

cal sections, such as: size of the cancer, the extent of the disease, the distri-

bution of lesions and tumour heterogeneity. They concluded that a compre-

hensive radiological-pathological correlation was the most informative way of

early breast cancer diagnosis so that diagnostic failure was due to insufficient755

radiological-pathological correlation.

Despite biological interpretations, the internal information, generated in

48Terminal Ductal Lobular Units
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deep networks used in CAD systems, has the potential to add to our knowledge

about the existing association between histological compositions and mammo-

graphic phenotypes. This is discussed in more details in the next section.760

6. Conclusions and Future Trends

6.1. Conclusions

As explained in Sections 3 and 4, information for estimating breast cancer

stage and risk can be obtained using different imaging modalities. Methods fo-

cused on in this review include histological appearance of the breast nuclei and765

epithelium detected in biopsy specimens, radiological appearance of abnormality

and parenchymal patterns in densities revealed by mammograms. These imag-

ing modalities that manifest across multiple different length scales (micro and

macro imaging scales) offer a wide range of information and clinicians combine

these heterogeneous sources of data for better disease diagnosis and treatment770

planning. However, as described in Section 2, many cases with suspicious ab-

normal findings in mammography who went for further biopsy, eventually were

found to have unnecessary biopsies. Motivated by the biological association be-

tween mammography and histology (covered in Section 5) and considering the

capabilities of deep learning based models in learning from raw data suggests a775

methodology to potentially reduce biopsies. It is assumed that the appearance of

mammographic abnormalities can be linked to specific histological information

and can predict how the micro-biological changes are reflected in macro-images.

6.2. Mammography-Histology-Phenotype-Linking-Model

Finding radiological-histopathological correlation/association has been in-780

vestigated from a biological point of view as described in Section 5. Most of

these epidemiological studies are based on empirical observations and statistical

risk analysis. However, to the best of our knowledge, a computer based model

of such correlation/association is not yet developed. In this paper, we have

tried to cover this research question and propose a general framework for fully785

automatic linking of mammographic and histologic phenotypes.
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(a) ModelM

(b) ModelH

Figure 8: Separate CAD models for (a) mammography (ModelM ) and (b) breast histology

(ModelH).

Figure 8, shows the development of automatic CAD systems for the mam-

mography and histology data analysis (covered in Sections 3 and 4, respectively),

which are expected to use modern machine learning techniques (e.g. deep

learning, convolutional neural networks, autoencoders, etc.) to determine a set790

of mammographic (FM ) and histological (FH) phenotypes/features/abstracts,

which are discriminative in various image processing tasks such as detection,

segmentation and classification. It should be noted that the modelling will be

an optimisation process and for the training data the labels are used to estimate

the model parameters and generate appropriate features.795

Once the mammographic and histological models are estimated, they can be

used to generate patient matched mammographic and histological feature/phenotype

weighting and their relationship can be estimated by developing a model link-
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Figure 9: General framework for developing the Mammography-Histology-Phenotype-Linking-

Model. (a) ModelM : mammographic machine learning based model creating mammographic

features (FM ); (b) ModelH : histological machine learning based model creating histological

features (FH); (c) the MLM<−>H model for providing associations between mammographic

and histologic features.

Figure 10: Proposed methodology of developing the Mammography-Histology-Phenotype-

Linking-Model using deep learning based approaches. ModelM : mammographic deep learn-

ing based model, ModelH : histological deep learning based model, FM : mammographic high

level deep learning based features, FH : histological high level deep learning based features,

MLM<−>H : relationships between the mammographic and histologic phenotypes. This can

be achieved by: (1) creating different clusters based on permutation of 3 histological score

occurrences; (2) associating created pools of deep learning based features to the proper cluster

based on the available annotations and making discriminative clusters; (3) matching repre-

sentative pools of mammographic and histologic features; (4) by using high level histologic

abstracts and performing deconvolution/decoding of ModelH , morphological approximations

can be estimated.
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Figure 11: Proposed methodology of developing the Mammography-Histology-Phenotype-

Linking-Model using deep learning based approaches. ModelM : mammographic deep learning

based model, ModelH : histological deep learning based model, FM : mammographic high

level deep learning based features, FH : histological high level deep learning based features,

MLM<−>H : relationships between the mammographic and histologic phenotypes. This can

be achieved by using matched FM and FH features as input and output of a Neural Network

(e.g. an autoencoder)

ing the two based on machine learning techniques (see Figure 9). The au-

tomatic extraction of morphological/appearance features from mammographic800

and histological images and building a map between these based on a large

dataset form essential parts in developing such a model. One possible solu-

tion for developing such a “Mammography-Histology-Phenotype-Linking-Model”

or in short “MLM<−>H” is shown in Figure 10. In this approach, a mam-

mographic model (ModelM ) can be trained, which is based on minimising the805

difference between NHS/BIRADS labels provided by expert radiologists and

those predicted/estimated by the model. Subsequently, salient deep and high

level features are generated (FM ) and a pool of deep learning based features

is created for each individual image. Similarly, a histological model (ModelH),

which is based on minimising the difference between NHSBSP histopathology810

reports and those predicted/estimated by the model can be trained. Using the

Nottingham Grading System (NGS), this model is able to predict scores of 1-3

for three cellular components important in breast histology diagnosis (i.e. nu-

clei, tubules and mitoses). At the same time, this model is capable of creating a

pool of high level and deep learning based features for each component. Permu-815
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tation of the 3 scores for each histological component with 2 possible outcomes

(benign and malignant) will result in 54 possible occurrences (33×2). Therefore,

54 clusters can be formed, although it should be noted that some might only

be sparsely populated. To develop the MLM<−>H model, the starting point is

to generate a set of matched mammographic and histologic features/abstracts820

created by ModelM and ModelH , respectively. To achieve this, the created

mammographic features are associated with their respective NGS cluster and a

pool of representative mammographic features for a specific cluster is formed.

Meanwhile, each cluster in the permuted set contains a pool of previously gen-

erated histologic features. A mapping between the two feature spaces will be825

provided considering that mammographic and histologic data are provided for

individual cases. Eventually, machine learning techniques are exploited to re-

trieve different morphological appearances for each cluster, resulting in the final

MLM<−>H model.

An alternative approach to develop the MLM<−>H model (see Figure 11)830

avoids the need for clustering and basically uses the matched FM and FH fea-

tures, as respectively input and output to build a simple autoencoder model

which maps the two domains through a reduced set of features. The downside

of such a model is the lack of clinical reference of the reduced feature set, whilst

the advantage is the simplicity of the resulting MLM<−>H model.835

The final stage of development is to use unseen mammographic cases to pre-

dict the histological classification based on the Nottingham Grading Scheme.

An overall predictive model is shown in Figure 12. An unseen mammographic

case can be processed in a number of ways, which all require initial processing to-

wards a mammographic phenotype/feature (FM ) representation. The mammo-840

graphic classification stage (CM ) leads to mammographic NHS/BIRADS classi-

fication. Using appropriate similarity measures in the MLM<−>H model, pre-

dicted feature sets are associated to the closest cluster which results in NHSBSP

Histopathology Reporting Form classification (or the NN model) and the set of

matched abstract features (FH), which with ModelH leads to the estimation of845

histological appearance/ phenotypes.
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Figure 12: Using the Mammography-Histology-Phenotype-Linking-Model (MLM<−>H) for

unseen cases. ModelM : Mammographic machine learning based model, ModelH : histo-

logical machine learning based model, FM : mammographic phenotypes, FH : histological

phenotypes, CM : mammographic classification, MLM<−>H : relationships between mam-

mographic and histologic phenotypes.

6.3. Possible challenges

Despite the promising results obtained by deep learning approaches, there

are remaining challenges for the development of the MLM<−>H model, which

include:850

1. Data availability : The first and most basic challenge is the availability

of a large number of training samples specifically for this application

since the mammograms and histological images should be matched for

individual women. The number of samples should be large enough for

deep network training purposes. However, existing datasets can be used855

in the pre-training stage to compensate for the lack of annotated mam-

mography/histopathology data. Appropriate data might be available on

existing PACS (Picture Archiving and Communication Systems). As ex-

plained in Section 1.1, women are sent for mammography imaging prior

to biopsy. Therefore, for the existing histological data, the respective860

mammograms and the corresponding diagnostic reports exist in digital

structured archives, but ethical and research governance agreement and

approval will be necessary.

2. Combinational ground truth: Appropriate ground truth for the validation
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part of each individual, mammography and histology image processing,865

task should be defined systematically. For example the annotations re-

quired for breast tissue segmentation in mammograms (characterisation)

is different from the annotation required for cancer and non-cancer clas-

sification of the tissues. The annotation required for the mitotic count

(characterisation) in histopathology is very different from the annotation870

required for cancer and non-cancer classification of the regions (classifi-

cation). For associating abnormal phenotypes in a mammogram to char-

acteristics of the tumour in histology, some specific annotations (location

and type of abnormality along with locations of nuclei, mitosis count and

tubules morphology) are of interest.875

3. Subjectivity of annotations: If possible, annotations should be provided

by different radiologists and histopathologists to accommodate subjective

variations. This inter/intra expert variation then needs to be taken into

account (Irshad et al. (2014)).

4. Robustness to data acquisition methods: The issue of robustness to various880

clinical/technical conditions should be addressed so that gradually more

datasets can be added. These variations include: different scanners used

for image acquisition; different lighting conditions; various size and views

in both mammography and histology; different staining appearance char-

acteristics and magnification factors in histology. The developed method885

should be robust with respect to such variabilities and appropriate nor-

malisation techniques could facilitate this.

5. Interpretability of model layer information: Unlike hand-crafted features

that provide transparent information, which are more intuitive and inter-

pretable to clinicians and researchers, deep learning driven features rely890

on filter responses solicited from a large amount of training data which

suffer from a lack of direct human interpretability. Therefore, approaches

to blend domain inspired features with deep learning based features can be

taken into consideration in order to take advantage of domain knowledge

while enabling the classifier to discover additional features.895
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6. Association making algorithms: New algorithms for combining mammo-

graphic and histologic measurements should be designed, which is a more

detailed version of the high level descriptions provided in Section 6.2.

By finding and visualising a logical association between outcome features

introduced by deep networks and the salient diagnostic features incor-900

porated in conventional machine learning based CAD systems, a subset

of clinically salient features can be determined. Such association mak-

ing algorithms, as the novel part of mammographic-histologic linking map

introduced in this paper, is an open challenge for future research. One

alternative approach to tackle this challenge is by combining image data905

with text reports as addressed by Shin et al. (2015) while expanding this

to the field of radiology and histology in order to mine the semantic in-

teractions between radiology and histology images and the corresponding

reports.

7. Clinical feedback : More evidence and feedback regarding the results of910

clinical applications using the developed models will need to be provided

by clinicians. Close cooperation between radiologists, pathologists and

computer scientists will be necessary for the optimum management of

data, analysing the performance of developed methods in a clinical setting

with feedback from the radiologists and histopathologists throughout the915

research process.

6.4. Clinical relevance

The described linking map is expected to reduce the need for further biopsy

when the mammographic abnormality is deemed benign as it is reported from a

biological point of view (Tot & Tabár (2011)). This association map could con-920

tribute to clinical decision making, diagnosis and treatment management. This

may also improve the capabilities of computer aided prognosis systems to find

patients susceptible to specific breast cancer types at an early stage and as such

decrease time before diagnosis, expense and stress. This exploratory research

work could be further extended to finding the link between mammography phe-925
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notypes, histological signatures and protein/gene expression and so be useful for

predicting recurrence of and survival after breast cancer. Other imaging modal-

ities for breast imaging, such as MRI and Ultrasound could be exploited in the

development of a linking map. This could also cover various ethnic populations

and links to breast cancer pathways. It could identify sub-cellular patterns of930

involved proteins and their locations for cancerous and non-cancerous tissues

by avoiding the need for invasive biopsy sampling. Identification of the factors

responsible for high-risk histological changes can potentially lead to modelling

of disease appearance, better prediction of disease aggressiveness and finally

patient outcome.935
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Arevalo, J., González, F. A., Ramos-Pollán, R., Oliveira, J. L., & Lopez, M.

A. G. (2015). Convolutional neural networks for mammography mass lesion

classification. In IEEE 37th Annual International Conference of the Engi-

neering in Medicine and Biology Society (EMBC) (pp. 797–800).
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